

A Novel Adversarial Example Detection Method for

Malicious PDFs Using Multiple Mutated Classifiers

Chao Liu1, Chenzhe Lou1, 2, Min Yu1, 2*, S.M. Yiu3, K.P. Chow3, Gang Li4, Jianguo Jiang1, Weiqing Huang1
1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
3The University of Hong Kong, Hong Kong

4School of Information Technology, Deakin University, VIC, Australia

*corresponding author

yumin@iie.ac.cn

Abstract — PDF malware remains as a major hacking

technique. To distinguish malicious PDFs from massive PDF files

poses a challenge to forensic investigation. Machine learning has

become a mainstream technology for malicious PDF document

detection either to help analysts in a forensic investigation or to

prevent a system being attacked. However, adversarial attacks

against malicious document classifiers have emerged. Crafted

adversarial example based on precision manipulation may be

easily misclassified. This poses a major threat to many detectors

based on machine learning techniques. Various analysis or

detection techniques have been available for specific attacks. The

challenge from adversarial attacks is still not yet completely

resolved. A major reason is that most of the detection methods are

tailor-made for existing adversarial examples only. In this paper,

based on an interesting observation that most of these adversarial

examples were designed on specific models, we propose a novel

approach to generate a group of mutated cross-model classifiers

such that adversarial examples cannot pass all classifiers easily.

Based on a Prediction Inversion Rate (PIR), we can effectively

identify adversarial example from benign documents. Our

mutated group of classifiers enhances the power of prediction

inconsistency using multiple models and eliminate the effect of

transferability (a technique to make the same adversarial example

work for multiple models) because of the mutation. Our

experiments show that we are better than all existing state-of-the-

art detection methods.

Keywords—Adversarial example, Malicious document detection,

Document classifier, Machine learning

I. INTRODUCTION

Deep learning techniques and especially Deep Neural
Networks (DNN) have emerged as one of the primary
techniques employed extensively in academic communities as
well as industries. Their applications have been found in various
areas such as malware analysis [1], spam detection [2] and
network intrusion detection. DNN shows effective performance
on resource-demand task, such as image recognition [3], natural
language processing [4], and speech recognition. However,
systems that employ machine learning classification have been
demonstrated to be vulnerable to adversarial environments with
novel evasion attacks [5], i.e., adversarial example [6], which
are normal examples imposed on small, human imperceptible
changes. This not only disrupts many classification systems [7],

but also provides better conditions for many existing attacks,
such as APT attacks. Thereby causes greater harm to key
security industries [8].

The issue triggered a broad interest in researchers in
detecting or defending against adversarial example. Able to
detect malicious PDFs from massive PDF files imposes a big
challenge to the forensic investigators as well since it is not easy
to identify this attacking point (if it is from a PDF malware)
based on a huge volume of documents received by the staff of
the victim company. In computer vision, methods have been
proposed to improve the robustness of the DNN model, such as
the adversarial training [7], which includes different adversarial
examples to the training set, making the retrained model robust
to the corresponding examples. However, they are ineffective
against new types of adversarial example that not previously
discovered. Masking gradients [9] can also enhance the models
to some extent, but new attacks have recently been produced on
the basis of the transferability of adversarial example (a
technique to make adversarial example pass the classification in
more than one model). Alternative approaches [10] mainly
detect adversarial example like the malware detection process.
Xu et al. [11] proposed to generating a new example using
feature squeezing technique and judging the result by comparing
the prediction inconsistency. Ma et al. [12] proposed a novel
technique to extract DNN invariants and use them to perform
runtime detection. Malicious PDFs are most studied in the field
of adversarial machine learning [13-20, 25-30]. The defense
technique is basically the same as DNN, but the detection cannot
be easily transplanted. This is determined by the differences in
PDF format, structure, and detection system. Liu et al. [13]
proposed a new feature extractor FEPDF to prevent flawed
documents from evading the classifier. Smutz et al. [14]
proposed the ensemble classifier mutual agreement analysis to
identify evasion in malicious PDFs detectors. However, the test
of prediction inconsistency between models was not carried out
in this work, resulting in the failure to form an effective
detection method.

