
∗Corresponding author: rjrodriguez@unizar.es

Module Extraction and DLL Hijacking Detection via
Single or Multiple Memory Dumps

Pedro Fernández-Álvarez, Ricardo J. Rodríguez∗

« All wrongs reversed – under CC-BY-NC-SA 4.0 license

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

March 23, 2023

10th Annual DFRWS Europe Conference
Bonn, Germany

rjrodriguez@unizar.es

Outline

1 Introduction

2 Background

3 Modex and Intermodex

4 Experiments

5 DLL Hijacking Detection

6 Conclusions and Future Work

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 2 / 30

Outline

1 Introduction

2 Background

3 Modex and Intermodex

4 Experiments

5 DLL Hijacking Detection

6 Conclusions and Future Work

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 3 / 30

Introduction
Motivation

Dynamic-Link Library (DLL)

Shared library containing functions and data that others can use

Helps promote code modularization, code reuse, and efficient memory
usage, among other benefits

It is a module (in Windows, a module is an executable file or DLL)

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 4 / 30

Introduction
Motivation

Virtual address
space of

Process A

kernel32.dll
system library

Executable code

Physical
memory

kernel32.dll
system library

Process B ex-
ecutable code

Process A ex-
ecutable code

Virtual address
space of

Process B

kernel32.dll
system library

Executable code

Process A page table

kernel32.dll
code page 0

kernel32.dll
code page 4

kernel32.dll
code page 5

kernel32.dll
data page 0

kernel32.dll
data page 1

Physical memory

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 4

kernel32.dll
code page 6

kernel32.dll
data page 1

kernel32.dll
data page 0

kernel32.dll
data page
0 (private)

Process B page table

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 6

kernel32.dll
data page 0

kernel32.dll
data page 1

Only pages accessed by the process are mapped into virtual memory
A page is a contiguous block of virtual memory of fixed length (typically, 4KiB)

Limitation of extraction tools: process-level view

Current tools for extracting modules from memory dumps only
dumps the pages mapped into a single process address space

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 5 / 30

Introduction
Motivation

Virtual address
space of

Process A

kernel32.dll
system library

Executable code

Physical
memory

kernel32.dll
system library

Process B ex-
ecutable code

Process A ex-
ecutable code

Virtual address
space of

Process B

kernel32.dll
system library

Executable code

Process A page table

kernel32.dll
code page 0

kernel32.dll
code page 4

kernel32.dll
code page 5

kernel32.dll
data page 0

kernel32.dll
data page 1

Physical memory

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 4

kernel32.dll
code page 6

kernel32.dll
data page 1

kernel32.dll
data page 0

kernel32.dll
data page
0 (private)

Process B page table

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 6

kernel32.dll
data page 0

kernel32.dll
data page 1

Only pages accessed by the process are mapped into virtual memory
A page is a contiguous block of virtual memory of fixed length (typically, 4KiB)

Limitation of extraction tools: process-level view

Current tools for extracting modules from memory dumps only
dumps the pages mapped into a single process address space

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 5 / 30

Introduction
Motivation

Virtual address
space of

Process A

kernel32.dll
system library

Executable code

Physical
memory

kernel32.dll
system library

Process B ex-
ecutable code

Process A ex-
ecutable code

Virtual address
space of

Process B

kernel32.dll
system library

Executable code

Process A page table

kernel32.dll
code page 0

kernel32.dll
code page 4

kernel32.dll
code page 5

kernel32.dll
data page 0

kernel32.dll
data page 1

Physical memory

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 4

kernel32.dll
code page 6

kernel32.dll
data page 1

kernel32.dll
data page 0

kernel32.dll
data page
0 (private)

Process B page table

kernel32.dll
code page 0

kernel32.dll
code page 5

kernel32.dll
code page 6

kernel32.dll
data page 0

kernel32.dll
data page 1

Only pages accessed by the process are mapped into virtual memory
A page is a contiguous block of virtual memory of fixed length (typically, 4KiB)

