
DIGITAL FORENSIC RESEARCH CONFERENCE

Leveraging Intel DCI for Memory Forensics

By:
Tobias Latzo (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)), Matti Schulze (FAU), and Felix

Freiling (FAU)

From the proceedings of

The Digital Forensic Research Conference

DFRWS USA 2021

July 12-15, 2021

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to

digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of

research and development.

https://dfrws.org

Leveraging Intel DCI for Memory Forensics
Tobias Latzo, Matti Schulze and Felix Freiling∗

Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

A B S T R A C T

The Intel Direct Connect Interface (DCI) provides a JTAG debugging interface which allows to de-
bug Intel x86 CPUs by merely plugging in a slightly modified USB cable without opening the chassis.
DCI offers the possibility to halt CPU operations and arbitrarily read and write main memory. We
therefore explore the possibility to leverage DCI for the forensic acquisition of main memory. We
introduce DCILeech, a tool which allows to acquire system memory with high quality: In contrast to
software-based acquisition tools, it does not alter memory contents and therefore guarantees full in-
tegrity. Moreover, due to its power to halt the CPU, memory snapshots acquired by DCILeech exhibit
no traces of concurrent system activity and therefore can be considered atomic. On the downside,
DCI must be enabled on the target system and DCI-based memory acquisition is slow. We therefore
also explore other applications of Intel DCI such as its use in practice for digital forensic triage.

1. Introduction
The analysis of the main memory (RAM) of desktop and

server systems is of increasing importance in digital foren-
sic investigations today because it contains data that cannot
be acquired using classic hard disk forensics, e.g., running
processes, network attached storage, open network connec-
tions, and hard disc encryption keys. In contrast to persistent
storage, main memory is volatile and so a proper memory
snapshot needs to be acquired before analysis. Since this
often happens on a running system, e.g., using DMA, such
memory snapshots may exhibit traces of concurrent system
activity. Such violations of atomicity of a snapshot can lead
to misinterpretations during analysis [32]. Furthermore,
software-based memory acquisition tools that are widely used
in practice need to be installed or loaded first and therefore
necessarily alter the contents of memory, reducing the in-
tegrity of the resulting snapshot and further putting forensic
soundness at risk [4].

Intel Direct Connect Interface (DCI) is an interface that
allows debugging Intel CPUs using a USB 3 port without
opening the chassis. It was introduced with Intel Skylake
in 2015 [13]. The interface provides JTAG debugging ca-
pabilities to an x86 system even with a small budget. On
such a low level, it is even possible to debug software that is
not debuggable with common tools, e.g., the firmware, the
System Management Mode (SMM) or the Virtual Machine
Monitor (VMM). Before accessing memory, the CPU needs
to be stopped, which is beneficial for atomicity. DCI even
allows to stop the CPU and read from arbitrary CPU regis-
ters (including debug register), a possibility that is hard to
achieve otherwise. It can therefore be used to break CPU-
bound encryption [30] which holds the encryption key in
special registers, an attack for which the injection of software
was needed before [2]. Furthermore, one does not need to
install any software on the target to use DCI. However, Di-

∗Corresponding author
tobias.latzo@fau.de (T. Latzo); matti.schulze@fau.de (M.

Schulze); felix.freiling@fau.de (F. Freiling)
ORCID(s):

rect Connect Interface (DCI) must be enabled on the CPU
before it can be used.

1.1. Related Work
Forensic memory acquisition is a lively field in which

many advances have been made [10]. Latzo et al. [26] sur-
veyed the many different techniques that have been devel-
oped, including those based on software, DMA, or hypervi-
sor technology. Intel DCI appears to be less well-explored
with only a moderate number of publications in that area.
Most notably, Goryachy and Ermolov [13, 14, 15, 16] pio-
neered the field of DCI research and demonstrated how to
use Intel DCI to debug the CPU or Platform Control Hub
(PCH). We are aware of only one other public talk on the use
of DCI to perform firmware debugging on Intel CPUs [24].
Leveraging Intel DCI for forensic memory acquisition ap-
pears not to have been yet explored.

Forensic imaging using JTAG is more usual in the area
of smartphones or other embedded devices. In 2006, re-
searchers showed how to use the JTAG boundary scan to
create a bitwise image of the memory of an embedded de-
vice [3]. This is still a popular technique when it comes to
debugging Internet of Things (IoT) devices. Manufacturers
of those devices often want to prevent reverse engineering of
their products. So they do not label the corresponding pins,
or alternatively distribute them over the whole PCB. The
JTAGulator [17] helps to find the pin assignment. Further-
more, JTAG turned out to be beneficial for Android rootkit
detection [19]. For this, the authors extracted memory of a
smartphone’s kernel memory and reconstructed it for further
analysis.

1.2. Contribution
In this paper, we study the capabilities of low-level mem-

ory acquisition using Intel DCI. Our main contributions are
as follows:

• We introduce DCILeech — the first low-level memory
acquisition method that utilizes Intel’s DCI. This tech-
nique allows to dump system memory and produce a

Proceedings of the Digital Forensics Research Conference USA (DFRWS US) 2021, July 12–July 15, 2021 Page 1 of 9

Latzo et al.:Leveraging Intel DCI for Memory Forensics

memory snapshot that satisfies full atomicity and full
integrity. No software installation on the target is re-
quired. DCILeech benefits from its compatibility to
PCILeech [12], which we demonstrate in the evalua-
tion.

• We show how to access the decrypted memory of In-
tel SGX enclaves with the Debug profile. Using DFx
Abstraction Layer (DAL), we were able to access spe-
cially protected enclave memory in the Enclave Page
Cache (EPC).

• We show how to break CPU-bound encryption using
Intel DCI.