In this paper, we propose a novel and an interesting method
to detect PDF adversarial example, as inspired by the basic
principles of prediction inconsistency and model transferability.
The approach is based on the observation that adversarial
example most likely exists around the boundary lines in the

DFRWS APAC 2021 Author Preprint

machine learning detector. For example, in the prediction stage
(decision tree voting) of an integrated classifier (random forest),
different sub-classifiers for adversarial example are more likely
to have different predictions [14]. This observation remains
valid across different types of machine learning models. So the
authentic benign examples will tend to be stable in the prediction
of models; but adversarial example may not pass all prediction
models. Therefore, our method first builds a model with good
performance and takes its data set and various variable
parameters as input to generate mutated models since
adversarial example may not be robust across different mutated
classifiers. The prediction inconsistency of the examples is
evaluated by calculating the Prediction Inversion Rate (PIR,
basically is the ratio of classifiers that consider the input as
malicious), and the adversarial examples with large PIR
deviations will become conspicuous. The experimental results
show that we can effectively detect adversarial example against
the state-of-the-art attacking methods.

We make the following contributions:

• We proposed a detection method that uses a novel idea
to generate cross-model mutated classifiers that can
identify the malicious PDFs effectively based on one
simple, but effective PIR index. Unlike most other
detectors, this method focuses on adversarial example
and its essential attribute.

• We confirmed that the transferability of the adversarial
example will be significantly affected in multiple
models, and the prediction inconsistency will be more
obvious.

• Our experiments show that our approach is better than
the state-of-the-art detection method. In particular, for
adversarial examples in the category of EvadeML-H (a
specific class of adversarial example), we have an
improvement of 45% (AUC values improved from 0.68
to 0.99) compared to the best detection method.

The rest of the paper is organized as follows. We present the
necessary knowledge about our study in Section II, and our
proposed detection method in Section III. In Section IV, we
report the result and evaluation of the experiments. Section V
concludes our work.

II. BACKGROUND AND RELATED WORK

This section introduces the related work, including the
proposed adversarial attacks and defenses, the basic concepts on
Portable Document Format (PDF) and machine learning
detection methods.

A. Portable Document Format (PDF)

The structure of a PDF document consists of 4 parts: header,
body, cross-reference table (xref), and trailer, as shown in the
top of Fig. 1. The header defines the interpreter format version
to be used. The body specifies the content of the PDF and
contains text blocks, fonts, images, and metadata regarding the
file itself. It contains a set of PDF objects that constitute the
content of the document. These objects can be one of eight basic
types: Booleans, numbers, strings, streams, names, arrays,
dictionaries and the null objects. Each object starts with an

object number followed by a generation number. The generation
number should be incremental if additional changes are made to
the object. The xref indexes the objects of body, and the trailer
provides methods of finding xref and special objects.

Fig. 1. The structure of a PDF document.

B. Machine Learning For Malicious PDFs Detection

Supervised machine learning has been widely deployed for
malicious documents detection. In particular, concerning PDF
files, multiple detectors were developed in the last decade that
implemented such technology. The primary goal of machine-
learning detectors for malicious document detection is to decide
whether some unseen PDFs should be labelled as malicious or
benign. They can operate by analyzing and classifying
information retrieved either from the structure or the content of
document. In general, their structure is shown as in Fig. 2, which
is composed of 3 main parts [15]: Pre-processing parses PDF
and access to information that is crucial for detection. Feature
extraction operates on the information by converting it to a
normalized vector. Classifier selects the appropriate learning
algorithm for training and adjustment, and obtains better
parameters to ensure a good prediction. Feature extraction is
essential because the quality of features may affect the
prediction performance differently.

 %%EOF

%PDF-1.7

1 0 obj /Catalog

 /OpenAction <<

 /S /JavaScript

 /JS (alert('object');)

 >>

 /Pages 2 0 R

2 0 obj /Pages

 /Kids [3 0 R]

3 0 obj /Page

 /Contents 4 0 R

4 0 obj /Stream

 stream

 Hello PDF!

 endstream

xref

0 5

0000000000 65535 f

0000000017 00000 n

0000000066 00000 n

0000000141 00000 n

0000000251 00000 n

0000000306 00000 n

tariler

 /Root 1 0 R

 startxref 306

Body

Header

Xref

Table

Tariler

Document StructureByte Offset

0 Byte

17 Byte

66 Byte

141 Byte

251 Byte

306 Byte

DFRWS APAC 2021 Author Preprint

Fig. 2. Machine learning detection process for malicious PDFs.

C. Adversarial Attacks

Adversarial attacks on document detection systems are also
called the evasion attacks. They take advantage of knowledge of
how the machine learning system operates, and utilize access to
the training set or features, to evade detection skillfully. We refer
the examples using adversarial attacks as adversarial examples.
Similar to image adversarial example, document adversarial
example can be generated using two major approaches: content
based approach and feature space based approach.

Content based approach. An intuitive way to generate
adversarial example is to modify the content of the document,
by taking advantage of defects in the official document
specifications, or omissions of machine learning system. Flawed
documents, mimicry and reverse mimicry are typical attacks.