Limitation of extraction tools: process-level view

Current tools for extracting modules from memory dumps only
dumps the pages mapped into a single process address space

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 5 / 30

Introductions
Summary of our contributions

New tools to get as much content as possible from a given module
From a single memory dump (intradump extraction): Modex
From multiple memory dump (interdump extraction): Intermodex

Both tools are released under GNU/GPLv3 license at GitHub
Python3-based tools
Modex is a Volatility 3 plugin, while Intermodex is a standalone tool that relies on Modex
Create. Share. Build community r

Relevant to analyze:
Whether a DLL module is malicious or not
Detection of DLL hijacking attacks

Some remark...
We focus on module extraction of Windows 64-bit DLLs, but our tools are also
valid for extracting modules of Windows 64-bit executable files!

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 6 / 30

https://github.com/reverseame/modex

Introductions
Summary of our contributions

New tools to get as much content as possible from a given module
From a single memory dump (intradump extraction): Modex
From multiple memory dump (interdump extraction): Intermodex

Both tools are released under GNU/GPLv3 license at GitHub
Python3-based tools
Modex is a Volatility 3 plugin, while Intermodex is a standalone tool that relies on Modex
Create. Share. Build community r

Relevant to analyze:
Whether a DLL module is malicious or not
Detection of DLL hijacking attacks

Some remark...
We focus on module extraction of Windows 64-bit DLLs, but our tools are also
valid for extracting modules of Windows 64-bit executable files!

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 6 / 30

https://github.com/reverseame/modex

Outline

1 Introduction

2 Background

3 Modex and Intermodex

4 Experiments

5 DLL Hijacking Detection

6 Conclusions and Future Work

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 7 / 30

Background
On Windows virtual memory management

Fstart R C

VirtualFree,
VirtualFreeEx

VirtualAlloc,
VirtualAllocEx

VirtualAlloc,
VirtualAllocEx

VirtualFree,
VirtualFreeEx

States of a page: free, reserved, committed

Page Table Entries (PTE)

Relationship between virtual memory and physical memory

Shared vs. private pages⇔ prototype vs. real/process PTE

Shared pages are stored only once in physical memory
Prototype PTE: enables shared memory support in Windows

Copy-on-write mechanism
Prevents modifications to shared pages from being visible to processes sharing them

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 8 / 30

Background
On Windows virtual memory management

Fstart R C

VirtualFree,
VirtualFreeEx

VirtualAlloc,
VirtualAllocEx

VirtualAlloc,
VirtualAllocEx

VirtualFree,
VirtualFreeEx

States of a page: free, reserved, committed

Page Table Entries (PTE)

Relationship between virtual memory and physical memory

Shared vs. private pages⇔ prototype vs. real/process PTE

Shared pages are stored only once in physical memory
Prototype PTE: enables shared memory support in Windows

Copy-on-write mechanism
Prevents modifications to shared pages from being visible to processes sharing them

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 8 / 30

Background
On Windows virtual memory management

Page frame number database (PFN DB)

Windows kernel data structure

Describes each page stored in physical memory (PFN DB entry)

Fields of interest:
PteAddress: contains the virtual address of the PTE
PrototypePTE: determines whether it is a prototype PTE or not

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 9 / 30

Outline

1 Introduction

2 Background

3 Modex and Intermodex

4 Experiments

5 DLL Hijacking Detection

6 Conclusions and Future Work

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 10 / 30

Modex and Intermodex

Modex

Intermodex

0100...

0100...

0110...

0101...

Memory dumps

Module name

0100...

1000...

0010...

0001...

Memory dump

0100...

0001...

0111...

0100...

Final module

{
{ ...
} ...