• We sketch how Intel DCI can be used for the digital
forensic triage.

1.3. Outline
In Section 2 we give some technical background infor-

mation that is necessary to understand this paper. We then
explain the fundamentals of Intel DCI, e.g., how to enable it,
in Section 3. In Section 4 we provide some insights into the
implementation of DCILeech. The evaluation of DCILeech
can be found in Section 5. A possible workflow of the dig-
ital forensic triage with Intel DCI is sketched in Section 6.
Finally, in Section 7 we conclude and give some suggestions
for future work.

2. Background
In the following, we give some necessary information

about JTAG debugging, Intel Software Guard Extensions
(SGX), and memory forensics necessary to understand the
rest of this paper.

2.1. JTAG Debugging
Joint Test Action Group (JTAG) is used synonymously

for the IEEE-1149.1 standard [28]. It is used for testing
and debugging of Integrated Circuits (ICs). JTAG allows to
test and debug ICs when they are already installed. Today,
JTAG is mainly known for flashing and debugging micro-
controllers.

One main component is the Test Access Port (TAP) which
is often called JTAG interface. It comes with five data lines
where four a mandatory. If one finds those pins on an IC,
the chances are good to get a JTAG connection. The pins
are labeled as follows:

• TDI: Data Input

• TDO: Data Output

• TCK: Clock

• TMS: Test Mode Select

• TRST: Reset (optional)

When it comes to x86 systems, JTAG debugging gets
slightly harder. Some special ports and devices are neces-
sary for JTAG debugging [27] and the corresponding de-
vices and software licenses are rather expensive. Further-
more, one needs a mainboard that comes with such a port.
Since 2015, Intel DCI makes low-cost debugging easily pos-
sible for x86 systems, which we utilize in this paper.

2.2. Intel SGX
Intel SGX extends modern x86-64 processors to protect

user-mode code and data from higher privileged layers, such
as the firmware, hypervisor or Operating System (OS) using
so-called enclaves. Enclaves can be seen as isolated con-
tainers of a user application with encrypted memory. The
Central Processing Unit (CPU) decrypts it using the Mem-
ory Encryption Engine and stores the decrypted pages inside
a special EPC that is integrated into the CPU. Enclaves can
only execute user mode code as their operation is quite re-
stricted. For example, code running inside an enclave cannot
directly call into another application or execute system calls
to request kernel functionality. The privilege level of en-
claves is, therefore usually compared to a conventional user
application. Code can be verified to run inside an enclave
using Intel’s remote attestation mechanism. First, an appli-
cation launches an enclave, which then attests its integrity
and confidentiality to a server. Afterward, a decryption key
is sent to the enclave, which is used to decrypt the actual
payload. To deploy software inside an enclave with the Re-
lease profile requires an attestation key from Intel. There
is also the Debug profile that allows to develop and debug
enclaves [25].

2.3. Criteria for Memory Acquisition
Vömel and Freiling defined three criteria for forensically

sound memory acquisition: correctness, atomicity and in-
tegrity [37]. According to these definitions, a memory snap-
shot is correct if the memory acquisition tool acquires the
actual content of the memory. Correctness is a necessary
criterion of memory acquisition approaches.

Due to the common interleaving of memory acquisition
with normal system operations, memory images might ex-
hibit traces of concurrent system activity. An example is
that the memory snapshot might hold evidence of the ef-
fect of a particular system action but not for its cause. A
memory snapshot is atomic if such inconsistencies do not
arise. An atomic memory snapshot is equivalent to a snap-
shot that could have existed if the system would have been
partially “frozen”. Pagani et al. [32] showed that non-atomic
snapshots actually occur and contain many such inconsisten-
cies that obstruct proper analysis. While atomicity is hard to
quantify precisely [38], Gruhn and Freiling [18] argued that
a snapshot’s atomicity can be approximated by the time it
takes to take the entire snapshot. For a black-box evalua-
tion, Gruhn and Freiling [18] therefore chose to quantify the
atomicity of a snapshot by the time between the acquisition
of the first memory region and the last memory region.

Formally, a memory snapshot satisfies integrity if the
content of memory is not changed after the time an analyst

Proceedings of the Digital Forensics Research Conference USA (DFRWS US) 2021, July 12–July 15, 2021 Page 2 of 9

Latzo et al.:Leveraging Intel DCI for Memory Forensics

Table 1
Flags to enable Intel DCI.

Flag Value Description
Debug Interface 1 Enables Silicon debug features
Debug Interface Lock 0 Allows changes of the MSR
Direct Connect Interface 1 Enables DCI
DCI Enable (HDCIEN) 1 Indicates that DCI is enabled

decides to take a snapshot. According to Vömel and Freil-
ing [37], integrity aims at quantifying the level at which the
process of taking the snapshot changes the content of mem-
ory. Gruhn and Freiling [18] quantified integrity by measur-
ing the average time over all memory regions from the start
of the acquisition until the time when the memory region is
acquired. We, however, follow the original intention of the
definition of integrity that is proportional to the amount of
memory changed by the acquisition approach. An approach
that does not change any memory content therefore satisfies
full integrity.

3. Intel Direct Connect Interface
In this section, we introduce the basics of Intel DCI. DCI

allows low-cost closed chassis debugging. There are two
possibilities on how to connect host and target. First, there is
Intel Silicon View Technology (SVT) — a device connected
between the host and the target. Furthermore, there is the
possibility to directly connect host and target via a USB 3
debug cable. The debug cable we used is a USB 3 A-to-A
cable [21]. It is similar to crossover network cables and can
also be hand-crafted from an ordinary USB A-to-A cable.