Among them, flawed documents [13] are the vulnerabilities
created by taking advantage of differences between PDF parsers
and PDF document specifications. The main manifestation is
that the PDF parser accepts flawed documents and tries to find
such defects by itself to correct the parsing results. Although
PDF document specifications recommend many rules, many
PDF readers including the Adobe Reader do not strictly follow
those rules. Therefore, an attacker can easily hide malicious
code into flawed documents. Most existing feature extractors are
unable to extract the inserted malicious code. Flawed documents
may destroy the pre-processing component of machine learning
system and form a successful evasion.

The mimicry attack [14] is well-known in the security
literature. Its idea is to modify existing malicious documents to
appear more like benign documents. Similar to the operation of
flawed documents, mimicry attacks add additional structural or
content data into the document. These additions do not involve
adding actual content that is interpreted by a compliant PDF
reader, but rather take advantage of weaknesses in universal
feature extractors. Implemented tools Mimicus [16] constructs
these additions by comparing a malicious document to multiple
different benign documents. The feature vectors for the
malicious documents are adjusted to mirror the feature vectors
for the benign documents. However, the mimicry attack requires
knowledge of the feature set used in the model.

Instead of adding content to a malicious document to make
it appear benign, reverse mimicry [17] embed malicious content
into a benign PDF, and try to modify as little as possible. In order

to evade detection, reverse mimicry focus on changing the
document structure as little as possible. PDF reader will not
display the content associated with the previous document, but
the artifacts will be analyzed by the feature extractor of detectors.
Mimicry and reverse mimicry escape classifiers by destroying
feature extraction components of machine learning systems.

Feature space based approach. The second attack against
detectors is based on a method of modifying feature vectors in
feature space. This method uses the decision boundary of the
detector to iteratively modify the feature vector of the document.
Resulting adversarial examples actually evade the classifier
component of the machine learning system. Representative
attacks include gradient descent attacks and EvadeML attacks.

The gradient descent attacks [18] work by following the
gradient of the classifier’s decision function and the loss
function representing the effect of the prediction results. The
starting point of the gradient descent is the feature vector of the
malicious example. The goal is to move to the area where the
classification algorithm classifies points as benign in feature
space. Although starting from a malicious feature vector,
directly modifying features can greatly reduce the complexity,
but how to limit the modification area to better generate
adversarial example is a problem that needs to be continuously
solved.

EvadeML attacks [19] uses genetic programming techniques
to perform a directed search of the space of possible examples
to find ones that evade the classifier while retaining the desired
malicious behavior. Compared with gradient descent attacks,
EvadeML improves the success rate of generating adversarial
example and proves that machine learning methods have defects
in the feature space. In fact, EvadeML not only destroys the
classifier component of the machine learning system, but also
affects the other two components, rendering the entire system
unstable. In conclusion, most of the adversarial examples are
designed based on the features and details of the classifiers.

D. Defense, Detection and Challenge

One immediate strategy to defend against adversarial
example is adversarial training. Using known attack methods,
artificially generate different types of adversarial examples and
add them to the training set. This will make the retrained model
more robust to the corresponding adversarial example. But when
faced with a new type of adversarial example that has not been
discovered before, it is likely to fail.

Smutz et al. [14] proposed to use the support vector machine
(SVM) as the basic classifier to build an ensemble classifier, and
then using the ensemble classifier mutual agreement analysis to
prevent the adversarial example generated by gradient descent
attacks. On one hand, the method defends by discarding
uncertain samples, which sacrifices resources and increases the
cost of manual analysis. On the other hand, adversarial example
has been found that they can be transferred across different
models, this property is defined as transferability. This method
ignores transitivity, which will pose new challenges to the
robustness of the model.

Liu et al. [13] designed a robust feature extractor FEPDF and
used it in a machine learning detector. FEPDF mainly studies
flawed documents and plays a role in feature extraction

Pre-Processing

PDF Documents

Feature

extraction

Classifier

Training

Learning

Malicious Benign Prediction

DFRWS APAC 2021 Author Preprint

components. FEPDF parses PDF that follow standard document
specifications, and scan every suspicious segment in documents.
By cleaning PDFs, more realistic features can be obtained, the
avoidance of deformed documents is invalidated, and the
detector's prediction is more reliable.

Zhou et al. [20] proposed a method for detecting malicious
documents using document entropy time series as features. This
method is still essentially a machine learning method, but only
a variant of the content structure is added from the perspective
of the feature space. Therefore, if the upper and lower limits of
the entropy sequence are modified, corresponding adversarial
example can still be generated.

