
DIGITAL FORENSIC RESEARCH CONFERENCE

Bringing Order to Approximate Matching: Classification and Attacks on Similarity Digest Algorithms

By:
Miguel Martín-Pérez, Ricardo J. Rodríguez and Frank Breitinger

From the proceedings of

The Digital Forensic Research Conference

DFRWS EU 2021

March 29 - April 1, 2021

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to 

digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of 

research and development.

https://dfrws.org



Full Paper

Bringing order to approximate matching: Classification and attacks on
similarity digest algorithms

Miguel Martín-P!erez a, Ricardo J. Rodríguez a, *, Frank Breitinger b

a Dpto. de Inform!atica e Ingeniería de Sistemas, Universidad de Zaragoza, Spain
b Hilti Chair for Data and Application Security, Institute of Information Systems, University of Liechtenstein, Fürst-Franz-Josef-Strasse, 9490, Vaduz,
Liechtenstein

a r t i c l e i n f o

Article history:
Available online 23 March 2021

Keywords:
Approximate matching
Fuzzy hashing
Similarity hashing
Similarity digest algorithm
Bytewise
Classification scheme

a b s t r a c t

Fuzzy hashing or similarity hashing (a.k.a. bytewise approximate matching) converts digital artifacts into
an intermediate representation to allow an efficient (fast) identification of similar objects, e.g., for
blacklisting. They gained a lot of popularity over the past decade with new algorithms being developed
and released to the digital forensics community. When releasing algorithms (e.g., as part of a scientific
article), they are frequently compared with other algorithms to outline the benefits and sometimes also
the weaknesses of the proposed approach. However, given the wide variety of algorithms and ap-
proaches, it is impossible to provide direct comparisons with all existing algorithms. In this paper, we
present the first classification of approximate matching algorithms which allows an easier description
and comparisons. Therefore, we first reviewed existing literature to understand the techniques various
algorithms use and to familiarize ourselves with the common terminology. Our findings allowed us to
develop a categorization relying heavily on the terminology proposed by NIST SP 800-168. In addition to
the categorization, this article presents an abstract set of attacks against algorithms and why they are
feasible. Lastly, we detail the characteristics needed to build robust algorithms to prevent attacks. We
believe that this article helps newcomers, practitioners, and experts alike to better compare algorithms,
understand their potential, as well as characteristics and implications they may have on forensic
investigations.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

According to NIST SP 800-168, ‘‘approximate matching is a
promising technology designed to identify similarities between
two digital artifacts’’ (Breitinger et al., 2014a). This identification of
similarities between two or more artifacts can happen on three
different levels of abstraction: bytewise, when the comparison re-
lies on the raw sequence of bytes that form the digital artifacts;
syntactic, when the internal structures of the digital artifacts under
analysis are used instead of merely byte sequences; or semantic,
when the comparison relies on contextual attributes to interpret
the digital artifacts and estimate their similarity. Furthermore, al-
gorithms may either compare artifacts directly (e.g., Levenshtein
distance or Hamming distance), or theymay first convert them into
an intermediate representation (e.g., a fingerprint, hash, digest)

that can then be compared. This latter case is often referred to as
fuzzy hashing or similarity hashing and aims at complementing
cryptographic hash functions by allowing identifying similar ob-
jects instead of completely identical objects.

In this article we focus on algorithms/literature that operate on
the byte-level1 and utilize an intermediate representation, i.e., a
digest/fingerprint. We define these kinds of algorithms as similarity
digest algorithms (SDA)2 which is the acronym used for the
remainder of this article. These algorithms gained popularity
around 2006 when ssdeep was published by Kornblum (2006).
Over the years, many more algorithms have been proposed such as
sdhash by Roussev (2010), MRSH-V2 by Breitinger and Baier
(2012b) or TLSH by Oliver et al. (2013), to name a few.

In order to compare algorithms, the community mostly focuses

* Corresponding author.
E-mail address: rjrodriguez@unizar.es (R.J. Rodríguez).

1 Inputs/artifacts are treated as a byte stream and are processed without any
interpretation of the data.

2 In this paper, we use the SDA interchangeably as a singular and plural acronym.

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi

https://doi.org/10.1016/j.fsidi.2021.301120
2666-2817/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Forensic Science International: Digital Investigation 36 (2021) 301120

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rjrodriguez@unizar.es
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2021.301120&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2021.301120
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2021.301120


on obvious metrics such as runtime efficiency or precision and
recall rates. However, due to the various design decisions re-
searchers and practitioners havemade during the development, we
argue that a more fine granular comparison is necessary as there
may be instances where precision and recall are insufficient. For
instance, some implementations have difficulties handling
extremely small files, while others are susceptible if the difference
in file size between two objects is too large (e.g., 5 MiB vs. 5 GiB).
Consequently, this article has the following contributions:

! The first categorization for SDA, allowing the community to
better discuss and compare the various existing algorithms.
Categorizations are useful for scientific fields, as they allow
structuring a domain.

! A comprehensive discussion of the algorithms with respect to
the categorization and its implication for practitioners.

! A discussion of the categorization with respect to why these
characteristics are important and how practitioners may
contribute from it, describing an abstract set of attacks.

! In addition, we also provide insights on the desirable properties
to build a robust SDA against attacks.

The rest of this paper is organized as follows: Subsequently, we
introduce the Terminology and Background which outlines terms
that are utilized throughout this article. The core of this work is the
Towards a Classification Scheme for Similarity Digest Algorithms
section which presents our developed categorization. Attacks
against Similarity Digest Algorithms outlines some attacks that
are possible on algorithms followed by the section on Building a
Robust Similarity Digest Algorithm describing the desired proper-
ties to build a robust SDA, according to our findings. The last section
concludes this article.

2. Terminology and Background

In comparison to traditional and cryptographic hash functions
that mostly divide an input into blocks and use bit operations like
XOR to generate a final, fixed-length hash value (fingerprint), SDA
require a more sophisticated processing. Often these algorithms
select features (sometimes also referred to as chunks in literature),
compress them and merge them to a final signature (similarity
digest). For this work, we define the following terminology which is
similar to NIST SP 800-168 (Breitinger et al., 2014a):

1 Features are the basic characteristics that can be extracted from
digital artifacts and allow the comparison between two or more
objects. Sample features could be a single bit, byte sequences, or
offsets in an object.

2 Mapping functions allow the processing of features, e.g., to
compress them or to encipher them using cryptographic hash-
ing. Note, NIST as well as other literature frequently utilize the
term compression functions as this is the most common behavior
of this function. However, we feel that mapping function is more
accurate, as theoretically the function could also expand the
feature. We refer to the features obtained as result of
compression functions as processed features.

3 Similarity digests are the final output of SDA and can be seen as
an aggregation of (processed) features.

4 Similarity functions allow comparing two similarity digests and
returns a similarity score, which is often a numerical value. This
value is then denoted by similarity score (note, although it is a
numerical value that often ranges between 0 and 100, it is not
necessary a percentage value).

