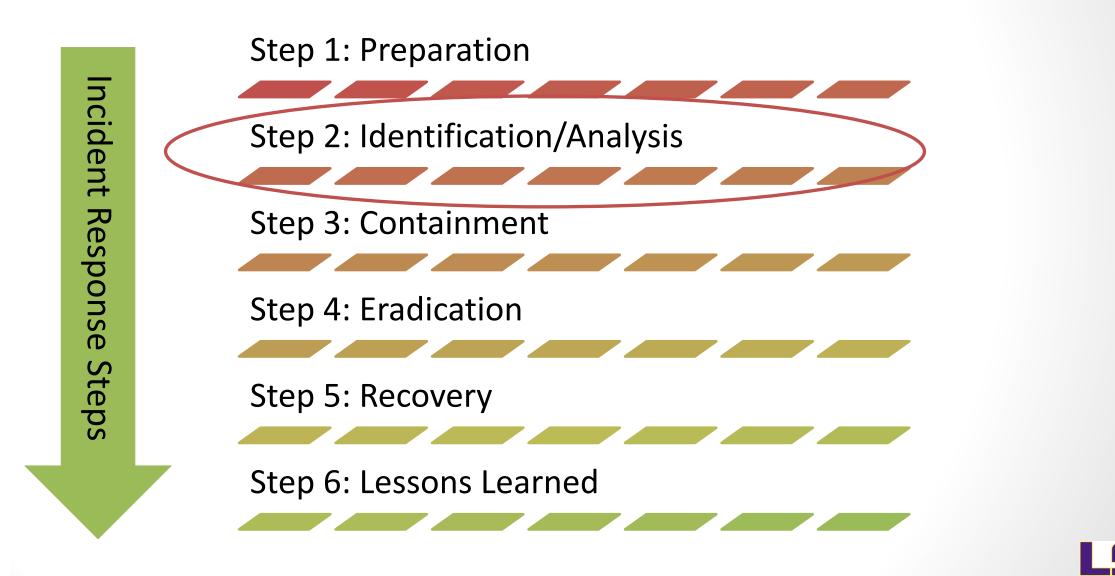
RGB_Mem : At the Intersection of Memory Forensics and Machine Learning

<u>Aisha Ali-Gombe</u>, Sneha Sudhakaran, Ramypandian Vijayakanthan, Golden G. Richard III

> Systems Security Labs (SySec) Louisiana State University July 2023 @ DFRWS

Motivation



Traditional Malware Analysis Techniques

Static analysis

• examine program file

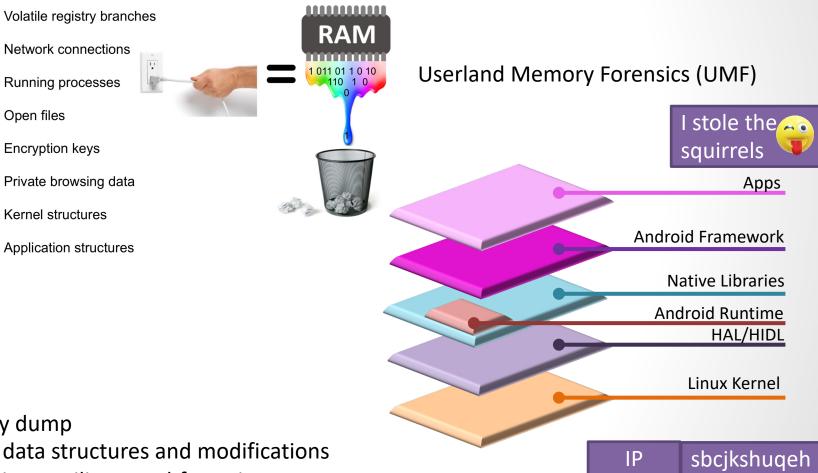
- extract data such as permissions, API calls, strings, resources and instructions
- detailed
- drawback time consuming and obfuscation

Dynamic analysis

- runtime behavioral monitoring
- quick analysis, resilient to common obfuscation
- drawback preconfigured environment requiring execution tracing, low-level system modification