III. METHODOLOGY

In response to above challenges, this paper proposes a
detection method based on one essential attribute of adversarial
example. The essential attribute is that existing adversarial
examples are usually generated for a certain model, and even if
affected by transferability, adversarial examples are likely to fail
on another similar model. Our idea is to find these models that
invalidate the adversarial example. Our approach uses a set of
deforming models to eliminate the effects of transferability.
Then we use the prediction inconsistency of each model to
validate our method and get the detection results.

This section introduces the generation rules of the detection
model group, the calculation method of PIR, and the design of
the detection system.

A. Generate detection model group

We take a similar strategy as in the fuzzing [31], which is a
method of discovering software vulnerabilities by providing
“unexpected input” to the target system and monitoring
abnormal results. We can think exactly the opposite way. We
detect adversarial input by introducing input into “unexpected
target models” and detecting their results. Therefore, generating
a series of detection models to verify their prediction
inconsistency is the basis of our method. A related work in [21]
has been proposed to introduce a set of mutation operators
(changeable parameters for controlling the model) for DNN-
based systems at different levels. Thereby generating a series of
mutants using the original DNN model as input. Our strategy is
similar to them, but with some key differences in the specific
implementations. DNN model can be changed quickly by
modifying neurons. Machine learning models can also be
changed, but mainly rely on some training parameters. Once the
training parameters are changed, the model must be retrained
and performance will be affected.

There is no consensus on which machine learning algorithms
are used in malicious document detectors. In the previous related
work, SVM and random forest are the popular models with
satisfactory performance. Hence, for the method using random
forest, the concept of defense using prediction inconsistency has
been proposed. But later work [13] took performance tests of
each algorithm model, using the same data set and features. The
results show that when the performance of the Pre-processing
component and the Feature extraction component is more
advanced, the model of the classifier is similar in prediction.
Therefore, using this observation, we can extend the prediction
inconsistencies to multiple types of models.

Algorithm 1: Detection model group generation

Input: Basic models B, Mutation operators O, Original model f.

Output: Detection model group F.

1 Let stop = n; # Set the number of models
2 Let b = SVM; # b is the basic model for generating

3 While !stop do

4 b = Random(B);
5 If b == SVM Then # Taking SVM as an example, the Logistic

Regression process is similar

6 o = O.SVM; # Take the mutation operator according to model
7 kernel = Random(o.kernel);

8 C = C0; # C0 is the C value of the original SVM model

9 S = Training(C, kernel.gamma); # Generative model
10 If Testing(S) >= Testing(f) Then

11 Add(F, S);
12 stop = stop – 1; Continue;

13 If b == DecisionTree # Taking Decision Tree as an example, the

remaining three processes are similar
14 o = O. DecisionTree;

15 max_depth = Random(50, 80) # Set the max_depth below 80

16 min_samples_leaf = Random(1, 2 ,3) # Parameters are set by
options

17 max_leaf_nodes = Random(50, 100)

18 D = Training(max_depth, min_samples_leaf, max_leaf_nodes)
19 # Leave other parameters of the decision tree as default

20 Compare(Testing(D), Testing(f)); # Non-strict comparison

21 stop = stop – 1; Continue;
22 Return F;

Our group of detection models will contain mutations from
the following 6 basic machine learning models: SVM, k-Nearest
Neighbor (kNN), Naive Bayes, Logistic Regression, Decision
Tree and Random Forest. For each model, we selected the
corresponding parameters as mutation operators, which will be
introduced separately below.

SVM. There are two main parameters that can be adjusted
when building the SVM model, C value and the kernel function.
The kernel function is set to four optional values: linear kernel
function, polynomial kernel function, RBF kernel function, and
Sigmoid kernel function. In addition to the linear kernel function,
the other three kernel functions can also adjust the parameter
gamma to change the model. The C value represents the model's
penalty coefficient for the error, and the gamma reflects the
distribution of the data after it is mapped to the high-dimensional
feature space. When training models, we usually use grid search
to find the most suitable C value and gamma. So we can slightly
modify the obtained parameters to generate new models.

kNN. The adjustable parameters of kNN are the number of
neighbouring points (n_neighbors) and the distance metric.
When the metric uses the Euclidean distance, it can meet the
prediction of the KNN model. Therefore, we only use
n_neighbors as the mutation operator of KNN, and limit it to an
integer interval [2, 5].

Naive Bayes. Since the feature sequence is multivariate
discrete value in malicious document detection, the naive Bayes
Multinomial (NB) with a prior polynomial distribution is used.
There are three parameters that can be manipulated: the prior
smoothing factor alpha, the Boolean parameter fit_prior, and the
prior probability class_prior. The value of alpha can be adjusted
around the default value of 1, and fit_prior and class_prior are
a pair of associated parameters. If fit_prior is false then
class_prior is invalid, otherwise class_prior default to mk / m.
Here m is the total number of samples in the training set, and mk
is the number of samples in the training set with k classes.