Background. Prior works primarily focused on directly

comparing two or more algorithms and mostly rely on the metrics
such as runtime efficiency or precision and recall (Roussev (2011);
Lee and Atkison (2017)). On the other hand, some researchers
dedicated their time to inspecting implementations in all detail. For
instance, Breitinger et al. (2012) ran various tests on sdhash and
found that the implementation does not consider every byte for the
similarity digest generation, which they denote by coverage. As a
result, it is possible that two similarity digests are completely
identical despite the artifacts been (slightly) different. Likewise,
NIST SP 800-168 discusses various use cases as well as properties of
special interest (Breitinger et al., 2014a).

However, there is not a clear, well-established way to provide
direct comparisons between all existing algorithms. We aim at
filling this gap with this article. To the best of our knowledge, we
are the first to establish a classification of SDA to facilitate the
description and comparison of these algorithms.

3. Towards a Classification Scheme for Similarity Digest
Algorithms

To develop our classification scheme, we surveyed the widely
used as well as some niche algorithms and implementations as
summarized in Table 1. In the following we provide a more detailed
description of our Methodology followed by the Phases of a
Similarity Digest Algorithm section. The core of this section is
Proposed Classification Scheme.

3.1. Methodology

In order to derive our classification scheme, we reviewed rele-
vant literature, i.e., descriptions of the various algorithms, as well as
secondary literature such as comparisons of algorithms, security
evaluations, or suggested properties for approximate matching
(e.g., as suggested by Breitinger and Baier (2012a)). Our starting
point were articles discussing properties and security features of
algorithms. Thus, we started with more general/broader articles
followed by articles describing specific algorithms and imple-
mentations. For each article, we extracted relevant information
(characteristics) describing behavior, features and peculiarities of
algorithms. Lastly, we tried to align these characteristics as good as
possible. As result, we obtained our proposed classification scheme
as summarized in Table 2.

3.2. Phases of a Similarity Digest Algorithm

Similar to traditional hash functions, SDA have two major
working stages:

1. During the artifact processing and digest generation phases,
an algorithm receives data (i.e., a byte sequence) as input, pro-
cesses the input and returns a similarity digest. In detail, there
are several steps: First, features are extracted from the input
(feature generation phase), which are then further processed
(feature processing). Some algorithms may have an optional
phase to select the features that will compose the digest (feature
selection phase). If this phase does not exist, all features form the
digest. In addition, some algorithms may have the optional
phase to delete duplicate features (features deduplication phase).
This phase may be associated with the next stage when it uses
digests instead of features as input. Lastly, processed features are
transformed to form the similarity digest (digest generation
phase), which is the final output of the SDA. Note, the order of
phases is not fixed, e.g., an algorithm may first select features
and then do the processing.

M. Martín-P!erez, R.J. Rodríguez and F. Breitinger Forensic Science International: Digital Investigation 36 (2021) 301120

2



2. The digest comparison phase is independent from the previous
phases and requires two similarity digests as input (obtained
from the same SDA). Using some similarity metric, the digests
are compared and a similarity score is returned. This score
provides insights about the similarity (or dissimilarity) between
the digests.

3.3. Proposed Classification Scheme

These previously mentioned phases led to our classification
scheme as summarized in Table 2 where we identified various di-
mensions/procedures for each phase each having various
characteristics.

3.3.1. Feature Generation Phase
To start, SDA process the input on the byte level with the aim to

identify and extract features. We distinguish between the following

dimensions/procedures: The feature length can be either of a pre-
defined fixed length (static) or can be dynamic (variable). In the
latter case, features are usually identified with a support function3

allowing to identify the feature boundaries. Currently, we differ-
entiate between two different support functions. A trigger function
compares its output with a predefined value to determine the
feature boundaries. On the other hand, a unique function can be
used to build a set of unique features from the input using set
theory.4 When the feature size is static, an SDA may not need a
support function to identify boundaries. These cases are denoted by
none. An example for static features would be dcfldd which uses
512 bytes. In contrast, ssdeep and MRSH-V2 use trigger functions
(rolling hash) to identify the features which results in variable sized
features.

The intersection dimension in the feature generation can be yes
(a byte may belong to more than one feature) or no (a byte can
belong to exactly only one feature). Examples would be ssdeep
and sdhash which have distinct and overlapping features,

Table 1
Proposed classification for similarity digest algorithms; the last two columns are discussed in Section 3.4.

Algorithm Reference Previous classification New classification

dcfldd Harbour (2002) Block-Based Hashing Feature Sequence Hashing
ssdeep Kornblum (2006) Context Trigger Piecewise Hashing Feature Sequence Hashing
md5bloom Roussev et al. (2006) Context Trigger Piecewise Hashing Feature Sequence Hashing
MRS hash Roussev et al. (2007) Context Trigger Piecewise Hashing Feature Sequence Hashing
sdhash Roussev (2010) Statistically-Improbable Features Feature Sequence Hashing
MRSH-V2 Breitinger and Baier (2012b) Context Trigger Piecewise Hashing Feature Sequence Hashing

SimHash Sadowski and Levin (2007) Block-Based Rebuilding Byte Sequence Existence
mvHash-B Breitinger et al. (2013) Block-Based Rebuilding Byte Sequence Existence
LZJD Raff and Nicholas (2017) (none) Byte Sequence Existence

Nilsimsa Damiani et al. (2004) Locality-Sensitive Hashing Locality-Sensitive Hashing
TLSH Oliver et al. (2013) Locality-Sensitive Hashing Locality-Sensitive Hashing
saHash Breitinger et al. (2014b) (none) Locality-Sensitive Hashing
FbHash Chang et al. (2019) (none) Locality-Sensitive Hashing

Table 2
Categorization scheme for similarity digests algorithms. The possible values of each dimension/procedure are separated by semicolons.

Phase Dimension/
Procedure

Characteristic

Artifact processing and digest generation
phases

Feature generation Length Static; Dynamic
Support function Trigger function; Unique; None
Intersection Yes; No
Cardinality Fixed; Variable

Feature processing Mapping function Hashing; Encoding; Identifier; None
Bit reduction Ratio; None

Feature selection Selection function Minimum probability; Block matching; Block similarity; Minimum value;
None

Domain Feature; Processed feature
Coverage Full; Partial

Digest generation Digest size Fixed; Input dependent; Input dependent with max
Storing structure Processed feature concatenation; Set concatenation; Set; Counter
Order Absolute; Set-absolute; Processed feature-aware; None
Requirements Minimum features; Diversity; Document frequency; None

Feature
deduplication

Type Consecutive; In-scope; None
Occurrence phase Digest generation; Digest comparison

Digest comparison Requirements Minimum commonality; Minimum amount; Similar input size; None
Output score Binary value; Interval; Half-bounded
Score trend Ascending; Descending
Space sensitivity Partial; Total; None

3 Note, it is important to differentiate between a support function and feature
selection (phase 3). For instance, sdhash uses static features of 64 bytes (no sup-
port function); and uses a selection function to choose best ones.

