DFRWS USA 2023

Learning Linux
Forensic Analysis
and Why it Matters

By Ali Hadi & Mariam Khader

Thanks to our sponsers:
- Champlain College

- Cyber 5W

- Leahy Center

Our Sponsors

[
it
CHAMPLAIN |
COLLEGE

cvss{;}v

22222

comws unoxrorensicsworisior [EEEI
Compromised HDFS Cluster!

Case Brief
You have been called to analyze a compromised Linux Hadoop Cluster. The cluster includes one
Name Node (master) and two Data Nodes (Slaves). There is a suspicion that they all have been

compromised, but no proof to that. The activity has been noticed to happen between Oct. 5Sth,
2019 and Oct. 8th, 2019.

Deliverable(s)

1. How did the threat actor gain access to the system?

2. What privileges were obtained and how?
3. What modifications were applied to the system?
4. What persistent mechanisms on each compromised system were being used?
5. Could this system be cleaned/recovered?
6. Recommendations
Outcome(s)

At the end of this lab, you will have the required skills to deal with a compromised Linux

system, were you will be capable of doing:

Listing the volumes and mounting a forensic case image
Searching through the FHS

Search in log files

Understanding system services and how they work

Use TSK tools to list info of the image and deal with EXT4 fs
Use debugfs, EXT4 journal and ext4magic to recover deleted files

N kR

Generate and filter a super timeline

©2023 3/39

DFRWS LINUX FORENSICS WORKSHOP

Table of Contents

Case Brief
Deliverable(s)
Outcome(s)

Table of Contents

Task #0: Environment Preparation
0.0 Connecting to the Playground
0.1 Preparing Working Environment
Task #1: Verification and Mounting
1.1 Verifying the Evidence
1.2 Mounting the Evidence
1.3 Checking Status of Mounted Evidence
Task #2: Gathering General System Information
2.1 System Navigation
2.2 Timezone Information
2.3 Network Information
Table 2.1 - Cluster Network Settings
2.4 Drive Information
Task #3: Users, Groups, and Home Directories
3.1 User Information
3.2 Group Information
Table 3.1 - Usernames, Groups, Home Directories, etc
3.3 Home Directories
Task #4: Working with The Sleuth Kit (TSK)
4.1 Listing Files
4.2 Finding Files
4.3 Extracting Files
4.4 Deleted Files
Task #5: Data Recovery / File Carving
5.1 Dumping EXT4 Journal
5.2 Targeted Data Recovery
5.3 Try to Recover All Deleted Files
5.4 Deleted Exploit
Task #6: Finding the Persistence Mechanism
6.1 Searching Based on Reference
6.2 Searching Based on Date Range
6.3 Checking Files Content
Task #7: Checking System Logs
7.1 Installed Packages

©2023

4/39

0 O OO A WWW

W W W WWWWDNDNDNDDNDDNDNDDNDNDNDNDNDDN=2 22 A A a A a a aAa
W WN -2 22220 O OO NO”OTWW-_2 00O Ooou~NOO PP NOO©

7.2 User Login Activity 34
Task #8: Creating a Timeline 36
8.1 Generating a Super Timeline 36
8.2 Filtering Your Timeline 37
8.3 One Timeline to Rule Them Al 37
Deliverables: 38
Reference(s) 39

©2023 5/39

Task #0: Environment Preparation

0.0 Connecting to the Playground

Please use your browser to connect to the following IP address to access your lab
Virtual Machine (VM).

Playground Credentials

Server | https://192.168.1.10

Username | user

Password | workshop

Virtual Machine Credentials

Username | tsurugi

Password | tsurugi

0.1 Preparing Working Environment

From the top panel click on the red icon with a cross inside. Or from the menu as seen in figure 1.
Applications - System Tools — MATE Terminal
s tsurugi@lab: ~

tsurugi@lab: ~ 53x15

tsurugi@lab:~$%

Figure 1 - Mate Terminal

Create a directory named “cases”
$ mkdir cases

Then change your working directory to the newly created directory, as follows:
$ cd cases

©2023 6/39

This will be where we will store all our cases, but for now let us create another directory for our hdfs case
as following:

$ mkdir hdfs

Again, change your working directory to the newly created directory, as follows:

$ cd hdfs

Make sure you're inside the hdfs directory. This could be done with the ‘pwd’ command as follows and
as seen in figure 2.

$ pwd

tsurugi@lab:~/Desktops$| mkdir cases
tsurugi@lab:~/Desktop$| cd cases/
tsurugi@lab:~/Desktop/casess| mkdir hdfs.
tsurugi@lab:~/Desktop/cases$
tsurugi@lab:~/Desktop/cases/hdfs$| pwd |
/home/tsurugi/Desktop/cases/hdfs
tsurugi@lab:~/Desktop/cases/hdfss

Figure 2 - Preparing Evidence Environment

Now let’s create some mount points to be used later to mount our forensic images. Don’t worry, more on
that later and also a directory to hold our results that we pull from these forensic images. This can be
seen in figure 3.

tsurugi@lab:~/Desktop/cases/hdfs$ mkdir master slavel slave2 results
tsurugi@lab:~/Desktop/cases/hdfss 11

total 9.0G

-FWXIWXr-X tsurugi tsurugi 3.1G Jun 30 18:56 HOFS-Master . E0L*
-FWXIWXI-X tsurugi tsurugi 3.0G Jun 30 18:57 HOFS-Slavel (EOL*
-FWXIWXI-X tsurugi tsurugi 3.0G Jun 30 18:58 HOFS-Slavel EOL*

drwxrwxr-x
drwXrwxr-x
drwxXrwxr-x
drwxrwxr-x

tsurugi tsurugi 4.0K Jun 30 20:36 results/
tsurugi tsurugi 4.0K Jun 30 20:36 slavel/
tsurugi tsurugi 4.0K Jun 30 20:36 slave2/

LSS RS N e

3
3
3
tsurugi tsurugi 4.0K Jun 30 20:36 master/
4
4
4
3

- Creating Mount Points

©2023 7/39

Task #1: Verification and Mounting

1.1 Verifying the Evidence

Before doing anything, let's verify the case image, which could be done as seen below:
$ ewfverify HDFS-Master.EO1

Make sure you get a success message for all three forensic images (this may take some time depending
on the specs of your VM, so please be patient). An example can be seen in figure 1.1.

MD5 hash stored in file: alble67a7b77a8edaleb36f2e7e030db
MD5 hash calculated over data: afble67a7b77a8edaleb36f2e7e030db

Additional hash values:
SHAL: 028fa98adcadbd73bfb0830dffdObfc2atbh2ce4d8

ewfverify:| SUCCESS |
tsurugi@lab:~/Desktop/cases/hdfss

Figure 1.1 - Verifying the Master Server Forensic Image

Now, let us check our drives and what volumes does each one of them include. Let’s start with the Master
and the results can be seen in figure 1.2.

