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ABSTRACT

We study the problem of digital forensic event reconstruction, i.e., the question of whether a certain
event has happened in the past of an execution by a given digital system. Instead of devising new
search algorithms to solve the problem directly, we de�ne two novel concepts in standard linear-
time temporal logic and use these concepts to solve event reconstruction using established tools for
model checking. The �rst concept is that of su�cient evidence, i.e., a characterization of states whose
observation is su�cient to prove that a certain event happened in the past. The second concept is that of
necessary evidence, i.e., a characterization of states whose negation can be used to refute the claim that
a certain event happened in the past. Using the model checker NuSMV, we built a prototype that can
calculate these two sets for a given digital system in order to solve the forensic event reconstruction
problem. We relate these concepts to previous work in formal event reconstruction and apply it to
Gladyshev's �ACMEManufacturing� benchmark example to illustrate the usefulness of our approach
and the improved notion of digital evidence.

1. Introduction

"What happened and who did it?"�questions regarding

the course of the deed and the perpetration are central to any

forensic investigation. In the investigation of digital systems,

the question in fact becomes more well-posed and speci�c

because all the activities of a digital system are completely

de�ned by the program, the machine model, and the user

input. So at least in theory, event reconstruction should be

possible, and it is natural to resort to formal methods as

known from software and hardware veri�cation to solve the

arising reconstruction problems in a mathematically well-

founded way.

1.1. Related Work
Gladyshev and Patel (2004) formulate the event recon-

struction problem as follows: Using expert knowledge of a

digital system, determine all possible sequences of events

that have previously happened within the system from its

�nal state and available clues of the system's behavior in the

past. Digital systems are represented as �nite state machines

(FSMs), and evidence is formalized in the shape of eviden-

tial statements, which are de�ned as series of (assumed) ob-

servations. Actual event reconstruction is accomplished via

backtracing, i.e., computing all possible computations lead-

ing to the state in question. The main challenge arising from

this concept is the extremely large number of computations

to consider even for fairly small systems. (Indeed, the num-

ber of even just the loop-free computations is exponential in

the number of states, which in turn is already exponential in
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the number of variables, a phenomenon known as the state

explosion problem).

To avoid the need to enumerate all computations of a

system, it is natural to resort to temporal logics for the

speci�cation of investigative goals, and use model checking

for their veri�cation. This removes roughly one exponential

layer from the theoretical complexity (leaving `only' the

state explosion problem). In an early approach of this kind,

Rekhis and Boudriga (2005) introduce a dedicated extension

S-TLA of the Temporal Logic of Actions TLA (Lamport,

1994), and discuss possible applications to reason inves-

tigative scenarios. Soltani and Hosseini-Seno (2019) for-

malize event reconstruction in a modal �-calculus, with

model checking performed within the mCRL2 tool set; they

propose to address the state explosion problem by exploiting

structural symmetries. The approach, compared to ours in

more detail in Section 7, is demonstrated on a simpli�ed

model of the FAT �le system.

Building upon the speci�c formalization of Gladyshev

and Patel (2004), James et al. (2009) propose to transform

the FSM model into a deterministic �nite automaton (DFA)

that encodes the set of system computations as a formal

language, i.e., a set of strings. In order to answer an investiga-

tive question, they convert witness statements into regular

expressions and eventually into further DFAs, and use them

to spot con�icting statements. Technically, this approach is

based on taking products of DFAs to check consistency.

Like model-checking-based approaches, it avoids the doubly

exponential complexity of the original backtracing approach

and actually is quite related to the use of LTLmodel checking

as pursued in the present paper, as LTL model checking is

also based on translating formulae into a suitable form of

automata. An advantage of the use of LTL as advocated in

our work is the more compact and readable mode of expres-

sion it o�ers in comparison to writing automata directly,

and indeed the translation from LTL into automata incurs
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exponential blowup (Huth and Ryan, 2004). Also, the use of

modern symbolic model checkers to some degree alleviates

the exponential dependence of the state space on the number

of variables, which, contrastingly, remains in full force in a

direct automata-theoretic approach.

To avoid the state explosion problem, Dewald (2015) for-

mulated the speci�c reconstruction problem (SRP), which

is geared toward the question of whether a speci�c event

or action has occurred. To solve the SRP, Dewald de�ned

the concept of characteristic evidence (CE). Intuitively, CE

of an action in regard to a set of other actions are those

traits that are left by this particular action and none of the

others. Therefore, the discovery of CE is su�cient to prove

that an action has occurred, but the absence of CE proves

nothing. To do so, he used simple set calculations that are

computationally feasible. However, this comes at the price

of losing precision in that there are wide-spread examples of

su�cient evidence that cannot be detected using CE.

1.2. Contribution
In the present paper, we employ the established for-

malism of linear-time temporal logic (LTL) to develop a

new approach to forensic event reconstruction for systems

modelled as �nite-state transition systems. The approach

distinguishes between two di�erent classes of evidence of

speci�c actions: su�cient evidence and necessary evidence.

Intuitively, su�cient evidence of an action � is a state

predicate whose observation guarantees that � has actually

happened before reaching the current state. Conversely, nec-

essary evidence of an action � is a state predicate that is

always and persistently observed after occurrence of �, so

that its negation can be used to refute the claim that � has

happened. By de�ning these classes, we provide general

notions of forensic reconstructability that do not seem to be

explicit in previous work.