}
JSON metadata

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 11 / 30

Modex and Intermodex
Implementation details of Modex

Volatility 3 plugin

Input: a memory dump and the module name to be extracted

Output: combined module, JSON file, and an execution log file

Workflow:
1 Walks through all the processes in the memory dump and checks which one loaded the

given module as an argument
2 It dumps this module, saving it as an intermediate .dmp file
3 Those intermediate .dmp files are combined in a single .dmp file

Third-party dependencies:
DllList plugin: to dump modules from processes
SimplePteEnumerator plugin: to check the PrototypePTE flag in PFN DB entries

Current limitation: only works for 64-bit modules

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 12 / 30

Modex and Intermodex
Implementation details of Modex

Volatility 3 plugin

Input: a memory dump and the module name to be extracted

Output: combined module, JSON file, and an execution log file

Workflow:
1 Walks through all the processes in the memory dump and checks which one loaded the

given module as an argument
2 It dumps this module, saving it as an intermediate .dmp file
3 Those intermediate .dmp files are combined in a single .dmp file

Third-party dependencies:
DllList plugin: to dump modules from processes
SimplePteEnumerator plugin: to check the PrototypePTE flag in PFN DB entries

Current limitation: only works for 64-bit modules

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 12 / 30

Modex and Intermodex
Modex: rules for reconstructing modules

Which page do we choose for the combined module?

At a given offset:

No page retrieved→ the page is filled with zeroes

Only one page is retrieved→ this page is put into the final module

Multiple pages are retrieved:
All pages are shared: we choose one of them at random
Some pages are private, some are shared: we discard the private pages and consider
only the shared pages, choosing one of them at random
All pages are private: we choose the page that most closely resembles the shared page

Similarity score (with TLSH) between every two pages to reflect their similarity
Recall that the score trend of TLSH is descending
Page with the lowest value is chosen as the page to include in the final module

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 13 / 30

Modex and Intermodex
Modex: rules for reconstructing modules

Which page do we choose for the combined module?

At a given offset:

No page retrieved→ the page is filled with zeroes

Only one page is retrieved→ this page is put into the final module

Multiple pages are retrieved:
All pages are shared: we choose one of them at random
Some pages are private, some are shared: we discard the private pages and consider
only the shared pages, choosing one of them at random
All pages are private: we choose the page that most closely resembles the shared page

Similarity score (with TLSH) between every two pages to reflect their similarity
Recall that the score trend of TLSH is descending
Page with the lowest value is chosen as the page to include in the final module

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 13 / 30

Modex and Intermodex
Modex: rules for reconstructing modules

Which page do we choose for the combined module?

At a given offset:

No page retrieved→ the page is filled with zeroes

Only one page is retrieved→ this page is put into the final module

Multiple pages are retrieved:
All pages are shared: we choose one of them at random
Some pages are private, some are shared: we discard the private pages and consider
only the shared pages, choosing one of them at random

All pages are private: we choose the page that most closely resembles the shared page
Similarity score (with TLSH) between every two pages to reflect their similarity
Recall that the score trend of TLSH is descending
Page with the lowest value is chosen as the page to include in the final module

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 13 / 30

Modex and Intermodex
Modex: rules for reconstructing modules

Which page do we choose for the combined module?

At a given offset:

No page retrieved→ the page is filled with zeroes

Only one page is retrieved→ this page is put into the final module

Multiple pages are retrieved:
All pages are shared: we choose one of them at random
Some pages are private, some are shared: we discard the private pages and consider
only the shared pages, choosing one of them at random
All pages are private: we choose the page that most closely resembles the shared page

Similarity score (with TLSH) between every two pages to reflect their similarity
Recall that the score trend of TLSH is descending
Page with the lowest value is chosen as the page to include in the final module

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 13 / 30

Modex and Intermodex
Implementation details of Intermodex

Python 3-based tool

Input: a directory containing multiple memory dumps and the module name

Output: combined module, JSON file, and an execution log file

It relies on Modex, as Volatility cannot handle multiple dumps at once

Module reconstruction follows the same rules as Modex

Rules for combining modules:
R1 Loaded at the same base address
R2 With the same path
R3 With the same size

