Introduction

- **Improving Chain of Custody in Digital Forensics**
- **Timestamping Digital Evidence Hash Values**
- **Solution Based on Blockchain Technology**
- **E-CoC Ledger Hosted by Trusted Entity**

Solution Implemented

Solution Requirements
- **Reliability**
- **Integrity**
- **Tamper-Evident**
- **Timestamped**
- **Privacy Preserving**
- **Scalable**
- **Ease of Use**

Process of Using the Ledger

1. **Creation of the Fingerprint**
 - Calculation of the Fingerprints (hash values of the evidence)

2. **Transmission of the Fingerprints**
 - Send the Fingerprints (Hash values of the evidence)

3. **Comparison of the Fingerprints**
 - Presentation of the integrity of the block, displaying the timestamp, fingerprints, and the receipt number

Relation Between Ledger and Public Blockchains

- **Adding Block in Ledger**
- **Process of Using the Ledger**
- **Relation Between Ledger and Public Blockchains**

Timestamping the Digital Evidence Hash Values

- **Digital Evidence**
- **Calculate Hash Values**
- **Fill in Some Case Information**

Verification of the Timestamp

- **Receipt and QR Code**
- **Find the First Following Block Sent to a Public Blockchain**

Further Work

- **Use of the Ledger without the Interface**
- **Integration in Forensics Tools**
- **Use Hyperledger Composer as Ledger**

Conclusion

- **Solution for Timestamping Digital Evidence Hash Values**
- **Use of Public Blockchain to Anchor Some State of the Ledger**
- **Storing Salted Hash Values for Privacy Reason**
- **Support Work of Digital Forensics Examiner**