4 One may consider this as part of the feature selection phase. However, in this
particular case the feature changes if it is in the set wherefore we placed it in
feature generation.

M. Martín-P!erez, R.J. Rodríguez and F. Breitinger Forensic Science International: Digital Investigation 36 (2021) 301120

3



respectively.
The forth dimension is cardinality, which describes the amount

of features SDA attempt to produce for a given input which can be
fixed or variable where it frequently depends on the input length L.
For instance, ssdeep aims at having 64 features while dcfldd and
MRSH-V2 produce L=512 and L=320, respectively. In other words,
the cardinality is strongly related to the feature-length dimension.

3.3.2. Feature Processing Phase
After identifying features, there may be a processing phase

which includes two dimensions. A mapping function (or
compression function as suggested by NIST) applies some form of
mapping to the feature which can be of the characteristic: hashing,
encoding or identifier. We only found one algorithm, saHash, that
does not apply any compression function as its feature size is
already small. Most commonly, SDA use hashing to obtain pseudo-
random processed features where cryptographic as well as non-
cryptographic algorithms are used. For instance, MRSH-V2 uses
FNV-1a function (Fowler et al., 2011) to reduce features from 320
bytes to 64 bits while sdhash relies on SHA-1. Instead of hashing,
the mapping function might be a more general encoding function to
process the features. For instance, mvHash-B applies a majority
vote step followed by Run Length Encoding on compress bit se-
quences. The last approach that we found is a feature identifier
function (that works as a mapped feature) and generates feature
identifiers of the selected features from a fixed set. For instance,
SimHash yields an identifier for every feature that matches with
one of its 16 fixed features.

The mapping function is often followed by a bit reduction
procedure which consists of selecting few bytes (or bits) from the
mapped feature. This bit reduction can be expressed as a ratio be-
tween the input and the output. For instance, the MRSH-V2's input
to the bit reduction function is a 64 bit FNV-1a hash that results in a
55 bits output. Hence, the ratio is 55/64. Similarly, the sdhash

inputs are 160 bit SHA-1 hashes, while the outputs are 55 bits,
which results in a ratio of 55/160.We have used nonewhen the SDA
does not have a bit reduction procedure (that is, all the bits of the
mapped feature are used). For completeness in Table 3, in these
cases we havewritten betweenparenthesis the output size (in bits).

3.3.3. Feature Selection Phase
This phase, performed by some algorithms, selects specific

features (e.g., the most unique ones) by applying a selection func-
tion which can be based on:

! minimum probability (i.e., most unique), when the features least
likely to occur are selected as they are considered as the most
significant features (e.g. sdhash).

! block matching, when a predefined set of blocks are used to seek
and replace the sequence of features by a sequence of block
identifiers (e.g. SimHash).

! block similarity, when the most similar blocks are identified (e.g.
mvHash-B).

! minimum values, when the algorithm selects a subset of pro-
cessed features with the lowest values (e.g. LZJD).

The domain of these selection function is either feature or pro-
cessed feature. For instance, sdhash selects features by their en-
tropy and it then calculates the processed features, which are
finally added to the digest. On the contrary, LZJD first calculates the
processed features and then selects which ones will form the
digest.

Coverage reflects if all bytes of the input are considered in the
similarity which can be full (like ssdeep or MRSH-V2) or partial
(like sdhash, where there may be gaps between features).5 In the
latter case, it is important to understand that two inputs may yield
a perfect SDAmatch but theymay be not be identical (i.e., they have
different cryptographic hash values).

3.3.4. Digest Generation Phase
This phases encompasses the construction of a similarity digest.

The digest size can be fixed when it is always the same length,
regardless the input length (e.g., FbHash or saHash); input
dependent, when there is a correlation between the input size and
the digest size (e.g., dcfldd concatenates MD5 hashes for each
feature of 512 bytes) or input dependent with max when the size
depends on the input length but has a maximum length (e.g.,

Table 3
Classification of similarity digest algorithms according to our proposed classification scheme (feature generation, feature processing, and feature selection phases).

Algorithm
Feature generation Feature Processing Feature Selection

Length Support
Function

Intersection Cardinality Mapping
Function

Bit Reduction Selection
Function

Domain Coverage

dcfldd Static (512) None No Variable (L=512) Hashing None (128) None (n/a) Full
Nilsimsa Static (3) None Yes Variable (6L) Hashing None (8) None (n/a) Full
ssdeep Dynamic (L= 64) Trigger

function
No Fixed (64) Hashing Ratio (6/32) None (n/a) Full

md5bloom Static (512) None No Variable (L=512) Hashing Ratio (40/128) None (n/a) Full
MRS hash Dynamic (234) Trigger

function
No Variable (L=234) Hashing Ratio (44/128) None (n/a) Full

SimHash Static (1) None Yes Variable (8L) Identifier None (8) Block matching Feature Partial
sdhash Static (64) None Yes Variable (L) Hashing Ratio (55/160) Minimum

probability
Feature Partial

MRSH-V2 Dynamic (320) Trigger
function

No Variable (L=320) Hashing Ratio (55/64) None (n/a) Full

mvHash-B Static (20;50) None Yes Variable (8L) Encoding Ratio (1/32) Block similarity Feature Full
TLSH Static (3) None Yes Variable (6L) Hashing None (8) None (n/a) Full

saHash Static (1) None Yes Variable (4L) None None (8) None (n/a) Full
LZJD Dynamic (1þ

log256L)
Unique No Variable

(L=ð1þlog256LÞ)
Hashing None (128) Minimum value Processed

feature
Partial

FbHash Static (7) None Yes Variable (L) Hashing None (64) None (n/a) Full

5 Although we included coverage in the ‘‘feature selection phase,’’ one should
note that partial coverage can also be caused by the ‘‘feature generation phase’’
which may ignore bytes.

M. Martín-P!erez, R.J. Rodríguez and F. Breitinger Forensic Science International: Digital Investigation 36 (2021) 301120

4



ssdeep yields a digest within 32 and 64 characters but may not
reach its max for small inputs).

Regarding the storing structure, it can be a processed feature
concatenation (i.e., the processed features are just concatenated
used by dcfldd or ssdeep) or it can be set concatenation which
describes the idea of adding processed features to a set with a
maximum capacity. When the set reaches its capacity (is full), a
new empty set is appended. Up till now, all implementations of the
set concatenation method use Bloom filters and the comparison
process described by Roussev et al. (2006); Roussev (2010, 2012).
When the number of processed features has a cap, they can be
stored in a single set like in the case of LZJD. Lastly, some algo-
rithms (e.g. Nilsimsa and SimHash) aggregate features during the
selection phase which is denoted by counters.

