
lable at ScienceDirect

Forensic Science International: Digital Investigation 44 (2023) 301511
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2023 EU - Selected papers of the Tenth Annual DFRWS Europe Conference
Adversarial superiority in android malware detection:
Lessons from reinforcement learning based evasion attacks
and defenses

Hemant Rathore a, *, Adarsh Nandanwar a, Sanjay K. Sahay a, Mohit Sewak b

a Dept. of CS & IS, Goa Campus, BITS Pilani, India
b Security & Compliance Research, Microsoft, India
a r t i c l e i n f o

Article history:

Keywords:
Android
Adversarial robustness
Machine and deep learning
Malware detection
Reinforcement learning
* Corresponding author.
E-mail address: hemantr@goa.bits-pilani.ac.in (H.

https://doi.org/10.1016/j.fsidi.2023.301511
2666-2817/© 2023 The Author(s). Published by Elsevi
licenses/by-nc-nd/4.0/).
a b s t r a c t

Today, android smartphones are being used by billions of users and thus have become a lucrative target
of malware designers. Therefore being one step ahead in this zero-sum game of malware detection
between the anti-malware community and malware developers is more of a necessity than a desire. This
work focuses on a proactive adversary-aware framework to develop adversarially superior android
malware detection models. We first investigate the adversarial robustness of thirty-six distinct malware
detection models constructed using two static features (permission and intent) and eighteen classifi-
cation algorithms. We designed two Targeted Type-II Evasion Attacks (TRPO-MalEAttack and PPO-Mal-
EAttack) based on reinforcement learning to exploit vulnerabilities in the above malware detection
models. The attacks aim to add minimum perturbations in each malware application and convert it into
an adversarial application that can fool the malware detection models. The TRPO-MalEAttack achieves an
average fooling rate of 95.75% (with 2.02 mean perturbations), reducing the average accuracy from
86.01% to 49.11% in thirty-six malware detection models. On the other hand, The PPO-MalEAttack ach-
ieves a higher average fooling rate of 96.87% (with 2.08 mean perturbations), reducing the average ac-
curacy from 86.01% to 48.65% in the same thirty-six detection models. We also develop a list of the TEN
most vulnerable android permissions and intents that an adversary can use to generate more adversarial
applications. Later, we propose a defense strategy (MalVPatch) to counter the adversarial attacks on
malware detection models. The MalVPatch defense achieves higher detection accuracy along with a
drastic improvement in the adversarial robustness of malware detection models. Finally, we conclude
that investigating the adversarial robustness of models is necessary before their real-world deployment
and helps achieve adversarial superiority in android malware detection.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the last decade, smartphones have become a vital part of our
daily lives and a dominant player in the communication &
computing industry. The Global Digital Report (2022) suggests that
the number of smartphone users has reached 5.31 billion, which is
67.1% of theworld’s population. The Android Operating System (OS)
holds a monopoly in the mobile OS space with a market share of
70.01%. The android OS and applications (apps) hold a massive
amount of users’ personal and professional data, making it a very
lucrative target for malware developers. According to AV-TEST
Rathore).

er Ltd on behalf of DFRWS This is a
(2022), the number of malware and PUA in the android
ecosystem crossed 50 million in December 2021. The Zimperium
Global Mobile Threat Report (2022) suggests that 77% of android
apps/devices use at least one vulnerable encryption algorithm. The
above facts suggest that any security breach in the android
ecosystem can have catastrophic consequences on its user’s data
and privacy worldwide.

The anti-virus/anti-malware software products provide primary
defense against malware attacks. However, the existing literature
suggests that the current malware detection mechanisms like
signature, heuristic, etc., cannot cope with new-age malware
challenges. Therefore, anti-malware researchers have started
exploring Machine Learning/Deep Learning (ML/DL) based android
malware detection models that have shown encouraging results.
n open access article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hemantr@goa.bits-pilani.ac.in
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301511&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301511
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2023.301511

H. Rathore, A. Nandanwar, S.K. Sahay et al. Forensic Science International: Digital Investigation 44 (2023) 301511
Arora et al. (2019) showed that analysis of android permission pair
usage could help in malware detection and achieved an accuracy of
95.44%. Zhu et al. (2020) proposed SEDMDriod that used a stacked
ensemble of multi-layer perceptron and support vector machine to
achieve an accuracy of 94.92% in malware detection. Zou et al.
(2021) performed a graph-based analysis of sensitive API for
android malware detection. Today, anti-virus/anti-malware com-
panies have also started to integrate ML/DL based mechanisms for
malware detection in their security products 1,2.

Recently researchers in other domains have found that ML/DL
models are vulnerable to adversarial attacks. An adversary can
intentionally add perturbations to the sample to fool the classifi-
cation model. The first exhaustive study on this was performed by
Goodfellow et al. (2015). They intentionally added small worst-case
perturbations to create adversarial examples that can fool the im-
age classification model. Since then, the researchers have started
investigating adversarial robustness in computer vision, image
classification, object detection, etc. problems and have shown
promising results. However, similar studies on the adversarial
robustness of android malware detection models are limited and
minimal. The anti-virus companies have also reported (McAfee
Mobile Threat Report (2022); Sophos Threat Report (2022)) that
the threats posed by adversarial attacks on malware detection
models are genuine and significant.

The adversarial threat modeling of android malware detection
models can be defined based on the adversary’s objective, knowl-
edge, and capability. The adversary’s objective can be to violate
integrity, privacy, or availability of malware detection models. We
perform integrity violations in malware applications and convert
them into adversarial applications in this work. The adversary’s
knowledge about the target ecosystem can be defined based on
three tuples: dataset, feature set, and classification algorithm. We
assume awhite-box/perfect knowledge scenariowhere the adversary
has knowledge about all three tuples. The adversary capability can
be defined based on the adversary’s ability to perform read, modify
or delete operations in the above three tuples. We perform evasion
attacks by modifying test malware applications into adversarial
applications that fool malware detection models by getting force-
fully misclassified as benign.

Our work proposes a proactive adversary-aware framework that
aims to construct adversarially superior android malware detection
models. We first constructed thirty-six android malware detection
models using two static features (android permission & android
intent) and eighteen different classification algorithms from four
distinct categories. Then we step into the adversary’s shoes and
design adversarial attacks based on Reinforcement Learning (RL) to
exploit vulnerabilities in the above detection models. We propose
two novel adversarial attacks: Trust Region Policy Optimization-
Malware Evasion Attack (TRPO-MalEAttack) and Proximal Policy
Optimization-Malware Evasion Attack (PPO-MalEAttack) against the
detection models. The above attacks are Targeted Type-II (False-
Negative) Evasion Attacks for the white-box scenario that convert
malware applications into adversarial applications that can fool the
malware detection models. The aim is to add minimum perturba-
tions in each malware application so that it is forcibly misclassified
as benign by the detection models. The attack agents also ensure
that perturbations do not break the modified applications’ struc-
tural, syntactical, functional, and behavioral integrity. The attack
agents aim to convert all the malware applications into adversarial
applications and thus drastically reduce the performance of
1 https://www.avast.com/en-in/technology/ai-and-machine-learning.
2 https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-advanced-

analytics-machine-learning.pdf.