Besides o�ering general insight, our approach also has

other (more practical) advantages: After calculating the

above evidence sets, the actual checking of whether an event

has occurred or not basically boils down to checking a

state predicate on the �nal state q, which is computationally

easy. In a sense, our approach therefore factors out the

computational complexity of the analysis problem into the

calculation of these evidence sets for speci�c actions.

Since we formalize the descriptions of necessary and

su�cient evidence in LTL, we open the solution space

enabling the use of highly optimized tools to calculate these

evidence sets and thus pro�t from decades of research in this

area (mostly within the formal veri�cation community). We

demonstrate this by utilizing the symbolic model checker

NuSMV to calculate these evidence sets for Gladyshev's

�ACME Manufacturing� benchmark example using a pro-

totypical implementation that we provide as open-source

software.1

1https://github.com/jgru/evidential-calculator.

1.3. Outline
The rest of the paper is structured as follows: To be-

gin with, we provide background on the formal concepts

involved (Section 2). Next, we revisit Dewald's speci�c

reconstruction problem (SRP) and illustrate its limitations

in Section 3. We then describe our approach to reasoning

about evidence using linear-time temporal logic in Section 4.

In Section 5, we describe our implementation. Afterward,

we apply our method to a case study that has been the

subject of previous publications in the �eld of forensic event

reconstruction and illustrate the bene�ts of our approach in

Section 6 before we provide further discussion in Section 7

and conclude in Section 8.

2. Background

We give a brief introduction to LTL, model checking,

and Dijkstra's notation of guarded commands, which we use

to describe programs.

2.1. Linear-time Temporal Logic
Temporal logic is a formalism to describe and reason

about systems in terms of time. In LTL (Pnueli, 1977),

the nature of time is considered to be linear, i.e., the basic

concept is to model time as a sequence of states, so-called

computation paths, that describe the evolution of a system

over (discrete) time (for more information we recommend

the textbook by Huth and Ryan (2004)). We brie�y recall

the syntax and semantics of LTL.

The logic is parametrized over a choice of a set Atoms

of atomic facts of relevance for the underlying system and

the task at hand. In a forensic context, such atoms might

be, for example, 'mtime of /etc/shadow has been changed',

'socket descriptor 0xEF has been closed', or on some other

apt abstraction level even propositions such as 'the email

has been sent'. Formulae of the logic are evaluated over

a transition system that is a (simpli�ed) model M of the

underlying real-world system; we refer toM as a �nite-state

transition system, or brie�y as a model. Formally, M is a

triple M = .S;�; L/, where S is a set of states, � is a

binary relation on S indicating transitions between states,

and L is a labelling function L: S � P.Atoms/, which

assigns to each state s the set of atomic facts true at s. A

(computation) path ofM is then a sequence s1; s2; s3;§ of

states such that si � si+1 for all i g 1.

LTL provides a language in which to describe sets of

computation paths of M in a rather compact and intuitive

way using temporal operators. The simplest LTL formulae

are atomic facts p Ë Atoms. Such a formula is true for all

computation paths where p is true in the �rst state. Temporal

operators can be then used to describe the evolution of states

in a computation path. For example, a formula of the shape

p means that p must be true in the current and all future

states of a computation path.

Formally, the syntax of LTL (as we use it in this paper)

is given by the Backus Naur form

�;  ::= ò Ý p Ý �� Ý �á Ý � Ý � Ý �R 
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where, as indicated above, p ranges over Atoms. The se-

mantics of the logic is given by saying which paths � =

s1; s2; s3;§ satisfy which formulae (in which case we also

say that the formula holds for the path). Along �, we move

into the future by taking su�xes of �: For i g 1, we denote

by �i the su�x si; si+1; si+2;§ of � (in particular, �1 =

�). The interpretation of the propositional operators ò;�;á

is standard; for instance, no path satis�es ò, and a path

satis�es �� if it does not satisfy �. The semantics of the

main temporal operators is given as follows.

� � holds for a path � if � holds in the next state,

i.e., for �2.

� As mentioned above,� holds for � if � holds in the

present and all future states of �, i.e., for all su�xes �i.

� �R states that the property must be true until and

including the point in time when � becomes true, so

that � releases  . (If � never happens, then  is never

'released'.) Formally, �R holds for � if either  

holds for all su�xes �i, or there is i g 1 such that �

holds for �i, and for all j f i,  holds for �j .

Further propositional connectives â;� and ñ are de�ned

from �;á; ò in the usual way. Moreover, one can de�ne

further temporal operators eventually and until by duality

from the above operators; it happens that we will only

require, andR.

Finally, we have a notion of a formula � being true

in a state q0 (rather than a computation path) in a �nite-

state transition system: � holds at q0 if � holds for all

paths that start at q0. Note that at the level of states, saying

that �� holds at q0 is not equivalent to saying that � does

not hold at q0: The former means that no path starting at q0
satis�es �, while the latter means that not all paths starting

at q0 satisfy �.