The storing order between features is also a characteristic of
SDA. The possible values are: absolute, when the position of every
feature is conserved (for instance, dcfldd or ssdeep store all fea-
tures in order); set-absolute, when the generated digest keeps the
order between different feature sets, but is unaware of the feature
order within a particular set. For example, the SDA that use set
concatenation (based on Bloom filters) for feature storing have this
characteristic value, as the Bloom Filters do not keep the order (e.g.
md5bloom); processed feature-aware, when the storing structure
does not keep the order of the features contained within, but the
processed feature itself helps determine the order. Thus, the
intersection between features allows for detecting changes (i.e., the
similarity score varies) when the input is rearranged (e.g., TLSH and
saHash); or none, when the SDA does not consider the order be-
tween features (e.g., SimHash and LZJD).

Some algorithms have requirements to yield a digest. The re-
quirements can be either to reach minimum features, to have
enough diversity on the input, or to have a document frequency that
contains the frequency of every feature on a training set. When SDA
do not have requirements, we use none. In this regard, some algo-
rithms have a feedback phase, during which they perform config-
uration adjustments and restart the process from the beginning
when the generated digests do not meet the minimum re-
quirements expected.

3.3.5. Features Deduplication Phase
The features deduplication phase is an optional phase imple-

mented by some algorithms to eliminate duplicate or redundant
processed features. The type can be consecutive, when several
consecutive features are reduced to a short sequence or in-scope,
when identical features in the same scope are eliminated. When
this phase does not exist, the type is none. This phase can take place
(occurrence phase) in two different places, either during the digest
generation or during the digest comparison phases. For example:
algorithms using Bloom Filters (BF) deduplicate by design during
the generation phase as BFs behave like sets and do not store
duplicate features.

3.3.6. Digest Comparison Phase
This phase allows comparing two digests which results in a

similarity score, i.e., how similar or dissimilar are two digests. In
order to return a similarity (dissimilarity) score, some algorithms
impose one or more requirements. The digest comparison may
require either a minimum commonality between the digests, a
minimum amount of features in every digest, or a similar input size of
both inputs to compare them. Examples are provided in Section
3.3.7.

The output score is the similarity score between two given di-
gests and can be either a binary value, i.e., inputs are similar or not
(yes/no). Additionally, the output score could be an interval (usually
between ½0;1& or ½0;100&) or half-bounded. The latter case indicates

that there is a lower (or upper) boundary which is common when
measuring dissimilarity where 0 is (almost identical) but there is no
upper boundary. Related to the output score is the score trend
which can be ascending (the higher the output score, the higher
similarity of digests) or descending.

Another characteristic of the comparison function is its space
sensitivity, which expresses whether the function is sensitive to a
different order of the same features. This sensitiveness can be total,
when the total order of the features is considered, or partial, when
it only considers the order of features partially.

3.3.7. Examples: ssdeep and sdhash

To illustrate our proposed classification scheme, we applied the
scheme to two relevant algorithms:

ssdeep uses a rolling hash as a support function to divide the
input into roughly 64 distinct features (length, intersection, and
cardinality). Once the features are generated, they are hashed using
FNV hash (mapping function) and the six least relevant bits (bit
reduction) generate a base64-encoded character. As all processed
features belong to the digest (i.e., full coverage), the feature selec-
tion phase is omitted. During the digest generation process, the
remaining input after the 63rd feature is considered as the last
feature (i.e., its digest size is fixed). The digest is built by concate-
nating the processed features (order and structure). If the number of
features is less than 32 (requirements), ssdeep does not yield any
digest and restarts the whole process, readjusting the rolling hash
(support function) accordingly. For the digest comparison phase,
ssdeep first reduces the consecutive processed features that are
duplicated to three characters (type and occurrence) and then
evaluates if there are at least 7 consecutive common features be-
tween the digests to perform the comparison (requirements). The
concatenation of features implies the sensitiveness to the feature
order (space sensitive). The similarity score is an interval ½0;100&,
where 0 indicates no similarity while 100 indicates identical inputs
(output score and score trend).

sdhash extracts an arbitrary number of features, considering 64
overlapped bytes from a given input (feature size, intersection, and
cardinality), without any prior input processing (support function).
Then, the feature selection takes place, inwhich a subset of features
(domain) are chosen based on their entropy (selection function and
coverage). Next, sdhash hashes the selected features using SHA-1
hash (mapping function) and uses 55 bits (bit reduction) of the 160
bits of the SHA-1 hash. Then the processed features are inserted
into Bloom filters (structure and order), starting the digest genera-
tion phase.When a filter is full, a new filter is created and appended
to the digest (digest size is input dependent). However, when the
entropy is low and no features are selected, sdhash is unable to
yield any digest (requirements). Additionally, if a processed feature
is already contained in the current filter, it is discarded (type and
occurrence; features deduplication phase). Regarding the digest
comparison phase, the digest comparison function calculates sim-
ilarity based on the similarity between Bloom filters, considering
only the highest similarity between every pair of filters. Further-
more, sdhash requires 16 features per filter to compute the simi-
larity between two filters (requirements). As the Bloom filters do not
keep any order in the elements contained in the filter, the algorithm
is unable to know if two set of features keep the same order (space
sensitivity). As for ssdeep, the similarity score is an interval ½0;100&,
where 0 indicates no similarity while 100 indicates identical inputs
(output score and score trend).

3.4. Classification of state-of-the-art SDA

Table 3 and Table 4 classify the state-of-the-art SDA that we
have considered for our paper in chronological order. In total, we

M. Martín-P!erez, R.J. Rodríguez and F. Breitinger Forensic Science International: Digital Investigation 36 (2021) 301120

5



reviewed 13 algorithms released between 2002 and 2019. For
readability, we have split the results into two tables according to
the phases outlined in Table 2: Table 3 contains the feature gener-
ation, feature processing, and feature selection phases; Table 4 details
the digest generation, feature deduplication, and digest comparison
phases.

Before discussion existing algorithms with respect to our clas-
sification, let us have a look at exiting classifications which are
mostly based on categories creators assigned to their algorithms.
Based on Gayoso Martínez et al. (2014); Lee and Atkison (2017);
Moia and Henriques (2017), there are the following categories:

1 Block-based hashing which consists of algorithms that use
cryptographic hashes, generating and storing features for every
block of a fixed size;

2 Context trigger piecewise hashing which is made up of algo-
rithms that split the input into contexts, defined as a sliding
window on the input bytes when the trigger function is
activated;

3 Statistically-improbable features which comprises algorithms
that use a selection function based on statistically improbable
features, as its own name indicates;

4 Block-based rebuilding which consists of algorithms that
choose blocks (randomly selected or pre-fixed) and generate the
digests selecting the most similar blocks to the input; and

5 Locality-sensitive hashingwhich is made up of algorithms that
map objects into buckets, grouping similar objects in the same
bucket with high probability.