2

detection models. Later, we analyzed the exposed vulnerabilities
and used them in defense strategy to counter adversarial attacks.
We proposed theMalware Vulnerability Patch (MalVPatch) based on
adversarial retraining of detection models. The performance of
MalVPatch defense is examined using improvement in detection
accuracy and adversarial robustness of malware detection models.
Finally, we made the following contributions.

C Generalizability: We develop thirty-six distinct android
malware detection models using ML/DL. These models are
constructed using two features (android permission &
android intent) and eighteen classification algorithms
derived from four categories (Standard, Bagging, Boosting, &
Deep Neural Network). The thirty-six malware detection
models achieve an average accuracy of 86.01%. (refer to
section: 4.1)

C RL Attack Policy: We design two Targeted Type-II (False-
Negative) Evasion Attacks (TRPO-MalEAttack and PPO-Mal-
EAttack) using reinforcement learning against the above
thirty-six malware detection models. The attack agents are
designed to add minimum perturbations in malware appli-
cations to transform them into adversarial applications that
are misclassified as benign and thus fool the malware
detection models. (refer to section: 2.2)

C Adversarial Attack: The TRPO-MalEAttack achieves an
average fooling rate of 95.75% with 2.02 mean perturbations
and reduces the average accuracy from 86.01% to 49.11% for
the thirty-six detection models. Similarly, PPO-MalEAttack
achieves an average fooling rate of 96.87% with 2.08 mean
perturbations and reduces the average accuracy from 86.01%
to 48.65% for the thirty-six detection models. We also list the
TEN most vulnerable android permissions and intents that
can easily force misclassifications in detection models. (refer
to section: 4.2)

C Adversarial Defense: We propose a defense strategy
(MalVPatch) based on adversarial retraining to counter the
evasion attacks on malware detection models. The MalV-
Patch defense improves the average detection accuracy from
86.01% to 89.97% for thirty-six TRPO-MalEAttack models and
86.01% to 90.02% for thirty-six PPO-MalEAttack models.
(refer to section: 4.3)

C Adversarial Robustness:We reattack the MalVPatch models
using the same evasion attacks to investigate their adversa-
rial robustness. The average fooling rate ofMalVPatchmodels
reduces to 2.49% against TRPO-MalEAttack and 3.77% against
PPO-MalEAttack that leads to adversarially superior MalV-
Patch detection models. (refer to section: 4.3.2)

The rest of the paper is structured as follows: Section-2 describes
the adversarial attacks and defense policies. Section-3 explains the
experimental setup. Section-4 contains the experimental results.
Section-5 discusses the related work, and finally, Section-6 con-
cludes the paper.

2. Adversarial attack and defense

This section first explains the proposed framework, followed by
adversarial attack strategies (TRPO-MalEAttack and PPO-
MalEAttack) and defense strategy (MalVPatch).

2.1. Proposed framework

Fig. 1 provides a visual summary of the proposed framework for
developing adversarially superior android malware detection
models. The first step is Data Collection which involves gathering

https://www.avast.com/en-in/technology/ai-and-machine-learning
https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-advanced-analytics-machine-learning.pdf
https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-advanced-analytics-machine-learning.pdf

Fig. 1. Overview of the proposed framework to develop adversarially superior android malware detection models.

H. Rathore, A. Nandanwar, S.K. Sahay et al. Forensic Science International: Digital Investigation 44 (2023) 301511
android applications (malware and benign) for the dataset. The
second step is Feature Extraction which involves processing the
android applications into a format that can be used to train ML/DL
based malware detection models. We perform static analysis of
applications to extract two features: android permission and
android intent. The Baseline Classification step involves the con-
struction of android malware detection models using the above
extracted features. We constructed thirty-six distinct baseline
malware detection models (based on eighteen classification algo-
rithms and two features) and evaluated their performance. The
fourth step is developing Adversarial Attack, which exploits vul-
nerabilities in the above detection models and investigates their
adversarial robustness. We designed two attack strategies (TRPO-
MalEAttack and PPO-MalEAttack) based on reinforcement learning,
which perform targeted type-II (false-negative) evasion attacks by
converting malware applications into adversarial applications and
fooling the malware detection models. The last stage is developing
Adversarial Defense (MalVPatch) to counter the evasion attacks
and finally develop the adversarially superior android malware
detection models.
Fig. 2. Reinforcement learning framework.
2.2. Adversarial attack (MalEAttack)

We propose the Malware Evasion Attack (MalEAttack) based on
the RL framework against android malware detection models. The
MalEAttack is a Targeted False-Negative Evasion Attack in a white-
box scenario against various detection models. The goal of the
MalEAttack is to add perturbation(s) in malicious applications
(target class) and convert them into adversarial applications that
fool the malware detection models. The MalEAttack is optimized to
achieve a high conversion rate (fooling rate) with minimum per-
turbations as lesser modifications are easier to perform in real-
world applications and attract lesser suspicion. The MalEAttack
also ensures that changes do not break the applications’ structural,
syntactical, functional, and behavioral integrity.

The RL framework for MalEAttack is explained as follows. The
android applications are first represented using features F and the
corresponding feature vector v. We used android permission/intent
as features where |F| is the number of permission/intent in the
feature vector. The v[i] is set to 1 iff the ith feature (permission/
intent) is used by the application otherwise v[i] is set to 0. Here, the
vector v also represents the state of the MalEAttack RL environ-
ment. The set of all possible permutations of v makes up the mul-
tibinary observation space O. The Malware Evasion Attack Agent
(MalEAgent) chooses an action a 2 A, where A 4 F is a finite set of
actions representing a discrete action space. Each action a maps to
an index in v using themappingm. When the agent takes action a, v
is modified to reach a new state v0 using equation (1). The next state
3

v0 will have the value set to 1 at the index corresponding to the
action selected by the agent. The values at all other indexes remain
the same as the previous state v. This ensures the functional
integrity of the new state since features are never removed.

v0½i� ¼
�
1; if i ¼ m½a�
v½i�; otherwise

(1)

The environment returns a reward corresponding to the action
chosen by the MalEAgent, which is calculated using a reward
function. The reward function used in the paper is given by equa-
tion (2) where score is the probability estimate of the current state
for the benign class calculated by the detection model cls being
attacked. The range of the reward is a floating-point value in the
range [�1, 1].

rewardcls;v;v0 ¼ scorecls;v0 � scorecls;v (2)

Algorithm 1 describes the steps for converting malware appli-
cations into adversarial applications. The attack proceeds in two
phases: exploration and exploitation. Line 1e2 creates an RL
environment and the MalEAgent. The exploration phase is next in
line 4, after which lines 8e20 are the exploitation phase.
2.2.1. Exploration
The RL framework for MalEAttack is illustrated in Fig. 2. The RL

agent plays a game-like scenario where it takes specific actions to
win the game. The agent’s role is to observe the current state
(malware application), perform an action (i.e., adding a permission/
intent) from a set of options, and receive a reward for it. The agent
then uses this reward value to modify its internal weights to
improve its decision-making process and optimize the actions to
reach the goal. The agent iteratively goes through all the malware
applications in the training dataset X and plays the game multiple
times, each time with a different malicious application. Each game

H. Rathore, A. Nandanwar, S.K. Sahay et al. Forensic Science International: Digital Investigation 44 (2023) 301511
iteration is known as an episode. The goal of the agent is to maxi-
mize the reward in each episode. The length of an episode is fixed
as the parameter ep_len. A new episode begins when the envi-
ronment is reset. On resetting, all the variables are reset to default
values, with the state v being set to the next malware application in
the dataset.