$ mmls HDFS-Master.EO1

tsurugi@lab: ~/Desktop/cases/hdfsﬁl mmls HDFS-Master.E01 I

DOS Partition Table

0ffset Sector: @
Units are in 512-byte sectors

Slot Start End Length Description
000: Meta 0000000000 BBBBBBBBBB BBBBBBBBBI Primary Table (#0)
. -y a -
ﬁz: 000:000 Linux (0x83)
37 ------- s
004: Meta 0163579992 0167770111 BBB419021E] D0OS Extended (0x05)
005: Meta 0163579902 0163579902 0000000001 Extended Table (#1)
006: 001:000 0163579904 0167770111 0004190208 Linux Swap / Solaris x86 (0x82)
007: ------- 0167770112 0167772159 0000002048 Unallocated

tsurugi@lab:~/Desktop/cases/hdfs$

Figure 1.2 - Partition and Volume Layout for Master Server

We can see the results for Slave 1 and Slave 2 in figure 1.3.

©2023 8/39

tsurugi@lab:~/Desktop/cases/hdfs$ mmls HDFS-Slavel.EOL1

DOS Partition Table
Offset Sector: 0

Units are in 512-byte sectors

Slot
P00: Meta

Start
(elelelelelele e Lo1e]

000:000 0000002048

End
0000000000

0163577855

Length
0000000001

Description
Primary Table (#0)

Linux (0x83)

““““ iU/ 7020 ~+ O SAL= Ul d
004: Meta 0163579902 0167770111 0004190210 DOS Extended (Ox085)
005: Meta 0163579902 0163579902 0000000001 Extended Table (#1)
006: 001:000 0163579964 0167770111 0004190208 Linux Swap / Solaris x86 (0x82)
peO7: ------- 0167770112

tsurugi@lab:~/Desktop/cases/hdfsg mmls HDFS-Slave?.E01

D0OS Partition Table
Offset Sector: @

Units are in 512-byte sectors

Slot
P00: Meta

Start
(elelelelelele e Lo)e]

000:000 0000002048

915110C6t9d

End

0163577855

Length

Description
Primary Table (#0)

Linux (0x83)

Uilos2//70620

U1o355 /Y490

004: Meta 0163579902 0167770111 0004190210 DOS Extended (Ox085)

005: Meta 0163579902 0163579902 0000000001 Extended Table (#1)

006: 001:000 01635799064 0167770111 0004190208 Linux Swap / Solaris x86 (0x82)
peO7T: ------- 0167770112 0167772159 0000002048 Unallocated

tsurugi@lab:~/Desktop/cases/hdfs$

Figure 1.3 - Partition and Volume Layout for both Slave1 and Slave2 Servers

The volumes we are interested in are the ones with index number 002. As you can see, these volumes
are all described as Linux (0x83), so most probably they hold a Linux file system. Another thing to note is
that they all start at a sector offset of 2048. This will be needed later when we get to the mounting part of
the workshop.

©2023 9/39

https://en.wikipedia.org/wiki/Partition_type

1.2 Mounting the Evidence

First, let us mount the EO01 file for each one of them, which could be done using the command below and
as seen in figure 1.4.

$ sudo ewfmount HDFS-Master.E01 /mnt/ewf1/

tsurugi@lab:~/Desktop/cases/hdfs$ |sudo ewfmount HDFS-Master.EOL /mnt/ewfl
[sudo] password for tsurugi:
ewfmount 201380403

tsurugi@lab:~/Desktop/cases/hdfs$|sudo ewfmount HDFS-Slavel.EQ1 /mnt/ewf2
ewfmount 20180403

tsurugi@lab:~/Desktop/cases/hdfs$ |sudo ewfmount HDFS-SlaveZ.EQ1l /mnt/ewf3
ewfmount 20180403

tsurugi@lab:~/Desktop/cases/hdfss

Figure 1.4 - Mounting Forensic Images using ewfmount

If you list the contents of the ewf1 directory, you should see a file named “ewf1”. You'll see a similar file in
both ewf2 and ewf3 as seen in figure 1.5.

$ sudo Is -Ih /mnt/ewfl /mnt/ewf2 /mnt/ewf3

tsurugi@lab:~/Desktop/cases/hdfs$|sudo 1s -1lh /mnt/ewfl /mnt/ewf2 /mnt/ewf3
/mnt/ewfl:
total @

-r--r--r-- 1 root root 80G Jun 30 20:15 ewfl

/mnt/ewf2:
total O
-r--r--r-- 1 root root 860G Jun 30 20:15 ewfl

/mnt/ewf3:

total ©

-r--r--r-- 1 root root 80G Jun 30 20:15 ewfl
tsurugi@lab:~/Desktop/cases/hdfs$

Figure 1.5 - Checking ewf Directories After Mount
Whenever you need help or more info. on a command, just check the man pages &

Great, so we have everything prepared, now let us get into business! Make sure you are within the hdfs
directory “/homel/tsurugi/cases/hdfs”, you can double check your current location using pwd &

Before we mount the volumes we will need the offset to the volume of interest, which we saw in both
figure 1.2 and figure 1.3 to be 2048. Now this value is in sectors and at the beginning of both of those
figures, we can see a line saying “Units are in 512-byte sectors”. So we need to multiply the offset by 512.

©2023 10/39

Mounting the forensic images can be done using the mount command as seen below and the result seen
in figure 1.6.
sudo mount -o ro,noexec,noatime,offset=$((512*2048)) /mnt/ewf1/ewf1 master

tsurugi@lab:~/Desktop/cases/hdfs$|sudo mount -o ro,noatime,noexec,offset=$((512%2048)) /mnt/ewfl/ewfl master/
mount: cannot mount /dev/loopl re Sy
tsurugi@lab:~/Desktop/cases/hdfs$

Figure 1.6 - Trying to Mount Linux Volume on Master Server

Q1.1: Was the command successful or not and why?

Let us do some checking first using fsstat to see why that happened. We will need the
offset to the volume of interest, but fsstat can deal directly with sectors, so we just need
to pass the offset as seen below and seen in figure 1.7.

$ sudo fsstat -0 2048 /mnt/ewf1/ewf1 | head -n 19

tsurugi@lab:~/Desktop/cases/hdfs$) sudo fsstat -o 2048 /mnt/ewfl/ewfl | head -n 19
FILE SYSTEM INFORMATION
File System Type: Ext4

Volume Name:

Volume ID: c3dfecB865832e886c489166d6cefcad

Last Written at: 2019-10-06 22:23:02 (BST)
Last Checked at: 2017-11-07 21:06:43 (GMT)

Last Mounted at: 2019-10-06 22:23:03 (BST)
Unmounted properly
Last mounted on: /

Source 0S: Linux

Dynamic Structure

Compat Features: Journal, Ext Attributes, Resize Inode, Dir Index

InCompat Features: Filetype, Needs Recovery, Extents, Flexible Block Groups,
Read Only Compat Features: Sparse Super, Large File, Huge File, Extra Inode Size

tsurugi@lab:~/Desktop/cases/hdfss

Figure 1.7 - Checking File System Info

Please read all the details, they are important, but for being as brief as possible here, check the line under
“Last Mounted at’. It says that it was not unmounted properly, and this might happen when the system
was not shutdown properly. Therefore, this could mean that there is some data in the journal that was not
written to volume, which will usually happen once the volume comes back online.