DFRWS APAC 2021 Author Preprint

Logistic Regression. In logistic regression, we generally set
the penalty for L2, which represents the penalty term, so the two
remaining parameters can be adjusted: the optimization method
solver and the inverse of the regularization coefficient C value.
Solver can choose from liblinear, lbfgs and newton-cg. The C
value is consistent with that in SVM.

Decision Tree. In the decision tree, combined with the size
of our experimental data set and previous experience, we take
three parameters as mutation operators: the maximum depth of
the decision tree max_depth, the minimum number of leaf nodes
min_samples_leaf, and the maximum number of leaf nodes
max_leaf_nodes. For max_depth, we limit its value to 80 or less,
for min_samples_leaf, we provide 1, 2, and 3 for selection, and
for max_leaf_nodes, we limit its value to 100 or less.

Random Forest. Random forest is an integrated tool that
builds multiple decision trees and then merges their predictions
together to get more accurate and stable predictions. Therefore,
the parameters we choose on the random forest are the same as
those on the decision tree, except for one unique parameter:
n_estimators. The n_estimators represents the number of
decision trees. If n_estimators is too small, it is easy to underfit,
but n_estimators has an increase limit. We adjusted downwards
n_estimators at the highest performance to generate mutants.

According to those 6 basic models and their corresponding
adjustable parameters, a group with a large number of models
can be generated, and the process is described in Algorithm 1.
With a large number of models having quality classification
ability in the group, the transferability of adversarial example
can be reduced to a certain extent. This model group will be used
for the next step to complete the detection, so we call it the
generation of detection model group.

B. Detection method

After the generation of detection model group, the next step
is to input the testing examples into the generated models
sequentially, and record the prediction results of each model.
Then we will calculate the prediction inversion rate (PIR) of
examples based on all prediction results, and compare it with the
PIR of the benign examples to determine. The principle of
detection using PIR is shown in Fig. 3. When a benign example
enters the original model, the prediction is benign (0), the
prediction reverse if the model in the detection model group
classifies the input as malicious (1). And the same change occur
when the input is an adversarial example. We can calculate PIR
from the number of models that have reversed, and find that the
adversarial example is more sensitive to the model. Therefore,
we must first ensure that the models used for detection in the
model group have good detection performance. Secondly, we
need to calculate the PIR of benign examples.

Fig. 3. The principle of detection using PIR

The process of generating a model is actually a process of
training the model, and the trained model has a performance test
for the test set. We select those models with a similar
performance as the original model to form the final model group
F. This is because mutations with poor performance do not
reflect the sensitivity of adversarial example to decision
boundaries.

Algorithm 2: Detection method

Input: Input example x, Original model f, Detection model group F,

Adjustment factor m.

Output: Prediction p.
1 Let stop = F.Len(); # Set the number of detection models used

2 Let p = 0; # Used to count prediction inversions

3 If x.label = 0 Then
4 # The process is consistent, in practice need to calculate first

5 Benign example PIR calculation();

23 While !stop do
24 fi = Random(F);

25 If fi(x) = ¬f(x) Then

26 p = p + 1;
27 stop = stop – 1;

6 P(x) = |{fi | fi ∈ F and fi(x) = ¬f(x)}| / |F|;

7 If P(x) > m·Pb Then
8 Return Malicious;

9 Else Return Benign;

In the detection method (Algorithm 2), we set inputs as input
example x, original model f, detection model group F and
adjustment factor m. If the input example x was labeled, it is
regarded as a benign example of PIR calculation in the first stage.
In this stage, we will continue to input benign examples into
each model, calculate the final average PIR according to the
formula and record it as Pb. Then input the example to be tested,
observe the original model and the detection model to see if the
prediction results have reversed. Finally, calculate the PIR and
compare it with the threshold m·Pb to get the detection result.

C. Detection System Design

In this work, the detection system is also based on a machine
learning method. The overall system design is shown in Fig. 4.

Fig. 4. The overall design of the detection system.