Memory Forensics

Clipboard data



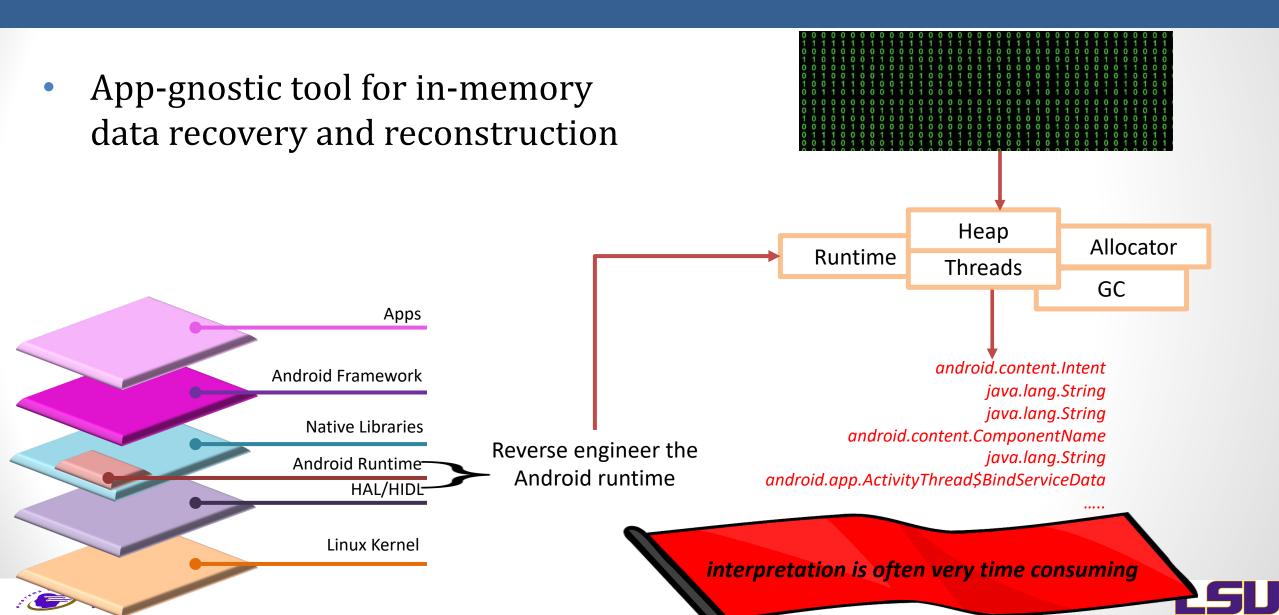
qwnbNjhfiid

Header

Kernel-land Memory Forensics

- post-mortem investigation of memory dump
 avtract rupping processes and kernel data struct
- extract running processes and kernel data structures and modifications
- offline analysis no system modification, resilient to obfuscation

DroidScraper (Ali-Gombe et. al, 2019)

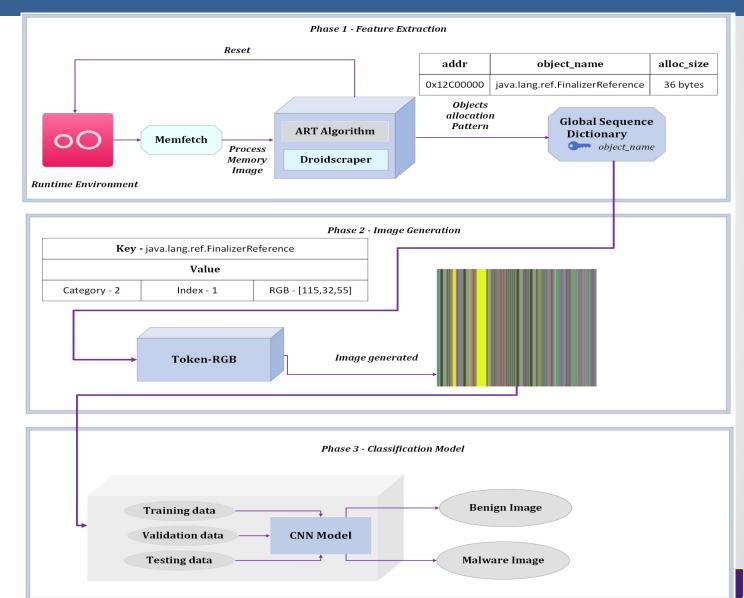


1. Can the recovered **in-memory artifacts** from memory forensics be used to generate **robust and uniquely identifiable features?**