Debugging using Intel DCI is possible using Intel System
Studio which is also offered as a free trial version. This soft-
ware is needed because it integrates the software stack that
is used for JTAG debugging via DCI. Also, Python-based
command line interfaces for the software stacks come with
Intel System Studio.

3.1. Enabling Intel DCI
Intel DCI is a powerful debug feature that can access

random data of random processes. All security measures,
such as the ring privileges, are circumvented. For this rea-
son, manufacturers usually disable Intel DCI. In this section,
we show how to enable Intel DCI.

Basically, some flags are set in the firmware settings to
activate Intel DCI. These flags are usually hidden in the
firmware settings and written during the boot process into
the corresponding registers. However, some firmware im-
plementations let the user enable DCI in the firmware set-
tings, e.g., some Intel NUC systems [34]. The settings of
the different flags in the firmware to enable Intel DCI [8] are
shown in Table 1. Table 2 describes the subsequent values in
the two relevant CPU registers that need to be set to enable
DCI debugging.

For some systems it appears to be possible to change
those flags using the mm command [36] of the Unified Ex-
tensible Firmware Interface (UEFI) Shell [13]. In our exper-

iments, however, this approach did not work. For this rea-
son, we enabled DCI in the following way on our analysis
machine (described below in Section 5.2):

1. The firmware was dumped from the EEPROM by di-
rectly connecting to it via Serial Peripheral Interface
(SPI). Then, the corresponding clip was attached to
the appropriate pins of a Raspberry Pi. We used
flashrom [9] to perform the dump.

2. To modify the firmware values, we used the AMI BIOS
Configuration Program [1]. The values were set in ac-
cordance to Table 1. This tool allows to read and mod-
ify even hidden firmware settings in the corresponding
snapshot.

3. Afterward, the firmware is saved and flashed to the
EEPROM using flashrom. Then, one needs to Reset
to Default in the firmware settings. This is needed
because the current settings are stored on the CMOS
chip. Restoring to default causes that the values from
the flash chip are used.

3.2. OpenIPC and DAL
When using Intel System Studio, one can choose be-

tween two providers for DCI debugging. The most recent
versions use OpenIPC. Older Intel System Studio versions
also support DAL. Basically, both offer software stacks for
private JTAG implementations: IEEE 1149.1 and
IEEE 1149.7 [13]. These interfaces can also be used from a
Python command line interface.

For DCILeech we make use of the OpenIPC interface.
The following line of Python code, for example, shows how
to read from a register:

ipc.threads[0].arch_register(REGISTER)

So it is possible to read from debug registers or other special-
purpose registers. This affects the security of CPU-bound
encryption where the encryption key is kept in registers [30].
Similarly one can read from memory. One only needs to
specify the corresponding physical address. Note that it is
also possible to specify a desired virtual address.

The differences between OpenIPC and DAL are not well
documented. One difference we know is that there is a li-
brary called ITP that comes with the Python frontend ITPII
using the DAL software stack. With this library it is possi-
ble to read memory from Intel SGX enclaves (see also Sec-
tion 5.5).

Proceedings of the Digital Forensics Research Conference USA (DFRWS US) 2021, July 12–July 15, 2021 Page 3 of 9

Latzo et al.:Leveraging Intel DCI for Memory Forensics

Table 2
Fields in registers, when DCI is enabled [5].

Register Field Value Description

IA32_DEBUG_INTERFACE

Enable (R/W) 1 Enables debug features
Lock (R/W) 0 Unlocks the MSR
Debug Occurred (R/O) 1 Status of Enable bit

ECTRL DCI Enable (HDCIEN) 1 DCI Debug is enabled

Target System Forensic Workstation

PCILeech

DCILeech

TCP

Intel System
Debugger / IPCCLI

CPU

Memory

PCH

TAP

TAP

DMA JTAG
Handler DCI Debug Cable

Figure 1: Schematic overview of the setup for DCILeech.

4. DCILeech: Design and Implementation
In this section, we give some insights into the design

and implementation of DCILeech. First, we provide a brief
overview over the architecture. Then, we explain what steps
were necessary to make DCILeech compatible to PCILeech
[12].

4.1. Architecture
Figure 1 shows an overview of the setup we used. On

the left side, one can see the Target System and on the right
side the Forensic Workstation. DCILeech also benefits from
PCILeech’s capabilities [11]. PCILeech is connected to the
DCILeech server via a TCP connection, i.e., DCILeech is
implemented as a PCILeech device. DCILeech itself uses
the command line interface of Intel System Debugger which
is able to perform debugging on the target system.

On the target system, the USB 3 port is connected to the
PCH. The PCH comes with a JTAG handler which is con-
nected to all TAPs (see also Section 2.1). All TAPs that are
connected and enabled can be used for debugging the corre-
sponding component.

4.2. DCILeech
DCILeech implements a PCILeech rawtcp device and can

be started within the Intel System Studio GUI or the corre-
sponding Python Debug Shell. It opens a TCP socket and
waits for a connection. If a connection is established, DCILeech
immediately halts the target’s CPU. This is needed for OpenIPC

to read and write memory. A pleasant side effect is that this
allows atomic memory dumps. Afterward, PCILeech’s re-
quests are performed. The requests are sent as a rawtcp_cmd

that is structured as shown in Listing 1.

enum rawtcp_cmd {
STATUS , / / i s d e v i c e ready ?
MEM_READ, / / read from memory
MEM_WRITE, / / w r i t e t o memory
DCI_GO , / / c o n t i n u e CPU
DCI_HALT / / h a l t CPU

} ;

s t r u c t rawtcp_msg {
enum rawtcp_cmd cmd ;
u i n t 6 4 _ t add r ; / / t h e a d d r e s s
u i n t 6 4 _ t cb ; / / t h e l e n g t h

} ;

Listing 1: The modified definitions of the rawtcp_cmd enum
and rawtcp_msg struct.