Performs also a derelocation process on the extracted module

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 14 / 30

Outline

1 Introduction

2 Background

3 Modex and Intermodex

4 Experiments

5 DLL Hijacking Detection

6 Conclusions and Future Work

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 15 / 30

Experiments
Methodology

VM Windows 10 64-bit (Pro edition, version 21H2) with 8 GiB of RAM

Four applications installed (most used and most popular):
Web browser (Google Chrome)
Word processor (Microsoft Word)
PDF reader (Adobe Acrobat Reader DC)
Spreadsheet processor (Microsoft Excel)

Simulation of user behavior in steps (power on, web browsing, view
PDFs, creation of Word and Excel documents)

Each application is used for 5 minutes. Two experimental scenarios:
1 Applications are not closed after using them
2 Applications are closed after using them

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 16 / 30

Experiments
Methodology

Memory dumps collected after each user step (10 in total)

Subset of DLLs loaded by all the applications
ntdll.dll, user32.dll, ole32.dll, kernel32.dll, advapi32.dll, and gdi32.dll

For each DLL and scenario:

Modex on the first memory dump

Intermodex on the first and second memory dumps

Intermodex on the first, second, and third memory dumps

... (until we consider all five memory dumps)

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 17 / 30

Experiments
Use of selected DLLs in multiple processes

95

90

85

80

75

ntdll.dll user32.dll ole32.dll kernel32.dll advapi32.dll gdi32.dll
DLL

25

30

35

40

Methodology
Closing applications
Without closing applications

Pe
rc

en
ta

ge
of

pr
oc

es
se

s
w

he
re

th
e

D
L

L
is

lo
ad

ed

All of them (except ole32.dll) are loaded by a large no. processes

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 18 / 30

Experiments
Intradump extraction

490
500
510

410
420
430

ntdll.dll user32.dll ole32.dll kernel32.dll advapi32.dll gdi32.dll
DLL

0

50

100

150

200

250

300 Markers
DLL size

Page type
Shared
Private

N
um

be
ro

fp
ag

es
re

tr
ie

ve
d

(a) Without combining pages

(b) Combining pages

Only the mapped pages on the address space of a process can be retrieved

No. shared pages is greater than the no. private pages for all modules

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 19 / 30

Experiments
Intradump extraction

490
500
510

410
420
430

ntdll.dll user32.dll ole32.dll kernel32.dll advapi32.dll gdi32.dll
DLL

0

50

100

150

200

250

300 Markers
DLL size

Page type
Shared
Private

N
um

be
ro

fp
ag

es
re

tr
ie

ve
d

490
500
510

410
420
430

ntdll.dll user32.dll ole32.dll kernel32.dll advapi32.dll gdi32.dll
DLL

0

50

100

150

200

250

300 Markers
DLL size

Page type
Shared
Private

N
um

be
ro

fp
ag

es
re

tr
ie

ve
d

(a) Without combining pages (b) Combining pages

Combined module contains more pages in all cases

No. private pages decreases when modules are combined (as shared
pages take precedence over private pages by our implementation)

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 19 / 30

Experiments
Interdump extraction

280

300

1 2 3 4 5
Number of memory dumps analyzed

0

20

40

60

80

100

120

140

160

Methodology
Closing applications
Without closing applications

DLL
gdi32.dll

ntdll.dll

kernel32.dll

advapi32.dll

user32.dll

ole32.dll

N
um

be
ro

fp
ag

es
re

tr
ie

ve
d

Results in both scenarios are very similar, with slightly variations
Behavior of ole32.dll can be caused by many factors