2. Can these features be leveraged for **effective malware classification**?

RGB_Mem

- Automated Android malware classification engine
- Leverages Droidscraper to generate allocation patterns
- These patterns are processed into an RGB image representation and then passed to a CNN model as feature vectors
- Objectives
 - overcome obfuscation, scalability, interpretation challenges of traditional techniques
- develop effective classification
 model for Android



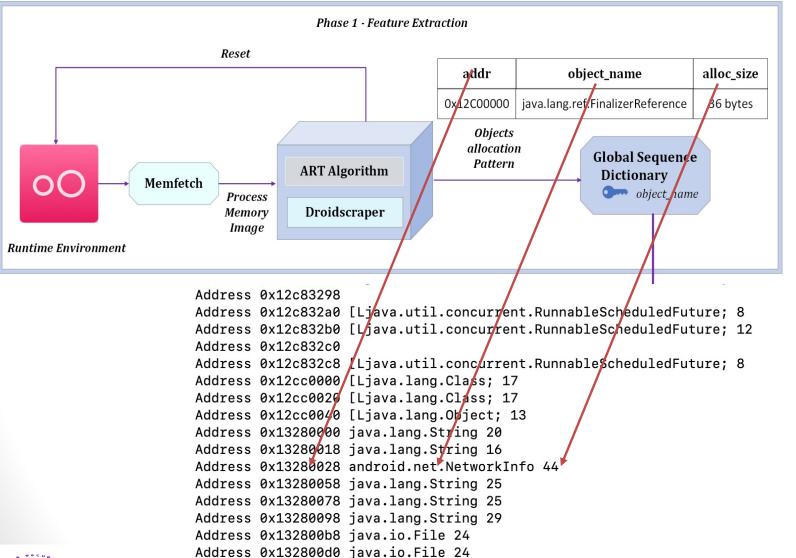
Android (ART) Region Space Allocator

```
inline mirror::Object* RegionSpace::Region::Alloc(size_t num_bytes, size_t* bytes_allocated,
size_t* usable_size, size_t* bytes_t1_bulk_allocated) {
    uint8_t* old_top; uint8_t* new_top;
    do {
        old_top = top_.LoadRelaxed()
            new_top = old_top + num_bytes;
        ....
    } while (!top .CompareAndSetWeakRelaxed(old top, new top));
```

```
'RegionSpace' : [ 0xa8, {
    'ContinuousMemMapAllocSpace' : [0],
    'region_lock_': [56],
    'time_': [96],
    'num_regions_': [100],
    'num_non_free_regions_': [104],
    'regions_': [108],
    'non_free_region_index_limit_': [112],
    'current_region_': [116],
    'evac_region_': [120],
    'full_region_': [124],
    'mark_bitmap_': [164],
```

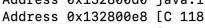
```
'Region' : [ 0x28, { 'idx_' : [0],
    'begin_': [4],
    'top_': [8],
    'end_': [12],
    'state_': [16],
    'type_': [17],
    'objects_allocated_': [20],
    'alloc_time_': [24],
    'live_bytes_': [28],
    'live_bytes_': [28],
    'is_newly_allocated_': [32],
    'is_a_tlab_': [33],
    'thread_': [36],
}]
```