©2023 11/39

Okay, enough talking, let's adjust our command with the noload/norecovery option which can be seen in
figure 1.8.

sudo mount -o ro,noexec,noatime,norecovery,offset=$((512*2048)) /mnt/ewf1/ewf1

master

tsurugi@lab:~/Desktop/cases!hdfsisudo mount -o ro,noatime,noexec,norecovery,offset=$((512%2048)) /mnt/ewfl/ewfl master/l
tsurugi@lab:~/Desktop/cases/hdfs

Figure 1.8 - Successfully Mounting Linux Volume on Master Server

Super! No errors this time! Therefore, make sure to repeat the same for all of the other volumes on the
Slave1 and Slave2 forensic images.

1.3 Checking Status of Mounted Evidence

In order to check the status of the mounted volumes, we can use the mount command
again but with no options. This can be seen in figure 1.9.
$ mount | grep cases

tsurugi@lab:~/Deskt0p/cases/hdfs§ mount | grep cases
/mnt/ewfl/ewfl on /home/tsurugi/ er type ext4 (ro,noexec,noatime,norecovery)

/mnt/ewf2/ewfl on /home/tsurugi/Desktop/cases/hdfs/slavel type ext4 (ro,noexec,noatime,norecovery)
/mnt/ewf3/ewfl on /home/tsurugi/Desktop/cases/hdfs/slave2 type ext4 (ro,noexec,noatime,norecovery)
tsurugi@lab:~/Desktop/cases/hdfs$

Figure 1.9 - Checking Status of Mounted Volumes

Let us do one more check to find which loop device are these forensic images
connected to. This can be done using the findmnt command as seen in figure 1.10.
$ findmnt | grep cases

tsurugi@lab:~/Desktop/cases/hdfs4 findmnt | grep cases |

/home/tsurugi/Desktop/cases/hdfs/master /dev/loop@ extd ro,noexec,noatime,norecovery
/home/tsurugi/Desktop/cases/hdfs/slavel /dev/loopl extd ro,noexec,noatime,norecovery
/home/tsurugi/Desktop/cases/hdfs/slave2 /dev/loop2 extd ro,noexec,noatime,norecovery

tsurugi@lab:~/Desktop/cases/hdfs$

Figure 1.10 - Finding Which Loop Device is Attached to Each Volume

So from the results we can see that the master case is mounted on /dev/loop0, slave1 to /dev/loop1, and
slave2 to /dev/loop2. This will be very useful later when we get to use TSK in task #4.

©2023 12/39

Now let’'s see what we have now inside the “master” directory. I'm going to use “tree” this time to do that,
but feel free to use other stuff, such as “Is”. Make sure to do this for the other two directories we have
(slave1 and slave2). This can be seen in figure 1.11.

$ tree -L 1 master

tsurugi@lab:~/Desktop/cases/hdfsy tree -L 1 master/
master/
— bin
— boot
— dev
— etc
— home
—— initrd.img -> boot/initrd.img-4.4.0-98-generic

— initrd.img.old -> boot/initrd.img-4.4.0-31-generic
— 1ib

— 1ib64

— lost+found

— media

— mnt

— opt

— proc

— root

— run

— sbin

— snap

— srv

— sys

— usr
— var

—— vnlinuz -> boot/vmlinuz-4.4.0-98-generic

— vmlinuz.old -> boot/vmlinuz-4.4.0-31-generic

21 directories, 4 files
tsurugi@lab:~/Desktop/cases/hdfss [

Figure 1.11 - Using Tree to List the Directory Content

©2023 13/39

Task #2: Gathering General System Information

This task will be divided into multiple sections, to make sure we go over as much information as possible
to help us with our investigation.

2.1 System Navigation

PLEASE (all uppercase) take some time to navigate and understand the file hierarchy standard (FHS)
before proceeding. Understanding the hierarchy of the system is very important, especially if you are new
to Linux systems. It is an excellent time to ask yourself questions about the directories under root and
what could be found under each one of them.

Let us also verify the Linux flavor we are dealing with. This can be done by checking the /etc/os-release
file as seen in figure 2.1.

tsurugi@lab:~/Desktop/cases/hdfs$ |cat master/etc/os-release
NAME="Ubuntu"
VERSION="16.04.3 LTS (Xenial Xerus)"

ID=ubuntu

ID LIKE=debian

PRETTY NAME="Ubuntu 16.04.3 LTS"

VERSION ID="16.04"

HOME URL="http://www.ubuntu.com/"

SUPPORT URL="http://help.ubuntu.com/"

BUG REPORT URL="http://bugs.launchpad.net/ubuntu/"
VERSION CODENAME=xenial

UBUNTU CODENAME=xenial
tsurugi@lab:~/Desktop/cases/hdfs$

Figure 2.1 - Checking Linux Flavor

As you can see from the results of our master server, we are dealing with an Ubuntu Linux 16.04.3 LTS
code name Xenial.

Please do the same to both slave servers before moving further.

©2023 14/39

2.2 Timezone Information

An important part of an investigation is also verifying the timezone used on the system. | know some
might say that this is already provided to us. You're correct about that BUT [frlist, but verify’ is how we
should go with investigations...

Let’s check the timezone found on all of the systems:
$ cat master/etc/timezone slave1/etc/timezone slave2/etc/timezone

Q2.1: What did you find?

You can double check the results by examining the /etc/localtime file for the timezone. So when checking
it using the file command, you should find the path to the zone information being used on the system.

Q2.2: What type of file is /etc/localtime?

We are going to use this information later, especially when generating our timeline, so make sure you
document it on your technical notes document.

PLEASE READ ME: not all of the workshop has screenshots for a reason, which is we need you to pay

attention and ask questions and not just copy and paste commands. Therefore, we will purposely leave
questions and commands unanswered, but they will be together, so enjoy the ride =

©2023 15/39

2.3 Network Information

Let us gather information about the network configurations used on these three servers. Now, since we
knew that this is an Ubuntu server, we know that the network settings could be found in either the
/etc/network or /etc/netplan directory. Others could exist, but these are the most commonly seen
locations. The results of this check can be seen in figure 2.2.

tsurugi@lab:~/Desktop/cases/hdfss Jcat master!etc!networkfinterface;l
This file describes the network Intertaces avallable on your system
and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network intertface
auto lo
iface lo inet loopback

The primary network interface

auto ens33

iface ens33 inet static
address 192.168.2.100
netmask 255.255.255.0
#gateway 192.168.2.1
dns-nameservers 192.168.2.1 8.8.8.8
network 192.168.2.0
broadcast 192.168.2.255

auto ens36
iface ens36 inet dhcp

Figure 2.2 - Checking Network Configuration

Let’s check the hostname of the server which can be found in the /etc/hostname file as seen in figure 2.3.

tsurugi@lab:~/Desktop/cases/hdfss Jcat master/etc/hostname
master.champforensics.com
tsurugi@lab:~/Desktop/cases/hdfs$

Figure 2.3 - Checking Hostname of System

Another important location to check would be the /etc/hosts file, which could be used to define static host
lookups (static dns settings). Using cat again, we can see some cool results in figure 2.4.