Algorithm 1. Algorithm for MalEAttack

The RL agent uses an algorithm (attack_algo) to learn optimal
actions to reach the goal state. We use the Trust Region Policy
Optimization (TRPO) algorithm in TRPO-MalEAttack and the Prox-
imal Policy Optimization (PPO) algorithm in PPO-MalEAttack for
this purpose.

2.2.2. TRPO-MalEAttack
The proposed TRPO-MalEAttack uses the TRPO algorithm to

convert malware applications into adversarial applications to fool
malware detection models. The TRPO is an RL algorithm proposed
by Schulman et al. (2015) that works with both discrete and
continuous action space. The proposed TRPO-MalEAttack in-
corporates the TRPO in the MalEAgent on discrete action space. The
TRPO-MalEAgent uses an on-policy algorithm similar to natural
policy gradient methods. However, unlike natural policy gradient
methods, we use the KL� Divergence constraint while updating the
policy parameters. In normal policy gradient methods, the perfor-
mance can have a huge impact even due to a change in policy pa-
rameters that might look small to us. This makes taking giant steps
very risky. The TRPO-MalEAgent avoids this problem by using the
constraints. It covers the largest distance within the constraint to
ensure that the policy is not changed drastically. This ensures that
the performance does not collapse due to a single wrong step.
4

2.2.3. PPO-MalEAttack
The PPO-MalEAttack uses the PPO algorithm on discrete action

space to learn the adversarial attack strategy. The PPO is a family of
policy gradient methods introduced by Schulman et al. (2017).
These newmethods share some benefits like stability and reliability
of TRPO while having a simpler implementation. The PPO-
MalEAgent works on a similar idea as TRPO-MalEAgent on taking
the biggest step within a constraint to avoid a huge change in
policy, preventing a collapse of performance. This also uses an on-
policy method. However, unlike TRPO-MalEAgent, which uses
complex methods, PPO-MalEAgent uses a simpler implementation
involving only first-order optimization methods. The PPO algo-
rithm has two variants: Adaptive KL Penalty Coefficient and Clipped
Surrogate Objective without having any constraint. The PPO-
MalEAgent uses PPO Clipped Surrogate Objective approach, where
the KL constraint objective is replaced by directly clipping the
objective function.
2.2.3.1. Exploitation. In the exploitation phase, the MalEAgent uses
its knowledge learned from the exploration phase (final weights).
The MalEAgent goes through each malware application in the test
dataset, and tries to convert it into an adversarial application using
algorithm 1 (steps 9e18). The MalEAgent suggested actions are
performed until one of the following conditions is met.

1. Malware application successfully converted into adversarial
malware application. In this case, the episode ends early and the
MalEAttack is successful.

2. MalEAttack agent is unsuccessful because the episode length
has reached its set limit.
2.3. Adversarial defense strategy (MalVPatch)

We propose Malware Vulnerability Patch (MalVPatch) as a de-
fense strategy to improve the adversarial robustness of android
malware detection models. The method involves adversarially
retraining the malware detection models and patching the blind
spots exposed by various adversarial attacks. Grosse et al. (2016)
compared various defense approaches and found that adversarial
retraining achieved the best results against adversarial attacks.
Taheri et al. (2020) also found that adversarial retraining is better
than the generative adversarial network defense strategy in the
malware detection domain. Rathore et al. (2021c) explored three
defense approaches and found adversarial retraining achieved
better results. The adversarial retraining defense is a highly gener-
alizable approach and can be used with almost all the classification
algorithms. On the other hand, distillation based defense transfers
knowledge from a bigger model to a small model, which might
increase bias in classification models. Another limitation of distil-
lation is that it can only be used with deep neural network models
and cannot be used with machine learning, bagging, or boosting
models. Similarly, feature reduction defense might suffer from the
curse of dimensionality, and finding relevant features using mutual
information, variance threshold, etc., adds additional overhead.
Thus we decided to explore adversarial retraining based MalVPatch
defense in this work. The first step in MalVPatch is to obtain the
adversarial applications using the MalEAgent attacks. We then
construct a new training dataset by importing the original
dataset alongwith their class labels and then adding the adversarial
applications with their class label set to malware. The addition of
adversarial applications may result in a significant imbalance in the
class distribution of the new dataset. Thus we perform class
balancing using oversampling in our experiments.

H. Rathore, A. Nandanwar, S.K. Sahay et al. Forensic Science International: Digital Investigation 44 (2023) 301511
3. Experimental setup

This section first discusses the dataset, feature extraction, and
classification algorithms, followed by the performance metrics and
experimentation platform used in the paper.
3.1. Dataset (malware and benign)

The first stage in the proposed framework (Fig. 1) is to construct
a well-labeled dataset of android applications containing malware
and benign samples. Our dataset contains android applications
downloaded from Google Play Store3 for benign samples and the
Drebin dataset4 for malicious samples. We downloaded
8000 þ android applications from Google Play Store and verified
them using the services of VirusTotal5. The downloaded application
is labeled benign only if all the antiviruses from VirusTotal declare it
non-malicious and the rest of the samples are discarded. The final
benign dataset contains 5721 android applications. On the other
hand, we used the benchmark Drebin dataset for the malware
dataset that contains 5553 malicious applications for our
experiments.
3.2. Feature extraction

The second stage in the proposed framework (Fig. 1) is feature
extraction from android applications collected in the dataset. We
extracted two distinct features: android permission and android
intent to construct malware detection models. We used android
permission since it is responsible for providing user security by
protecting data and action accesses in the android ecosystem. We
also used android intent which provides APIs for various opera-
tions, again being used as a security mechanism. The android ap-
plications in the dataset are decompiled using the reverse
engineering tool (Apktool6). Then we created exhaustive lists of
permission7 and intent8 using official android documentation. The
permission and intent lists contain 195 permissions and 273 in-
tents. We developed a parser that scans each android application
and logs its permission usage to create a corresponding android
permission feature vector. If an application uses a particular
permission, then the value at corresponding index in the feature
vector will be set to 1; otherwise, 0. We developed a similar parser
for intent as well and performed the same exercise to generate
android intents feature vector.
3.3. Classification algorithms

We used eighteen distinct classification algorithms derived from
four different categories to demonstrate the generalizability of the
proposed approaches (Malware Detection Model, TRPO-
MalEAttack, PPO-MalEAttack, and MalVPatch). Table 1 shows the
four categories and the corresponding classification algorithms.

