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Abstract — PDF malware remains as a major hacking 

technique. To distinguish malicious PDFs from massive PDF files 

poses a challenge to forensic investigation. Machine learning has 

become a mainstream technology for malicious PDF document 

detection either to help analysts in a forensic investigation or to 

prevent a system being attacked. However, adversarial attacks 

against malicious document classifiers have emerged. Crafted 

adversarial example based on precision manipulation may be 

easily misclassified. This poses a major threat to many detectors 

based on machine learning techniques. Various analysis or 

detection techniques have been available for specific attacks. The 

challenge from adversarial attacks is still not yet completely 

resolved. A major reason is that most of the detection methods are 

tailor-made for existing adversarial examples only. In this paper, 

based on an interesting observation that most of these adversarial 

examples were designed on specific models, we propose a novel 

approach to generate a group of mutated cross-model classifiers 

such that adversarial examples cannot pass all classifiers easily. 

Based on a Prediction Inversion Rate (PIR), we can effectively 

identify adversarial example from benign documents. Our 

mutated group of classifiers enhances the power of prediction 

inconsistency using multiple models and eliminate the effect of 

transferability (a technique to make the same adversarial example 

work for multiple models) because of the mutation. Our 

experiments show that we are better than all existing state-of-the-

art detection methods.  

Keywords—Adversarial example, Malicious document detection, 

Document classifier, Machine learning 

I. INTRODUCTION 

Deep learning techniques and especially Deep Neural 
Networks (DNN) have emerged as one of the primary 
techniques employed extensively in academic communities as 
well as industries. Their applications have been found in various 
areas such as malware analysis [1], spam detection [2] and 
network intrusion detection. DNN shows effective performance 
on resource-demand task, such as image recognition [3], natural 
language processing [4], and speech recognition. However, 
systems that employ machine learning classification have been 
demonstrated to be vulnerable to adversarial environments with 
novel evasion attacks [5], i.e., adversarial example [6], which 
are normal examples imposed on small, human imperceptible 
changes. This not only disrupts many classification systems [7], 

but also provides better conditions for many existing attacks, 
such as APT attacks. Thereby causes greater harm to key 
security industries [8].  

The issue triggered a broad interest in researchers in 
detecting or defending against adversarial example. Able to 
detect malicious PDFs from massive PDF files imposes a big 
challenge to the forensic investigators as well since it is not easy 
to identify this attacking point (if it is from a PDF malware) 
based on a huge volume of documents received by the staff of 
the victim company. In computer vision, methods have been 
proposed to improve the robustness of the DNN model, such as 
the adversarial training [7], which includes different adversarial 
examples to the training set, making the retrained model robust 
to the corresponding examples. However, they are ineffective 
against new types of adversarial example that not previously 
discovered. Masking gradients [9] can also enhance the models 
to some extent, but new attacks have recently been produced on 
the basis of the transferability of adversarial example (a 
technique to make adversarial example pass the classification in 
more than one model). Alternative approaches [10] mainly 
detect adversarial example like the malware detection process. 
Xu et al. [11] proposed to generating a new example using 
feature squeezing technique and judging the result by comparing 
the prediction inconsistency. Ma et al. [12] proposed a novel 
technique to extract DNN invariants and use them to perform 
runtime detection. Malicious PDFs are most studied in the field 
of adversarial machine learning [13-20, 25-30]. The defense 
technique is basically the same as DNN, but the detection cannot 
be easily transplanted. This is determined by the differences in 
PDF format, structure, and detection system. Liu et al. [13] 
proposed a new feature extractor FEPDF to prevent flawed 
documents from evading the classifier. Smutz et al. [14] 
proposed the ensemble classifier mutual agreement analysis to 
identify evasion in malicious PDFs detectors. However, the test 
of prediction inconsistency between models was not carried out 
in this work, resulting in the failure to form an effective 
detection method. 