©2023 16/39

tsurugi@lab:~/Desktop/cases/hdfs$ |cat master/etc/hosts
127.0.0.1 localhost

#127.0.1.1 hadoop-master

192.168.2.100 master.champforensics.com master
192.168.2.101 slavel.champforensics.com slavel
192.168.2.102 slavel2.champforensics.com slavel

The following lines are desirable for IPv6 capable hosts
#:.:1 localhost ip6-localhost ip6-loopback

#TT02::1 ip6-allnodes

#TfR2::2 ip6b-allrouters

tsurugi@lab:~/Desktop/cases/hdfs$

Figure 2.4 - Checking Static DNS Lookups

Based on the settings found from the master server configuration files (make sure you check slave1 and
slave2 too), we can conclude all the results into Table 2.1.

Table 2.1 - Cluster Network Settings

Hostname FQDN IP Address | Subnet | Gateway DNS
master master.champforensics.com | 192.168.2.100 192.168.2.1
slave1 slave1.champforensics.com [192.168.2.101 124 192.168.2.1 and
slave2 slave2.champforensics.com | 192.168.2.102 8.8.8.8

©2023 17/39

DFRWS LINUX FORENSICS WORKSHOP m

2.4 Drive Information

We can find useful information about the drives, volumes, and file systems available from the /etc/fstab
file and also by directly checking the drive as we saw in task 1, when we used mmis. Let’s check the file
system information found on the master server as seen in figure 2.5.

tsurugi@lab:~/Desktop/cases/hdfs$ [cat master/etc/fstab

/etc/fstab: static file system information.

#

Use 'blkid' to print the universally unique identifier for a

device; this may be used with UUID= as a more robust way to name devices

that works even if disks are added and removed. See fstab(5).

#

<fTile system> <mount point> <type> <options> <dump> <pass>

/ was on /dev/sdal during installation

UUID=a9fcced6-6691-486c-882e-8365c8fe3ddc / ext4d errors=remount-ro © 1
swap was on /dev/sda5 during installation

UUID=db93292d-30cd-4c32-bad@-3bb6T9cfc470 none swap SW [¢] 0
tsurugi@lab:~/Desktop/cases/hdfss

Figure 2.5 - Checking File System Info.

It seems that the system is configured to use UUIDs instead of directly using the volume numbers, which
is a great way to configure Linux systems (ask your instructor for more information if you want). So we
need to find a way to map the UUIDs to the drives and the volumes on them. Now, since we are actually
investigating a forensic image, we cannot use the mount command or the /etc/mtab file because it will be
empty, plus we cannot use the /proc/mounts pseudo file either. Therefore we will be using the cfdisk tool
to find the UUIDs of each partition.

Use the command as seen below and then use the arrows to find the partition with the UUID of the ext4
file system as seen in figure 2.6. This will be the root partition of this system.

$ sudo cfdisk /mnt/ewf1/ewf1

| Disk: /mnt/ewfl/ewfl
Size: 80 GiB, 85899345920 bytes, 167772160 sectors
Label: dos, identifier: 0xf@59872b

Device Boot Start End Sectors Size Id Type
/mnt/ewfl/ewflpl * 2048 163577855 163575808 786G 83 Linux
>> /mnt/ewfl/ewflp2 163579902 167770111 4190210 5 Extended

/mnt/ewfl/ewflp5 163579904 167770111 4190208 2G 82 Linux swap / Solari

quqqqk
xPartition type: Extended (5)

mqqu
[Bootable] [Delete] [Type 1 [Help 1 [Dump

Quit program without writing partition table

Figure 2.6 - Using cfdisk to Find Volume UUID

Make sure you follow the same process for the other servers.

Note: on live systems, you can check the /dev/disk directory, where you can list the info by id, label,
path, and by UUID.

©2023 18/39

DFRWS LINUX FORENSICS WORKSHOP m

Task #3: Users, Groups, and Home Directories

This task will also be divided into multiple sections, to make sure we go over as much information as
possible to help us with our learning process and investigation.

3.1 User Information

On a Linux system, the user information is found in the /etc/passwd file, so make sure you check it out
before proceeding.

Now, let's check it out using the command below. As you can see in figure 3.1, this will list only the users
that have a bash shell configured to use at login. Please note that on some systems this might be sh or
dash, etc. So make sure you know the environment you are investigating.

$ cat master/etc/passwd | grep bash

tsurugi@lab:~/Desktop/cases/hdfs$| cat master/etc/passwd | grep bash
root:x:0:0:root:/root:/bin/bash
hadoop:x:1000:1000:Hadoop Cluster,,,:/home/hadoop:/bin/bash
tsurugi@lab:~/Desktop/cases/hdfss

Figure 3.1 - Accounts with Bash Shells

From the results we can see that there are only two users who have shell access, root and hadoop.

Q3.1) Is this the same for all of the other systems? If the answer is NO, which system
has a different output and what did you find?

Q3.2) Explain what you found that is not following the standard Linux FHS?

Let's check if they have passwords to login. This can be found in the shadow file, which is found under
the /etc directory. So use the information you found to check the /etc/shadow file for each system. You
can do that as seen below. Note: make sure to replace username with the username you found in the
previous steps.

$ cat master/etc/shadow | grep username

In the shadow file, the second column (: is the separator), if you find a * it means no password is there,
but if you find a long string? Then a password exists for that user.

Q3.3) List who has a password.

3.2 Group Information

We need to check the group info that these users belong to. The group info is found in /etc/group file.

©2023 19/39

Q3.4) What are the groups that the user hadoop belongs to?

Q3.5) Who has sudo access, or in other words, is in the sudo group?

Use all the information you gathered to list on each system which user was found, their corresponding
user ID, home directory, and finally the groups they belong to. Add all this to the table 3.1 found below. An
example has already been made for you to follow.

Table 3.1 - Usernames, Groups, Home Directories, etc

Host Username | UserID Home Directory Groups
adm, cdrom, sudo, dip, plugdeyv, Ixd,
hadoop 1000 /home/hadoop Ipadmin, sambashare, and hadoop
master
slave1
slave2

©2023 20/39

3.3 Home Directories

We need to explore each user and their home directory. Use the information we found in the previous
step to help find and investigate each user. Let’s start with the master server.

Use the command below to list all the contents in the user hadoop’s home directory. Make sure to use the
correct command line options to list all files/directories even those that are hidden as seen in figure 3.2.

$ sudo Is -lha master/home/hadoop/

tsurugi@lab:~/Desktop/cases/hdfs$ Jsudo 1s -lha master/home/hadoop/
total 84K

drwxr-xr-x 6 tsurugi tsurugi 4.0K Oct 6 2019 .

drwxr-xr-x 3 root root 4.0K Nov 7 2017 ..

-rwxr-xr-x 1 tsurugi tsurugi 22K Oct & 2019 45010

SrW------- 1 tsurugi tsurugi 7.4K Oct 6 2019 .bash history
-rw-r--r-- 1 tsurugi tsurugi 220 Nov 7 2017 .bash logout
-rw-r--r-- 1 tsurugi tsurugi 4.2K Nov 8 2017 .bashrc
drwx------ 2 tsurugi tsurugi 4.0K Nov 7 2017 .cache

drwxrwxr-x 2 tsurugi tsurugi 4.0K Nev 8 2017 .oracle jre usage
-rw-r--r-- 1 tsurugi tsurugi 746 Nov 8 2017 .profile
drwx------ 2 tsurugi tsurugi 4.0K Nov 8 2017 .ssh

-rw-r--r-- 1 tsurugi tsurugi @ Nov 7 2017 .sudo _as admin_ successful
drwxrwxr-x 2 tsurugi tsurugi 4.0K Oct 6 2019 temp

-rW------- 1 tsurugi tsurugi 8.5K Oct 6 2019 .viminfo

tsurugi@lab:~/Desktop/cases/hdfss

Figure 3.2 - Contents of the Hadoop User on Master Server

Explore the directory and its contents, especially those bash files, the ssh directory, temp, the viminfo and
definitely that file which is named 45010!