2.2. Model Checking
The process of checking whether � holds at q0 is known

as model checking (Baier and Katoen, 2008)�a term also

applied more widely to checking satisfaction of formulae

in other logical formalisms. Model checking is a technique

that was originally developed in the domain of formal ver-

i�cation of hardware to determine whether a state machine

meets a given speci�cation. Nowadays, model checking is

applicable for software programs as well. Numerous model

checkers for various formalisms, like SPIN, TLA+/TLC,

and NuSMV, have been released as open-source software. In

our present approach, we use NuSMV (Cimatti et al., 2002)

to model-check LTL formulae over �nite-state transition

systems.

2.3. Guarded Commands
Guarded commands are a programming notation pro-

posed by Dijkstra (1975) to facilitate correctness arguments.

In essence, it is a compact notation to specify �nite-state

transition systems, and can thus also be used to reason about

Variables: ^a; b`

Initial state: ^a = 0; b = 0`

Actions:

a0: a = 0 � a := 1

b0: b = 0 � b := 1

Listing 1: Example program to illustrate the Guarded Com-
mands Language.

parallel programs (Chandy and Misra, 1989). We brie�y

introduce the notation using the program shown in Lst. 1.

The state space of the program is de�ned by an initial

set of variables that store values from a speci�c domain. For

simplicity, we use Boolean values 0 and 1 as the range of

all variables in this paper. The second line de�nes the initial

state of the program by assigning a speci�c value to each

variable.

The program is formulated as a set of actions which

each consist of a name, a guard and a command. The name

(e.g., a0) is merely used to refer to speci�c actions and

is separated from the guard with a colon. The guard is a

boolean state predicate (e.g., a = 0) and the command is an

assignment of values to variables (e.g., a := 1). Multiple

assignments within a command are executed in parallel.

Guard and command are separated by an arrow. An empty

guard stands for the predicate true.

The set of actions de�nes the state transition relation

of the program in the following way: If the guard of an

action evaluates to true in a given state, we say that the

action is enabled in that state. For a given state, the set of

all enabled actions de�nes the set of possible next states.

During an execution of the program, one enabled action is

nondeterminstically chosen and the command of that action

is executed resulting in the next state.

The program shown in Lst. 1 has two variables a and b

and two actions a0 and b0. In the initial state, both actions

are enabled resulting in a nondeterminstic choice of which

action is executed. In this example, each action disables itself

by falsifying its guard. So if either a0 or b0 is executed �rst,

the remaining other action is then executed. In the �nal state

where a = 1 and b = 1 holds, no action is enabled anymore,

If the range of the variables is bounded, every such

program e�ectively de�nes a �nite-state transition system,

with values of variables encoded by su�ciently many atoms.

To facilitate the discussion, we let this system include atoms

that record the action that has been taken in the previous step,

on the understanding that these atoms are not part of the real

system and hence cannot be used as evidence, which instead

can observe only the e�ect of the actions on the variables.

De facto, we thereby encode the actions, represented by

their edge labels, into the state where their respective e�ect

unfolds.
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Figure 1: Illustration of the speci�c reconstruction problem
(SRP) according to Dewald (2015).

3. The Speci�c Reconstruction Problem and

the Problems of Characterisic Evidence

�Forensic science is reasoning backwards from e�ect

to cause��in this way, Berger (2010) described the main

concern of the discipline in a concise form. Put di�erently,

an elementary task in any investigation is to reconstruct past

events related to the deed based on the available facets, i.e.,

the perceivable parts of traces produced by events (Jaquet-

Chi�elle and Casey, 2021), as precisely as possible.

3.1. The Speci�c Reconstruction Problem
Inspired by the ideas of Gladyshev and Patel (2004),

Dewald (2015) has formalized the problem of forensic event

reconstruction as the speci�c reconstruction problem (SRP):

Given an initial state q0 and an observed state q in a �nite-

state transition system, determine whether or not a speci�c

action � Ë � necessarily happened before reaching q, in the

sense that every computation path that starts in q0 and ends

in q must contain �.

The SRP is illustrated in Figure 1, which graphically

depicts a �nite-state transition system with states as circles

and state transitions as labelled edges between states, where

the labels indicate the actions that induce the transition

(recall from Section 2.3 that the actions are represented as

atoms in the formal model, which however do not feature

in the real system). Assuming that the system is acquired

in state q, an instance of the SRP would be to ask whether

action �0 or action �1 happened in the past. The answers

to these questions can be easily derived from looking at the

graph: While �0 de�nitely did not occur on the way to q, �1
de�nitely occurred because there is no path from q0 to q on

which �1 does not happen. The SRP regarding action �2 is

not so easy to answer since q can be reached with or without

executing that action. This observation shows that there are

always three possible answers regarding the SRP and some

action �: (1) yes, � de�nitely happened on the way to q, (2)

no, � did not happen on the way to q, and (3) � may or may

not have happened on the way to q.

3.2. Dewald's Characteristic Evidence
To solve the SRP, Dewald (2015) de�nes the concept of

characteristic evidence (CE). As mentioned above, CE of

an action � with respect to a set � of other actions are those

values of variables that are left only by � and by no other

action in �. The discovery of CE in q is su�cient to prove

that � has occurred. Formally,CE.�;�/ is the state predicate

de�ned by all assignments of � that are not performed by any

other action in �.

For example, in Lst. 1, CE of action a0 is the condition

a = 1 since no other action sets a to that value. Observing

a = 1 implies that a0 has happened. Similarly, CE of

action b0 is b = 1 and observing that value implies that b0

previously occured.