RGB_Mem Phase 1 – Feature Extraction

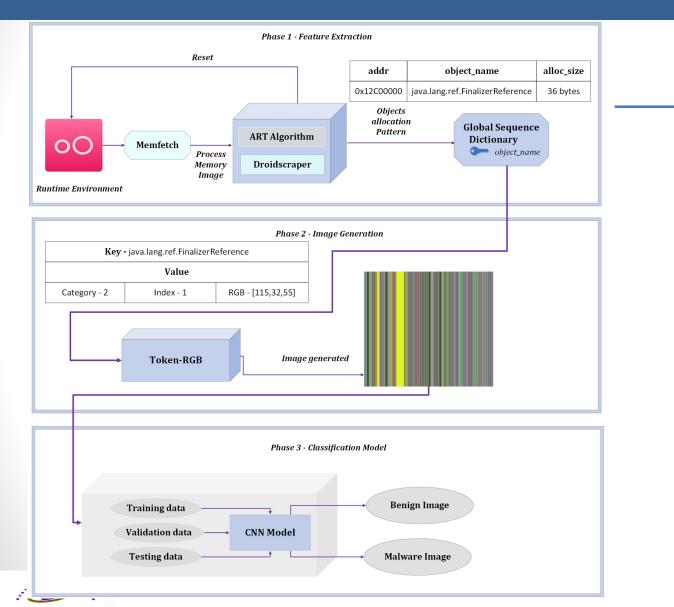


Algorithm 1 Resolving object allocation patterns for the memory snapshots

 $corpus \leftarrow List()$ for $mem \in mem1, mem2...., memn$ do $runtime \leftarrow Droidscraper.getRuntime(mem)$ $heap \leftarrow Droidscraper.getHeap(meme)$ $regions \leftarrow getRegion(runtime, heap)$ sort(regions, regions.index) **for** region \in regions **do** $P region \leftarrow List()$ $endOfRegion \leftarrow region.size$ $current \leftarrow seekRegion()$ while current ≠ endOf Region do $objAddr \leftarrow current + region.addr$ classOff = read(4)name, size \leftarrow resolve(classOffset) $P region \leftarrow [objAddr, name, size]$ $corpus \leftarrow P region$ $current \leftarrow current + size$ end while end for end for



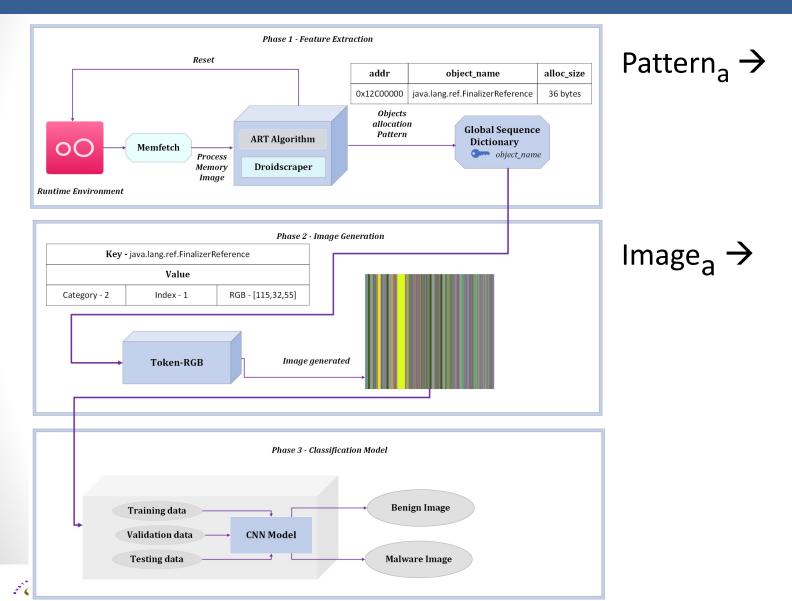
RGB_Mem Phase 1 – Sequence Dictionary



Algorithm 2 Creating the sequence dictionary $index \leftarrow 0$ for 1 in list1,list2....,listn do $cat \leftarrow l.getCat()$ for object in list doif ! sequenceDict[object] then $rgbVal \leftarrow randRGB(index)$ $sequenceDict[object] \leftarrow (cat, index, rgbVal)$ $index \leftarrow index + 1$ else if $sequenceDict[object].getCat() \neq cat$ then $sequenceDict[object] \leftarrow cat$ end ifend for

(java.lang.String, Index₁, RGB₁), (java.lang.Float, Index₂, RGB₂), ..., (java.lang.T hread, Index₁₀₀, RGB₁₀₀),..., (Object_n,Index_n,RGB_n

RGB_Mem Phase 2 – Image Generation



→ [[0x0,java.lang.String, 12],
 [0xC, java.lang.Thread, 36],
 [0x30, java.lang.String, 24],
 [0x48, java.Lang.Float, 24]],