Q3.6) Did you find anything useful? Explain...

©2023 21/39

DFRWS LINUX FORENSICS WORKSHOP m

Spend some time checking the contents of the .bash_history (a file that is used to store a history of all
the commands used on a Linux system). The dot at the beginning of the file, denotes that this is a hidden
file. I'm sure you found something interesting! (=

Q3.7) Can you correlate that with the contents found on the slave servers and did you
find anything weird?

**Move on to investigate the root user and document your findings.

Use the command below to show the contents of the .bash_history file of the hadoop user on the slave1
server, but make sure to use the tee command with it too as seen below.
$ sudo cat slave1/home/hadoop/.bash_history | tee

results/slave1-hadoop-bash_history.txt

The tee command allows us to copy the content we dumped on the terminal to a file at the same time. Do
the same for all other users to gather information about each one of them and what they did on those
systems.

From the bash history for the user hadoop on slave1, it seems the user edited the passwd file using vim
(totally weird!!) and rm a file of interest before logging out of the system. A snippet of what has been
found can be seen in figure 3.3.

id

vim /etc/passwd
history

vim ~/.bash history
11

logout

exit

11

cd temp/

11

./45010

1ls

rm 45010

logout
tsurugi@lab:~/Desktop/cases/hdfs$

Figure 3.3 - Snippet from Bash History of Hadoop User on Slave1

Use the history to dig deeper with your investigation, since they could be a good map to check what and
where to look for activity. After that move to the next task.

©2023 22/39

DFRWS LINUX FORENSICS WORKSHOP m

Task #4: Working with The Sleuth Kit (TSK)

The idea of this task is to get familiar with basic TSK tools available. Let us start by listing the contents of
the hadoop user directory found on the master server. There are two ways to do that, let’s start with the
hard way &

4.1 Listing Files

We first need to get the inode number for the home directory and then use that to get the inode number
for the hadoop directory. But before you start, TSK deals with volumes/disks not with volumes that are
mounted! In other words, we cannot use TSK directly with files in our mountpoint directories (master,
slave1, and slave2). So we will be using the loop devices we saw in task #1 section 1.3.

Using the info. as we previously found, we can now use the fls command to list the files and directories
within the root of the file system mounted to /dev/loop0 as you can see in figure 4.1.

$ sudo fls -I /dev/loop0

‘tsurugi@lab:~/Desktop/cases/hdfs$ sudo fls -1 /dev/loop@®
d/d 11: lost+found 2017-11-07 21:06: 43 (GMT) 2017-11-07 21:06:43 (GMT) 2017-11-07 21:06:43 (GMT) 2017-11-07 21:06:43 (GMT) 16384 © 0
d/d 2228225: etc 2019-10- 130:3. 2019-10-06 22:43:13 (BST) 2019-10-06 23:30:32 (BST) 2017-11-07 21:06:44 (GMT) 4096 0 0
d/d 1572865: media 2017- 2016-07-19 21:43:06 (BST) 2017-11-07 21: (GMT) 2017-11-07 21:06:45 (GMT) 4096 0 0
d/d 1703937: bin 2017- 146: 1 2019-10-06 21:11:58 -11-07 23:46:13 (GMT) 2017-11-07 21:06:45 (GMT) 12288 0 0
d/d_2621441: boot 2017 - 11 08 04:13: 41 (GMT) 2017-11-08 04:13:41 -11- 08 04 13 (GMT) 2017-11-07 21:06:46_(GMT) 4096 0]
Lps sa e e OT7 oI e o e oy BT I 07 21 00 20 (O] T 0 v
d/d 2359297: home 2017711707 21'18'24 (GMT) 2016-04-12 21:14:23 (BST) 2017711707 21:18:24 (GMT) 2017-11-67 21:06:46 (GMT) 4096 0 0
d/d 1966081: 1ib64 2017-11-07 23:45: 10 (GMT) 2017-11-67 23:45:09 (GMT) 2017-11-07 23:45:10 (GMT) 2017-11-07 21:06:46 (GMT) 4896 0 0
d/d 2883585: mnt 2016-07-19 21:43:06 (BST) 2016-07-19 21:43:06 (BST) 2017-11-07 21:06:46 2017-11-67 21:06:46 (GMT) 4096 0 0
d/d 3014657: opt 2017-11-08 03: (GMT) 2016-07-19 21:43:06 (BST) 2017-11-08 03: 2017-11-07 21:06:46 (GMT) 4096 0 0
d/d 3145729: proc 2016-04-12 21: (BST) 2016-04-12 21:14:23 (BST) 2017-11-07 21: 2017-11-07 21:06:46 (GMT) 4096 0 0
d/d 2097153: root 2017-11-08 03: (GMT) 2019-10-06 23:39:01 (BST) 2017-11-08 03: 2017-11-07 21:06:46 (GMT) 4096 0 0
d/d 2752513: run 2017-11-07 21: (GMT) 2017-11-07 21:18:47 (GMT) 2017-11-07 21: 2017-11-07 21:06:46 (GMT) 4096 0 0
d/d 3276801: sbin 2017-11-07 23: (GMT) 2019-10-06 21:11:58 (BST) 2017-11-07 23: 2017-11-07 21:06:46 (GMT) 12288 0 0
d/d 917565: srv 2016-067-19 21: (BST) 2016-07-19 21:43:06 (BST) 2017-11-07 21: 2017-11-07 21:06:46 (GMT) 4096 0 0
d/d 262145: sys 2016-02-65 09: 2016-02-65 09:48:46 (GMT) 2017-11-07 21: 2017-11-07 21:06:46 (GMT) 4896 0 0
d/d 1441793: tmp 2019-10-66 23: 2019-10-06 22:24:35 (BST) 2019-10-06 23: 2017-11-07 21:06:46 (GMT) 4896 0 0
d/d 3407873: usr 2017-11-07 21:06: 2019-10-66 21:11:56 (BST) 2017-11-07 21:06: 2017-11-07 21:06:46 (GMT) 4896 0 0
d/d 3670017: var 2017-11-07 21: 13 18 (GMT) 2016-07-19 21:44:17 (BST) 2017-11-07 21: 13 18 (GMT) 2017-11-07 21:06:48 (GMT) 4096 0 0
/1 14: initrd.img 2017-11-08 04:13:22 (GMT) 2019-10-06 21:40:39 (BST) 017-11-08 04:13:22 (GMT) 017-11-08 04:13:22 (GMT) 32 0)
/1 15: vmlinuz 2017-11-08 04:13:22 (GMT) 2019-10-06 21:40:39 (BST) 2017-11-08 04:13:22 (GMT) 2017-11-08 04:13:22 (GMT) 29 0 0
/1 * 13(realloc): vmlinuz.4619 2017-11-07 21:07:12 (GMT) 2019-10-06 21:40:39 (BST) 2017-11-08 04:13:22 (GMT) 2017-11-07 21: 07 12 (GMT) 29 0 L]
d/d 4849665: snap 2016-06-29 21:13:52 (BST) 2019-10-06 21:10:45 (BST) 2017-11-07 21:13:04 (GMT) 2017-11-07 21:13:04 (GMT) 0 0
/1 12: initrd.img.old 2017-11-07 21:07:12 (GMT) 2019-10-06 21:40:39 (BST) 2017-11-08 04:13:22 (GMT) 2017-11-07 21:07:12 (GMT) 32 0 0
/1 13: vmlinuz.old 2017-11-07 21:07:12 (GMT) 2019-10-06 21:40:39 (BST) 2017-11-08 04:13:22 (GMT) 2017-11-07 21:07:12 (GMT) 0 0
\V/V 51118069: $0rphanFiles 0000-00-60 00:00:00 (UTC) 0000-00-60 00:00:00 (UTC) 0000-00-60 00:00:00 (UTC) 0000-00-60 00:00:00 (UTC) 0 0 0
‘tsurugi@lab:~/Desktop/cases/hdfs$