However, these categories only consider specific aspects of the
algorithms, instead of a complete view on the full behavior of the
algorithms. This produces a misunderstanding in how an algorithm
works, which eventually can lead to wrong decisions when
selecting an SDA for a specific purpose (e.g., comparing algorithms
with totally different behavior, or even not comparing them with
other similar algorithms). Therefore, we propose a new and simpler
classification based on the complete behavior as follows:

1 Feature Sequence Hashing: this category encompasses the al-
gorithms that split the input into features and maps them,
measuring the similarity by feature sequences.

2 Byte Sequence Existence: this category comprises the algo-
rithms that identify the existence (or similarity) of byte se-
quences (called blocks) in the input. The similarity score is
calculated by comparing the number of commonblocks between
similarity digests.

3 Locality-Sensitive Hashing: finally, this category is as in the
previous classification. It is made up of algorithms that map
objects into buckets, grouping similar objects in the same
bucket with high probability.

Table 1 shows the algorithms that we consider in this paper,
presenting their previous and new classification according to our
proposal. For every algorithm we also detail their references.

4. Attacks against Similarity Digest Algorithms

In this section, we study some possible attacks against SDA and
the characteristics of the algorithms facilitating these attacks. We
do not claim that this section is complete and other attacks may
exist. We distinguished between two types of attacks:

! Attacks against the similarity score, which can be separated in
the sections Reduction of Similarity and Emulation of Similarity.

! Attacks against impeding the last phases of an SDA, which can
be divided into the sections Impeding the Digest Generation
Phase and Impeding the Digest Comparison Phase.

Adversary model. We assume an intelligent adversary who is
knowledgeable about the processes and techniques used by SDA.
Thus, the adversary is able to classify the SDA according to our
classification scheme, either by reverse engineering it, by per-
forming code source analysis, or by revising the literature/docu-
mentation of the algorithm.

For the sake of simplicity, our attack scenarios assume an SDA
with an interval score where the low value (0) indicates no simi-
larity and the high value (100) indicates perfect similarity.

4.1. Reduction of Similarity

Our first attack aims to minimize the similarity score between
two inputs. Consequently, the adversary is interested in crafting a

Table 4
Classification of similarity digest algorithms according to our proposed classification scheme (digest generation, feature deduplication, and digest comparison phases).

Algorithm
Digest generation Feature Deduplication Digest comparison

Digest Size Storing Structure Order Requirements Type Occurrence Requirements Output
Score

Score Trend Space
Sensitivity

dcfldd Input dependent Processed feature
concatenation

Absolute None None (n/a) None Interval Ascending Total

Nilsimsa Fixed Counter Processed
feature-aware

None Consecutive Comparison Minimum commonality Interval Ascending None

ssdeep Input dependent
with max

Processed feature
concatenation

Absolute Minimum
features

Consecutive Comparison Minimum commonality,
Similar input size

Interval Ascending Total

md5bloom Input dependent Set concatenation Set-absolute None In-Scope Generation None Interval Ascending Partial
MRS hash Input dependent Set concatenation Set-absolute None In-Scope Generation None Interval Ascending Partial
SimHash Fixed Counter None None None (n/a) Similar input size Half-

bounded
Descending None

sdhash Input dependent Set concatenation Set-absolute Diversity In-Scope Generation Minimum amount Interval Ascending Partial
MRSH-V2 Input dependent Set concatenation Set-absolute None In-Scope Generation Minimum amount Interval Ascending Partial
mvHash-B Input dependent Set concatenation Set-absolute Diversity In-Scope Generation Similar input size Interval Ascending Partial

TLSH Fixed Counter Processed
feature-aware

None None (n/a) None Half-
bounded

Descending None

saHash Fixed Counter Processed
feature-aware

None None (n/a) None Binary
value

(n/a) Total

LZJD Fixed Set None None None (n/a) None Interval Ascending None
FbHash Fixed Counter Processed

feature-aware
Document
frequency

None (n/a) None Interval Ascending None

M. Martín-P!erez, R.J. Rodríguez and F. Breitinger Forensic Science International: Digital Investigation 36 (2021) 301120

6



new digital artifact from a given artifact knowing that they will be
eventually be compared (e.g., blacklisting). In summary, if an SDA
utilizes the following dimension/procedure characteristics,
exploiting it in this way is possible:

! Feature length: static; support function: none.
! Mapping function: hash function.
! Storing structure: set concatenation.
! Requirements (digest comparison): minimum commonality.
! Selection function: block matching or minimum value.
! Selection function: block similarity; Intersection: yes.

Each of the listed points is explained in the upcoming para-
graphs. You may interpret the above listing as follows (we illustrate
it with the first bullet point): ‘‘if an SDA utilizes a static feature length
and does not make use of a support function, exploiting it is possible.’’

One of the most trivial attacks for SDA consists in splitting an
input into features of a static size (not using any support function),
adding one byte at the beginning of the input will modify all sub-
sequent features (all offsets shift). This kind of attack, for example,
was described in (Baier and Breitinger, 2011) against dcfldd.

If the mapping function of the SDA is a hash function, a
straightforward attack requires changing 1-bit in each (or at least
the majority) of the features. Remember that hash functions have
an avalanche effect, meaning that despite how similar two inputs
are, their outputs will differ by roughly 50% of the bits. This prop-
erty of hash functions, which is the reason why they are commonly
used for data integrity and file identification of a seized device in
digital forensics (Harichandran et al., 2016), becomes a challenging
aspect for similarity digest algorithms. Likewise, Oliver et al. (2014)
demonstrated that random changes on the input can reduce the
similarity score. In particular, they evaluated these attacks against
ssdeep, sdhash, and TLSH.

It may be possible to optimize the previously mentioned exploit
as demonstrated by (Baier and Breitinger, 2011) on ssdeep. The
authors showed that ssdeep requires a minimum commonality
(digest comparison requirement) of no less than 7 consecutive
common features. If an adversary knows which features are going
to be extracted from a digital artifact, s/he is required to modify 1
out of 7 features for dropping the similarity score to zero. Recall, the
trigger function of ssdeep generates up to 64 features, and thus
modifying at most P64 =7R ¼ 9 bytes is sufficient.

The SDA using set concatenation are currently relying on the
Bloom filter storing structure. While this is a space-efficient proba-
bilistic data structure, it has one issue often denoted as shifting
meaning that half of the features of one filter are displaced to the
next filter. For instance, imagine two BF, BF1 and BF2, each containing
10 features. If an adversary adds 5 features to BF1 (e.g., add pre-
pending data to the artifact), their overlap (similarity) drops signif-
icantly. The real world impactwas discussed by (Breitinger and Baier,
2012a) who showed that this attack drops the similarity of approx-
imately 28.