The paper (Rathore et al. (2020) & Rathore et al. (2021b)) ex-
plains a detailed description of classification algorithms, their ar-
chitecture & parameters, and the corresponding android malware
detection models.
3 https://play.google.com/store?hl¼en.
4 https://www.sec.cs.tu-bs.de/danarp/drebin/.
5 https://www.virustotal.com/.
6 https://ibotpeaches.github.io/Apktool/.
7 https://developer.android.com/guide/topics/permissions.
8 https://developer.android.com/reference/android/content/Intent.

5

3.4. Performance metrics

We use the following performance metrics to evaluate and
compare our results in this paper.

� True Positive (TP): Number of malicious apps that are
correctly classified as malware by the model.
� True Negative (TN): Number of benign apps that are correctly
classified as benign by the model.
� False Positive (FP): Number of benign apps that are mis-
classified as malware by the detection model.
� False Negative (FN): Number of malicious apps that are mis-
classified as benign by the detection model.
� Accuracy (Acc): The percentage ratio of apps correctly classi-
fied by the malware detection model to the total number of
apps.
� Fooling Rate (FR): The percentage ratio of malware apps
successfully converted into adversarial apps usingMalEAttack to
the number of correctly classified malware apps (before the
attack) by the detection model. The adversary’s goal (Mal-
EAttack) is to maximize the fooling rate. Here, M is the set of
malware apps, and M0 is the set of adversarial apps.

FR ¼ jM0j
jMj � FN

� 100 (3)
� Perturbation Count (PC): Minimum number of perturbation(s)
performed to convert a malware app into an adversarial app.
The adversary’s goal (MalEAttack) is to minimize PC for each
adversarial app.

� Perturbation Application Percentage (PAP): PAP of a pertur-
bation is the percentage ratio of the number of adversarial apps
in which that perturbation (permission/intent) was added dur-
ing the MalEAttack to the total number of adversarial apps.

� Perturbation Frequency Percentage (PFP): It is the percentage
ratio of the frequency of a particular perturbation (permission/
intent) to the total number of perturbations during the Mal-
EAttack. The Goal is to identify common perturbations to
construct vulnerability lists (permission and intent).
3.5. Experimentation platform

The Google Colab Pro platform is used for all the experiments,
namely baseline malware detection models, adversarial attacks
(TRPO-MalEAttacks & PPO-MalEAttack), and defense (MalVPatch).
The code is written in python language using scikit-learn, tensor-
flow2, and open AI gym. The dataset is divided into train and test
sets in the ratio of 70:30 for training and evaluation, respectively.
All the adversarial applications are recompiled using Apktool and
validated for structural, syntactical, functional, and behavioral
integrity. The code will be made open-source on GitHub for the
wider community after acceptance.
4. Experimental results

This section presents the experimental results with relevant
figures. First, we will discuss the results obtained by baseline
android malware detection models, followed by adversarial attacks
(TRPO-MalEAttack and PPO-MalEAttack) and then adversarial de-
fense (MalVPatch).

https://play.google.com/store?hl=en
https://play.google.com/store?hl=en
https://www.sec.cs.tu-bs.de/danarp/drebin/
https://www.virustotal.com/
https://ibotpeaches.github.io/Apktool/
https://developer.android.com/guide/topics/permissions
https://developer.android.com/reference/android/content/Intent

Table 1
Categorization of classification algorithms to construct malware detection models.

Standard Classification
Algorithm(s)

Bagging based Classification
Algorithm(s)

Boosting based Classification
Algorithm(s)

Deep Neural Networks based Classification
Algorithm(s)

Logistic Regression
(LR)

Random Forest
(RF)

Adaptive Boosting
(AB)

Deep Neural Network 0 Hidden Layer
(DNN0L)

Support Vector Machine
(SVM)

Bootstrap Aggregating Decision Tree
(BADT)

Gradient Boosted Regression Trees
(GBRT)

Deep Neural Network 1 Hidden Layer
(DNN1L)

Kernel Support
Vector Machine
(KSVM)

Bootstrap Aggregating Logistic Regression
(BALR)

Extreme Gradient Boosting
(EGB)

Deep Neural Network 2 Hidden Layer
(DNN2L)

Decision Tree
(DT)

Bootstrap Aggregating Kernel Support Vector
Machine (BAKSVM)

Light Gradient Boosting Machine
(LGBM)

Deep Neural Network 3 Hidden Layer
(DNN3L)

Cat Boost
(CB)

Deep Neural Network 4 Hidden Layer
(DNN4L)

H. Rathore, A. Nandanwar, S.K. Sahay et al. Forensic Science International: Digital Investigation 44 (2023) 301511
4.1. Baseline android malware detection models

In the third stage in the proposed framework (Fig. 1), we train
thirty-six different baseline android malware detection models
using eighteen distinct classification algorithms and two static
features. The performance of these baseline models is evaluated
using accuracy, AUC, etc. Fig. 5(a) shows the accuracy (blue bar) of
all the eighteen baseline android malware detection models
(permission), and Fig. 5(b) (blue bar) shows the same for the intent
feature. The average accuracy obtained across eighteen malware
detection models (permission) is 93.55%. Here, the highest accu-
racy is obtained by DNN4L (95.27%) and the lowest by AB (91.22%).
The DNN3L and RF also achieved high accuracies of 95.18% and
95.12%, respectively. Also, the average AUC score of 0.94 is achieved
for eighteen malware detection models (permission), with the
highest being for DNN4L (0.95) and the lowest for AB (0.91). On the
other hand, an average accuracy of 78.47% was obtained for eigh-
teen malware detection models (intent). Here, the highest accu-
racy is obtained by CB (79.37%) and the lowest by SVM (77.27%). The
RF and DNN4L also achieved high accuracies of 79.22% and 79.19%,
respectively. Also, the average AUC score of 0.79 is achieved for
eighteen malware detection models (intent), with the highest be-
ing for CB (0.79) and the lowest for AB (0.77). The above result also
shows that malware detection models based on permission ach-
ieved better performance compared to the intent counterparts.

The above baseline malware detection models achieved similar
performance compared to the state-of-the-art models discussed in
the literature. For the Drebin permission dataset, Li et al. (2018),
Arora et al. (2019), and Khariwal et al. (2020) achieved an accuracy
of 91.34%, 95.44% and 94.73%, respectively. On the other hand,
Sewak et al. (2020) achieved 77.2% accuracy and 0.81 AUC for the
Drebin intent dataset.
4.2. Adversarial attack on malware detection models

The fourth stage in the proposed framework (Fig. 1) is to
perform adversarial attacks (MalEAttack) on the baseline malware
detection models constructed in the previous stage. The attack’s
goal (TRPO-MalEAttack & PPO-MalEAttack) is to convert the
maximum number of malware applications into adversarial appli-
cations by adding minimum perturbations such that they are
intentionally misclassified by malware detection models. The
MalEAgent allows a maximum of six perturbations against mal-
ware detection models (permission), whereas a maximum of three
perturbations for detection models (intent). The agents also ensure
that these perturbations do not violate the structural, functional,
and syntactical integrity of the modified malware applications. We
used performance metrics like fooling rate, accuracy change, AUC
change, and the number of perturbations to evaluate the impact of
6

the adversarial attacks on malware detection models and draw
comparisons.