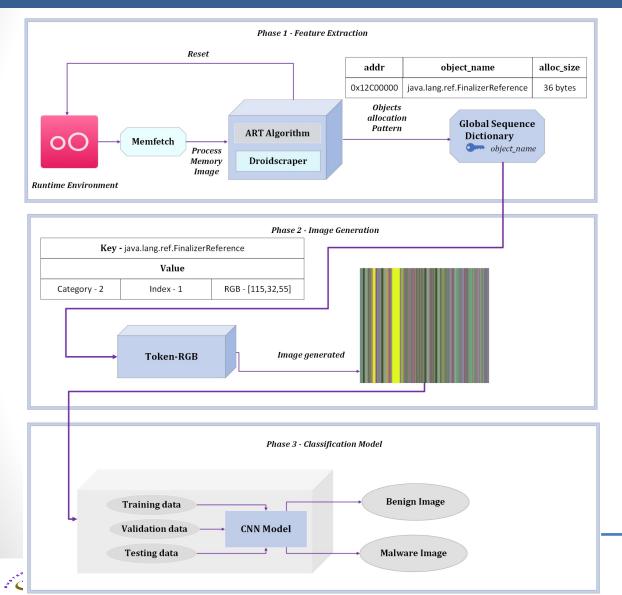
 $(\mathsf{RGB}_1, \mathsf{RGB}_{100}, \mathsf{RGB}_1, \mathsf{RGB}_2)$

RGB_Mem Dataset Sequence Dictionary

- Dataset = 1411 memory images (823 malware and 588 benign)
- Size of sequence dictionary = 18,659 unique objects
 - Malware-only objects = 6986
 - Benign-only objects = 9191
 - Overlapping objects = 2479

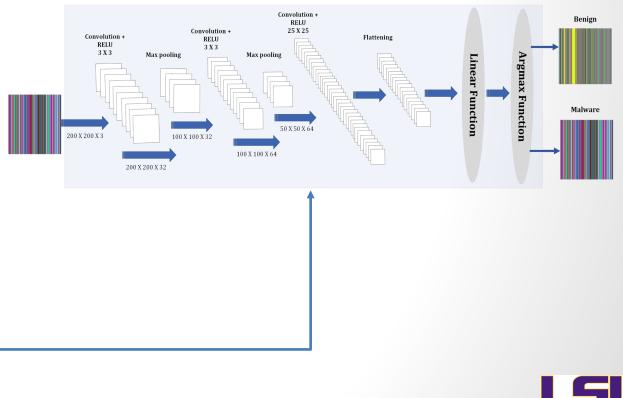
Benign Tokens	Tokens in Both	Malware Tokens	