If the status is requested, DCILeech always indicates that
it is ready because everything is already initialized. If PCILeech
sends a read request, DCILeech uses the ipc.threads[0].memblock

function to read memory via DCI. If PCILeech wants to
write to the host memory, DCILeech waits to receive the
corresponding payload. Then, it is written to the physical
memory of the target system. Therefore, also the memblock

Proceedings of the Digital Forensics Research Conference USA (DFRWS US) 2021, July 12–July 15, 2021 Page 4 of 9

Latzo et al.:Leveraging Intel DCI for Memory Forensics

function can be used.

4.3. PCILeech Patch
As one can see in Listing 1, we extended the rawtcp_cmd

by two further commands:

1. DCI_GO: continues all CPU threads, and
2. DCI_HALT: halts all CPU threads.

DCILeech was designed to be compatible to PCILeech. How-
ever, PCILeech sometimes expects injected code to be exe-
cuted before it can continue. This applies when it comes
to kernel module injection. PCILeech waits for a specific
physical address that is written by the injected code. Since
the CPU is halted, this is never done. Thus, at this point the
DCI_GO command is sent to let the CPU run and execute the
injected code. After a second, the CPU is halted, again.

5. Evaluation
In this section, we evaluate how DCILeech performs re-

garding the three criteria of memory acquisition defined by
Vömel and Freiling [37]: (1) Correctness, (2) atomicity and
(3) integrity (see Section 2.3). Furthermore, we discuss the
stealthiness (see Section 5.4) and demonstrate that we can
read data of SGX enclaves (see Section 5.5).

Before reading memory, DCILeech halts the CPU, lead-
ing to fully atomic dumps. Note, this does not mean that the
dump does not show any signs of “interruption”. For exam-
ple, if the CPU is halted during a critical write, this may lead
to some inconsistencies stemming from the fact that some
parts of the write have already been performed while oth-
ers have not. However, while the chances are relatively low
compared to a CPU that is running during the dump, halt-
ing the CPU will always avoid inconsistencies that violate
causality (such as the effect of an activity is recorded but not
its cause) [37].

DCILeech does not require any driver on the target sys-
tem, and no code on the target system has to be executed. So
we argue that snapshots acquired with DCILeech satisfy full
integrity. Subsequent dumps with DCILeech therefore yield
completely identical results.

In the following, we focus on the evaluation of the cor-
rectness of DCILeech.

5.1. Methodology
For the evaluation, we compare the physical memory

acquired using DCILeech and LiME [35]. First, we dump
the memory using LiME. Note, during the acquisition with
LiME the CPU is running and writing memory. LiME oper-
ates from the kernel level and does not halt the system. Thus,
the atomicity and integrity are limited and can probably be
compared with the Windows kernel-level software acquisi-
tion tools that behave all similar in Gruhn’s and Freiling’s
evaluation [18].

After the acquisition with LiME, we dump the memory
using DCILeech. During the acquisition with DCILeech,
the CPU is halted. Afterward, we calculate the diffs of the

Table 3
The memory ranges in our evaluation environment.

Start End Size
0x1000 0x9c3ff 621 KiB

0x100000 0x3fffffff 1032192 KiB

dumps. The dumps are compared byte-wise and page-wise
(4 KiB).

We also show that DCILeech works by demonstrating
that PCILeech payloads do work properly.

5.2. Hardware Setup
For our experiments, we used a Fujitsu Esprimo Q957

with an i5-7500T (4 cores) with 8 GiB of Random-Access
Memory (RAM) running Ubuntu with kernel version 5.4.0-
42-generic on our target system. Additionally, for testing the
compatibility with PCILeech payloads (see Section 5.3.2),
we installed Windows 10 in dual boot.

However, for the evaluation, we had to limit the size of
RAM using the mem parameter of GRUB to 1 GiB. This is be-
cause the speed of memory acquisition is low (≈ 70 KiB/s)
and we wanted to avoid having to wait several days for the
outcome of an acquisition operation. It took more than four
hours to acquire one gigabyte of RAM. Additionally, DCI
debugging is not very stable. In our experiments, the acqui-
sition regularly and annoyingly stopped because the system
crashed.

Table 3 shows the memory ranges of our test setup in
detail.

5.3. Correctness
A snapshot is considered to be correct if the acquired

memory values are the values that are actually stored in mem-
ory [37]. For existing memory acquisition tools, correctness
can be taken for granted [18]. However, DCILeech is a new
acquisition tool, so we need to show that it is working cor-
rectly.

DCILeech uses hardware features that are not supported
by any emulator we know. Thus we perform a black box
evaluation. We do not know what the actual content of the
physical memory is. So we use a LiME dump as a ground
truth. The LiME dump is compared with the DCILeech dump.
This allows a quantitative discussion of the correctness of
DCILeech. Besides, we test different PCILeech features to
demonstrate the compatibility of DCILeech.

5.3.1. Quantitative Analysis
In Figure 2 one can see the visualization of a page-wise

(4 KiB) diff of a LiME dump and a DCILeech dump. Ad-
dresses are growing von the bottom left to the top right. Blue
pixels indicate that there is no difference. The more reddish
a pixel is, the more bytes are different in the corresponding
page (4 KiB). On the right side, one can see the correspond-
ing scale. Gray pixels indicate unmapped space, which is
only hardly visible in the last row.