In this paper, we propose a novel and an interesting method 
to detect PDF adversarial example, as inspired by the basic 
principles of prediction inconsistency and model transferability. 
The approach is based on the observation that adversarial 
example most likely exists around the boundary lines in the 
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machine learning detector. For example, in the prediction stage 
(decision tree voting) of an integrated classifier (random forest), 
different sub-classifiers for adversarial example are more likely 
to have different predictions [14]. This observation remains 
valid across different types of machine learning models. So the 
authentic benign examples will tend to be stable in the prediction 
of models; but adversarial example may not pass all prediction 
models. Therefore, our method first builds a model with good 
performance and takes its data set and various variable 
parameters as input to generate mutated models since 
adversarial example may not be robust across different mutated 
classifiers. The prediction inconsistency of the examples is 
evaluated by calculating the Prediction Inversion Rate (PIR, 
basically is the ratio of classifiers that consider the input as 
malicious), and the adversarial examples with large PIR 
deviations will become conspicuous. The experimental results 
show that we can effectively detect adversarial example against 
the state-of-the-art attacking methods. 

We make the following contributions:  

• We proposed a detection method that uses a novel idea 
to generate cross-model mutated classifiers that can 
identify the malicious PDFs effectively based on one 
simple, but effective PIR index. Unlike most other 
detectors, this method focuses on adversarial example 
and its essential attribute. 

• We confirmed that the transferability of the adversarial 
example will be significantly affected in multiple 
models, and the prediction inconsistency will be more 
obvious. 

• Our experiments show that our approach is better than 
the state-of-the-art detection method. In particular, for 
adversarial examples in the category of EvadeML-H (a 
specific class of adversarial example), we have an 
improvement of 45% (AUC values improved from 0.68 
to 0.99) compared to the best detection method.  

The rest of the paper is organized as follows. We present the 
necessary knowledge about our study in Section II, and our 
proposed detection method in Section III. In Section IV, we 
report the result and evaluation of the experiments. Section V 
concludes our work. 

II. BACKGROUND AND RELATED WORK 

This section introduces the related work, including the 
proposed adversarial attacks and defenses, the basic concepts on 
Portable Document Format (PDF) and machine learning 
detection methods. 

A. Portable Document Format (PDF) 

The structure of a PDF document consists of 4 parts: header, 
body, cross-reference table (xref), and trailer, as shown in the 
top of Fig. 1. The header defines the interpreter format version 
to be used. The body specifies the content of the PDF and 
contains text blocks, fonts, images, and metadata regarding the 
file itself. It contains a set of PDF objects that constitute the 
content of the document. These objects can be one of eight basic 
types: Booleans, numbers, strings, streams, names, arrays, 
dictionaries and the null objects. Each object starts with an 

object number followed by a generation number. The generation 
number should be incremental if additional changes are made to 
the object. The xref indexes the objects of body, and the trailer 
provides methods of finding xref and special objects. 

 

Fig. 1. The structure of a PDF document. 

B. Machine Learning For Malicious PDFs Detection 

Supervised machine learning has been widely deployed for 
malicious documents detection. In particular, concerning PDF 
files, multiple detectors were developed in the last decade that 
implemented such technology. The primary goal of machine-
learning detectors for malicious document detection is to decide 
whether some unseen PDFs should be labelled as malicious or 
benign. They can operate by analyzing and classifying 
information retrieved either from the structure or the content of 
document. In general, their structure is shown as in Fig. 2, which 
is composed of 3 main parts [15]: Pre-processing parses PDF 
and access to information that is crucial for detection. Feature 
extraction operates on the information by converting it to a 
normalized vector. Classifier selects the appropriate learning 
algorithm for training and adjustment, and obtains better 
parameters to ensure a good prediction. Feature extraction is 
essential because the quality of features may affect the 
prediction performance differently. 
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Fig. 2. Machine learning detection process for malicious PDFs. 