4.2.1. Fooling rate @ MalEAttacks
Fig. 3(a) and (c) show the fooling rate achieved by TRPO-Mal-

EAttack against different android malware detection models
(permission and intent). The TRPO-MalEAgent against eighteen
malware detection models (permission) achieved an average fool-
ing rate of 96.49% with 2.58 mean perturbations and a maximum
limit of six perturbations. AB is the weakest model with a 100%
fooling rate, whereas KSVM has the lowest fooling rate of 88.75%.
On the other hand, the TRPO-MalEAgent against eighteen detection
models (intent) achieved an average fooling rate of 95.01% with
1.46 mean perturbations and a maximum limit of three perturba-
tions. The TRPO agent attains the highest and lowest fooling rate
with BAKSVM (99.97%) and EGB (85.27%).

Fig. 4(a) and (c) show the fooling rate achieved by PPO-Mal-
EAttack against different android malware detection models
(permission and intent). The PPO-MalEAgent against eighteen
detection models (permission) achieved an average fooling rate of
97.80% with 2.59 mean perturbations and a maximum limit of six
perturbations. Here, the PPO agent achieved the highest fooling
rate of 99.98% against DNN3L and DNN4L, whereas the lowest of
91.73% is attained against KSVM. On the other hand, the PPO-
MalEAgent against eighteen detection models (intent) has an
average fooling rate of 95.95% with 1.59 mean perturbations and a
maximum limit of three perturbations. The PPO agent achieved the
highest and lowest fooling rates with BAKSVM (99.97%) and EGB
(83.70%).

The figures show a steep increase in the fooling rate for all the
malware detection models (permission/intent) with the increase in
the number of perturbations by MalEAgents. Also, the PPO-
MalEAttack achieved a slightly higher fooling rate as compared to
TRPO-MalEAttack. Finally, we can conclude that neither permission
nor intent based malware detection models are resilient to the
MalEAttacks.

4.2.2. Accuracy reduction @ MalEAttacks
The MalEAttacks force a massive number of intentional mis-

classifications in all the baseline androidmalware detectionmodels
(permission/intent). Fig. 3(b) and (d) show the performance of
different detection models (permission and intent) after TRPO-
MalEAttack. The TRPO-MalEAttack (with a maximum of six per-
turbations) reduces the average accuracy of eighteen detection
models (permission) from 93.55% to 50.61%. The maximum and
minimum accuracy in detection models (permission) after TRPO-
MalEAttack is shown by KSVM (54.55%) and AB (47.63%). On the
other hand, TRPO-MalEAttack (with a maximum of three pertur-
bations) reduces the average accuracy of eighteen detectionmodels

Fig. 3. Performance of TRPO-MalEAttack against different Android Malware Detection Models (Permission/Intent).

Fig. 4. Performance of PPO-MalEAttack against different Android Malware Detection Models (Permission/Intent).

H. Rathore, A. Nandanwar, S.K. Sahay et al. Forensic Science International: Digital Investigation 44 (2023) 301511
(intent) from 78.47% to 47.60%. The maximum and minimum ac-
curacy in detection models (intent) after TRPO-MalEAttack is
shown by EGB (50.37%) and DNN0L (46.35%).

Fig. 4(b) and (d) show the performance of different malware
detection models (permission and intent) after PPO-MalEAttack.
The PPO-MalEAttack (with a maximum of six perturbations) re-
duces the average accuracy of eighteen detection models
(permission) from 93.55% to 50.02%, with maximum andminimum
accuracy shown by KSVM (53.18%) and AB (47.64%). On the other
hand, PPO-MalEAttack (with a maximum of three perturbations)
reduces the average accuracy of eighteen detection models (intent)
from 78.47% to 47.28%. The maximum and minimum accuracy is
shown by EGB (50.89%) and AB (45.08%).

The above results suggest that intent-based malware detection
models are more adversarially robust and require more perturba-
tions for a similar accuracy reduction than permission-based
models. As expected, a higher fooling rate with MalEAttacks re-
sults in a more significant reduction in the accuracy of detection
models.

4.2.3. Vulnerable permissions and intents
We calculated Perturbation Application Percentage (PAP) and

Perturbation Frequency Percentage (PFP) to understand the list of
perturbations added by MalEAgents during the attack on android
malware detectionmodels. Table 2 lists the top ten permissions and
top ten intents added by TRPO-MalEAgent and PPO-MalEAgent
during the attacks on detection models.

The TRPO-MalEAgent added android.permission.READ_CALL_LOG
in 59.91% of adversarial samples which account for 23.13% of all the
permission perturbations. It was followed by android.permission.U-
SE_CREDENTIALS. Similarly, TRPO-MalEAgent added android.intent
action.MY_PACKAGE_REPLACED in 58.79% of adversarial samples
which constituted 39.92% of all intent perturbations. The next most
frequently used intents is android.intent.action.MEDIA_BUTTON.

The PPO-MalEAgent added android.permission.READ_CALL_LOG
7

in 56.86% of adversarial samples which account for 22.04% of all the
permission perturbations. It was again followed by android.per-
mission.USE_CREDENTIALS. On the other hand, PPO-MalEAgent
added android.intent action.MY_PACKAGE_REPLACED in 63.54% of
adversarial samples, which constituted 40.04% of all intent per-
turbations. The next most frequently used intents is
android.intent.action.MEDIA_BUTTON.

Some permissions/intents are used most of the time by adver-
saries (MalEAttack) to fool the malware detection models. Table 2
shows that the top 9 out of 10 permissions are common between
TRPO-MalEAttack and PPO-MalEAttack. On the other hand, all top
10 intents are common for TRPO-MalEAttack and PPO-MalEAttack
but in a slightly different order. This also shows that the above
permission(s)/intent(s) are highly vulnerable and can be used by
any adversary to attack detection models.

4.3. Adversarial defense strategy

In the fifth and the last stage in the proposed framework (Fig. 1),
we proposed MalVPatch as the adversarial defense to improve the
performance of malware detection models. The defense strategy
involves gathering adversarial samples during the MalEAttacks and
using them to adversarially retrain the detection models. The
impact of defense strategy (a.k.a MalVPatch models) is measured
using two factors. The first is improvement in malware detection
performance (accuracy, AUC, etc.). The second is improvement in
the adversarial robustness.