One can see that differing pages are spread over the mem-
ory space. More reddish areas can be found in upper mem-

Proceedings of the Digital Forensics Research Conference USA (DFRWS US) 2021, July 12–July 15, 2021 Page 5 of 9

Latzo et al.:Leveraging Intel DCI for Memory Forensics

di
ffs

 p
er

 p
ag

e
(4

 K
iB

)

0 %

100 %

Figure 2: Visualization of the diffs of the memory snapshots taken by DCILeech and LiME.
Blue pixels indicate no change of the corresponding page. The more reddish the pixel, the
more bytes are different in the corresponding 4 KiB page.

ory regions. A more detailed analysis revealed that about
50000 (18.76%) pages are different. However, a byte-wise
comparison showed that in total, only 38 MiB (3.76%) are
different. So, many pages are affected, but in total, not many
bytes. So the quantitative analysis reveales that DCILeech
appears to work correctly.

5.3.2. PCILeech Payloads
The DCILeech and LiME snapshots are relatively sim-

ilar (96.24% byte-wise). Since DCILeech is implemented
as a PCILeech device, it is also implementing write access
to physical memory. To show that DCILeech is compatible
with PCILeech, we tested some payloads. We are aware that
writing memory is not forensically sound, but it can be use-
ful during a live analysis. If memory is dumped beforehand,
it might be beneficial to use some more advanced PCILeech
features for the analysis.

For the evaluation of the compatibility to PCILeech, we
successfully performed the following features:

• Memory snapshot
The first feature is the basic memory acquisition fea-
ture dump. As parameter, dump expects the correspond-
ing memory range. All our snapshots are made with
this feature.

• Kernel module injection

Since we can write to physical memory, we can exploit
this to inject a kernel module into the host operating
system via kmdload. PCILeech first searches for the
Linux kernel base and is then able to inject the given
kernel module. We injected a PCILeech kernel mod-
ule that allows to more comfortably perform further
analysis. Finally, the address of the kernel module is
communicated to the analyst.

• File retrieval and file pushing
This payload relies on the kernel module injection above.
The injected kernel module is now used to pull files
from the target system. For this, one needs the address
where the PCILeech kernel module is loaded. Then,
one can download the desired file using lx64_filepull.
Pushing files was also performed using lx64_filepush.
The file was then found on the target system.

• Windows 10 unlock
This payload has been tested with Windows 10 as a
target. The payload wx64_unlock searches in the mem-
ory for the code of the lock screen and is “shorting”
the password query. So, one can log in with an empty
password.

Proceedings of the Digital Forensics Research Conference USA (DFRWS US) 2021, July 12–July 15, 2021 Page 6 of 9

Latzo et al.:Leveraging Intel DCI for Memory Forensics

5.4. Stealthiness
For the user in front of the computer, debugging or mem-

ory acquisition using Intel DCI is not stealthy. First, the an-
alyst needs to connect to the system via a USB cable. Fur-
thermore, the CPU is halted, which looks like a freeze.

For the OS it is also possible to detect that it was de-
bugged. After some experiments using Arch Linux, the fol-
lowing message appeared:

INFO: rcu_preempt detected stalls on CPUs/tasks:

[...]

NMI watchdog: Watchdog detected hard LOCKUP

on cpu [...]

Furthermore, it can be detected that DCI is enabled. The
CHIPSEC framework comes with a DCI module that checks
the registers listed in Table 2 [5]. If DCI is enabled, it is
displayed in the corresponding report.

5.5. Intel SGX
In the following, we evaluate DCI’s ability to read the

memory of SGX enclaves. In order to do this, we wrote a
small program using the Intel SGX SDK [23]. Note, the cor-
responding enclave is running in the Debug profile. In the
enclave, we allocate memory and write the well-known Lena
test image with a size of 88 KiB into the enclave’s memory.

Now, we need to find the address of the EPC which con-
tains the data. This can be done using cpuid [22]:

cpuid -l 0x12 -s 0x2

Now, it is possible to read the enclave’s data via ITPII. The
corresponding function is called edbgread [20] which dumps
rather slow with about 4 KiB/s. After dumping some mem-
ory, we could find the image in the enclave’s memory. Note
that when reading from the EPC, OpenIPC returns
0xffffffffffffffff. Reading from the corresponding ad-
dress with LiME returns seemingly random values because
this memory is encrypted.

This small experiment shows that we can read decrypted
memory from SGX enclaves. Note, testing real-world SGX
applications, i.e., with Release profile, was not in this work’s
scope. However, we think that the chances are good because
there is the set_debugoptin function that can be called via IT-
PII [20]. This function sets the debug opt-in flag in the SGX
Thread Control Structure that the enclave can be debugged.
However, future work should consider reading the memory
of SGX enclaves with Release profile.

6. Digital Forensic Triage with Intel DCI
Memory acquisition using Intel DCI is quite promising.

However, it is hard to apply in practice. First, one needs
a system that has Intel DCI enabled. Second, the acquisi-
tion speed is low. Our evaluation revealed that after hours of
memory acquisition, system crashes become likely. In this
section, we want to sketch possibilities of using Intel DCI
for digital forensic triage.

Inspired by triage in medicine, digital forensic triage aims
to prioritize the preservation of evidence [29]. In case of
digital evidence, this means that the most volatile memory
should first be saved. CPU registers can be regarded as the
most volatile memory in a computer. Intel DCI allows read-
ing registers without starting and loading special software
which would overwrite register contents. System memory
is also quite volatile and should also be acquired as fast as
possible. In Figure 3 we propose a way of digital forensic
triage with Intel DCI.