RGB_Mem Phase 3 – Classification Model

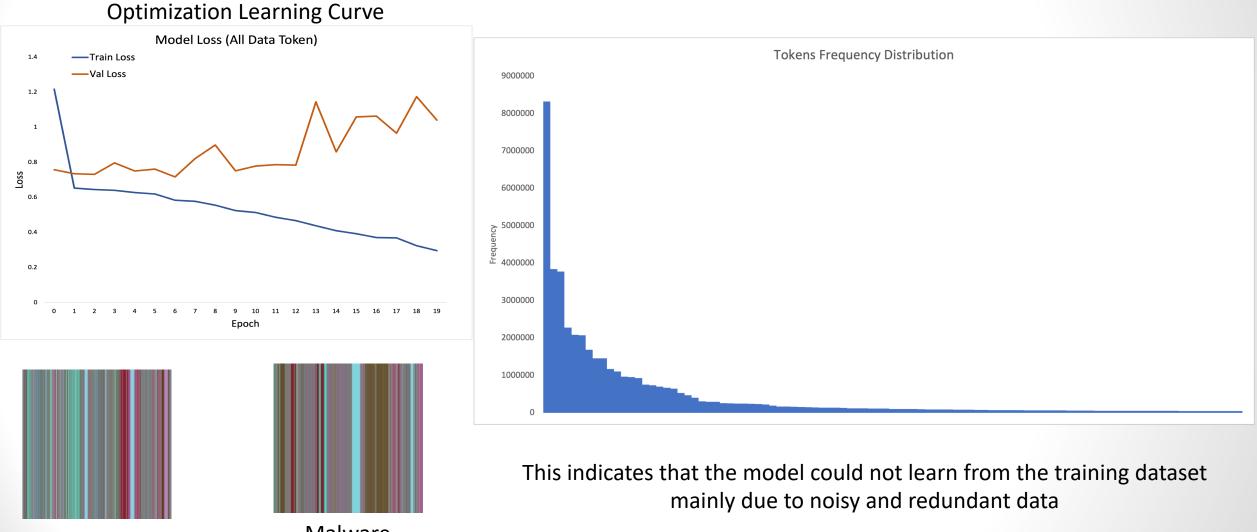


CNN - Model

Data split - 70% training, 16% validation, and 14%



Is the Model Optimal?