The concept of CE has the advantage of being easy

to calculate. Several case studies exist that perform event

reconstruction using this approach with �lesystem metadata

(Kälber et al., 2013, 2014) and entries from log �les (Latzo

and Freiling, 2019), which illustrate the principal applicabil-

ity of this method in practice.

3.3. Incompleteness of the Characteristic Evidence

Method
Dewald's approach draws its simplicity from ignoring

the states of the system that are visited during a given

execution. This is also the reason why CE is not a complete

characterization of whether or not an action has been exe-

cuted. Furthermore, the set ofCE becomes smaller the larger

the set � of other actions is, but a large set of compared

actions increases the precision of the concept. Overall, the

concept of CE does not identify all conditions that can be

used to conclude that a certain action must have happened

in the past, as we now illustrate using two examples.

Variables: ^a; b`

Initial state: ^a = 0; b = 0`

Actions:

a0: a = 0 � b := 1

a1: a = 1 � b := 1

Listing 2: Unreachable Action.

Consider the program in Lst. 2 where action a1 is never

executed because a is never set to 1 (a1 is unreachable). If

we compute CE for action a0 with respect to � = ^a1`, we

observe that a0 and a1 have the same e�ect and therefore can-

not be distinguished in this respect. The formal calculation

of CE for either action results in an empty set. However, if

b = 1 is observed, it is clear that only a0 could have been

executed since a1 is unreachable.

The second example is shown in Lst. 3 where actions b0

and b1 can only be executed if a = 1 is true, i.e., if action a1

has been executed before. The calculation of CE regarding

a1 compared to � = ^a0; b0; b1` observes only the immediate

e�ect of a1 and results in the condition a = 1.

But while in fact the observation of a = 1 can be used

to conclude that a1 has happened in the past, this is not the

only condition to allow this. Since action b1 is dependent on

action a1, the observation of b1 (b = 1) implies that both

b1 and a1 have been executed before, which again illustrates

that CE-sets are not complete.
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Variables: ^a; b`

Initial state: ^a = 0; b = 0`

Actions:

a0: � a := 0

a1: � a := 1

b0: a = 1 � b := 0

b1: a = 1 � b := 1

Listing 3: Action guarded by semaphore.

4. Necessary and Su�cient Evidence

We now present a formally complete and practically

more widely usable notion of �useful evidence� to solve

the SRP and formulate these using LTL formulae. Figure 2

shows a rough graphical visualization of what it means to

solve the SRP: Speci�cally, it su�ces to establish that the

target action must have occurred in the computation by

means of which the observed state q was reached from the

initial state q0; by use of well-developed formal veri�cation

techniques, the necessity of going through all possible com-

putation paths or even to enumerate the entire state space

explicitly may be avoided.

q
0

? q

Figure 2: Graphical visualization of the SRP; q
0
denotes the

initial state and q the observed state. Finding out whether
action � happened between q

0
and q does not necessarily

involve explicitly enumerating all computation paths or even
all states of the system.

To solve the SRP, we need a characterization of condi-

tions on q that allow concluding that some target action �

has previously happened. Such conditions are formalized as

state predicates E which represent evidence. If E is true in

some state q, we say that q contains or provides evidence E.

4.1. Su�cient Evidence
We now turn to the �rst type of evidence that is useful

for event reconstruction. Intuitively, su�cient evidence of an

action � is a state predicate (evidence) SE such that observ-

ing that predicate implies that � has previously happened.

This includes any state that is only reached after � has

happened, i.e., not only those states that are an immediate

e�ect of executing � itself, but also those states that result

from follow-up actions that are guarded by �. The only

restriction is that these states cannot be reached unless �

has happened. Since we are assuming that the poststate of

the system is observed statically, we may restrict su�cient

evidence formulae to be purely propositional, i.e., to consist

only of atoms and propositional operators (ò;�;á).

We formalize the property of su�cient evidence (SE) be-

ing su�cient evidence of � as follows, using theR operator

of LTL:

.�/R.�SE/ (1)

(1) holds for state predicates SE that are �released� by the

action �. The formula thus says that a state satisfying SE

can only be reached after � has been executed, which is

illustrated in Fig. 3. The next operator is needed because

of the technical encoding of actions as atoms in poststates as

mentioned in Section 2.3.

When enumerating su�cient evidence in this sense, one

may optimize the list of formulae obtained by pruning con-

ditions that are not actually satis�ed in any reachable states,

that is, one requires additionally that

.�SE/ (2)

does not hold in the model (cf. the discussion in Section 2.1).

We emphasize that one is interested in the weakest possible

formula that still constitutes su�cient evidence; e.g., if both

a = 1 and the disjunction a = 1 â b = 1 are SE for �, then

the latter formula is preferable as it allows establishing more

easily that � has happened.

Overall, the resulting intuition behind the concept of SE

can be summed up as follows:

�Whenever evidence SE is observable, con-

clude that the target action � must have been

executed.�

. . .
�

�E �E E E �E

Figure 3: Visualization of a property E that constitutes
su�cient evidence in the sense that SE := E satis�es (1).
Note that E need not actually occur immediately after �E is
released by � (which would be one step earlier than shown in
the above example) but may occur at some future point after �
is executed.