C. Adversarial Attacks 

Adversarial attacks on document detection systems are also 
called the evasion attacks. They take advantage of knowledge of 
how the machine learning system operates, and utilize access to 
the training set or features, to evade detection skillfully. We refer 
the examples using adversarial attacks as adversarial examples. 
Similar to image adversarial example, document adversarial 
example can be generated using two major approaches: content 
based approach and feature space based approach. 

Content based approach. An intuitive way to generate 
adversarial example is to modify the content of the document, 
by taking advantage of defects in the official document 
specifications, or omissions of machine learning system. Flawed 
documents, mimicry and reverse mimicry are typical attacks.  

Among them, flawed documents [13] are the vulnerabilities 
created by taking advantage of differences between PDF parsers 
and PDF document specifications. The main manifestation is 
that the PDF parser accepts flawed documents and tries to find 
such defects by itself to correct the parsing results. Although 
PDF document specifications recommend many rules, many 
PDF readers including the Adobe Reader do not strictly follow 
those rules. Therefore, an attacker can easily hide malicious 
code into flawed documents. Most existing feature extractors are 
unable to extract the inserted malicious code. Flawed documents 
may destroy the pre-processing component of machine learning 
system and form a successful evasion. 

The mimicry attack [14] is well-known in the security 
literature. Its idea is to modify existing malicious documents to 
appear more like benign documents. Similar to the operation of 
flawed documents, mimicry attacks add additional structural or 
content data into the document. These additions do not involve 
adding actual content that is interpreted by a compliant PDF 
reader, but rather take advantage of weaknesses in universal 
feature extractors. Implemented tools Mimicus [16] constructs 
these additions by comparing a malicious document to multiple 
different benign documents. The feature vectors for the 
malicious documents are adjusted to mirror the feature vectors 
for the benign documents. However, the mimicry attack requires 
knowledge of the feature set used in the model. 

Instead of adding content to a malicious document to make 
it appear benign, reverse mimicry [17] embed malicious content 
into a benign PDF, and try to modify as little as possible. In order 

to evade detection, reverse mimicry focus on changing the 
document structure as little as possible. PDF reader will not 
display the content associated with the previous document, but 
the artifacts will be analyzed by the feature extractor of detectors. 
Mimicry and reverse mimicry escape classifiers by destroying 
feature extraction components of machine learning systems. 

Feature space based approach. The second attack against 
detectors is based on a method of modifying feature vectors in 
feature space. This method uses the decision boundary of the 
detector to iteratively modify the feature vector of the document. 
Resulting adversarial examples actually evade the classifier 
component of the machine learning system. Representative 
attacks include gradient descent attacks and EvadeML attacks. 

The gradient descent attacks [18] work by following the 
gradient of the classifier’s decision function and the loss 
function representing the effect of the prediction results. The 
starting point of the gradient descent is the feature vector of the 
malicious example. The goal is to move to the area where the 
classification algorithm classifies points as benign in feature 
space. Although starting from a malicious feature vector, 
directly modifying features can greatly reduce the complexity, 
but how to limit the modification area to better generate 
adversarial example is a problem that needs to be continuously 
solved. 

EvadeML attacks [19] uses genetic programming techniques 
to perform a directed search of the space of possible examples 
to find ones that evade the classifier while retaining the desired 
malicious behavior. Compared with gradient descent attacks, 
EvadeML improves the success rate of generating adversarial 
example and proves that machine learning methods have defects 
in the feature space. In fact, EvadeML not only destroys the 
classifier component of the machine learning system, but also 
affects the other two components, rendering the entire system 
unstable. In conclusion, most of the adversarial examples are 
designed based on the features and details of the classifiers. 

D. Defense, Detection and Challenge 

One immediate strategy to defend against adversarial 
example is adversarial training. Using known attack methods, 
artificially generate different types of adversarial examples and 
add them to the training set. This will make the retrained model 
more robust to the corresponding adversarial example. But when 
faced with a new type of adversarial example that has not been 
discovered before, it is likely to fail. 