4.3.1. Detection performance @ MalVPatch models
Fig. 5(a) shows the performance of malware detection models

(permission) after applying the defense strategy MalVPatch on
TRPO-MalEAttack models. We observe an improvement in the
accuracy of MalVPatch malware detection models (yellow bar) over
baseline models (blue bar). The average accuracy of eighteen
MalVPatch models (permission) improved by 2.02% from baseline

Table 2
Top TEN most vulnerable permissions and intents during the TRPO-MalEAttack and PPO-MalEAttack

TRPO-MalEAttack PPO-MalEAttack

Name Perturbation
Frequency
Percentage
(PFP)

Perturbation
Application
Percentage
(PAP)

Name Perturbation
Frequency
Percentage
(PFP)

Perturbation
Application
Percentage
(PAP)

Permission
(Maximum 6
perturbations)

android.permission.READ_CALL_LOG 23.133 59.908 android.permission.READ_CALL_LOG 22.043 56.863
android.permission. USE_CREDENTIALS 18.937 49.041 android.permission.USE_CREDENTIALS 21.034 54.260
android.permission.READ_PROFILE 13.567 35.134 android.permission.READ_PROFILE 15.074 38.884
android.permission.GET_ACCOUNTS 10.039 25.999 android.permission.GET_ACCOUNTS 10.848 27.984
android.permission.
READ_EXTERNAL_STORAGE

6.582 17.044 android.permission.READ_EXTERNAL_
STORAGE

7.104 18.326

android.permission.CAMERA 5.504 14.253 android.permission.CAMERA 5.831 15.043
android.permission.
ACCESS_NETWORK_STATE

3.895 10.087 android.permission.ACCESS_NETWORK_
STATE

4.005 10.331

android.permission.SEND_SMS 3.393 8.786 android.permission.SEND_SMS 3.431 8.851
android.permission.READ_SMS 2.376 6.152 android.permission.READ_SMS 2.435 6.280
android.permission.ACCESS_
WIFI_STATE

2.017 5.224 android.permission.RECEIVE_SMS 1.672 4.312

Intent
(Maximum 3
perturbations)

android.intent.action
MY_PACKAGE_REPLACED

39.921 58.787 android.intent.action.MY_PACKAGE_
REPLACED

40.042 63.543

android.intent.action.MEDIA_BUTTON 14.591 21.487 android.intent.action.MEDIA_BUTTON 14.982 23.775
android.intent.action. TIMEZONE_CHANGED 8.182 12.049 android.intent.action.ACTION_POWER_

DISCONNECTED
7.878 12.502

android.intent.action.SEND 6.881 10.133 android.intent.action.TIMEZONE_
CHANGED

7.721 12.252

android.intent.action. PACKAGE_REPLACED 5.134 7.560 android.intent.category.BROWSABLE 6.641 10.538
android.intent.action.
ACTION_POWER_DISCONNECTED

5.094 7.501 android.intent.action.SEND 5.066 8.038

android.intent.category.BROWSABLE 5.011 7.380 android.intent.category.MONKEY 2.756 4.374
android.intent.category.DEFAULT 3.030 4.462 android.intent.action.PACKAGE_

REPLACED
2.656 4.215

android.intent.action. PACKAGE_REMOVED 1.595 2.349 android.intent.action.SEARCH 2.368 3.758
android.intent.category.MONKEY 1.519 2.236 android.intent.category.DEFAULT 2.347 3.725

Fig. 5. Overall Performance of different Android Malware Detection Models (Permission/Intent) w.r.t. TRPO-MalEAttack

Fig. 6. Overall Performance of different Android Malware Detection Models (Permission/Intent) w.r.t. PPO-MalEAttack

H. Rathore, A. Nandanwar, S.K. Sahay et al. Forensic Science International: Digital Investigation 44 (2023) 301511
models (93.55%) to MalVPatch models (95.57%). The highest accu-
racy among MalVPatch models (permission) is achieved by DNN1L
(97.56%), whereas the lowest is attained by EGB (93.65%). Similarly,
Fig. 5(b) shows the performance of MalVPatch malware detection
models (intents) (yellow bar) on TRPO-MalEAttack models. The
average accuracy of eighteen MalVPatch detection models (intent)
8

improved by 5.90% from baseline models (78.47%) to MalVPatch
models (84.37%). The highest accuracy among MalVPatch models
(intent) is achieved by DNN2L (85.55%), whereas the lowest is
attained by AB (83.20%).

On the other hand, Fig. 6(a) shows the performance of malware
detection models (permission) after applying the MalVPatch on

Fig. 7. Summary of Average Accuracy of baseline, MalEAttack, MalVPatch, MalEAttack
on MalVPatch

H. Rathore, A. Nandanwar, S.K. Sahay et al. Forensic Science International: Digital Investigation 44 (2023) 301511
PPO-MalEAttack models. We observe a similar accuracy
improvement of MalVPatch malware detectionmodels (yellow bar)
over baseline models (blue bar). The average accuracy of eighteen
MalVPatch models (permission) improved by 2.06% from baseline
models (93.55%) to MalVPatch models (95.61%). The highest accu-
racy among MalVPatch models (permission) is achieved by DNN1L
(97.67%), whereas the lowest is attained by EGB (93.14%). Similarly,
Fig. 6(b) shows the performance of MalVPatch malware detection
models (intents) (yellow bar) on PPO-MalEAttack models. The
average accuracy of eighteen MalVPatch models (intent) improved
by 5.96% from baseline models (78.47%) to MalVPatch models
(84.43%). The highest accuracy amongMalVPatchmodels (intent) is
achieved by CB (85.76%).

4.3.2. Adversarial robustness @ MalVPatch models
We investigate the adversarial robustness of the MalVPatch

malware detection models by performing a reattack using Mal-
EAttacks on them. The reattack is performed in exactly the same
way as the initial attack, with baseline models replaced by MalV-
Patch models.

Fig. 5 shows the performance of TRPO-MalEAgent reattack on
MalVPatch malware detection models (green bar). The TRPO-
MalEAgent reattack on eighteen MalVPatch detection models
(permission) attain an average fooling rate of 1.82%, leading to an
average accuracy reduction from 95.57% to 94.47%. Similarly,
TRPO-MalEAgent reattack on eighteen MalVPatch models (intent)
attain average fooling rate of 3.16% which leads to an average
Table 3
Performance comparison of the proposed work with existing literature.

