Towards Sound Forensic Arguments:
Structured Argumentation Applied to
Digital Forensics Practice

DFRWS EU 2020

Virginia N. L. Franqueira (v.franqueira@kent.ac.uk)
Graeme Horsman (g.horsman@tees.ac.uk)
Context

• Digital forensics science
 • There has been a push – both in the domain of Forensic Science and of Digital Forensics – to increase rigor, standardization and transparency in practices and reporting

• Digital forensics practice
 • Practitioners have to deal with investigations which are ever more complex
 • Multiple elements have to be considered to address an investigation hypothesis
Problematic phenomena

• It is becoming increasingly **difficult to logically organise all key facts** of a given case to allow full and transparent scrutiny, and evaluation of the investigatory process by

 • the practitioner themselves
 • peers who may undertake review of the work
 • those involved with the wider investigation of the case
 (such as legal professionals, defence council, and jury)
This paper...

1. It proposes **Toulmin’s structured argumentation** (Toulmin, 1958) as a practical and versatile mechanism for logical reconstruction
 • Helpful addition to forensic practitioners’ thinking toolbox

2. It illustrates Toulmin's model using *three case examples* that permit exploring its applicability in real world contexts

3. It elaborates on benefits and limitations of the proposed approach

Toulmins’ structured argumentation (SA)

Toulmin proposed a layout for arguments composed of 6 elements

- **GROUND**: an evidence collected, a fact, a piece of information, data produced, a scientific finding, a legal precedent or an observation
 - gives support to a claim

- **CLAIM**: what is under evaluation, i.e., to be established as true or false
 - e.g., conclusion, decision, expert opinion, hypothesis

- **WARRANT**: inferential leap connecting a ground to a claim
 - i.e., a bridge-statement (e.g., cause/effect, empirical generalisation, common sense statement regarded as true)

- **BACKING**: adds credibility or authority to a warrant
 - e.g., laws, statistics, test results, regulations, standards, best practices

- **REBUTTAL**: counter-argument which diminishes confidence in a claim
 - e.g., exception, reservation, new fact, additional evidence, novel info
 - it can “attack” a ground, a warrant and, occasionally, a backing

DFRWS EU 2020 - Franqueira & Horsman (June 2020)
Case studies

We illustrate the application of structured argumentation to real world contexts using 3 example cases:

Case 1
• Cross-border case of advance-fee fraud involving a large number of victims

Case 2
• Murder case covered by the media in 2018

Case 3
• Fictitious sexual assault scenario introduced by Casey (2018)

Case 1

The defendant (suspect ‘X’) was arrested at his home address in the UK. Several mobile phones, loose SIM cards, laptops, USB sticks, and paperwork containing PII & material related to fraud were seized from the address at the time of arrest.

Claims typical for advance-fee fraud cases.

CLAIM 1
Suspect ‘X’ lifestyle not compliant with declared income.

CLAIM 2
Suspect ‘X’ had contact with victims.

CLAIM 3
Suspect ‘X’ had possession of fraudulent information.

CLAIM 4
Suspect ‘X’ had access to resources to facilitate fraud.

CLAIM 5
Suspect ‘X’ operated a money laundering scheme.

Refinement of claim 2.

<table>
<thead>
<tr>
<th>CLAIM 2</th>
<th>Suspect ‘X’ had contact with victims.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUND 1</td>
<td>Suspect ‘X’ had in his possession, at time of arrest, n mobile phones and m SIM cards.</td>
</tr>
<tr>
<td>GROUND 2</td>
<td>The phones and SIM cards seized contained reference to each other on contacts list.</td>
</tr>
<tr>
<td>WARRANT 1</td>
<td>The phones and SIM cards had recorded missed calls, received calls and contact entries of known victims.</td>
</tr>
<tr>
<td>WARRANT 2</td>
<td>The phones and SIM cards contained Western Union reference numbers associated with contact entries of known victims and money they transferred.</td>
</tr>
<tr>
<td>BACKING 1</td>
<td>Statistics show that Western Union and Money Gram are often used by criminals for fraudulent activities, i.e., send and receive money.</td>
</tr>
<tr>
<td>WARRANT 3</td>
<td>Some known victims handed over Western Union transfer forms used to send money with reference numbers which match with ones recovered from the phones and SIM cards seized.</td>
</tr>
</tbody>
</table>

REFUTTAL 1
Suspect ‘X’ affirmed in interview (after arrest) that only one phone seized was owned by him and it was received as a gift one year before being seized.