Figure 4.1 - Listing Volume Content using fls

The inode number is the number you will find in the 2nd column. The inode number for the “lost+found”
directory is 11 and for the boot directory is 2621441, and so on and so forth.

Now, from the results we can see that the home directory has the inode number 2359297. We can now
use that with the fls command to list the contents of that directory as seen in figure 4.2.

$ sudo fls -l /dev/loop0 2359297

GlabitiD. hdfstsude—fl 1—tdavlleopd—2350207
/d 2359298: hadoop 2019-10-06 23:29:04 (BST) 2019-10-06 23:33:05 (BST) 2019-10-06 23:29:04 (BST) 2017-11-87 21:18:24 (GMT) 4096 1000 IGGIi
uTugittab=/Desktop/Tases/hdfss

Figure 4.2 - Listing Directory Content using fls

One more time using the inode number of the hadoop directory which is 2359298 to list the content of the
directory, which can be seen in figure 4.3.

©2023 23/39

tsurugi@lab:~/Desktop/cases/hdfs$ sudo fls -1 /dev/loop@ 2359298

r/r 2359299: .bash_lo
r/r 2367347: .bashrc
r/r 2367326: .profile

d/d 2359302: .cache
r/r 2359304: .sudo_as

r/r 2359305: .bash_hi.
d/d 2359306 temp
d/d 2361147: .ssh
r/r 2367367: .viminfo

d/d 2361144: .oracle_
r/r 2367351: 45010
r/r * 2367367 (realloc):

gout 2017-11-067 21:18:24 (GMT) 201
2017-11-68 23:36:03 (GMT)
2017-11-08 ©3:02:08 (GMT

2017-11-07 21:21:26 (GMT)
_admin_successful

story 2019-10-06 23:48:20 (BST)

2019-10-06 23:34:09 (BST)
2017-11-08 01:56:57 (GMT)

2019-10-06 23:29:04 (BST)
2017-11-08 00:00:58 (GMT)

jre_usage
2019-10-06 23:24:26 (BST)

2017-11-07 21:25:35 (GMT)

2019-10-06 21:11:56 (BST
) 2019-10-

2017-11-07 23:38:40 (GMT)

2019-10-06 23:34:12 (BST)
2017-11-08 18:49:50 (GMT)

2019-10-06 23:24:34 (BST)

9-10-06 21:50:57 (BST)

2019-10-06 23:48:20 (BST)

2019-10-66 23:29:04 (BST)
2017-11-08 00:00:58 (GMT)

2017-11-07 21:18:24 (GMT) 2017-11-07 21:18:24 (GMT) 220 1000 1000
2017-11-08 23:36:03 (GMT) 2017-11-68 23:36:03 (GMT) 4275 1000 1000
) 2017-11-68 03:02:08 (GMT) 2017-11-68 03:02:08 (GMT) 746 1000 1000
2017-11-07 21:21:26 (GM 2017-11-07 21:21:26 (GMT) 4096 1000 1000
2017-11-67 21:25:35 (GMT) 2017-11-07 21:25:35 (GMT) 2017-11-07 21:25:35 (GMT) 0 1000 1000
2019-10-66 23:48:20 (BST) 2017-11-67 21:25:35 (GMT) 7476 1000 1000
2019-10-06 23:34:09 (BST) 2017-11-07 23:29:23 (GMT) 4096 1000 1000
2017-11-08 01:56:57 (GMT) 2017-11-068 00:02:37 (GMT) 4096 1000 1000
2019-10-06 23:29:04 (BST) 2019-10-66 23:29:04 (BST) 8686 1000 1000
2017-11-08 00:00:58 (GMT) 2017-11-68 00:00:58 (GMT) 4096 1e00 1000
2019-10-06 23:24:26 (BST) 2019-10-06 23:24:26 (BST) 22288 1000 1000

.viminfo.tmp 2019-10-06 23:29:04 (BST)

2019-10-06 23:29:04 (BST)

2019-10-06 23:29:04 (BST)

2019-10-06 23:29:04 (BST)

8686 1000

1000

tsurugi@lab:~/Desktop/cases/hdfss 1|

Figure 4.3 - Listing Home Directory Content using fls

Q4.1) What was the inode number for the file named “known_hosts” which is found
within the .ssh directory? Use the same method as we have done so far.

The easiest way to find the inode of a file is to use the “-i” option with the Is command as seen in the
command below.

$ sudo Is -lhi master/home/

How easy is that? See the results in figure 4.4 &

tsurugi@lab:~/Desktop/cases/hdfss
total 4.0K

2359298 drwxr-xr-x 6 tsurugi tsurugi 4.0K Oct 6 2019 hadoop
tsurugi@lab:~/Desktop/cases/hdfs$

sudo 1s

-1hi master/home/

Figure 4.4 - Listing inode Number of Hadoop Directory

©2023 24/39

4.2 Finding Files

Now, you might be thinking, how can we check if those inodes we found truly belong to those files or
directories? Well, the good thing is, that TSK comes with a command named “ffind” where we can use the
inode number to find which file it is pointing to. Let’s check the inode no of the hadoop directory:

$ sudo ffind /dev/loop0 2359298

Now | want you to go back and look at the contents of the hadoop user home directory but focus on the
.viminfo.tmp file. Use can use the pipe “|” with the grep command to help narrow down your search as
seen below.

$ sudo fls -I /dev/loop0 2359298 | grep viminfo

Q4.2) How many files did you find that have that name and why? Could you explain?

Q4.3) What does realloc mean here (README)?

Use the inode# of that file and search for what file does it belong to, using the same approach above.

Q4.4) What did you find the inode number 2367367 of the (realloc) file truly belongs to?

©2023 25/39

https://wiki.sleuthkit.org/index.php?title=Fls

DFRWS LINUX FORENSICS WORKSHOP m

4.3 Extracting Files

We can extract or dump a file from the volume or whatever you want to call it, using the TSK’s icat
command as seen below.