The SDA that select features based on block matching or mini-
mum values can be defeated searching these particular set of blocks
or features and modifying them accordingly. For instance, SimHash
counts the amount of 16 blocks of 1 byte (Sadowski and Levin, 2007).
If an adversary seeks these blocks and modifies them in the crafted
input, the similarity score reduces. Similarly, LZJD stores the 1000
lowest hashes of the features (Raff and Nicholas, 2017). An adversary
who detects the input characteristics used to form these features can
modify them to reduce the similarity between objects.

Lastly, SDA based on block similarity (selection function) and
features overlap (intersection dimension yes) is susceptible to this
kind of attack as well. An intelligent adversary can forge the input
to obtain a block that is similar to another block. For example,

mvHash-B uses two fixed blocks to calculate the block similarity,
while it counts the consecutive equal features to generate the
digest. An adversary can attack this algorithm just changing the
amount of consecutive features (incrementing or decrementing it
by one). As a consequence, this will cause that the subsequent
derived features change (Singh et al. (2016)).

4.2. Emulation of Similarity

The counter attack to the previous section is emulation of simi-
larity, where an adversary is interested in crafting a new digital
artifact that yields a high similarity score to a known artifact (e.g.,
allow list). In summary, if an SDA utilizes the following dimension/
procedures characteristics, exploiting it is possible:

! Cardinality: fixed; Support function: trigger function.
! Coverage: partial.

If the SDA has a fixed cardinality combined with a trigger
function as a mapping function, an adversary can craft an input that
generates several small features with the beginning of the input
filling up the similarity digest. For instance (Baier and Breitinger,
2011), showed that it is possible to include trigger sequences (i.e.,
features) in the EXIF image data. Consequently, the authors were
able to manipulate an image to match any given similarity digest.

Another issue with SDA using partial coverage is that an ad-
versary may be able to modify the gaps being cautious that these
modifications do not alter the feature generation and selection
phase. For instance, according to Breitinger et al. (2012), up to 20%
of the content of an input can be modified without influencing the
generated digest of sdhash. This claim was later demonstrated by
Chang et al. (2015). Likewise, SimHash is also vulnerable to this
attack: an adversary can modify any byte of the input if these
modified bytes not match with any fixed block. Similarly, in LZJD
any data can be altered after the last selected feature, as long as it
does not generate a processed feature with a value lower than the
maximum of the selected processed features.

4.3. Impeding the Digest Generation Phase

Here the goal of the adversary is to complicate the digest gen-
eration phase, i.e., to modify an input in a way that the algorithm is
unable to generate a similarity digest due to the lack of necessary
conditions. In summary, if an SDA utilizes the following dimension/
procedures characteristics, exploiting it is possible:

! Support function: trigger function; Requirements (digest genera-
tion): minimum features.

! Requirements (digest generation): diversity.

The SDA using a trigger function as a support function to
generate features and needing to reach a minimum amount of
features as requirements to yield a similarity digest are vulnerable
to this kind of attack. This is possible because the trigger function
can be manipulated by means of a forged input to yield insufficient
features for generating the digest. For example, ssdeep can be
attacked with an input that intentionally avoids byte sequences
that match with the value of the trigger function. As a consequence,
only few features are generated and ssdeep cannot create a digest.
Note, algorithms may implement countermeasures like adjusting
the support function appropriately.

Other algorithms need input diversity to generate a digest. This
requirement can also be exploited by an intelligent adversary. For
instance, sdhash discards all the features and does not generate a
digest if the entropy of input features is too low. Likewise,

M. Martín-P!erez, R.J. Rodríguez and F. Breitinger Forensic Science International: Digital Investigation 36 (2021) 301120

7



mvHash-B compares the features with two blocks and keeps the
identifier of the most similar block. The generation of digest is
based on how many consecutive identifiers of a given type are
found. Hence, if all features are similar to a unique block, there is
only one sequence of identifiers which is then insufficient to
generate the digest. This attack may require many changes and
therefore may be impractical for real world scenarios.

4.4. Impeding the Digest Comparison Phase

Lastly, we contemplate an adversary aiming to hamper the
digest comparison process. To achieve this, an adversary crafts an
input so that the similarity digest generated cannot be compared or,
if comparable, the similarity score is low. In summary, if an SDA
utilizes the following dimension/procedures characteristics,
exploiting it is possible:

! Type: consecutive; Requirements (digest comparison): minimum
commonality.

! Requirements (digest comparison): minimum amount.

Algorithms having a feature deduplication phase of the type
consecutive and also need a minimum commonality as a require-
ment to compare digests are vulnerable to this kind of attack. An
intelligent adversary may forge an input such that the digest,
computed after deduplication, is smaller than the number of
common elements expected and therefore, the digest is incompa-
rable. For instance, ssdeep is vulnerable to this attack.

Likewise, if SDA require a minimum number of elements to
compare digests, an adversary can forge an input such that the
algorithm yields a similarity digest with less elements than
required for comparison. For instance, sdhash needs 16 features
per Bloom Filter to compare two filters (Roussev and Quates, 2013).
However, as its selection function (feature selection phase) is based
on entropy, an adversary may manipulate an input to have low
entropy so that the features are discarded. If the input yields a
similarity digest with only one filter and less than 16 features, the
comparison is impossible. Similar attacks are possible against MRS
hash and MRSH-V2: an adversary can forge an input such that the
matching of the trigger function is avoided, generating so few
features that the sets unmeet the comparison requirements.

5. Building a Robust Similarity Digest Algorithm

The following outlines the characteristics that we consider
desirable to build a robust SDAwhere robust is definedwith respect
to resilience against attacks. Note, we are not focusing on perfect
error rates nor does this section consider runtime efficiency.

The feature length should be small, static, and with intersections
(overlapping (intersection yes) allows detecting the swapping of
features). The algorithms that use a dynamic feature size need a
support function that splits the input in some way. This function is
however susceptible to be attacked, and thus it should be avoided
(this may be negligible if it generates an exhaustive amount of
features).

Regarding the feature processing phase, the use of a hash as a
mapping function implies that a small change in a feature (e.g.,
modifying just one bit) causes a totally different processed feature.
Hence, one may preferably use a mapping function that generates
similar outputs for similar inputs (maybe some sort of recursive
SDA). Bit reduction is acceptable if the output provided by the
mapping function output is large. In any event, the final amount of
used bits should be somewhat resistant to collision attacks and
should preserve the similarity relationship between outputs.
Regarding the feature selection phase, a full coverage is desirable to

impeder that uncovered gaps could be used to hide data and still
obtain good similarity scores.

The desirable characteristics for the digest are to have an input
dependent size, absolute order, and without any requirements. The
requirements in the digest generation phase impose conditions on
which an attacker can focus to hamper the digest generation pro-
cess. Likewise, a deduplication process is undesirable because it
deletes information.