REFUTTAL 2
All phones and SIM cards had contact entries, photos and emails of family members of suspect ‘X’, dated prior to one year before being seized.

REFUTTAL 3
All phones and SIM cards contained photos showing suspect ‘X’ with associates (gang agents), dated prior to one year before being seized.

BACKING 2
Upon testing, photos with family members and with associates contained in the examined phones and SIM cards did not show signs of tampering or of being downloaded...

REFUTTAL 4
While ‘search and seize’ at suspect’s ‘X’ address was taking place, officers asked suspect ‘X’ about the phones and SIM cards. “Are they all yours?”; the suspect replied “Yes”.

initial argument from investigation

counter-argument from suspect

counter-arguments to rebuttal 1

>>>> they restore confidence in the original argument
Case 2
Murder case where defendant Mr Patel (suspect ‘X’) allegedly killed his wife (victim ‘Y’).

- Initial argument from investigation
- Counter-argument from suspect
- Counter-argument to rebuttal 1 based on CCTV footage & geo-data from suspect’s phone
- Questions validity of counter-argument above
- Counter-argument to rebuttal 1 based on murderer activities & health app data
- Questions validity of counter-argument above
Case 3

Case of an alleged sexual assault committed by suspect ‘X’ against victim ‘Y’.
Discussion – potential benefits of SA

• Decipher-ability
• Logical Reconstruction
• Peer Review
• Jury Interpretation
• Error Detection
Discussion – potential benefits of SA

- **Flexibility**
 - can be used *during* or *after* the process of investigation
 - can be used at different levels of abstraction and granularity
 - can serve different purposes
 - case 1: refinement of claims as building blocks for logical reconstruction
 - cases 2 & 3: hypothesis elaboration, falsification, considering defence council arguments
 - apply to any type of case
Discussion – potential limitations of SA

• Quality of Argumentation
 • often discussed aspects affecting quality of SA in general are convincingness, soundness, and completeness of arguments / counter-arguments

• Risks
 • risk involved in: too much details leading to “combinatorial explosion”
 • risk exposed by: unacknowledged rebuttals
Discussion – potential limitations of SA

• Overhead of Argumentation
 • Learning curve? Time consuming? Effort draining?

 • yes, there is a learning curve to understand the basic rules and gain practice
 • but:
 • no specialised background (theoretical or mathematical) is required
 • it draws from inferences that forensic practitioners already make during their work (mostly subconsciously)

 >> short training should suffice
Conclusion

• SA has the potential to become a very practical tool to support practitioners all the way through their investigations

• Despite the need for further empirical evaluation, the proposed SA method indicated several relevant benefits aligned with the push for a more science-oriented model for DF investigations
 • transparency
 • accountability
 • accessibility
Related work (structured argumentation)

• It has been applied extensively in Computing to build confidence on a target audience that the conclusion reached is justifiably true, e.g.:
 • to build safety cases & dependability cases
 • to demonstrate compliance to laws and regulations
 • to establish confidence in software development
 • to show satisfaction to security requirements
 • to expose threads of risks/mitigations for risk assessment

• In fields indirectly related to forensics, it has been used, e.g.:
 • to help decision making aiming at transparent accountability in cases of child protection
 • to validate claims about offenders' profiles

• In the field of DF, it has been used scarcely, e.g.:
 • to expose a claim in a child abuse imagery case and validate it (Boddington, 2012)
 • to evaluate forensic readiness for incident response purposes (Pasquale et al., 2013)