Smutz et al. [14] proposed to use the support vector machine 
(SVM) as the basic classifier to build an ensemble classifier, and 
then using the ensemble classifier mutual agreement analysis to 
prevent the adversarial example generated by gradient descent 
attacks. On one hand, the method defends by discarding 
uncertain samples, which sacrifices resources and increases the 
cost of manual analysis. On the other hand, adversarial example 
has been found that they can be transferred across different 
models, this property is defined as transferability. This method 
ignores transitivity, which will pose new challenges to the 
robustness of the model. 

Liu et al. [13] designed a robust feature extractor FEPDF and 
used it in a machine learning detector. FEPDF mainly studies 
flawed documents and plays a role in feature extraction 
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components. FEPDF parses PDF that follow standard document 
specifications, and scan every suspicious segment in documents. 
By cleaning PDFs, more realistic features can be obtained, the 
avoidance of deformed documents is invalidated, and the 
detector's prediction is more reliable. 

Zhou et al. [20] proposed a method for detecting malicious 
documents using document entropy time series as features. This 
method is still essentially a machine learning method, but only 
a variant of the content structure is added from the perspective 
of the feature space. Therefore, if the upper and lower limits of 
the entropy sequence are modified, corresponding adversarial 
example can still be generated. 

III. METHODOLOGY 

In response to above challenges, this paper proposes a 
detection method based on one essential attribute of adversarial 
example. The essential attribute is that existing adversarial 
examples are usually generated for a certain model, and even if 
affected by transferability, adversarial examples are likely to fail 
on another similar model. Our idea is to find these models that 
invalidate the adversarial example. Our approach uses a set of 
deforming models to eliminate the effects of transferability. 
Then we use the prediction inconsistency of each model to 
validate our method and get the detection results. 

This section introduces the generation rules of the detection 
model group, the calculation method of PIR, and the design of 
the detection system. 

A. Generate detection model group 

We take a similar strategy as in the fuzzing [31], which is a 
method of discovering software vulnerabilities by providing 
“unexpected input” to the target system and monitoring 
abnormal results. We can think exactly the opposite way. We 
detect adversarial input by introducing input into “unexpected 
target models” and detecting their results. Therefore, generating 
a series of detection models to verify their prediction 
inconsistency is the basis of our method. A related work in [21] 
has been proposed to introduce a set of mutation operators 
(changeable parameters for controlling the model) for DNN-
based systems at different levels. Thereby generating a series of 
mutants using the original DNN model as input. Our strategy is 
similar to them, but with some key differences in the specific 
implementations. DNN model can be changed quickly by 
modifying neurons. Machine learning models can also be 
changed, but mainly rely on some training parameters. Once the 
training parameters are changed, the model must be retrained 
and performance will be affected. 

There is no consensus on which machine learning algorithms 
are used in malicious document detectors. In the previous related 
work, SVM and random forest are the popular models with 
satisfactory performance. Hence, for the method using random 
forest, the concept of defense using prediction inconsistency has 
been proposed. But later work [13] took performance tests of 
each algorithm model, using the same data set and features. The 
results show that when the performance of the Pre-processing 
component and the Feature extraction component is more 
advanced, the model of the classifier is similar in prediction. 
Therefore, using this observation, we can extend the prediction 
inconsistencies to multiple types of models. 

Algorithm 1: Detection model group generation 

Input: Basic models B, Mutation operators O, Original model f. 

Output: Detection model group F. 