4.2. Necessary Evidence
As a counterpart to SE, we consider necessary evidence

(NE) to be evidence which must be inevitably present in all

subsequent states after the target action has been executed.

The property of a formula NE being necessary evidence

is formally expressed in (3), which states that except in

the initial state (excluded by the �next�-statement ), the
execution of the target action � implies presence of the

evidence NE in all future states:


�
.� � NE/

�
(3)

This property is illustrated in Fig. 4. The intuition behind the

concept of NE might be verbalized as follows:
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�Whenever the target action � has been exe-

cuted, evidence NE is observable in all subse-

quent states.�

Note that, in contrast to SE, from the presence of NE one

cannot draw conclusions on the execution of the target action

becauseNEmay already hold before � is executed. But since

NE must hold until the �nal state, one can establish that �

has not happened using NE: If NE is not observable in the

current state, then � has not happened (yet). In opposition

to the situation with su�cient evidence, we are interested in

the strongest possible formulae when looking for NE. For

instance, if both a = 1 and the conjunction a = 1áb = 1 are

NE for �, then the latter is preferable as it allows excluding

the possibility that � has happened more easily.

. . .
�

�E E E E E

Figure 4: Visualization of a property E that constitutes
necessary evidence in the sense that NE := E satis�es (3).
Note that E may hold before � is executed, but must hold in
every state after � is executed; that is, all occurrences of E
shown above except the �rst are mandated by (3).

Our notion of necessary evidence thus enhances and

extends Dewald's concept of characteristic counterevidence

(CXE), which describes facets (values of variables) that

exclude the execution of the target action: The negation of

any formula constitutingCXE is similar in spirit to necessary

evidence in our sense. LikeCE, CXE only considers changes

directly induced by the target action, so not all necessary

evidence can be obtained by negating characteristic coun-

terevidence, as seen on separating examples similar to the

ones shown above for su�cient evidence.

4.3. Action-induced Evidence
Given the de�nitions of SE and NE above, one can ask

how these relate to Dewald's notion of CE. We answer

this question by formalizing action-induced evidence (AE)

in LTL. The resulting concept relates to states that are

introduced by the target action itself and no other action.

Formally, a formula AE is action-induced evidence if the

following holds:

�AE

á.��AE/

á
�´

�¨Ë�ä^�`.�AE�.�¨��AE//
�

(the big conjunction symbol
´

expresses a �nite conjunction

over all actions �¨ other than �). This captures the spirit of

Dewald's de�nition: AE does not hold initially, is brought

about by �, and is not brought about by any other action �¨,

the latter in the sense that if AE does not hold before execu-

tion of �¨, then it does not hold afterwards either. However,

we di�er from Dewald's CE on actions that can never be

executed, a situation that is ignored in the calculation of CE,

which does not take guards into account. More concretely, in

our case, such an unexecutable action would have precisely

all unreachable evidence asAE, and hence include facets that

could never be witnessed. To avoid this unintuitive (although

correct) result, one could employ the same pruning as for SE

and check that .��/ does not hold in the initial state and

get an empty set of AE instead. One sees easily that action-

induced evidence is indeed su�cient evidence. On the other

hand, we have seen above the converse implication does not

hold, i.e., su�cient evidence need not be action-induced.

The relations among some of thementioned evidence classes

are graphically summarized in Fig. 5.

Su�cient

Action-induced

(Dewald's CE)

Necessary

Figure 5: Venn diagram of the classes of evidence, illustrating
their mutual relations. Most notably, the notion of su�cient
evidence is strictly broader than that of action-induced evi-
dence. Necessity of evidence is orthogonal to these classes.

4.4. Examples
To illustrate the above concepts, let us look at some

examples.2 The program in Lst. 1 is one of the simplest

cases. Here, variables a and b are �witness� variables for the

execution of a0 and b0, respectively: They have value 1 if

and only if that action was executed. So for both actions,

SE, NE and AE are essentially the same (up to unnecessary

strengthening or weakening, respectively), namely the con-

ditions that a = 1 (for a0) or b = 1 (for b0), respectively.

For Lst. 2, there is no characteristic, i.e., action-induced,

evidence in the sense of Dewald for a0, as the (unreachable)

action a1 has the same e�ect as action a0. On the other hand,

the condition b = 1 is both SE and NE for a0.

Considering Lst. 3, we observe that the condition a = 1

is AE for a1, but the weaker condition a = 1 â b = 1 is

SE for a1. Since both a and b can switch between 0 and 1

unboundedly often, there is no NE for any action.

A more complex example is shown in Lst. 4. The pro-

gram has four variables and four actions. Like in Lst. 1,

the actions have a speci�c variable which they exclusively

set to 1. The action-induced evidence (here corresponding

to Dewald's characteristic evidence) containing only the

2A presentation of the examples in literate programming style can
be found under https://github.com/jgru/evidential-calculator/tree/

master/examples
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Table 1

AE set of Lst. 4.

Action Condition

a0 a = 1

a1 b = 1

a2 c = 1

a3 d = 1

Table 2

SE set of Lst. 4.

Action Condition

a0 a = 1 â b = 1 â c = 1 â d = 1

a1 b = 1 â c = 1 â d = 1

a2 c = 1

a3 d = 1 â .b = 0 á c = 1/

Table 3

NE set of Lst. 4.