In the Pre-processing stage of machine learning methods,
example filtering of flawed documents and mimicry attack is
added. Because the main operation is to parse the PDFs, and the
result will affect the subsequent performance. In the subsequent
Feature extraction part, we mainly use two types of effective
feature sets: content-based features and structure-based features,
to ensure that the detection results are reliable. When generating

Benign

Original

model

Benign

Detection

model

Malicious

Adversarial (Malicious)

Original

model

Benign

Detection

model

Malicious

Pre-Processing

Feature

extraction

Classifier

Training

SVM
Detection

model group

Content

feature

Structure

feature

Filter

PIR calculation module

Analysis

module

Malicious Benign

DFRWS APAC 2021 Author Preprint

the final classifier, we first need to train an original model and
ensure satisfactory performance; then generate a series of
models for calculating PIR based on the detection model group
generation algorithm.

After all models are generated, a PIR calculation module will
be set up, which is important to detecting input examples.
Finally, the results obtained by the PIR calculation module will
be output. The system will determine the example with a larger
PIR as an adversarial example according to the threshold, that is,
malicious, and move it into the verification analysis module to
collect it.

IV. EXPERIMENTS AND ANALYSIS

In this section, we first calculate the average PIRs, including
benign examples and adversarial examples. Then, based on the
experimental setting, the results of our system are compared
with other detectors to evaluate the effectiveness of the method.

A. Dataset

Our experiments used two datasets: the data set S for training
and testing, and attack data sets M for generating adversarial
example. Since our experiments need to use different attacks to
generate corresponding adversarial examples, the malicious
PDFs in M must be truly malicious. Therefore, we continuously
select the collected malicious PDFs to form a data set containing
500 examples.

We collected a total of 11,200 malicious and 10,500 benign
PDFs. The malicious PDFs are mainly from Contagio archive
[22], Virus Share [23] and Virus Total [24], a small number of
documents were captured by us on the Internet. Benign PDFs
come from Contagio archive, Google search and research
institutions or companies that frequently use PDFs, including
announcements and operation manuals.

B. Experimental setting

Machine. A host machine (Intel Core i7-6300 CPU @
3.40GHz and 16GB of physical memory running 64-bit
Windows 10 Desktop), an auxiliary machine (Intel Core i5-
7300HQ CPU @ 2.50GHz and 16GB of physical memory
running 64-bit Ubuntu 16.04 Server). The auxiliary machine
deploys mainly a sandbox verification system..

Detector. We selected four state-of-the-art detectors, PJScan
[25], PDFRate [26] and Hidost [27], for comparison. Among
them, PDFRate and Hidost are the latest technologies with high-
precision detectors. They are often used as target detectors for
adversarial attacks against PDF.

Attacks. We use the mimicry attacks, gradient descent
attacks (Mimicus) and EvadeML to generate adversarial
example, where EvadeML can be divided into EvadeML-P for
PDFRate and EvadeML-H for Hidost according to different
target detectors.

C. Evaluation Indicators

The most commonly used evaluation indicators in malware
detection are Accuracy, Recall and AUC(Area Under Curve).
Accuracy refers to the ratio of detection results that are true
positives in malicious. Recall is the percentage of correctly
identified malicious examples. The AUC is equal to the

probability that a randomly selected positive example ranks
higher than a randomly selected negative example.

TABLE I. CONFUSION MATRIX

 Detected as malicious Detected as Benign

Malicious TP FN

Benign FP TN

Generally, the confusion matrix is used in malicious
document detection to calculate the above four indicators, as
shown in Table I. TP indicates the number of malicious
documents that were correctly detected, FP indicates the number
of normal documents that were misidentified as malicious, TN
indicates the number of normal documents that were correctly
detected, and FN indicates the number of malicious documents
that were identified as harmless. The calculation method of each
evaluation index is as follows:

Accuracy = TP / (TP + FP)

Recall = TP / (TP + FN)

AUC = (∑mk – nm(nm + 1) / 2) / (nm×nb)

D. Results and analysis

In the classifier training phase, we use different machine
learning algorithms to obtain the original model and the
detection model group. Therefore we have to test the
performance of the original system and ensure that it is optimal.
The experiment uses a 10-fold cross validation on training. The
original data is divided into 10 equal subsets. Each subset is used
as a validation set, and the remaining 9 subsets are used as the
training set. The average indicators of K models are used as the
overall performance indicator of the original model. Table II
lists the indicators of the final original model. It can be seen that
the detection performance of the model is very high in the case
of using integrated features.

TABLE II. TRAINING RESULTS OF ORIGINAL MODEL

 Accuracy Recall AUC

SVM 0.9963 0.9972 0.9981

At the same time, we also generate detection model groups
during the training phase, and we need to choose between them.
For SVM and logistic regression methods, we can get more
mutants, and SVM is the method used in the original model. So,
we generate the optimal model, based on its parameters and used
its performance as the benchmark, and select the model with the
appropriate performance. For the other four methods, training
and verification are performed directly. The final detection
model group contains 700 models.