$ sudo icat /dev/loop0 2367367 | tee results/master-hadoop-viminfo.txt

Reminder: the command above will concatenate the output of the file to standard output (stdout) and
using the tee command we can also copy the output to a file of our name, which was
master-hadoop-viminfo.txt in the command above.

Let’'s do another example but this time for the 45010 file. This time we will be using the > to redirect the
output instead of the tee command since this is a binary file and we won’t benefit from dumping it's
content to the terminal. Most of the content will be not human readable, so let’s do it as seen below.

$ sudo icat /dev/loop0 2367351 > results/master-hadoop-45010.bin

Now check the file’s type and it’s strings content with both the file and strings commands:

$ file results/master-hadoop-45010.bin

Q4.5) What type of file did you find this file to be?

Then run the following command:
$ strings results/master-hadoop-45010.bin

Q4.6) Did you find anything referring to this file being an exploit? Show proof.

Let's compare the hashes for the file we just extracted and the file found directly in the
master/home/hadoop/ directory. This can be done using the following command:

$ md5sum results/master-hadoop-45010.bin master/home/hadoop/45010

Show proof that both files match each other.

©2023 26/39

4.4 Deleted Files

You are on your own with this task. You are required to use what we have learned so far to check for the
file we saw deleted in task #3 section 3.3. Yes, we are referring to the 45010 file that we saw was deleted
from both servers slave1 and slave2.

Show all your steps to the following:
1. Getting the inode number of the temp directory
2. What is the inode number of the 45010 file
3. Using the inode number for the file, does it map back to the 45010 file or not?
4. Use the icat command to extract the contents of the file and save it to
results/slave1-hadoop-45010.bin
Check the file type and explain your findings
Check the file content using strings and explain your findings
7. What do you think is going on here?

oo

Please use the same methods mentioned above to do other experiments and make sure you're
comfortable with using the TSK commands we've covered until now. Do not move forward without
understanding everything before this message. In the end, our goal is to learn, not just to run commands
and find the answer to the questions!

©2023 27/39

DFRWS LINUX FORENSICS WORKSHOP m

Task #5: Data Recovery / File Carving

In this task we want to recover the files that have been deleted, especially the file that was deleted based
on the commands we found being used in the .bash_history file.

The BAD NEWS, unfortunately on an EXT4 file system, once the file is deleted, the metadata that points
to the file is zeroed out and there are no longer any pointers pointing back to the volume.

5.1 Dumping EXT4 Journal

The GOOD NEWS, is let us assume that you manage to get your hands on the system before any of the
deleted files metadata was overwritten, then we might be able to recover that data with the help of the file
system’s journal. If this method does not work, let's say because you arrived at the crime scene late or
this was an operation that happened a couple of months ago, then we still could probably apply file
carving techniques to extract the deleted files, as long as they have not been overwritten.

Therefore, let us go with option (a) and use the journal to help us recover the files. To extract the journal,
we will be using debugfs and asking it to dump the file with the inode #8, which is the inode number for
the file system’s journal. This can be done as:

$ sudo debugfs -R 'dump <8> ./results/slave1-journal' /dev/loop1

You should end up with a 128MB file (size of the EXT4 journal) as seen in figure 5.1.

tsurugi@lab:~/Desktop/cases/hdfs$ 1s -1h results/slavel-*

i Gl T aa ST RS Gt =hadeep=bash=hdstory. txt
-rw-r--r-- 1 root root 128M Jul 1 07:37 results/slavel-journal ‘
surugi@lap:~/Desktop/cases/narss

Figure 5.1 - Verifying Size of File System Journal

Now we want to search for files that were deleted between October 5" 2019 and October 8" 2019 based
on the case brief that was given to us. Therefore, let us define a variable with that value:

AFTER=$(date -d"2019-10-05 00:00:00" +%s)

BEFORE=$(date -d"2019-10-08 00:00:00" +%s)

©2023 28/39

DFRWS LINUX FORENSICS WORKSHOP m

5.2 Targeted Data Recovery

Before attempting the recovery step, | would like you to check or list what files actually we can recover
with the help of the journal for example from the /home/hadoop directory. This can be done using the
command below (please adjust the values AFTER & BEFORE with the corresponding numbers from the
commands above):

$ sudo extdmagic /dev/loop1 -a SAFTER -b $BEFORE -f /home/hadoop -
results/slave1-journal -|

Q5.1) What was the path “/home/hadoop” used in the options above for? (hint: man
ext4dmagic)

Now, let us perform the recovery step itself instead of just listing the files that are recoverable, which
could be done as seen below:

$ sudo extdmagic /dev/loop1 -a SAFTER -b $BEFORE -f /home/hadoop -
results/slave1-journal -r -d results/slave-recovery1/

Q5.2) Were you able to recover the 45010 file? Show proof with validation that the
recovery was successfully done. (hint: use sha256sum)

5.3 Try to Recover All Deleted Files

Another approach would be to try recovering everything. This could also be done using ext4magic, but by
providing the -m option, which will try and recover all the deleted files on the volume, as seen below:

$ sudo extdmagic /dev/loop1 -a $AFTER -b $BEFORE -f /home/hadoop -
results/slave1-journal -m -d results/slave-recovery?2

Use:
$ sudo tree -L 1 results/slave-recovery2/

Please check the man pages for the ext4magic tool, this is truly an excellent tool with so many more
features/capabilities, so what are you waiting for? Go check them out!

©2023 29/39

5.4 Deleted Exploit

Now that we have been able to find the 45010 file and we noticed inside it's content a string referring to it
being an exploit.

Q5.4) Can you search and find out what this file is? (hint: use the search “45010 exploit”
phrase). Explain your findings.

Now that you have found out what it is. We need another proof which is to find if this exploit has truly
been executed on these systems or not! &)

We are going to leave this to you to figure out. Use all the knowledge you have learned so far to find the
answer.

©2023 30/39

DFRWS LINUX FORENSICS WORKSHOP m

Task #6: Finding the Persistence Mechanism

From the previous investigations we found the 45010 file and we also found out that it is a Linux Kernel
exploit that has been used to gain root access. Let us now use it as a reference to search for other files
that might have been added or modified on these systems.

6.1 Searching Based on Reference

Because we know the 45010 file still exists on the master server, we can use it as a reference to search
for other files. First let's search for files that have been modified and use the 45010 as a reference. This
can be done using the find command but with the -newer option as seen below.

sudo find master/ -type f -newer master/home/hadoop/45010

Use either the tee command or the > to redirect the output to a file named master-find1.txt in the results
directory.

We can also search for what files have been accessed after the 45010 file using the -anewer option as
seen below.

sudo find master/ -type f -anewer master/home/hadoop/45010

Again save the output to your results directory in a file named master-find2.txt.

6.2 Searching Based on Date Range

Now, since the file 45010 on the slave systems is actually deleted and not accessible directly without date
recovery, we cannot use the previous approach. Therefore, this time we will be performing the search
using a date range. Please note that we could still apply the previous approach on both slave1 and
slave2, but we will need to find a file that can be used as a reference and falls within the time frame of the
incident.

