An Argumentation-Based Reasoner to Assist Digital Investigation and Attribution of Cyber-Attacks

Erisa Karafili

University of Southampton

June 3, 2020 DFRWS EU

Erisa Karafili, Linna Wang, Emil C. Lupu

Imperial College London

Funded by the EU's Horizon 2020 under the Marie Skłodowska-Curie grant agreement No 746667.

Agenda

Introduction

2 An Argumentation-Based Reasoner

Conclusions and Future Work

Motivations

The growing of connectivity increases the security challenges and the need for efficient countermeasures

Analyzing and attributing cyber-attacks permits efficient attacker-oriented countermeasures

- Digital Forensics techniques help the analysis and attribution
- These techniques suffer from the quantity and quality problem

The Problem

Problem

The attribution process is a difficult one and there is a need to provide help to the analyst during this process

- Attribution is mainly human based
- It suffers from human errors and is easily biased
- Explanations on the provided results are missing

The Proposed Solutions

Solution

An automatic reasoner that helps the analyst to analyze the pieces of evidence and attribute the attack

- Our solution reduces the human errors and bias
- It permits to work with incomplete and conflicting evidence
- It provides an explainable attribution

An Argumentation-Based Reasoner

An Argumentation-Based Solution

Solution

An automatic reasoner (ABR) that helps the forensics analyst during the analysis and attribution process.

- ABR is based on argumentation and abductive reasoning
- It works with incomplete and conflicting pieces of data
- ABR works with technical and social evidence

Preference-Based Argumentation Framework

Our solution uses a preference-based argumentation framework

Definition

An argumentation theory is a pair $(\mathcal{T}, \mathcal{P})$ of argument rules \mathcal{T} and preference rules \mathcal{P} .

The argument rules ${\mathcal T}$ are a set of labelled formulas of the form:

$$rule_i: L \leftarrow L_1, \ldots, L_n$$
.

The preference rules are a set of labelled formulas of the form:

$$p: rule_1 > rule_2$$

where $rule_1$, $rule_2$ are labels of rules in \mathcal{T} , and > is higher priority relation between the rules.

8 / 15

Given the argument pair (T, P):

```
T = \{r_1 : attackOrig(X, Attack) \leftarrow ipGeoloc(X, IP), attackSourceIP(IP, Attack).
r_2 : \neg attackOrig(X, Attack) \leftarrow ipGeoloc(X, IP), attackSourceIP(IP, Attack),
spoofedIP(IP).\}
P = \{p_1 : r_2 > r_1\}
```

```
Given the argument pair (T, P):
```

```
T = \{r_1 : attackOrig(X, Attack) \leftarrow ipGeoloc(X, IP), attackSourceIP(IP, Attack).
r_2 : \neg attackOrig(X, Attack) \leftarrow ipGeoloc(X, IP), attackSourceIP(IP, Attack),
spoofedIP(IP).\}
P = \{p_1 : r_2 > r_1\}
```

and the following evidence:

```
E = \{attackSourceIP(ip00, A_1), ipGeoloc(countryC, ip00)\}
```

Given the argument pair (T, P):

```
T = \{r_1 : attackOrig(X, Attack) \leftarrow ipGeoloc(X, IP), attackSourceIP(IP, Attack).
r_2 : \neg attackOrig(X, Attack) \leftarrow ipGeoloc(X, IP), attackSourceIP(IP, Attack),
spoofedIP(IP).\}
P = \{p_1 : r_2 > r_1\}
```

and the following evidence:

$$E = \{attackSourceIP(ip00, A_1), ipGeoloc(countryC, ip00)\}$$

the conclusion is:

attackOrig(countryC, A1).

Given the argument pair (T, P):

```
T = \{r_1 : attackOrig(X, Attack) \leftarrow ipGeoloc(X, IP), attackSourceIP(IP, Attack).
r_2 : \neg attackOrig(X, Attack) \leftarrow ipGeoloc(X, IP), attackSourceIP(IP, Attack),
spoofedIP(IP).\}
P = \{p_1 : r_2 > r_1\}
```

and the following evidence:

$$E = \{attackSourceIP(ip00, A_1), ipGeoloc(countryC, ip00)\}$$

the conclusion is:

$$attackOrig(countryC, A1)$$
.

If the evidence is:

$$E = \{attackSourceIP(ip00, A1), ipGeoloc(countryC, ip00), spoofedIP(ip00)\}$$

Given the argument pair (T, P):

$$T = \{r_1 : attackOrig(X, Attack) \leftarrow ipGeoloc(X, IP), attackSourceIP(IP, Attack).$$
 $r_2 : \neg attackOrig(X, Attack) \leftarrow ipGeoloc(X, IP), attackSourceIP(IP, Attack),$
 $spoofedIP(IP).\}$
 $P = \{p_1 : r_2 > r_1\}$

and the following evidence:

$$E = \{attackSourceIP(ip00, A_1), ipGeoloc(countryC, ip00)\}$$

the conclusion is:

$$attackOrig(countryC, A1)$$
.

If the evidence is:

$$E = \{\textit{attackSourceIP}(\textit{ip}00, \textit{A}1), \textit{ipGeoloc}(\textit{countryC}, \textit{ip}00), \textit{spoofedIP}(\textit{ip}00)\}$$

then the conclusion is

$$\neg$$
attackOrig(countryC, A1).

Social Model used by ABR

- ABR is based on the Q-Model
- The Q-Model represents how the analysts perform the attribution process of cyber-attacks
- The pieces of evidence and the reasoning rules are divided in three layers

Argumentation-Based Reasoner for Attribution

Conclusions and Future Work

Conclusions

- A technique to help the forensic investigator to analyze the cyber forensics evidence left after an attack.
- The automatic reasoner, which is based on abductive and argumentation reasoning, given the pieces of evidence:
 - Analyzes the evidence and derives new information
 - Provides explainable conclusions to who might be the culprit of an attack

Future Work

- Fully automate the evidence collection/extraction
- Enrich ABR with reasoning rules and background knowledge
- Work with probabilities for the evidence and reasoning rules
- Empirical studies on the tool usability

Questions?

e.karafili@soton.ac.uk
sites.google.com/view/af-cyber
cyber.southampton.ac.uk