Note, the desired digest size is hard to answer. As stated by
Breitinger et al. (2014a), a fixed size digest is preferable. However,
our study of SDA revealed that is difficult to design a robust algo-
rithm with this characteristic. We have found three SDA that have
this characteristic, but they have some limitations. For instance, the
use of features with dynamic length and a fixed size digest has
problems when comparing inputs with very different size (for
example, ssdeep). Likewise, the selection of a limited cardinality of
features as a representation of the whole (as LZJD does) implies a
partial coverage, leaving gaps that could be exploited by an attacker
inserting arbitrary content. Last, counting features in a limited set
of counters (as TLSH or Nilsimsa do) provokes the loss of the
order between features, which allows for the input rearranging
without affecting to the similarity score. This issue is partially
solved by considering feature intersection (processed feature-
aware). The last limitation is the solution less vulnerable to at-
tacks, but still we believe that to keep the order between features
with an input-dependent digest is more valuable than having a
better performance for using a fixed size digest.

Regarding the digest comparison phase, to have comparison
requirements facilitate an attacker to obstruct the comparison
process, as happened before. Last, a comparison functionwith total
space sensitivity is also desirable as it allows to identify modifica-
tions in the order of features.

6. Conclusions

Over the past decade, many approximate matching a.k.a. simi-
larity digest algorithms have been released to the digital forensics
community. However, there is a lack of a clear classification scheme
which makes it difficult to compare them. Therefore, this article first
discussed the relation between approximate matching algorithms
and similarity digest algorithms where the latter case requires an
intermediate representation (e.g., a fingerprint, a similarity digest)
that can be compared. Focusing on SDA, this article then introduced a
classification scheme that facilitates the description and comparison
of these algorithms which can be helpful for newcomers, practi-
tioners and experts to discuss approaches.

In order to develop the classification, we identified and describe
the main six phases of SDA where five fall under ‘‘artifact pro-
cessing and digest generation phase’’ and the last one is required to
compare digests. Each phase consists of various dimensions &
procedures which themselves are based on characteristics. For
instance, the feature generation phase has among other the di-
mensions/procedures length, support function or intersectionwhich
can have the characteristics static or dynamic (length) or trigger
function or unique (support function). Next, we enumerated several
promising approaches that have been proposed during recent
years. In addition, this work presented a set of attacks against SDA
with respect to the classification scheme. We also highlight the
desired properties that an SDA shall have to be robust against these
attacks.

As future work, we aim to develop proofs of concepts of the
attacks discussed in this paper. We also aim to design and imple-
ment a robust SDA considering the issues discussed previously in
this article.

M. Martín-P!erez, R.J. Rodríguez and F. Breitinger Forensic Science International: Digital Investigation 36 (2021) 301120

8



Acknowledgments

The research by Miguel Martín-P!erez and Ricardo J. Rodríguez
was supported in part by the Spanish Ministry of Science, Innova-
tion and Universities under grant MEDRESE RTI2018-098543-B-I00
and by the University, Industry and Innovation Department of the
Aragonese Government under Programa de Proyectos Estrat!egicos de
Grupos de Investigaci!on (DisCo research group, ref. T21-20R). The
research byMiguel Martín-P!erezwas also supported by the Spanish
National Cybersecurity Institute (INCIBE) ‘‘Ayudas para la exce-
lencia de los equipos de investigaci!on avanzada en ciberseguridad’’,
grant numbers INCIBEC-2015-02486 and INCIBEI-2015-27300.

References

Baier, H., Breitinger, F., 2011. Security aspects of piecewise hashing in computer
forensics. In: Proceedings of the 2011 Sixth International Conference on IT Se-
curity Incident Management and IT Forensics. IEEE Computer Society, USA,
pp. 21e36. https://doi.org/10.1109/IMF.2011.16.

Breitinger, F., Astebøl, K.P., Baier, H., Busch, C., 2013. mvHash-B - a new approach for
similarity preserving hashing. In: 2013 Seventh International Conference on IT
Security Incident Management and IT Forensics, pp. 33e44.

Breitinger, F., Baier, H., 2012a. Properties of a similarity preserving hash function
and their realization in sdhash. In: 2012 Information Security for South Africa.
IEEE, pp. 1e8.

Breitinger, F., Baier, H., 2012b. Similarity preserving hashing: eligible properties and
a new algorithm MRSH-v2. In: Rogers, M., Seigfried-Spellar, K.C. (Eds.), Digital
Forensics and Cyber Crime. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 167e182.

Breitinger, F., Baier, H., Beckingham, J., 2012. Security and implementation analysis
of the similarity digest sdhash. In: First International Baltic Conference on
Network Security & Forensics. NeSeFo, pp. 1e16.

Breitinger, F., Guttman, B., McCarrin, M., Roussev, V., White, D., 2014a. Approximate
Matching: Definition and Terminology. Techreport NIST Special Publication
800-168. National Institute of Standards and Technology. https://doi.org/
10.6028/NIST.SP.800-168.

Breitinger, F., Ziroff, G., Lange, S., Baier, H., 2014b. Similarity hashing based on
Levenshtein distances. In: Peterson, G., Shenoi, S. (Eds.), Advances in Digital
Forensics X. IFIP Advances in Information and Communication Technology, vol.
433. Springer, Berlin, Heidelberg, pp. 133e147. https://doi.org/10.1007/978-3-
662-44952-3_10.

Chang, D., Ghosh, M., Sanadhya, S.K., Singh, M., White, D.R., 2019. FbHash: a new
similarity hashing scheme for digital forensics. Digit. Invest. 29, S113eS123.
https://doi.org/10.1016/j.diin.2019.04.006. http://www.sciencedirect.com/
science/article/pii/S1742287619301550.

Chang, D., Kr Sanadhya, S., Singh, M., Verma, R., 2015. A collision attack on sdhash
similarity hashing. In: Proceedings of the 10th International Conference on
Systematic Approaches to Digital Forensic Engineering, pp. 36e46.

Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P., 2004. An open digest-
based technique for spam detection*. In: Proceedings of the 2004 International
Workshop on Security in Parallel and Distributed Systems, pp. 559e564.

Fowler, G., Noll, L.C., Vo, K.P., Eastlake, D., Hansen, T., 2011. The FNV Non-
cryptographic Hash Algorithm. Ietf-draft.

Gayoso Martínez, V., Hern!andez !Alvarez, F., Hern!andez Encinas, L., 2014. State of the
art in similarity preserving hashing functions. In: Proceedings of the 2014 In-
ternational Conference on Security and Management. SAM’14, pp. 139e145.

Harbour, N., 2002. Dcfldd version 1.0. http://dcfldd.sourceforge.net/. (Accessed 3
October 2020).

Harichandran, V.S., Breitinger, F., Baggili, I., 2016. Bytewise approximate matching:
the good, the bad, and the unknown. J. Dig. Forens., Secur. Law 11.