More complete modules are obtained by combining pages
and memory dumps

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 20 / 30

Experiments
No. pages considering the last or all memory dumps

ntdll.dll user32.dll ole32.dll kernel32.dll advapi32.dll gdi32.dll

DLL

0

50

100

150

200

250

300

N
um

be
ro

fp
ag

es
re

tr
ie

ve
d

Memory dumps analyzed
Last
All

(a) Without closing applications

(b) Closing applications

In the first scenario, practically no difference
The same content was in memory in both situations because the apps were not closed

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 21 / 30

Experiments
No. pages considering the last or all memory dumps

ntdll.dll user32.dll ole32.dll kernel32.dll advapi32.dll gdi32.dll

DLL

0

50

100

150

200

250

300

N
um

be
ro

fp
ag

es
re

tr
ie

ve
d

Memory dumps analyzed
Last
All

ntdll.dll user32.dll ole32.dll kernel32.dll advapi32.dll gdi32.dll

DLL

0

50

100

150

200

250

300

N
um

be
ro

fp
ag

es
re

tr
ie

ve
d

Memory dumps analyzed
Last
All

(a) Without closing applications (b) Closing applications

In the first scenario, practically no difference
The same content was in memory in both situations because the apps were not closed

In the second scenario, more memory dumps is clearly beneficial
No. pages retrieved is slightly higher considering all vs. just the last memory dump
We expected these differences to be larger...

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 21 / 30

Experiments
No. pages considering the last or all memory dumps

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 22 / 30

Experiments
Interesting findings and limitations

Some pages marked as shared and owned by a DLL, loaded at the
same base address in multiple processes, but with different content

Found in DLLs other than the ones used for experimentation
We manually verified the differences in these pages correspond to memory
addresses stored within those pages
This happens very rarely. We treat it as an anomaly and implement functionality to
analyze it. When found, we choose the most repeated shared page

Limitations
Base addresses of the modules must be the same to be combined

A page-granularity level derelocation process is required to normalize the page content
before combining the dumped modules (future work)

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 23 / 30

Experiments
Interesting findings and limitations

Some pages marked as shared and owned by a DLL, loaded at the
same base address in multiple processes, but with different content

Found in DLLs other than the ones used for experimentation
We manually verified the differences in these pages correspond to memory
addresses stored within those pages
This happens very rarely. We treat it as an anomaly and implement functionality to
analyze it. When found, we choose the most repeated shared page

Limitations
Base addresses of the modules must be the same to be combined

A page-granularity level derelocation process is required to normalize the page content
before combining the dumped modules (future work)

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 23 / 30

Outline

1 Introduction

2 Background

3 Modex and Intermodex

4 Experiments

5 DLL Hijacking Detection

6 Conclusions and Future Work

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 24 / 30

DLL Hijacking Detection
Background on hijacking execution flow attacks

Different purposes:
Persistence
Escalating privileges
Hiding malicious actions behind a legitimate process

DLL search order hijacking:
Adversaries take advantage of the Windows DLL search order to make a particular
program load a malicious DLL
The malicious DLL must have the same filename as the legitimate one, and also the
same exported function names
These functions must work as the originals, so that the program can run as usual
DLL proxying: acts as a proxy between the program and the legitimate DLL

A well-known malware that uses this technique is Stuxnet

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 25 / 30

DLL Hijacking Detection
--detect flag

No module is extracted in this case
The JSON file provided as output contains information about the detection of DLL
hijacking techniques
Modex indicates the affected processes, while Intermodex also indicates the affected
memory dumps

Module path and size in all processes that contains it are compared
Actual path and size are those that are most common for all the modules found
We assume that the processes targeted by DLL hijacking techniques are a minority

DLL hijacking detected when at least one path is different from the
most common path or at least one size is different from the most
common size

Disadvantage: it will not detect the attack when the paths and sizes of the malicious DLL
and the legitimate DLL match

Limitations
Our tools need a DLL name. As future work, we will integrate this feature directly in
Modex and Intermodex
We focus exclusively on 64-bit processes
If the hijacked DLL is loaded only in a single process, there would be no other
processes to compare against