1 Let stop = n; # Set the number of models 
2 Let b = SVM; # b is the basic model for generating 

3 While !stop do 

4     b = Random(B); 
5     If b == SVM Then # Taking SVM as an example, the Logistic 

Regression process is similar 

6         o = O.SVM; # Take the mutation operator according to model 
7         kernel = Random(o.kernel); 

8         C = C0; # C0 is the C value of the original SVM model 

9         S = Training(C, kernel.gamma); # Generative model 
10         If Testing(S) >= Testing(f) Then 

11             Add(F, S); 
12         stop = stop – 1; Continue; 

13     If b == DecisionTree # Taking Decision Tree as an example, the 

remaining three processes are similar 
14         o = O. DecisionTree; 

15         max_depth = Random(50, 80) # Set the max_depth below 80 

16         min_samples_leaf = Random(1, 2 ,3) # Parameters are set by 
options 

17         max_leaf_nodes = Random(50, 100) 

18        D = Training(max_depth, min_samples_leaf, max_leaf_nodes) 
19        # Leave other parameters of the decision tree as default 

20        Compare(Testing(D), Testing(f)); # Non-strict comparison 

21        stop = stop – 1; Continue; 
22 Return F; 

Our group of detection models will contain mutations from 
the following 6 basic machine learning models: SVM, k-Nearest 
Neighbor (kNN), Naive Bayes, Logistic Regression, Decision 
Tree and Random Forest. For each model, we selected the 
corresponding parameters as mutation operators, which will be 
introduced separately below. 

SVM. There are two main parameters that can be adjusted 
when building the SVM model, C value and the kernel function. 
The kernel function is set to four optional values: linear kernel 
function, polynomial kernel function, RBF kernel function, and 
Sigmoid kernel function. In addition to the linear kernel function, 
the other three kernel functions can also adjust the parameter 
gamma to change the model. The C value represents the model's 
penalty coefficient for the error, and the gamma reflects the 
distribution of the data after it is mapped to the high-dimensional 
feature space. When training models, we usually use grid search 
to find the most suitable C value and gamma. So we can slightly 
modify the obtained parameters to generate new models. 

kNN. The adjustable parameters of kNN are the number of 
neighbouring points (n_neighbors) and the distance metric. 
When the metric uses the Euclidean distance, it can meet the 
prediction of the KNN model. Therefore, we only use 
n_neighbors as the mutation operator of KNN, and limit it to an 
integer interval [2, 5]. 

Naive Bayes. Since the feature sequence is multivariate 
discrete value in malicious document detection, the naive Bayes 
Multinomial (NB) with a prior polynomial distribution is used. 
There are three parameters that can be manipulated: the prior 
smoothing factor alpha, the Boolean parameter fit_prior, and the 
prior probability class_prior. The value of alpha can be adjusted 
around the default value of 1, and fit_prior and class_prior are 
a pair of associated parameters. If fit_prior is false then 
class_prior is invalid, otherwise class_prior default to mk / m. 
Here m is the total number of samples in the training set, and mk 
is the number of samples in the training set with k classes. 
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Logistic Regression. In logistic regression, we generally set 
the penalty for L2, which represents the penalty term, so the two 
remaining parameters can be adjusted: the optimization method 
solver and the inverse of the regularization coefficient C value. 
Solver can choose from liblinear, lbfgs and newton-cg. The C 
value is consistent with that in SVM. 

Decision Tree. In the decision tree, combined with the size 
of our experimental data set and previous experience, we take 
three parameters as mutation operators: the maximum depth of 
the decision tree max_depth, the minimum number of leaf nodes 
min_samples_leaf, and the maximum number of leaf nodes 
max_leaf_nodes. For max_depth, we limit its value to 80 or less, 
for min_samples_leaf, we provide 1, 2, and 3 for selection, and 
for max_leaf_nodes, we limit its value to 100 or less. 

Random Forest. Random forest is an integrated tool that 
builds multiple decision trees and then merges their predictions 
together to get more accurate and stable predictions. Therefore, 
the parameters we choose on the random forest are the same as 
those on the decision tree, except for one unique parameter: 
n_estimators. The n_estimators represents the number of 
decision trees. If n_estimators is too small, it is easy to underfit, 
but n_estimators has an increase limit. We adjusted downwards 
n_estimators at the highest performance to generate mutants. 