Action Condition

a0 a = 1 á .b = 1 â c = 0 â d = 1/

a1 a = 1 á .b = 1 â d = 1/

a2 a = 1 á c = 1 á .b = 1 â d = 1/

a3 a = 1 á .b = 1 â d = 1/ á .c = 1 â d = 1/

Variables: ^a; b; c; d`

Initial state: ^a = 0; b = 0; c = 0; d = 0`

Actions:

a0: � a := 1

a1: a = 1 � b := 1

a2: b = 1 � c := 1; d := 0

a3: b = 1 � d := 1; b := 0

Listing 4: Example program to illustrate the evidence set
calculation.

immediate e�ects of each action is easily calculated, with

results shown in Table 1.

Su�cient evidence contains both the immediate e�ects

of the action and the e�ects of subsequent actions that are

guarded by the respective target action. The resulting state

conditions are given in Table 2.

Values of variables are necessary evidence only if they

do not change after the respective action has been executed.

Since the variables b and d could change back to 0, the

values of these variables are only included in combination

with other variables. The resulting conditions are given in

Table 3.

5. Implementation

In order to transfer the theoretical concepts presented

above into practice, we have developed a prototype to

calculate evidence sets automatically. Fig. 6 provides an

overview of the components, inputs, and outputs of the

tool. The source code of our prototypical implementation

is publicly available under the GNU Lesser General Public

License v3.0.3

5.1. Dependencies of the Prototype
Our implementation uses the established model checker

NuSMV4 (Cimatti et al., 2002). In addition, we employ

the Python library PyNuSMV5 (Busard and Pecheur, 2013)

to control the model checker conveniently and provide the

speci�cations to check.

5.2. Calculation of Evidence Sets
Our tool takes a modelM describing the system under

investigation in NuSMV's speci�cation language and the

3https://github.com/jgru/evidential-calculator.
4https://nusmv.fbk.eu/, v2.6.0
5https://github.com/LouvainVerificationLab/pynusmv, v1.0rc8.

identi�er of the target action � as inputs. Using these inputs,

the program calculates and outputs the various evidence for-

mulae. The idea of the algorithm is to enumerate all possible

valuations of the variables, expressed as state predicates, and

use the model checker to verify in each case whether the

given state predicate is SE or NE, respectively, according

to the LTL formula schemes discussed above. We phrase

the algorithm as working with per-state values of variables

(encoded using atoms as mentioned above). We need the

notion of a partial valuation for a set V of variables with

assigned ranges of values. Such a partial valuation is a �nite

conjunction of formulae of the form a = v where a is a

variable in V and v is a value in the range of a, with every

variable mentioned at most once. In the general terminology

proposed by Jaquet-Chi�elle and Casey (2021) to describe

observable parts of a trace, a partial valuation can be con-

sidered a facet in this context. The negation �p of a partial

valuation p is formed by negating the formula representation

of p. So the conjunction becomes a disjunction and all the

equalities become inequalities. The set of all such partial

valuations over V will be referred to as PVal.V /. We require

that each variable is mentioned at most once in a partial

valuation; if a variable is not mentioned, its value is regarded

as immaterial.

1. Load the modelM into the model checker.

2. Retrieve the set V of variables from the model.

3. For each partial valuation p of the variables in V , do the

following:

(a) Form the LTL speci�cation � expressing that p

belongs to the evidence class of interest w.r.t. the

action � (details are discussed below), and

(b) Check that � holds in the model; if yes, accom-

modate p in the corresponding evidence set as

speci�ed below.

In Step 3a, we form concretized versions � of (1) and (3)

using p, in a manner that depends on whether we are looking

for su�cient or necessary evidence. Speci�cally, we write

q0 ô � if the initial state q0 of the model satis�es � (this is

checked in Step 3b). We denote the evidence sets computed

by the algorithm by SE.�;M/ and NE.�;M/ respectively.

These sets are formally de�ned as follows:

SE.�;M/ =
�
p Ý p Ë PVal.V /; q0 ô .�/R.�p/




NE.�;M/ =
�
�p Ý p Ë PVal.V /; q0 ô 

�
.� � .�p//

�


After their construction, these sets can be used to test hy-

potheses and solve the SRP. To this end, we read SE.�;M/
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Model M Action �

PyNuSMV-based

Controller

Evidence

Specs �

NuSMV

Su�cient Evidence

SE.�;M/ = ^:::`

Necessary Evidence

NE.�;M/ = ^:::`

Figure 6: Overview of our prototypical implementation. The
system is implemented in Python and builds on the PyNuSMV
library, which provides bindings to control the model checker
NuSMV. When a modelM is provided in the form of NuSMV's
input language, the evidence set for the specifed action �

i
will

be calculated based on the LTL formulae describing the classes
of evidence.

disjunctively, and NE.�;M/ conjunctively. Note that in the

latter case, the formulae contained in NE.�;M/ are negated

descriptions of valuations, so while SE.�;M/ is e�ectively

computed as a disjunctive normal form, NE.�;M/ consti-

tutes a conjunctive normal form.