Probably the most challenging part of DCI-based mem-
ory acquisition is to enable DCI debugging. We found four
ways to achieve this. First (1a), there are systems in the wild
that have DCI enabled [31] which is actually a security vul-
nerability. Second (1b), some systems allow to enable DCI
from the UEFI Shell [13]. For this, the computer needs to
be restarted. The third possibility (1c) is to modify the sys-
tem firmware as we did in Section 3.1. Another possibility
(1d) is to exploit the firmware. Recently, malware security
researchers observed TrickBot scanning for UEFI vulnera-
bilities that could allow malware to persist in UEFI in the
future [6]. Using this technique, it should also be possible to
enable DCI. Note, most of the techniques require restarting
the target system, limiting the capabilities of Intel DCI for
the digital forensic triage. However, researchers also showed
that evil maid attacks should be considered [7].

If DCI is enabled, the analyst should first save all regis-
ter contents (2), including the debug registers. This breaks
CPU-bound encryption [30]. Next, if present, Intel SGX en-
clave memory should be saved (3). Since memory acquisi-
tion via DCI is slow, it is recommended to inject an acqui-
sition software that exfiltrates system memory via network
or a USB thumb drive. One needs first to save the pages
that are later used for the acquisition software (4a). Then,
the acquisition software can be injected (4b). The acquisi-
tion software should preserve atomicity. This means either
the original threads must not be dispatched, e.g., by injecting
a special OS that only dumps system memory. After injec-
tion, the context has to be set that all interrupts are received
by the new OS. Another possibility is to virtualize the target
OS on-the-fly [33].

Afterward, volatile memory is saved, and the investiga-
tor can start with the live analysis, including saving data
from network-attached storage (5a). Eventually, the inves-
tigator can ascertain local storage (5b).

7. Conclusion and Future Work
In this paper, we introduced DCILeech that combines

two powerful technologies: PCILeech and Intel DCI. No in-
stallation on the target is necessary. Furthermore, the CPU
is halted. Hence, the OS cannot prevent a debug session,
and the dump is performed atomically. We were also able
to read from registers, e.g., drX, xmmX and ymmX which breaks
CPU-bound encryption.

However, the evaluation in Section 5 also revealed some
shortcomings. First, the acquisition speed is rather low, only

Proceedings of the Digital Forensics Research Conference USA (DFRWS US) 2021, July 12–July 15, 2021 Page 7 of 9

Latzo et al.:Leveraging Intel DCI for Memory Forensics

DCI
Enabled

Preparation Acquisition

Registers

(2)
Save Registers

(3)
Save Enclave

Memory

(4a)
Save Pages for
Acquisition SW

(4b)
Inject Acquisition

SW

(4c)
Save System

Memory

(5b)
Save Local Storage

(5a)
Save Network

Storage

Memory Storage

(1b)
Enable in UEFI

Shell

(1a)
Preconfigured

(1d)
Firmware

Exploitation

(1c)
Flash Modified

Firmware

Figure 3: Digital forensic triage with Intel DCI.

about 70 KiB/s. We also had some crashes on the target side
during long acquisition sessions. Future work should con-
sider injecting an acquisition tool that can dump with more
speed. Register contents and required memory pages can
be dumped via DCI, beforehand. Hence, such a hybrid ap-
proach could also dump memory atomically. It only has to be
guaranteed that other memory regions are not affected. This
would probably be a terminating memory acquisition tech-
nique because the original OS must not be running when the
acquisition is in progress.

Another problem is deployment. While no software needs
to be installed on the target system, DCI debugging has to
be enabled. For security reasons, manufacturers disable it.
However, it also happens that it is enabled [31]. Our ap-
proach to activate DCI debugging might not be applicable
for on-site forensic investigations. However, previous work
showed that it is possible to enable DCI from the UEFI Shell [13].
Other researchers showed that an evil maid attack is also pos-
sible [7]. They modified the firmware of a computer in about
four minutes.

Even though memory acquisition techniques using DCI
are very beneficial in terms of integrity and atomicity, we
would not recommend enabling DCI by default for forensic
readiness. However, it might be beneficial to make it possi-
ble to enable DCI in a secured way. It is too powerful and
can also be misused. However, it can also be used for offen-
sive research because one can get “ground truths” and get
insights into software components that are usually not ac-
cessible. Also, the ability to read volatile register values is
unique.

Acknowledgments
This research is supported by Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation) as part of
the Research and Training Group 2475 "Cybercrime and Foren-
sic Computing" (grant number 393541319/GRK2475/1-2019).

CRediT authorship contribution statement
Tobias Latzo: Conceptualization, Investigation, Method-

ology, Supervision, Validation, Visualization, Writing - orig-
inal draft, Writing – review & editing. Matti Schulze: In-
vestigation, Software, Validation, Writing - review & edit-
ing. Felix Freiling: Conceptualization, Methodology, Su-
pervision, Writing - original draft, Writing – review & edit-
ing.

References
[1] American Megatrends Incorporation [2021], ‘UEFI/BIOS Utilities’.

Accessed: 2021-02-12.
URL: https://www.ami.com/products/firmware-tools-and-utilities/
bios-uefi-utilities/

[2] Blass, E. and Robertson, W. [2012], TRESOR-HUNT: attacking cpu-
bound encryption, in R. H. Zakon, ed., ‘28th Annual Computer Secu-
rity Applications Conference, ACSAC 2012, Orlando, FL, USA, 3-7
December 2012’, ACM, pp. 71–78.
URL: https://doi.org/10.1145/2420950.2420961

[3] Breeuwsma, I. M. F. [2006], ‘Forensic imaging of embedded systems
using JTAG (boundary-scan)’, Digital Investigation 3(1), 32–42.
URL: https://doi.org/10.1016/j.diin.2006.01.003

[4] Casey, E. [2007], ‘What does “forensically sound” really mean?’,
Digital Investigation 4(2), 49–50.
URL: http://www.sciencedirect.com/science/article/pii/
S1742287607000333

[5] Chipsec [2014], ‘CHIPSEC: Platform Security Assessment Frame-
work’. Accessed: 2021-02-04.
URL: https://github.com/chipsec/chipsec

[6] Constantin, L. [2020], ‘TrickBot gets new UEFI attack capability
that makes recovery incredibly hard’. Accessed: 2021-02-05.
URL: https://www.csoonline.com/article/3599908/trickbot-gets-
new-uefi-attack-capability-that-makes-recovery-incredibly-

hard.html
[7] Eclypsium Incorporation [2018], ‘Eclypsium evil maid attack demo’.