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 26 / 30

DLL Hijacking Detection
--detect flag

No module is extracted in this case
The JSON file provided as output contains information about the detection of DLL
hijacking techniques
Modex indicates the affected processes, while Intermodex also indicates the affected
memory dumps

Module path and size in all processes that contains it are compared
Actual path and size are those that are most common for all the modules found
We assume that the processes targeted by DLL hijacking techniques are a minority

DLL hijacking detected when at least one path is different from the
most common path or at least one size is different from the most
common size

Disadvantage: it will not detect the attack when the paths and sizes of the malicious DLL
and the legitimate DLL match

Limitations
Our tools need a DLL name. As future work, we will integrate this feature directly in
Modex and Intermodex
We focus exclusively on 64-bit processes
If the hijacked DLL is loaded only in a single process, there would be no other
processes to compare against

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 26 / 30

DLL Hijacking Detection
PoC performing DLL proxying on cryptbase.dll

VLC media player as victim application

{
"memory_dump_location": "file:///tmp/MemoryDumps/

InfectedDump.elf",
"mapped_modules": [

...
],
"dll_hijacking_detection_result": true,
"suspicious_processes": [

3208
]

}

Code 1: DLL hijacking detection of our PoC with Modex.

{
"dll_hijacking_detection_result": true,
"suspicious_processes": {

"file:///tmp/MemoryDumps/InfectedDump.elf": [
3208

]
}

}

Code 2: DLL hijacking detection of our PoC with Intermodex.

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 27 / 30

Outline

1 Introduction

2 Background

3 Modex and Intermodex

4 Experiments

5 DLL Hijacking Detection

6 Conclusions and Future Work

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 28 / 30

Conclusions and Future Work

Two tools to extract a module as complete as possible from memory
Modex: a Volatility 3 plugin that combines the pages of the same module that are mapped
in different processes from a single Windows memory dump (intradump extraction)
Intermodex: it does the same, but with multiple memory dumps (interdump extraction)

Available under the GNU/GPLv3 license at GitHub

Functionality to detect DLL hijacking attacks

Future work

How to combine the same modules with different base addresses?
Theoretically, simply apply derelocation on the intermediate .dmp files. In practice...

Extend our tools to detect other DLL injection techniques

Can we extract more content from packed malware modules using
interdump extraction?

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 29 / 30

https://github.com/reverseame/modex

Conclusions and Future Work

Two tools to extract a module as complete as possible from memory
Modex: a Volatility 3 plugin that combines the pages of the same module that are mapped
in different processes from a single Windows memory dump (intradump extraction)
Intermodex: it does the same, but with multiple memory dumps (interdump extraction)

Available under the GNU/GPLv3 license at GitHub

Functionality to detect DLL hijacking attacks

Future work

How to combine the same modules with different base addresses?
Theoretically, simply apply derelocation on the intermediate .dmp files. In practice...

Extend our tools to detect other DLL injection techniques

Can we extract more content from packed malware modules using
interdump extraction?

Module Extraction and DLL Hijacking Detection ... Memory Dumps [CC BY-NC-SA 4.0 ©] DFRWS EU’23 29 / 30

https://github.com/reverseame/modex

∗Corresponding author: rjrodriguez@unizar.es

Module Extraction and DLL Hijacking Detection via
Single or Multiple Memory Dumps

Pedro Fernández-Álvarez, Ricardo J. Rodríguez∗

« All wrongs reversed – under CC-BY-NC-SA 4.0 license

Dept. of Computer Science and Systems Engineering
University of Zaragoza, Spain

March 23, 2023

10th Annual DFRWS Europe Conference
Bonn, Germany

rjrodriguez@unizar.es

	Introduction
	Background
	Modex and Intermodex
	Experiments
	DLL Hijacking Detection
	Conclusions and Future Work
	