We remark that the above algorithm is, of course, expo-

nential in the number of variables; that is, it makes exponen-

tially many calls to the model checker. This is due to the fact

that the algorithm computes the optimal evidence formula,

e.g., the weakest su�cient evidence. Indeed, the actual tool

implements an optimization according to which small partial

valations are tried �rst, and partial valuations extending ones

that are already included in the evidence set are disregarded;

this leads to more compact evidence formulae as apparent in

Tables 2 and 3. Alternatively, one may just call the model

checker with some target formula that is hypothesized to be

su�cient evidence (for instance, a complete description of a

speci�c observed state); in this approach, the computational

cost is just that incurred by themodel checker. Of course, due

to the well-known state explosion problem, model check-

ing is, in principle, already exponential in the number of

variables, but modern symbolic model checkers will often

perform more e�ciently in practice.

6. Case Study

To illustrate the helpfulness of our methods for actual

case work, we apply them to a case study that has been

repeatedly discussed in previous work in the �eld.

first entry = job from B (deleted)

second entry = job from B (deleted)

third entry = empty

fourth entry = empty

...

nth entry = empty

Listing 5: Evidence E
obs

extracted from the print job directory
of the printer in the ACME network.

6.1. The Investigation at ACMEManufacturing
Gladyshev and Patel (2004) present a �ctitious exam-

ple case concerning ACME Manufacturing, subsequently

picked up as a case study by James et al. (2009) as well as

Soltani and Hosseini-Seno (2019).

The underlying situation is described as follows: There is

a local area network at the ACME Manufacturing company

with two computers and a networked printer. Alice and Bob

operate the network and share the costs. Alice, however,

refuses to pay for maintenance of the printer and claims to

have never used it. Since Bob disagrees because he once saw

Alice collecting printouts, an investigation of the facts has to

be initiated to resolve the dispute.

�According to the manufacturer, the printer

works as follows:

1. When a print job is received from the user

it is stored in the �rst unallocated directory

entry of the print job directory.

2. The printing mechanism scans the print

job directory from the beginning and picks

the �rst active job.

3. After the job is printed, the corresponding

directory entry is marked as "deleted" , but

the name of the job owner is preserved.

The manufacturer also noted that

4. The printer can accept only one print job

from each user at a time.

5. Initially, all directory entries are empty.�

� Gladyshev and Patel (2004, p. 4)

A forensic examination of the print job directory uncovers

two processed jobs of Bob; the rest of the directory was

empty, as shown in Listing 5, illustrating the observed

evidence Eobs. However, this �nding does not provide a

straightforward answer to the investigative question of in-

terest. So, what should an analyst conclude based on this

�nding?

6.2. Employing Our Method
In view of the description of the inner workings of

the printer provided by the manufacturer, we can model

the system under investigation in NuSMV's speci�cation

language. To solve the case, we then deploy our newly
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Table 4

Set of su�cient evidence SE.add_job_a;M/. The set is read
disjunctively; therefore, observing one of its elements (which
are partial valuations of the variables) is su�cient to prove that
action add_job_a, which denotes the submission of a print job
to the networked printer by Alice, has happened in the past.
Note that if a variable is not mentioned, its value is regarded
as immaterial. Furthermore, partial valuations extending ones
that are already included in the evidence set are disregarded.

Variable = Value

�rst entry = job from A
â �rst entry = job from A (deleted)
â second entry = job from A
â second entry = job from B
â second entry = job from A (deleted)
â second entry = job from B (deleted)

developed tool that has already been presented in Section 5.

By providing the model and the action of interest�in this

case, add_job_a�we can calculate the evidence sets. The

resulting set of su�cient evidence for action add_job_a,

which encodes the submission of a print job to the networked

printer by Alice, is presented in Table 4. Referring to the

set SEa = SE.add_job_a;M/, we see that there is at least one

element s Ë SEa, e.g.,

.second entry = job from B .deleted// ;

that is also included in the set Eobs of observed evidence,

which is illustrated in Lst. 5. Therefore, an investigator must

draw the conclusion that Alice had printed at least once.

Of course, this fact may be validated by manual reason-

ing as well, as we are dealing with a simple case: As de�ned

in the speci�cation of the networked printer, a user can only

submit one job at a time, and the entries in print job directory

are used strictly in sequential order. Observing two deleted

jobs of Bob implies that Bob must have submitted a print job

once when there was another print job of Alice waiting to be

processed.6

Besides these �ndings, we want to note that the submis-

sion of print jobs exhibits no NE in this case study since

every entry in the print job directory could be potentially

overwritten by follow up print jobs.

6.3. Bene�ts of Our Approach
Given information on the inner workings of the net-

worked printer, we see that it is obvious that adding print

jobs is conditional in two regards: First, this operation is

guarded by the amount of possible print jobs per user (in

this case, one) and secondly, the e�ect of the action (which

entry in the print directory is populated) is state-dependent.

In such a scenario, the method of Dewald (2015) will not be

able to produce sensible results. The approach of Gladyshev

6For further reference and illustration purposes, we present the
implemented solution of the ACME Manufacturing scenario using
our tool in a literate programming style at https://github.com/jgru/

evidential-calculator/blob/master/examples/acme.org.

and Patel (2004) can solve the case, but needs far more

considerations and the introduction of speci�c and rather

involved concepts like evidential statements which combine

observations and a hypothesis. Moreover, their approach

needs to employ a custom backtracing algorithm instead of

relying on an o�-the-shelf model checker.