Accessed: 2021-02-05.
URL: https://www.youtube.com/watch?v=loBX%5FvEXxVA

[8] eiselekd [2018], ‘Enable DCI debugging on Gigabyte-BKi5HA-
7200’. Accessed: 2021-02-04.
URL: https://gist.github.com/eiselekd/
d235b52a1615c79d3c6b3912731ab9b2

Proceedings of the Digital Forensics Research Conference USA (DFRWS US) 2021, July 12–July 15, 2021 Page 8 of 9

https://www.ami.com/products/firmware-tools-and-utilities/bios-uefi-utilities/
https://doi.org/10.1145/2420950.2420961
https://doi.org/10.1016/j.diin.2006.01.003
http://www.sciencedirect.com/science/article/pii/S1742287607000333
https://github.com/chipsec/chipsec
https://www.csoonline.com/article/3599908/trickbot-gets-new-uefi-attack-capability-that-makes-recovery-incredibly-hard.html
https://www.youtube.com/watch?v=loBX%5FvEXxVA
https://gist.github.com/eiselekd/d235b52a1615c79d3c6b3912731ab9b2

Latzo et al.:Leveraging Intel DCI for Memory Forensics

[9] flashrom team [2020], ‘flashrom’. Accessed: 2021-02-04.
URL: https://www.flashrom.org/Flashrom

[10] Freiling, F., Groß, T., Latzo, T., Müller, T. and Palutke, R. [2018],
‘Advances in forensic data acquisition’, IEEE Des. Test 35(5), 63–74.
URL: https://doi.org/10.1109/MDAT.2018.2862366

[11] Frisk, U. [2016], ‘Rise of the machines: Direct memory attack the
kernel’. Accessed: 2021-02-05.
URL: https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%
20presentations/DEF%20CON%2024%20-%20Ulf-Frisk-Direct-Memory-

Attack-the-Kernel.pdf
[12] Frisk, U. [n.d.], ‘PCILeech’. Accessed: 2021-02-22.

URL: https://github.com/ufrisk/pcileech
[13] Goryachy, M. and Ermolov, M. [2016], ‘Tapping into the Core’, 33rd

Chaos Communication Congress .
[14] Goryachy, M. and Ermolov, M. [2017a], ‘Inside Intel Management

Engine’, 34th Chaos Communication Congress .
[15] Goryachy, M. and Ermolov, M. [2017b], ‘Intel DCI Secrets’, The 8th

Annual HITB Security Conference in The Netherlands .
URL: https://conference.hitb.org/hitbsecconf2017ams/materials/
D2T4%20-%20Maxim%20Goryachy%20and%20Mark%20Ermalov%20-%20Intel%

20DCI%20Secrets.pdf
[16] Goryachy, M. and Ermolov, M. [2017c], ‘Where there’s a JTAG,

there’s a way: obtaining full system access via USB’. Accessed: 2021-
02-05.
URL: https://www.ptsecurity.com/ww-en/analytics/where-theres-a-
jtag-theres-a-way/

[17] Grand, J. [2020], ‘JTAGulator’. Accessed: 2021-02-04.
URL: http://www.grandideastudio.com/jtagulator/

[18] Gruhn, M. and Freiling, F. C. [2016], ‘Evaluating atomicity, and in-
tegrity of correct memory acquisition methods’, Digital Investigation
16, S1–S10.

[19] Guri, M., Poliak, Y., Shapira, B. and Elovici, Y. [2015], Joker:
Trusted detection of kernel rootkits in android devices via JTAG inter-
face, in ‘2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki, Finland,
August 20-22, 2015, Volume 1’, IEEE, pp. 65–73.
URL: https://doi.org/10.1109/Trustcom.2015.358

[20] Intel Corporation [2016], ‘Intel DFx Abstraction Layer Python Com-
mand Line Interface’. Documentation is part of Intel System Studio.

[21] Intel Corporation [2020a], ‘C01 - Intel SVT DCI DbC2/3 A-to-A
Debug Cable 1 Meter’. Accessed: 2021-02-04.
URL: https://designintools.intel.com/SVT%5FDCI%5FDbC2%5F3%5FA%
5Fto%5FA%5FDebug%5FCable%5F1%5FMeter%5Fp/itpdciamam1m.htm

[22] Intel Corporation [2020b], Instruction Set Reference, A-L, Vol. 2A,
chapter 3.

