Towards Sound Forensic Arguments: Structured Argumentation Applied to Digital Forensics Practice

DFRWS EU 2020

Virginia N. L. Franqueira (v.franqueira@kent.ac.uk)

Graeme Horsman (g.horsman@tees.ac.uk)

Kent Interdisciplinary Research Centre in Cyber Security (KirCCS)

Context

- Digital forensics science
 - There has been a push both in the domain of Forensic Science and of Digital Forensics – to increase *rigor, standardization* and *transparency* in practices and reporting
- Digital forensics practice
 - Practitioners have to deal with investigations which are ever more complex
 - Multiple elements have to be considered to address an investigation hypothesis

Problematic phenomena

- It is becoming increasingly difficult to logically organise all key facts of a given case to allow full and transparent scrutiny, and evaluation of the investigatory process by
 - the practitioner themselves
 - peers who may undertake review of the work
 - those involved with the wider investigation of the case (such as legal professionals, defence council, and jury)

This paper...

- 1. It proposes **Toulmin's structured argumentation** (Toulmin, 1958) as a practical and versatile mechanism for logical reconstruction
 - Helpful addition to forensic practitioners' thinking toolbox
- 2. It illustrates Toulmin's model using *three case examples* that permit exploring its applicability in real world contexts

3. It elaborates on benefits and limitations of the proposed approach

S. E. Toulmin, *The Uses of Argument*, 1st Edition, Cambridge University Press, 1958.

Toulmins' structured argumentation (SA)

Toulmin proposed a layout for arguments composed of 6 elements

GROUND: an evidence collected, a fact, a piece of information, data produced, a scientific finding, a legal precedent or an observation

gives support to a claim

CLAIM: what is under evaluation, i.e., to be established as true or false

• e.g., conclusion, decision, expert opinion, hypothesis

WARRANT: inferential leap connecting a ground to a claim

 i.e., a bridge-statement (e.g., cause/effect, empirical generalisation, common sense statement regarded as true)

BACKING: adds credibility or authority to a warrant

• e.g., laws, statistics, test results, regulations, standards, best practices

REBUTTAL: *counter-argument which diminishes confidence in a claim*

- e.g., exception, reservation, new fact, additional evidence, novel info
- it can "attack" a ground, a warrant and, occasionally, a backing

Case studies

We illustrate the application of structured argumentation to real world contexts using 3 example cases:

Case 1

• Cross-border case of advance-fee fraud involving a large number of victims

Case 2

• Murder case covered by the media in 2018

Case 3

• Fictitious sexual assault scenario introduced by Casey (2018)

E. Casey, Clearly Conveying Digital Forensic Results, Digital Investigation 24 (2018) 1-3.

Case 1

The defendant (suspect 'X') was arrested at his home address in the UK.

Several mobile phones, loose SIM cards, laptops, USB sticks, and paperwork containing PII & material related to fraud were seized from the address at the time of arrest.

Claims typical for advance-fee fraud cases

each claim: true or false?	CLAIM 1	Suspect 'X' lifestyle not compliant with declared income.
	CLAIM 2	Suspect 'X' had contact with victims.
	CLAIM 3	Suspect 'X' had possession of fraudulent information.
	CLAIM 4	Suspect 'X' had access to resources to facilitate fraud.
	CLAIM 5	Suspect 'X' operated a money laundering scheme.

initial argument from investigation

counter-argument from suspect counter-arguments to rebuttal 1 >>>> they restore

confidence in the original argument Case 2 Murder case where defendant Mr Patel (suspect 'X') allegedly killed his wife (victim 'Y').

Grindr cheat pharmacist claims murdered wife was 'best mate'

A man accused of murdering his wife so he could start a new life with his male lover told detectives he loved her and she was his "best mate", a court heard.

Case 3

Case of an alleged sexual assault committed by suspect 'X' against victim 'Y'.

Discussion – potential benefits of SA

- Decipher-ability
- Logical Reconstruction
- Peer Review
- Jury Interpretation
- Error Detection

Discussion – potential benefits of SA

- Flexibility
 - can be used during or after the process of investigation
 - can be used at different levels of abstraction and granularity
 - can serve different purposes
 - case 1: refinement of claims as building blocks for logical reconstruction
 - cases 2 & 3: hypothesis elaboration, falsification, considering defence council arguments
 - apply to any type of case

Discussion – potential limitations of SA

- Quality of Argumentation
 - often discussed aspects affecting quality of SA in general are convincingness, soundness, and completeness of arguments / counter-arguments
- Risks
 - risk involved in: too much details leading to "combinatorial explosion"
 - risk exposed by: unacknowledged rebuttals

Discussion – potential limitations of SA

- Overhead of Argumentation
 - Learning curve? Time consuming? Effort draining?
 - yes, there is a learning curve to understand the basic rules and gain practice
 - but:
 - no specialised background (theoretical or mathematical) is required
 - it draws from *inferences* that forensic practitioners already make during their work (mostly subconsciously)
 - >> short training should suffice

Conclusion

- SA has the potential to become a very *practical tool* to support practitioners all the way through their investigations
- Despite the need for further empirical evaluation, the proposed SA method indicated several relevant benefits *aligned with the push for a more science-oriented model* for DF investigations
 - transparency
 - accountability
 - accessibility

Related work (structured argumentation)

- It has been applied extensively in Computing to build confidence on a target audience that the conclusion reached is justifiably true, e.g.:
 - to build safety cases & dependability cases
 - to demonstrate compliance to laws and regulations
 - to establish confidence in software development
 - to show satisfaction to security requirements
 - to expose threads of risks/mitigations for risk assessment
- In fields indirectly related to forensics, it has been used, e.g.:
 - to help decision making aiming at transparent accountability in cases of child protection
 - to validate claims about offenders' profiles
- In the field of DF, it has been used scarcely, e.g.:
 - to expose a claim in a child abuse imagery case and validate it (Boddington, 2012)
 - to evaluate forensic readiness for incident response purposes (Pasquale et al., 2013)