We know that the incident happened between October the 5th and the 8th, we can use the find command
again, but this time with the -newermt option as seen below.

sudo find slave1/ -type f \(-newermt "2019-10-05" -and ! -newermt "2019-10-08"\) | tee
results/slave1-find.txt

The brackets and the -and are to make sure that we search for anything newer than October 5th and
October 8th. Make sure you repeat the same steps for slave2 and you spend some time on your findings
before continuing your investigation.

©2023 31/39

6.3 Checking Files Content

One of the entries that stood up in the results of the master server, was the cluster.php file found under
the “/usr/local/hadoop/bin/” directory.

If we check its content, we will find that this file is dealing with sockets. Spend some time doing some
Googling and asking questions and then answer the question below.

Q6.1) What is this file and what is it doing? Explain in detail.

Use the debugfs command to find when this file was created. An example of how to use it can be seen
below. Make sure you replace the word inode# with the inode number for the cluster.php file.

$ sudo debugfs -R ‘stat <inode#>’" /dev/loop0

Now, check the other find results for both slave1 and slave2. Assuming you found another file that had the
word “cluster” in it.

Q6.2) Which system did you find it on and what was the content of this file?

Do some research and then explain your findings and what is this doing or achieving before you move on
to the next task.

Note: the instructors are also here to help you &

©2023 32/39

DFRWS LINUX FORENSICS WORKSHOP m

Task #7: Checking System Logs

In this task we move our focus completely on logs and log analysis. We will be using very simple
techniques, so don’t worry (©). Log files on a Linux system are found under the /var/log directory. This
directory contains many different log files depending on the system you are investigating, but in general
on a Linux Ubuntu flavor they will include the following:

- Main log file is syslog (named messages on other systems)

- User activity logs can be found in auth.log, wtmp, btmp, lastlog, faillog, etc

- Kernel logs can be found in kern.log (dmesg on live systems)

- Others depending on what systems/applications are installed on the system you may find

Apache, MySQL, PHP, Mail, etc log files

7.1 Installed Packages

Now since we know this is a Ubuntu system, we also know that whenever a package is installed using the
apt or dpkg package manager, it will leave a log entry within dpkg.log file and the history of the
installation activity will be in the history.log file under the apt/ log directory found within the log/ directory
itself. So let us check it out...

We can use the tail command to show us the last couple of entries within the file as seen in the command
below.

$ sudo tail master/var/log/dpkg.log

If we add the -n20 or -n30 option, we can even see the last 20 line entries or last 30 line entries,
depending on the number of entries you choose. If you examine the results, you will see that the php and
its related packages were installed. Before we move on to another file, explore the contents using the less
command and see if you can find any other activity within our time period. This can be done as seen
below and then using the up and down arrows to scroll through the file.

$ sudo less master/var/log/dpkg.log

Q7.1) Did you find any weird installations happening during the investigation time
period?

Now check the history file using the command below.
sudo tail -n20 master/var/log/apt/history.log

Q7.2) When was the php package installed and what other packages were installed with
it (list at least three of them)?

Make sure you check the same locations on the other systems, don’t skip those, these steps might just
show you one part, so don’t miss the others.

©2023 33/39

DFRWS LINUX FORENSICS WORKSHOP m

7.2 User Login Activity

First log we are going to check is the wtmp and btmp. so first let us do it this way:
$ sudo last -f master/var/log/wtmp

Now again but with head (hope you notice the difference):
$ sudo last -f master/var/log/wtmp | head -n 10

Q7.3) Who was the last user to login to the system?

Q7.4) From where did the login happen?

Now the btmp file (failed login attempts). Do the same as before without using head and with sudo
powers. Please spend some time carefully going through this log file, it is very important @ .

$ sudo last -f master/var/log/btmp | head -n 20

Q7.5) Why are there so many failed login attempts, what do you think is happening?
Explain your answer.

Check the auth.log file and explain what happened:
$ sudo cat master/var/log/auth.log

Q7.6) does it match the activity that you saw in the previous log (btmp)?

Q7.7) Was the user successful in obtaining access using this method? Explain with
proof.

Search for the line that has the text “Failed password for invalid user magnos”. (README)

©2023 34/39

https://www.cyberciti.biz/faq/searching-multiple-words-string-using-grep/

Find out what happened immediately after that and see if it all makes sense now.
Q7.8) Explain what happened and at what time.

Let us also check the lastlog file using the “strings” command:
$ strings master/var/log/lastlog

Q7.9) What IP Address did you find?

Q7.10) Does it match the IP Address you saw in any of the previous log files? Please
document all files that you found that IP address in, you will need them for your final
report.

We are unaware of a tool to read the lastlog file offline, but use the binary structure for the lastlog file to
read its records. The structure can be found below:

e 4 bytes — timestamp
e 32 bytes — terminal
e 256 bytes — hostname

By now, you should have found how this threat actor gained access to the master system and hopefully
into other systems too. Let's move on and generate a timeline to make sure this all can be correlated
together and makes sense!

©2023 35/39

Task #8: Creating a Timeline

This task could be done at the beginning or the end, it depends on how you approach your cases. | am
not going to say which is good and which is bad, just use the approach you feel more comfortable with.

8.1 Generating a Super Timeline

Now, to generate a super timeline for our case, we will be using the log2timeline.py framework. This could
be seen in the command below:

$ sudo log2timeline.py -z UTC -t / --parse linux,apache_access,apt_history
master.timeline master/

Q8.1: What does the linux parser used in the command above search for?

Q8.2: Why did we add the apache_access parser?

©2023 36/39

DFRWS LINUX FORENSICS WORKSHOP m

8.2 Filtering Your Timeline

Finally, let’s filter our timeline and sort it using the psort.py tool, which can be done as seen below.

Master:
sudo psort.py -z UTC -0 L2tcsv -w master.csv master.timeline "date > '2019-10-05
00:00:00" AND date < '2019-10-08 00:00:00™

Slave1:
sudo psort.py -z UTC -0 L2tcsv -w slavel.csv slavel.timeline "date > '2019-10-05
00:00:00" AND date < '2019-10-08 00:00:00™

Slave2:
sudo psort.py -z UTC -0 L2tcsv -w slave2.csv slave2.timeline "date > '2019-10-05
00:00:00"' AND date < '2019-10-08 00:00:00"

8.3 One Timeline to Rule Them All

Make sure you remove the header from two files and then use the command line below to combine all of
them.

cat master.csv slave1.csv slave2.csv >> timeline.csv

Note(s):

1. Spaces were added to the command above to help you understand it, otherwise it is not needed.
2. Use whatever tool or spreadsheet application to go through your timeline. For quick checks, |
usually use Eric Zimmerman’s Timeline Explorer, but it's up to you.

©2023 37/39

Deliverables:

1. How did the threat actor(s) gain access to the system?
ANSWER:

2. What privileges were obtained and how?
ANSWER:

3. What are the modifications that have been applied to the system?
ANSWER:

4. What persistent mechanisms did the threat actor(s) use?
ANSWER:

5. What needs to be done to restore the cluster to a fully cleaned and working
environment?
ANSWER:

6. Notes and recommendations
ANSWER:

©2023 38/39

Reference(s)

e Linux DFIR Team, https://linuxdfir.ashemery.com

©2023 39/39

https://linuxdfir.ashemery.com