Author(s) Attack
Scenario

Max. No of
Perturbations

No of Malware Detection
Models

Grosse et al.
(2016)

White box 20 Only DNNs

Hu and Tan
(2017)

(MalGAN)

White box 100% 6

Taheri et al.
(2020)

(Trivial)

White box 60 Total: 3
RF, BagDT, SVM

Taheri et al.
(2020)

(Distribution)

White box 60 Total: 3
RF, BagDT, SVM

Taheri et al.
(2020)

(KNN)

White box 60 Total: 3
RF, BagDT, SVM

Taheri et al.
(2020)

(ACO)

White box 60 Total: 3
RF, BagDT, SVM

Rathore et al.
(2021a) (SPA)

White box Permission: 5 8

Proposed
(TRPO-

MalEAttack)

White box Permission: 6
Intent: 3
Mean: 2.02

Total: 18
ML: 4, Bagging: 4
Boosting: 5, DNN: 5

Proposed
(PPO-

MalEAttack)

White box Permission: 6
Intent: 3
Mean: 2.06

Total: 18
ML: 4, Bagging: 4
Boosting: 5, DNN: 5

9

accuracy reduction from 84.37% to 81.05%.
On the other hand, Fig. 6 shows the performance of PPO-

MalEAgent reattack on MalVPatch malware detection models
(green bar). The PPO-MalEAgent reattack on eighteen MalVPatch
models (permission) attain an average fooling rate of 1.97% leading
to an average accuracy reduction from 95.61% to 94.40%. Similarly,
PPO-MalEAgent reattack on eighteen MalVPatch models (intent)
attain an average fooling rate of 5.57% which lead to an average
accuracy reduction from 84.42% to 80.08%.

4.4. Summary

Fig. 7 shows the overall summary during the different stages of
the proposed framework (Fig. 1). The thirty-six baseline android
malware detection models achieved an average accuracy of 86.01%.
The TRPO-MalEAttack exploited the vulnerabilities and reduced
the average accuracy to 49.11% for the above detection models. The
MalVPatch defense improves the average accuracy of the above
models to 89.97%. Finally, the TRPO-MalEAgent Reattack on MalV-
Patch models achieved an average of 87.76% for thirty-six malware
detection models.

Similarly, the PPO-MalEAttack reduced the average accuracy of
thirty-six malware detection models from 86.01% to 48.65%. The
MalVPatch defense improves the average accuracy of the above
detection models to 90.02%. Finally, the PPO-MalEAgent Reattack
on MalVPatch models achieved an average of 87.25% for thirty-six
android malware detection models.

5. Related work

Existing literature suggests that ML/DL models in various do-
mains have shown promising results but are vulnerable to adver-
sarial attacks. Pitropakis et al. (2019); Machado et al. (2021);
Deldjoo et al. (2021); Sewak et al. (2021) provide an extensive
summary of the landscape of adversarial attacks and defenses in
ML/DL models. However, unlike image classification, object detec-
tion, recommendation system etc., the adversarial robustness of
android malware detection models has received minimal research
Fooling Rate
(FR)

Vulnerability
List

Defense Strategy Adversarial
Robustness

40.97%e84.05% No Feature Reduction
Distillation

No

99% No AT No

27.40% No AT, GAN No

27.98% No AT, GAN No

27.43% No AT, GAN No

27.08% No AT, GAN No

Avg 8 models:
44.28%

No AT Yes

Avg 36 models:
95.75%

Yes MalVPatch Yes

Avg 36 Models:
96.88%

Yes MalVPatch Yes

H. Rathore, A. Nandanwar, S.K. Sahay et al. Forensic Science International: Digital Investigation 44 (2023) 301511
attention. Taheri et al. (2020) proposed five adversarial attacks and
two defense strategies for the white-box scenario. However, they
attained a very limited fooling rate of around 27% with 60 pertur-
bations. They tested their attack and defense strategies with only
three classification algorithms and did not discuss the adversarial
robustness of the proposed defense. Rathore et al. (2021a) intro-
duced the Q-learning-based single policy attack (SPA) for white box
and multiple policy attack (MPA) for grey box scenario. However,
they achieved average fooling rates of just 44.28% using SPA and
53.20% using MPA for eight classification algorithms. Grosse et al.
(2016) crafted adversarial samples using neural networks. They
achieved misclassification rates in the range of 40.97% to 84.05%
with a maximum of 20 modifications. Also, the defense strategies
proposed in the paper did not offer a significant reduction in the
misclassification rates. Li et al. (2019) proposed the E-MalGAN black
box attack based on bi-objective GAN, which is an improvement
over the MalGAN attack proposed by Hu and Tan (2017).

Table 3 compares the proposed work with the existing litera-
ture. The adversarial attack aims to add minimum perturbations in
malware samples whilemaximizing the fooling rate against various
malware detection models. Most of the adversarial attacks in the
literature add massive perturbations to generate adversarial sam-
ples, which increase the attack’s cost. On the other hand, they
achieved minimal success in generating adversarial samples and
thus have limited fooling rates. The adversarial attack and defense
strategies should generalize well in the ecosystem. Authors have
tested their attacks and defense strategies on a very limited number
of classification algorithms, feature sets, etc. Some attack/defense
strategies are only restricted on DNNs, which is a huge drawback.
On the other hand, authors have rarely shared the perturbation
details that add explainability to work. The ultimate aim of these
studies is to develop adversarial superior malware detection
models. However, limited authors have calculated the adversarial
robustness in malware detection.

6. Conclusion and future work

Thiswork aims todevelop adversarially superiorandroidmalware
detection models using a five-step proactive adversary-aware
framework. We first constructed thirty-six different malware detec-
tion models with an average accuracy of 86.01%. Then we designed
two targeted false-negative evasion attacks based on RL against the
above detection models. The TRPO-MalEAttack against thirty-six
malware detection models achieved an average fooling rate of
95.75% (with 2.02 mean perturbations) and reduced their average
accuracy from 86.01% to 49.11%. Similarly, The PPO-MalEAttack
against thirty-six malware detection models achieved a higher
average fooling rate of 96.87% (with 2.08 mean perturbations) and
reduced their average accuracy from 86.01% to 48.65%. We also
compiled a list of TEN android permissions and intents that are most
vulnerable and can be used by adversaries to generate more adver-
sarial applications. The proposed MalVPatch defense improves the
detection accuracy and drastically enhances the adversarial robust-
ness of malware detection models. Finally, we conclude that inves-
tigating theadversarial robustnessofML/DLbasedmalwaredetection
models is an essential step before their real-worlddeployment. It also
helps in achieving adversarial superiority in malware detection.

In the future, we plan to investigate collusion based adversarial
attacks against malware detection models. We also plan to study
the adversarial robustness of other features along with clustering
10
and hybrid malware detection models. We plan to explore a game-
theoretical approach to stay adversarially superior in malware
detection.
References

Arora, A., Peddoju, S.K., Conti, M., 2019. Permpair: android malware detection using
permission pairs. IEEE Trans. Inf. Forensics Secur. 15, 1968e1982.

Deldjoo, Y., Noia, T.D., Merra, F.A., 2021. A survey on adversarial recommender
systems: from attack/defense strategies to generative adversarial networks.
ACM Comput. Surv. 54, 1e38.

Global Digital Report, 2022. Simon kemp (hootsuite). Available: https://www.
hootsuite.com/resources/digital-trends. (Accessed January 2021).

Goodfellow, I.J., Shlens, J., Szegedy, C., 2015. Explaining and harnessing adversarial
examples. In: International Conference on Learning Representations (ICLR).

Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P., 2016. Adversarial
Perturbations against Deep Neural Networks for Malware Classification arXiv
preprint arXiv:1606.04435.