According to those 6 basic models and their corresponding 
adjustable parameters, a group with a large number of models 
can be generated, and the process is described in Algorithm 1. 
With a large number of models having quality classification 
ability in the group, the transferability of adversarial example 
can be reduced to a certain extent. This model group will be used 
for the next step to complete the detection, so we call it the 
generation of detection model group. 

B. Detection method 

After the generation of detection model group, the next step 
is to input the testing examples into the generated models 
sequentially, and record the prediction results of each model. 
Then we will calculate the prediction inversion rate (PIR) of 
examples based on all prediction results, and compare it with the 
PIR of the benign examples to determine. The principle of 
detection using PIR is shown in Fig. 3. When a benign example 
enters the original model, the prediction is benign (0), the 
prediction reverse if the model in the detection model group 
classifies the input as malicious (1). And the same change occur 
when the input is an adversarial example. We can calculate PIR 
from the number of models that have reversed, and find that the 
adversarial example is more sensitive to the model. Therefore, 
we must first ensure that the models used for detection in the 
model group have good detection performance. Secondly, we 
need to calculate the PIR of benign examples. 

 

Fig. 3. The principle of detection using PIR 

The process of generating a model is actually a process of 
training the model, and the trained model has a performance test 
for the test set. We select those models with a similar 
performance as the original model to form the final model group 
F. This is because mutations with poor performance do not 
reflect the sensitivity of adversarial example to decision 
boundaries.  

Algorithm 2: Detection method 

Input: Input example x, Original model f, Detection model group F, 

Adjustment factor m. 

Output: Prediction p. 
1 Let stop = F.Len(); # Set the number of detection models used 

2 Let p = 0; # Used to count prediction inversions 

3 If x.label = 0 Then 
4     # The process is consistent, in practice need to calculate first 

5     Benign example PIR calculation(); 

23 While !stop do 
24     fi = Random(F);  

25     If fi(x) = ¬f(x) Then 

26     p = p + 1; 
27     stop = stop – 1; 

6 P(x) = |{fi | fi ∈ F and fi(x) = ¬f(x)}| / |F|; 

7 If P(x) > m·Pb Then 
8     Return Malicious; 

9 Else Return Benign; 

In the detection method (Algorithm 2), we set inputs as input 
example x, original model f, detection model group F and 
adjustment factor m. If the input example x was labeled, it is 
regarded as a benign example of PIR calculation in the first stage. 
In this stage, we will continue to input benign examples into 
each model, calculate the final average PIR according to the 
formula and record it as Pb. Then input the example to be tested, 
observe the original model and the detection model to see if the 
prediction results have reversed. Finally, calculate the PIR and 
compare it with the threshold m·Pb to get the detection result. 

C. Detection System Design 

In this work, the detection system is also based on a machine 
learning method. The overall system design is shown in Fig. 4.  

 

Fig. 4. The overall design of the detection system. 

In the Pre-processing stage of machine learning methods, 
example filtering of flawed documents and mimicry attack is 
added. Because the main operation is to parse the PDFs, and the 
result will affect the subsequent performance. In the subsequent 
Feature extraction part, we mainly use two types of effective 
feature sets: content-based features and structure-based features, 
to ensure that the detection results are reliable. When generating 
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the final classifier, we first need to train an original model and 
ensure satisfactory performance; then generate a series of 
models for calculating PIR based on the detection model group 
generation algorithm. 

After all models are generated, a PIR calculation module will 
be set up, which is important to detecting input examples. 
Finally, the results obtained by the PIR calculation module will 
be output. The system will determine the example with a larger 
PIR as an adversarial example according to the threshold, that is, 
malicious, and move it into the verification analysis module to 
collect it. 

IV. EXPERIMENTS AND ANALYSIS 

In this section, we first calculate the average PIRs, including 
benign examples and adversarial examples. Then, based on the 
experimental setting, the results of our system are compared 
with other detectors to evaluate the effectiveness of the method. 