In order to verify that there is a boundary between
adversarial and benign examples, we also need to calculate the
PIR of adversarial examples generated by various attacks.
Compare this to the PIR of a benign example. We need to
generate corresponding adversarial examples on the attack
dataset based on various attacks (the attack dataset contains 500
examples, but each attack generates no more than 500
adversarial examples). Then our experiment has the following
settings when calculating the PIR: for each input example, 500
models are randomly selected in the detection model group each
time, and the average PIR is calculated 10 times. Finally, the
mean value of all examples of each type is calculated and
recorded in Table III.

TABLE III. PIR AVERAGE

DFRWS APAC 2021 Author Preprint

Benign Mimicry Mimicus EvadeML-P EvadeML-H

3.22±0.23 45.15±3.21 36.25±2.78 32.56±2.62 14.88±1.64

It can be seen from the table that the PIR of a benign example
is significantly less than the PIR of any adversarial example,
which is the key to our detection method. Machine learning
algorithms try to distribute benign examples far away from the
decision plane. Although adversarial example is generated based
on the example near the decision plane, this distance still exists
in the changed model group. The PIR generated based on this
distance becomes an effective means to detect the essential
attributes of the adversarial example. Finally, the comparison
experiment was conducted with other detectors. The AUC
results and the average detection time are listed in Table IV.

TABLE IV. COMPARISON OF DETECTION RESULTS

 PJScan PDFRate Hidost Our system

Original 0.8853 0.9626 0.9912 0.9981

Flawed documents 0.6624 0.9223 0.991 0.9981
Mimicry 0.6236 0.7492 0.989 0.998

Mimicus 0.5844 0.6483 0.9751 0.9978

EvadeML-P 0.4263 0.6398 0.9682 0.9975
EvadeML-H 0.4935 0.6627 0.6834 0.9974

Average detection

time / s
0.622 0.734 0.875 1.242

Compare the original performance of each detector (where
our system uses the indicators of the original model) and the
performance after being attacked by adversarial example. It can
be clearly seen that our system can effectively detect adversarial
examples generated by flawed documents, mimicry attacks,
gradient attacks, and genetic algorithms. There are three main
reasons: First, we used comprehensive features when training
the model, content-based features and structure-based features.
This ensures that the model maintains the accuracy under
ordinary conditions. Second, in the Pre-processing and Feature
extraction stages of the original model, we added the state-of-
the-art parsing method and pruning algorithm. These methods
invalidate some flawed documents and mimicry attacks. Most
importantly, PIR points out the essential flaws of the adversarial
example. That is, the effective range of transferability is limited,
and human modification has distance fluctuations. This flaw
makes it easy to detect specific adversarial example (in fact, it is
the examples that are dangerous). In addition, our system is
slightly higher in average detection time than other detectors.
The main reason is the existence of non-optimal models,
although the detection model group in the detection part can use
parallel computing.

V. CONCLUSION

In this paper, we propose a method for detecting PDF
adversarial example based on the transferability and the
corresponding prediction inconsistency. This method generates
a certain number of models by making minor changes to the
classification model. On one hand, the influence of
transferability is eliminated in quantity; on the other hand, the
prediction results of each model reflect the nature of the
adversarial example. The experimental results show that the
adversarial example is sensitive to the model and there is a clear
boundary with the benign example. Our detection system can
find this feature and detect the adversarial example.

This method can be applied to other detectors based on
machine learning methods, such as detection of malicious

Android applications and malicious traffic. There are some
possible future extensions to the detection method proposed in
this paper. For example, we can further consider stronger attacks,
and more transferable adversarial examples. In addition, it is
also interesting to analyze those captured unseen adversarial
examples and get some more useful knowledge to strengthen our
defense.

REFERENCES

[1] J. Jang, D. Brumley, and S. Venkataraman, “BitShred: feature hashing
malware for scalable triage and semantic analysis,” in Proceedings of the
18th ACM conference on Computer and communications security, ser.
CCS ’11. New York, NY, USA: ACM, 2011, pp. 309–320.

[2] G. Kakavelakis, R. Beverly, and J. Young, “Auto-learning of SMTP TCP
Transport-Layer Features for Spam and Abusive Message Detection,” in
25th Large Installation System Administration Conference. Boston, LISA,
2011.

[3] He K, Zhang X, Ren S, et al. “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[4] D. Andor , et al. “Globally normalized transition-based neural networks,”
in Proceedings of the 2016 Association for Computational Linguistics,
(ACL), 2016, pp. 2442–2452.

[5] M. Davide, B. Biggio, and G. Giacinto, “Towards adversarial malware
detection: Lessons learned from PDF-based attacks,” ACM Computing
Surveys (CSUR), 52.4 (2019): 1-36.