Hu, W., Tan, Y., 2017. Generating Adversarial Malware Examples for Black-Box At-
tacks Based on gan arXiv preprint:1702.05983.

Khariwal, K., Singh, J., Arora, A., 2020. Ipdroid: android malware detection using
intents and permissions. In: Fourth World Conference on Smart Trends in
Systems, Security and Sustainability (WorldS4). IEEE, pp. 197e202.

Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., Ye, H., 2018. Significant permission iden-
tification for machine-learning-based android malware detection. IEEE Trans.
Ind. Inf. 14, 3216e3225.

Li, H., Zhou, S., Yuan, W., Li, J., Leung, H., 2019. Adversarial-example attacks toward
android malware detection system. IEEE Syst. J. 14, 653e656.

Machado, G.R., Silva, E., Goldschmidt, R.R., 2021. Adversarial machine learning in
image classification: a survey toward the defender's perspective. ACM Comput.
Surv. 55, 1e38.

McAfee Mobile Threat Report, 2022. Available: https://www.mcafee.com/content/
dam/consumer/en-us/docs/reports/rp-mobile-threat-report-feb-2022.pdf.
(Accessed April 2022).

Pitropakis, N., Panaousis, E., Giannetsos, T., Anastasiadis, E., Loukas, G., 2019.
A taxonomy and survey of attacks against machine learning. Computer Science
Review (CSR) 34, 100199.

Rathore, H., Sahay, S.K., Rajvanshi, R., Sewak, M., 2020. Identification of significant
permissions for efficient android malware detection. In: EAI BROADNETS.
Springer, pp. 33e52.

Rathore, H., Sahay, S.K., Nikam, P., Sewak, M., 2021a. Robust android malware
detection system against adversarial attacks using q-learning. Inf. Syst. Front
1e16.

Rathore, H., Sahay, S.K., Thukral, S., Sewak, M., 2021b. Detection of malicious
android applications: classical machine learning vs. deep neural network in-
tegrated with clustering. In: EAI BROADNETS. Springer, pp. 109e128.

Rathore, H., Samavedhi, A., Sahay, S.K., Sewak, M., 2021c. Robust malware detection
models: learning from adversarial attacks and defenses. Forensic Sci. Int.: Digit.
Invest. 37, 301183.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P., 2015. Trust region policy
optimization. In: International Conference on Machine Learning (ICML), PMLR.,
pp. 1889e1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal Policy
Optimization Algorithms arXiv preprint arXiv:1707.06347.

Sewak, M., Sahay, S.K., Rathore, H., 2020. Deepintent: implicitintent based android
ids with e2e deep learning architecture. In: IEEE 31st Annual International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
IEEE, pp. 1e6.

Sewak, M., Sahay, S.K., Rathore, H., 2021. DRLDO: a novel DRL based de-obfuscation
system for defence against metamorphic malware. Defence Sci. J. 71, 55e65.

Sophos Threat Report, 2022. Available: https://assets.sophos.com/X24WTUEQ/at/
b739xqx5jg5w9w7p2bpzxg/sophos-2022-threat-report.pdf. (Accessed April
2022).

Taheri, R., Javidan, R., Shojafar, M., Vinod, P., Conti, M., 2020. Can machine learning
model with static features be fooled: an adversarial machine learning. Cluster
Comput. 1e21.

Test, A.V.-, 2022. Total amount of malware and pua under android. Available:
https://portal.av-atlas.org/malware/statistics. (Accessed April 2022).

Zhu, H., Li, Y., Li, R., Li, J., You, Z., Song, H., 2020. Sedmdroid: an enhanced stacking
ensemble framework for android malware detection. IEEE.Trans.Netw. Sci.Eng
8, 984e994.

Zimperium Global Mobile Threat Report, 2022. Available: https://www.zimperium.
com/global-mobile-threat-report/. (Accessed April 2022).

Zou, D., Wu, Y., Yang, S., Chauhan, A., Yang, W., Zhong, J., Dou, S., Jin, H., 2021.
Intdroid: android malware detection based on api intimacy analysis. ACM Trans.
Software Eng. Methodol. 30, 1e32.

http://refhub.elsevier.com/S2666-2817(23)00012-4/sref1
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref1
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref1
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref2
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref2
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref2
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref2
https://www.hootsuite.com/resources/digital-trends
https://www.hootsuite.com/resources/digital-trends
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref4
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref4
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref5
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref5
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref5
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref6
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref6
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref7
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref7
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref7
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref7
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref8
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref8
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref8
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref8
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref9
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref9
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref9
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref10
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref10
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref10
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref10
https://www.mcafee.com/content/dam/consumer/en-us/docs/reports/rp-mobile-threat-report-feb-2022.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/reports/rp-mobile-threat-report-feb-2022.pdf
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref12
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref12
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref12
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref13
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref13
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref13
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref13
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref14
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref14
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref14
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref14
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref15
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref15
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref15
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref15
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref16
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref16
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref16
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref17
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref17
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref17
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref17
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref18
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref18
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref19
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref19
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref19
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref19
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref19
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref20
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref20
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref20
https://assets.sophos.com/X24WTUEQ/at/b739xqx5jg5w9w7p2bpzxg/sophos-2022-threat-report.pdf
https://assets.sophos.com/X24WTUEQ/at/b739xqx5jg5w9w7p2bpzxg/sophos-2022-threat-report.pdf
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref22
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref22
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref22
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref22
https://portal.av-atlas.org/malware/statistics
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref24
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref24
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref24
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref24
https://www.zimperium.com/global-mobile-threat-report/
https://www.zimperium.com/global-mobile-threat-report/
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref26
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref26
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref26
http://refhub.elsevier.com/S2666-2817(23)00012-4/sref26

	Adversarial superiority in android malware detection: Lessons from reinforcement learning based evasion attacks and defenses
	1. Introduction
	2. Adversarial attack and defense
	2.1. Proposed framework
	2.2. Adversarial attack (MalEAttack)
	2.2.1. Exploration
	2.2.2. TRPO-MalEAttack
	2.2.3. PPO-MalEAttack
	2.2.3.1. Exploitation

	2.3. Adversarial defense strategy (MalVPatch)

	3. Experimental setup
	3.1. Dataset (malware and benign)
	3.2. Feature extraction
	3.3. Classification algorithms
	3.4. Performance metrics
	3.5. Experimentation platform

	4. Experimental results
	4.1. Baseline android malware detection models
	4.2. Adversarial attack on malware detection models
	4.2.1. Fooling rate @ MalEAttacks
	4.2.2. Accuracy reduction @ MalEAttacks
	4.2.3. Vulnerable permissions and intents

	4.3. Adversarial defense strategy
	4.3.1. Detection performance @ MalVPatch models
	4.3.2. Adversarial robustness @ MalVPatch models

	4.4. Summary

	5. Related work
	6. Conclusion and future work
	References