A. Dataset 

Our experiments used two datasets: the data set S for training 
and testing, and attack data sets M for generating adversarial 
example. Since our experiments need to use different attacks to 
generate corresponding adversarial examples, the malicious 
PDFs in M must be truly malicious. Therefore, we continuously 
select the collected malicious PDFs to form a data set containing 
500 examples. 

We collected a total of 11,200 malicious and 10,500 benign 
PDFs. The malicious PDFs are mainly from Contagio archive 
[22], Virus Share [23] and Virus Total [24], a small number of 
documents were captured by us on the Internet. Benign PDFs 
come from Contagio archive, Google search and research 
institutions or companies that frequently use PDFs, including 
announcements and operation manuals.  

B. Experimental setting 

Machine. A host machine (Intel Core i7-6300 CPU @ 
3.40GHz and 16GB of physical memory running 64-bit 
Windows 10 Desktop), an auxiliary machine (Intel Core i5-
7300HQ CPU @ 2.50GHz and 16GB of physical memory 
running 64-bit Ubuntu 16.04 Server). The auxiliary machine 
deploys mainly a sandbox verification system.. 

Detector. We selected four state-of-the-art detectors, PJScan 
[25], PDFRate [26] and Hidost [27], for comparison. Among 
them, PDFRate and Hidost are the latest technologies with high-
precision detectors. They are often used as target detectors for 
adversarial attacks against PDF. 

Attacks. We use the mimicry attacks, gradient descent 
attacks (Mimicus) and EvadeML to generate adversarial 
example, where EvadeML can be divided into EvadeML-P for 
PDFRate and EvadeML-H for Hidost according to different 
target detectors. 

C. Evaluation Indicators 

The most commonly used evaluation indicators in malware 
detection are Accuracy, Recall and AUC(Area Under Curve). 
Accuracy refers to the ratio of detection results that are true 
positives in malicious. Recall is the percentage of correctly 
identified malicious examples. The AUC is equal to the 

probability that a randomly selected positive example ranks 
higher than a randomly selected negative example. 

TABLE I.  CONFUSION MATRIX 

 Detected as malicious Detected as Benign 

Malicious TP FN 

Benign FP TN 

Generally, the confusion matrix is used in malicious 
document detection to calculate the above four indicators, as 
shown in Table I. TP indicates the number of malicious 
documents that were correctly detected, FP indicates the number 
of normal documents that were misidentified as malicious, TN 
indicates the number of normal documents that were correctly 
detected, and FN indicates the number of malicious documents 
that were identified as harmless. The calculation method of each 
evaluation index is as follows: 

Accuracy =  TP / (TP + FP) 

Recall = TP / (TP + FN) 

AUC = (∑mk – nm(nm + 1) / 2) / (nm×nb) 

D. Results and analysis 

In the classifier training phase, we use different machine 
learning algorithms to obtain the original model and the 
detection model group. Therefore we have to test the 
performance of the original system and ensure that it is optimal. 
The experiment uses a 10-fold cross validation on training. The 
original data is divided into 10 equal subsets. Each subset is used 
as a validation set, and the remaining 9 subsets are used as the 
training set. The average indicators of K models are used as the 
overall performance indicator of the original model. Table II 
lists the indicators of the final original model. It can be seen that 
the detection performance of the model is very high in the case 
of using integrated features. 

TABLE II.  TRAINING RESULTS OF ORIGINAL MODEL 

 Accuracy Recall AUC 

SVM 0.9963 0.9972 0.9981 

At the same time, we also generate detection model groups 
during the training phase, and we need to choose between them. 
For SVM and logistic regression methods, we can get more 
mutants, and SVM is the method used in the original model. So, 
we generate the optimal model, based on its parameters and used 
its performance as the benchmark, and select the model with the 
appropriate performance. For the other four methods, training 
and verification are performed directly. The final detection 
model group contains 700 models. 