Kornblum, J., 2006. Identifying almost identical files using context triggered
piecewise hashing. Digit. Invest. 3, 91e97. https://doi.org/10.1016/
j.diin.2006.06.015 the Proceedings of the 6th Annual Digital Forensic Research
Workshop (DFRWS ’06.

Lee, A., Atkison, T., 2017. A comparison of fuzzy hashes: evaluation, guidelines, and
future suggestions. In: Proceedings of the SouthEast Conference. Association for
Computing Machinery, New York, NY, USA, pp. 18e25. https://doi.org/10.1145/
3077286.3077289.

Moia, V.H.G., Henriques, M.A.A., 2017. Similarity digest search: a survey and
comparative analysis of strategies to perform known file filtering using
approximate matching. Secur. Commun. Network. 2017, 1e17. https://doi.org/
10.1155/2017/1306802.

Oliver, J., Cheng, C., Chen, Y., 2013. TLSH e a locality sensitive hash. In: 2013 Fourth
Cybercrime and Trustworthy Computing Workshop. IEEE, pp. 7e13.

Oliver, J., Forman, S., Cheng, C., 2014. Using randomization to attack similarity di-
gests. In: Batten, L., Li, G., Niu, W., Warren, M. (Eds.), Applications and Tech-
niques in Information Security. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 199e210.

Raff, E., Nicholas, C., 2017. An alternative to NCD for large sequences, lempel-Ziv
Jaccard distance. In: Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. Association for Computing
Machinery, New York, NY, USA, pp. 1007e1015. https://doi.org/10.1145/
3097983.3098111, 10.1145/3097983.3098111.

Roussev, V., 2010. Data fingerprinting with similarity digests. In: Chow, K.P.,
Shenoi, S. (Eds.), Advances in Digital Forensics VI. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 207e226.

Roussev, V., 2011. An evaluation of forensic similarity hashes. Digit. Invest. 8,
S34eS41. https://doi.org/10.1016/j.diin.2011.05.005 (the Proceedings of the
Eleventh Annual DFRWS Conference).

Roussev, V., 2012. Managing terabyte-scale investigations with similarity digests.
In: Peterson, G., Shenoi, S. (Eds.), Advances in Digital Forensics VIII. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 19e34.

Roussev, V., Chen, Y., Bourg, T., Richard, G.G., 2006. md5bloom: forensic filesystem
hashing revisited. Digit. Invest. 3, 82e90. https://doi.org/10.1016/
j.diin.2006.06.012 the Proceedings of the 6th Annual Digital Forensic Research
Workshop (DFRWS ’06).

Roussev, V., Quates, C., 2013. Sdhash 3.4. https://github.com/sdhash/sdhash/blob/
master/sdbf/sdbf_defines.h#L58. (Accessed 11 March 2020).

Roussev, V., Richard, G.G., Marziale, L., 2007. Multi-resolution similarity hashing.
Digit. Invest. 4, 105e113. https://doi.org/10.1016/j.diin.2007.06.011.

Sadowski, C., Levin, G., 2007. SimHash: Hash-Based Similarity Detection. Technical
Report. University of California, Santa Cruz.

Singh, M., Chang, D., Sanadhya, S.K., 2016. Security analysis of MVhash-B similarity
hashing. J. Dig. Forens., Secur. Law 11, 21e34. https://doi.org/10.15394/
jdfsl.2016.1376.

M. Martín-P!erez, R.J. Rodríguez and F. Breitinger Forensic Science International: Digital Investigation 36 (2021) 301120

9

https://doi.org/10.1109/IMF.2011.16
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref2
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref2
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref2
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref2
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref2
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref3
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref3
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref3
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref3
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref4
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref4
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref4
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref4
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref4
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref5
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref5
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref5
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref5
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref5
https://doi.org/10.6028/NIST.SP.800-168
https://doi.org/10.6028/NIST.SP.800-168
https://doi.org/10.1007/978-3-662-44952-3_10
https://doi.org/10.1007/978-3-662-44952-3_10
https://doi.org/10.1016/j.diin.2019.04.006
http://www.sciencedirect.com/science/article/pii/S1742287619301550
http://www.sciencedirect.com/science/article/pii/S1742287619301550
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref9
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref9
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref9
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref9
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref10
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref10
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref10
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref10
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref10
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref11
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref11
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref12
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref12
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref12
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref12
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref12
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref12
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref12
http://dcfldd.sourceforge.net/
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref14
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref14
https://doi.org/10.1016/j.diin.2006.06.015
https://doi.org/10.1016/j.diin.2006.06.015
https://doi.org/10.1145/3077286.3077289
https://doi.org/10.1145/3077286.3077289
https://doi.org/10.1155/2017/1306802
https://doi.org/10.1155/2017/1306802
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref18
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref18
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref18
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref18
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref19
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref19
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref19
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref19
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref19
https://doi.org/10.1145/3097983.3098111
https://doi.org/10.1145/3097983.3098111
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref21
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref21
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref21
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref21
https://doi.org/10.1016/j.diin.2011.05.005
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref23
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref23
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref23
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref23
https://doi.org/10.1016/j.diin.2006.06.012
https://doi.org/10.1016/j.diin.2006.06.012
https://github.com/sdhash/sdhash/blob/master/sdbf/sdbf_defines.h#L58
https://github.com/sdhash/sdhash/blob/master/sdbf/sdbf_defines.h#L58
https://doi.org/10.1016/j.diin.2007.06.011
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref27
http://refhub.elsevier.com/S2666-2817(21)00017-2/sref27
https://doi.org/10.15394/jdfsl.2016.1376
https://doi.org/10.15394/jdfsl.2016.1376

	Bringing order to approximate matching: Classification and attacks on similarity digest algorithms
	1. Introduction
	2. Terminology and Background
	3. Towards a Classification Scheme for Similarity Digest Algorithms
	3.1. Methodology
	3.2. Phases of a Similarity Digest Algorithm
	3.3. Proposed Classification Scheme
	3.3.1. Feature Generation Phase
	3.3.2. Feature Processing Phase
	3.3.3. Feature Selection Phase
	3.3.4. Digest Generation Phase
	3.3.5. Features Deduplication Phase
	3.3.6. Digest Comparison Phase
	3.3.7. Examples: ssdeep and sdhash

	3.4. Classification of state-of-the-art SDA

	4. Attacks against Similarity Digest Algorithms
	4.1. Reduction of Similarity
	4.2. Emulation of Similarity
	4.3. Impeding the Digest Generation Phase
	4.4. Impeding the Digest Comparison Phase

	5. Building a Robust Similarity Digest Algorithm
	6. Conclusions
	Acknowledgments
	References