Soltani andHosseini-Seno (2019) solve theACMEMan-

ufacturing case study by employing a model checker as

well, in their case mCRL2, which works with an action-

based branching-time temporal logic, a �xpoint extension of

Hennessy-Milner logic. Their formula describing the printer

investigation is, for intrinsic reasons, rather longer than ours

(see Section 7 for additional comparison of the approaches).

Our approach directly translates the reconstruction prob-

lem to a computable property of the observable evidence, as

shown above. The concisely stated and intuitive understand-

ing of evidence speci�es how a situation of facets has to be

interpreted.Without the need to state complex interrelations,

it is possible for the investigator to solve the SRP directly by

looking at the acquired facets.

7. Discussion

The approach presented above aims to unify and gener-

alize the problem of event reconstruction. We contribute to

a better understanding of digital evidence, which allows pre-

cise reasoning about the quality of traces using, for the �rst

time, linear temporal logic. In regard to event reconstruction

and the SRP, the proposed method is actionable and prac-

tically usable, since it is solely concerned with observable

parts of traces�the facets. Instead of abstract statements

about past states of FSMs, our method puts the SRP into

the center, which is regularly of principal interest in forensic

analyses. By considering state, we have largely extended and

improved the approach of Dewald (2015) which is limited to

action-induced evidence that is calculated using set logic. To

deal with the state explosion problem, we resort to an o�-

the-shelf symbolic model checker, which allows checking

properties of a system without building the complete state

graph.

We have already provided a technical comparison with

work on event reconstruction via direct automata-theoretic

methods (James et al., 2009) in Section 1.1. Another ap-

proach that is closely related to ours, also mentioned already

in Section 1.1, uses an action-based form of the modal

�-calculus as the temporal speci�cation language (Soltani

and Hosseini-Seno, 2019). The notion of su�cient evidence

remains implicit in the cited work, and necessary evidence

is not considered. On a technical level, we have already

noted that formulae specifying su�cient evidence in the

mentioned �avour of the �-calculus are inherently longer

than our LTL formulae. This is partly due to a standard

tension between labelling transitions or states; these forms

of labelling are interconvertible by standard methods, which

however incur blowup by a linear factor (indeed, recall that

transition labels are encoded as atoms in our approach).

Speci�cally, the formula templates given by Soltani and
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Hosseini-Seno are of linear size in the total number of

actions, while our formula templates in LTL are of constant

size. This is relevant insofar as model checking in either

logic is (roughly) exponential in the formula size. Also, the

�-calculus is a branching-time logic, while it appears that

for purposes of reconstruction of past events, linear-time

formalisms that restrict attention to sequences of events,

such as LTL, are inherently more suitable.

Following the strategy of separating concerns, we can

swiftly determine the execution of an action once we calcu-

lated the evidence sets. In addition to that, the calculation

of those sets beforehand provides clear guidance for an

investigator on where to look for to prove or refute the

hypothesis of the execution of a certain action, and what to

conclude on which observation.

However, while this seems to be a helpful approach,

there remain various challenges. A severe drawback is the

high time complexity of the calculation of the evidence sets,

which grows exponentially to the amount of variables (the

resulting number of partial valuations) and linearly to the

amount of actions (the number of sets to be computed), i.e.,

using only boolean variables O
�
3ðVariablesð � ðactionsð�. An-

other hard problem is to infer apt models, i.e., state machines

of the system under investigation. Currently, this involves

human reasoning, a universally applicable and largely auto-

mated approach has not been proposed yet.

Furthermore, technical limitations restrict the size of

processable models. In our experiments with NuSMV, we

were able to only handle up to 21024 states�which sounds

astronomic but e�ectively means one can only use at most

1024 Boolean variables, illustrating that at present, there is

no actual escape from the state explosion problem. In that

regard, it is important to note that the results are only as

good (and accurate) as the employed model itself. Thus,

there is the possibility that involved parties, e.g., the defen-

dant's lawyers, might challenge the model's correctness to

undermine the conclusions.

8. Conclusion and Future Work

Event reconstruction is a salient step in every digital

investigation. Over the past 20 years, various approaches

working towards a formal solution have been developed,

but nevertheless the problem remains unsolved in practice.

From a methodical point of view, our proposed method

of formalizing digital evidence with the help of LTL for-

mulae generalizes forensic reconstructability and enables

investigators to reason about an existing trace situation at

a digital crime scene in a more concise way than before. It

provides means to assess the meaningfulness of the evidence

at hand and its inferrable implications. It de�nes under which

circumstanceswhich parts of the observable traces, so-called

facets, can be used to reconstruct or refute past activities,

and illustrates a technical realization of event reconstruction

based on state predicates, thus forming a translation of the

reconstruction problem and the system under investigation.

In particular, we introduce clearly de�ned evidence classes

as a precise way of communicating both the �ndings at hand

and their signi�cance for the case.

Future work should aim to determine suitable trace ab-

stractions to model forensically relevant parts of reality and

strive to develop automated approaches for the task of model

generation. Moreover, our approach via linear-time temporal

logic will in principle allow for investigating more complex

behaviour, composed of more than one action. Finally, we

want to explore more e�cient ways of calculating evidence

sets. Still, the improved notion of digital evidence and the

technical realization presented can help investigators already

today to answer the crucial questions of what happened and

who did it.
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