In order to verify that there is a boundary between 
adversarial and benign examples, we also need to calculate the 
PIR of adversarial examples generated by various attacks. 
Compare this to the PIR of a benign example. We need to 
generate corresponding adversarial examples on the attack 
dataset based on various attacks (the attack dataset contains 500 
examples, but each attack generates no more than 500 
adversarial examples). Then our experiment has the following 
settings when calculating the PIR: for each input example, 500 
models are randomly selected in the detection model group each 
time, and the average PIR is calculated 10 times. Finally, the 
mean value of all examples of each type is calculated and 
recorded in Table III. 

TABLE III.  PIR AVERAGE 
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Benign Mimicry Mimicus EvadeML-P EvadeML-H 

3.22±0.23 45.15±3.21 36.25±2.78 32.56±2.62 14.88±1.64 

It can be seen from the table that the PIR of a benign example 
is significantly less than the PIR of any adversarial example, 
which is the key to our detection method. Machine learning 
algorithms try to distribute benign examples far away from the 
decision plane. Although adversarial example is generated based 
on the example near the decision plane, this distance still exists 
in the changed model group. The PIR generated based on this 
distance becomes an effective means to detect the essential 
attributes of the adversarial example. Finally, the comparison 
experiment was conducted with other detectors. The AUC 
results and the average detection time are listed in Table IV. 

TABLE IV.  COMPARISON OF DETECTION RESULTS 

 PJScan PDFRate Hidost Our system 

Original 0.8853 0.9626 0.9912 0.9981 

Flawed documents 0.6624 0.9223 0.991 0.9981 
Mimicry 0.6236 0.7492 0.989 0.998 

Mimicus 0.5844 0.6483 0.9751 0.9978 

EvadeML-P 0.4263 0.6398 0.9682 0.9975 
EvadeML-H 0.4935 0.6627 0.6834 0.9974 

Average detection 

time / s 
0.622 0.734 0.875 1.242 

Compare the original performance of each detector (where 
our system uses the indicators of the original model) and the 
performance after being attacked by adversarial example. It can 
be clearly seen that our system can effectively detect adversarial 
examples generated by flawed documents, mimicry attacks, 
gradient attacks, and genetic algorithms. There are three main 
reasons: First, we used comprehensive features when training 
the model, content-based features and structure-based features. 
This ensures that the model maintains the accuracy under 
ordinary conditions. Second, in the Pre-processing and Feature 
extraction stages of the original model, we added the state-of-
the-art parsing method and pruning algorithm. These methods 
invalidate some flawed documents and mimicry attacks. Most 
importantly, PIR points out the essential flaws of the adversarial 
example. That is, the effective range of transferability is limited, 
and human modification has distance fluctuations. This flaw 
makes it easy to detect specific adversarial example (in fact, it is 
the examples that are dangerous). In addition, our system is 
slightly higher in average detection time than other detectors. 
The main reason is the existence of non-optimal models, 
although the detection model group in the detection part can use 
parallel computing. 

V. CONCLUSION 

In this paper, we propose a method for detecting PDF 
adversarial example based on the transferability and the 
corresponding prediction inconsistency. This method generates 
a certain number of models by making minor changes to the 
classification model. On one hand, the influence of 
transferability is eliminated in quantity; on the other hand, the 
prediction results of each model reflect the nature of the 
adversarial example. The experimental results show that the 
adversarial example is sensitive to the model and there is a clear 
boundary with the benign example. Our detection system can 
find this feature and detect the adversarial example. 

This method can be applied to other detectors based on 
machine learning methods, such as detection of malicious 

Android applications and malicious traffic. There are some 
possible future extensions to the detection method proposed in 
this paper. For example, we can further consider stronger attacks, 
and more transferable adversarial examples. In addition, it is 
also interesting to analyze those captured unseen adversarial 
examples and get some more useful knowledge to strengthen our 
defense.  
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