[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
R. Fergus, “Intriguing properties of neural networks,” in ICLR, 2014.

[7] I. Goodfellow, J. Shlens, C. Szegedy, “Explaining and harnessing
adversarial examples,” in ICLR, 2015.

[8] M. Bojarski, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[9] S. Gu and L. Rigazio, “Towards deep neural network architectures robust
to adversarial examples,” arXiv:1412.5068, 2014.

[10] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” arXiv:1702.04267, 2017.

[11] W. Xu, D. Evans, and Y. Qi, “Feature Squeezing: Detecting Adversarial
Examples in Deep Neural Networks,” in Proceedings of the 2018
Network and Distributed Systems Security Symposium, NDSS, 2018.

[12] S. Ma, Y. Liu, et al. “NIC: Detecting Adversarial Samples with Neural
Network Invariant Checking,” NDSS, 2019.

[13] M. Li, Y. Liu, et al. “FEPDF: a robust feature extractor for malicious PDF
detection,” In 2017 IEEE Trustcom/BigDataSE/ICESS, 2017, pp. 218–
224.

[14] C. Smutz, A. Stavrou, “When a Tree Falls: Using Diversity in Ensemble
Classifiers to Identify Evasion in Malware Detectors,” NDSS, 2016.

[15] M. Davide, et al, “Digital Investigation of PDF Files: Unveiling Traces of
Embedded Malware,” IEEE Security Privacy, 17.1(2019): 63–71.

[16] N. Šrndić, P. Laskov, “Practical evasion of a learning-based classifier: A
case study,” in IEEE Symp. Security and Privacy, SP ’14, 2014, pp. 197–
211.

[17] M. Davide, et al, “A structural and content-based approach for a precise
and robust detection of malicious PDF files,” 2015 International
Conference on Information Systems Security and Privacy (ICISSP), 2015,
pp. 27–36.

[18] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G.
Giacinto, F. Roli, “Evasion attacks against machine learning at test time,”
ECML PKDD, Part III, Vol. 8190 of LNCS, Springer, 2013, 387–402.

[19] W. Xu, Y. Qi, D. Evans, “Automatically evading classifiers,” in Annual
Network & Distr. Sys. Sec. Symp. (NDSS), The Internet Society, 2016.

[20] L. Liu, et al. “Capturing the symptoms of malicious code in electronic
documents by file’s entropy signal combined with machine learning,”
Applied Soft Computing 82 (2019): 105598.

[21] L. Ma, F. Zhang, et al. “Deepmutation: Mutation testing of deep learning
systems,” in 2018 IEEE 29th International Symposium on Software
Reliability Engineering, ISSRE, 2018.

DFRWS APAC 2021 Author Preprint

[22] S. Chenette, (2009). Malicious Documents Archive for Signature Testing
 and Research - Contagio Malware Dump [Online]. Available: http://con
tagiodump.blogspot.de/2010/08/malicious-documents-archive-for.html.

[23] J. M. Roberts, (2011). Virus Share [Online]. Available: https://virusshare.
com.

[24] V. Total, (2012). Virustotal-free online virus, malware and url scanner
[Online]. Available: https://www. virustotal. com.

[25] Laskov, Pavel, and Nedim Šrndić, “Static detection of malicious
JavaScript-bearing PDF documents,” Proceedings of the 27th annual
computer security applications conference (ACSAC ’11), 2011, pp. 373–
382.

[26] C. Smutz, A. Stavrou, “Malicious PDF Detection Using Metadata and
Structural Features,” in Proceedings of the 28th annual computer security
applications conference, 2012, pp. 239–248.

[27] N. Šrndić, P. Laskov, “Hidost: a static machine-learning-based detector
of malicious files,” EURASIP Journal on Information Security, 1, 2016,
22.

[28] N. Šrndić, P. Laskov, “Detection of malicious pdf files based on
hierarchical document structure,” in Proceedings of the 20th Annual
Network & Distributed System Security Symposium, San Diego, 2013,
pp. 1–16.

[29] H. Dang, Y. Huang, E. Chang, “Evading classifiers by morphing in the
dark,” in ACM CCS ’17, ACM, 2017, pp. 119–133.

[30] C. Smutz, A. Stavrou, “Malicious PDF Detection Using Metadata and
Structural Features,” in Proceedings of the 28th annual computer security
applications conference, 2012, pp. 239–248.

[31] V. J. Manès, H. Han, et al. “Fuzzing: Art, science, and engineering,”
arXiv:1812.00140, 2018.

DFRWS APAC 2021 Author Preprint