[23] Intel Corporation [2020c], ‘Intel Software Guard Extensions for
Linux OS’. Accessed: 2021-02-06.
URL: https://github.com/intel/linux-sgx

[24] Jauregui, M. [2019], ‘Intro to Closed Chassis Debugging’, 2nd Open
Source Firmware Conference . Accessed: 2021-02-06.
URL: https://2019.osfc.io/uploads/talk/paper/18/Debugging%
5FIntel%5FFirmware%5Fusing%5FDCI%5F%5F%5FUSB%5F3.0.pdf

[25] Johnson, S. P., Bombien, D. and Zimmerman, D. T. [2016], ‘Intel
SGX: Debug, Production, Pre-release – What’s the Difference?’. Ac-
cessed: 2021-02-11.
URL: https://software.intel.com/content/www/us/en/develop/blogs/
intel-sgx-debug-production-prelease-whats-the-difference.html

[26] Latzo, T., Palutke, R. and Freiling, F. [2019], ‘A universal taxonomy
and survey of forensic memory acquisition techniques’, Digital Inves-
tigation 28(Supplement), 56–69.
URL: https://doi.org/10.1016/j.diin.2019.01.001

[27] Lauterbach Gmbh [2020], ‘Intel x86/x64 debugger’. Accessed: 2021-
02-06.
URL: https://www2.lauterbach.com/pdf/debugger%5Fx86.pdf

[28] Mangel, M. and Bicchi, S. [2020], Jtag, in ‘Praktische Einführung in
Hardware Hacking’, mitp Verlag, chapter 4.4.1, p. 106.

[29] Moser, A. and Cohen, M. I. [2013], ‘Hunting in the enterprise: Foren-
sic triage and incident response’, Digital Investigation 10(2), 89–98.
URL: https://doi.org/10.1016/j.diin.2013.03.003

[30] Müller, T., Freiling, F. and Dewald, A. [2011], TRESOR runs encryp-
tion securely outside RAM, in ‘20th USENIX Security Symposium,
San Francisco, CA, USA, August 8-12, 2011, Proceedings’.
URL: http://static.usenix.org/events/sec11/tech/full%5Fpapers/
Muller.pdf

[31] NIST [2017], ‘CVE-2017-5684,5,6’. Accessed: 2021-02-06.
URL: https://nvd.nist.gov/vuln/detail/CVE-2017-5684,https:
//nvd.nist.gov/vuln/detail/CVE-2017-5685,https://nvd.nist.gov/
vuln/detail/CVE-2017-5686

[32] Pagani, F., Fedorov, O. and Balzarotti, D. [2019], ‘Introducing the
temporal dimension to memory forensics’, ACM Trans. Priv. Secur.
22(2), 9:1–9:21.
URL: https://doi.org/10.1145/3310355

[33] Palutke, R., Ruderich, S., Wild, M. and Freiling, F. [2020], Hyper-
Leech: Stealthy System Virtualization with Minimal Target Impact
through DMA-Based Hypervisor Injection, in ‘23rd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID
2020)’, USENIX Association, San Sebastian, pp. 165–179.
URL: https://www.usenix.org/conference/raid2020/presentation/
palutke

[34] Soflen [2018], ‘DCI Connection Problems’. Accessed: 2021-02-06.
URL: https://community.intel.com/t5/Intel-System-Studio/DCI-
Connection-Problems/td-p/1160475

[35] Sylve, J. [2012], ‘LiME’. Accessed: 2021-02-04.
URL: https://github.com/504ensicsLabs/LiME

[36] Unified EFI Forum [2008], ‘UEFI Shell Specification’. Accessed:
2021-04-02.
URL: https://www.uefi.org/sites/default/files/resources/UEFI%
5FShell%5FSpec%5F2%5F0.pdf

[37] Vömel, S. and Freiling, F. C. [2012], ‘Correctness, atomicity, and in-
tegrity: defining criteria for forensically-sound memory acquisition’,
Digital Investigation 9(2), 125–137.

[38] Vömel, S. and Stüttgen, J. [2013], ‘An evaluation platform for foren-
sic memory acquisition software’, Digital Investigation 10, S30 –
S40. The Proceedings of the Thirteenth Annual DFRWS Conference.
URL: http://www.sciencedirect.com/science/article/pii/
S1742287613000509

Proceedings of the Digital Forensics Research Conference USA (DFRWS US) 2021, July 12–July 15, 2021 Page 9 of 9

https://www.flashrom.org/Flashrom
https://doi.org/10.1109/MDAT.2018.2862366
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20Ulf-Frisk-Direct-Memory-Attack-the-Kernel.pdf
https://github.com/ufrisk/pcileech
https://conference.hitb.org/hitbsecconf2017ams/materials/D2T4%20-%20Maxim%20Goryachy%20and%20Mark%20Ermalov%20-%20Intel%20DCI%20Secrets.pdf
https://www.ptsecurity.com/ww-en/analytics/where-theres-a-jtag-theres-a-way/
http://www.grandideastudio.com/jtagulator/
https://doi.org/10.1109/Trustcom.2015.358
https://designintools.intel.com/SVT%5FDCI%5FDbC2%5F3%5FA%5Fto%5FA%5FDebug%5FCable%5F1%5FMeter%5Fp/itpdciamam1m.htm
https://github.com/intel/linux-sgx
https://2019.osfc.io/uploads/talk/paper/18/Debugging%5FIntel%5FFirmware%5Fusing%5FDCI%5F%5F%5FUSB%5F3.0.pdf
https://software.intel.com/content/www/us/en/develop/blogs/intel-sgx-debug-production-prelease-whats-the-difference.html
https://doi.org/10.1016/j.diin.2019.01.001
https://www2.lauterbach.com/pdf/debugger%5Fx86.pdf
https://doi.org/10.1016/j.diin.2013.03.003
http://static.usenix.org/events/sec11/tech/full%5Fpapers/Muller.pdf
https://doi.org/10.1145/3310355
https://www.usenix.org/conference/raid2020/presentation/palutke
https://community.intel.com/t5/Intel-System-Studio/DCI-Connection-Problems/td-p/1160475
https://github.com/504ensicsLabs/LiME
https://www.uefi.org/sites/default/files/resources/UEFI%5FShell%5FSpec%5F2%5F0.pdf
http://www.sciencedirect.com/science/article/pii/S1742287613000509