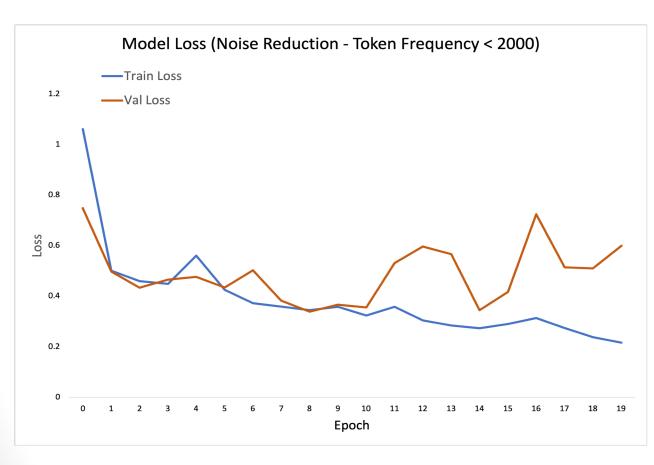


Benign

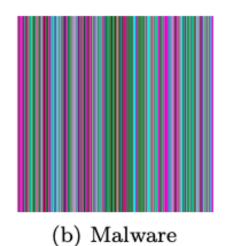
Malware

Model Optimization - Recursive Feature Elimination

Dimensionality Reduction with Token Frequency < 2000

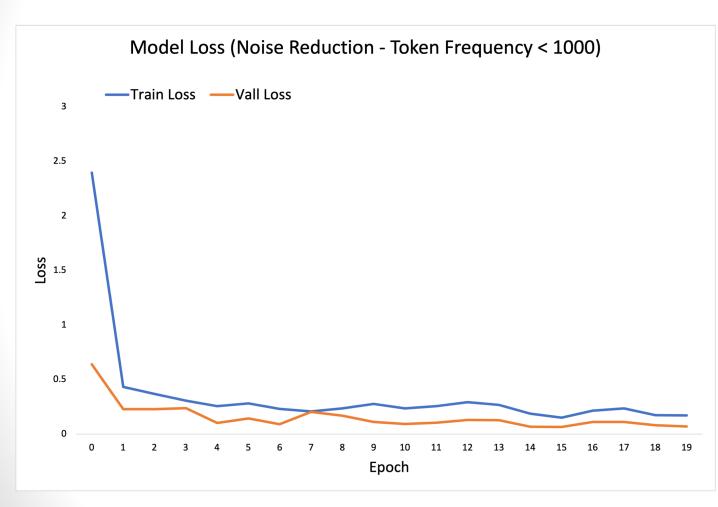


Sequence dictionary = 17,917 1740 are overlapping tokens



Model Optimization - Recursive Feature Elimination

• Dimensionality Reduction with Token Frequency < 1000

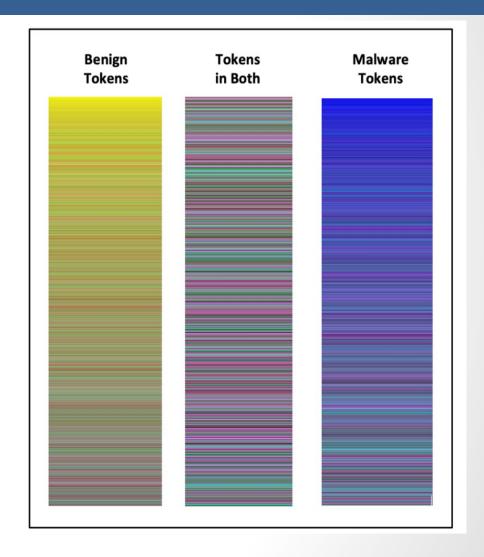


Sequence dictionary = 17,666 1489 are overlapping tokens

(b) Malware

RGB_Mem Dataset

- Dataset = 1411 memory images (823 malware and 588 benign)
- Size of sequence dictionary = 17,666 unique objects
 - Malware-only objects = 6986
 - Benign-only objects = 9191
 - Overlapping objects = 1489



RGB_Mem Evaluation

• Goals

- T_01: Android malware detection based on known features can the model correctly classify an app whose allocated objects were part of the sequence dictionary?
- T_02 Android malware detection based on unknown features can the model correctly classify an app in which some of its uniquely allocated objects are not part of the sequence dictionary?
- T_03 Comparative analysis with state-of-the-earth Android malware classification techniques - how effective is the proposed approach compared to existing methods

T_01 - Android malware detection based on known features

- Maintain dimensionality reduction with object frequency < 1000
- Goal is to generate the sequence dictionary with all tokens from all dataset
 - Size of sequence dictionary = 17,666 unique objects
 - Malware-only objects = 6986
 - Benign-only objects = 9191
 - Overlapping objects = 1489
- Dataset = 1411 memory images (823 malware and 588 benign)

Table 1: Confusion Matrix for R0				
[[97 3]				
[4 70]]				
Accuracy = 95.98%				
F1-score = 95.24%				
Precision = 95.89%				
Recall rate = 94.59%.				

T_02 - Android malware detection based on unknown features

- Maintain dimensionality reduction with object frequency < 1000
- Goal is to generate the sequence dictionary with only tokens from the training set
 - Size of sequence dictionary = 13,458 unique objects
 - Malware-only objects = 5750
 - Benign-only objects = 6400
 - Overlapping objects = 1308
- Dataset = 1411 memory images (823 malware and 588 benign)

Table 2: Confusion Matrix for R1				
	[86	14]		
	[13	61]		

Accuracy = 84.48% F1-score = 81.88% Precision = 81.33% Recall rate = 82.43%.

T_03 - Comparative Analysis

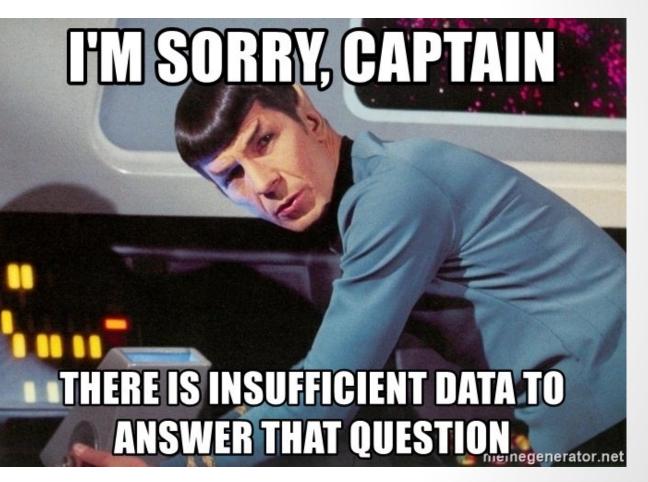
Tool	Accuracy	F1-Score	Precision	Recall
DexRay	79.30	83.49	85.90	81.21
$RGB_{-}Mem$				
Known				
features	95.98	95.23	95.89	94.49
$RGB_{-}Mem$				
Unknown				
features	84.48	81.88	81.3	82.48

Table 3: Comparative Analysis with DexRay

- In-memory forensics artifacts can be leveraged for robust feature engineering
- These features can be used for an effective malware classification
- RGM_Mem could potentially aid incident response on Android involving malware

RGB_Mem Limitations and Future Work

- Size of dataset (impact on accuracy metric) – currently no repository for memory images
 - Increase dataset
- Learns better from known features
 - Continual reinforcement learning
- Features from object allocation relation (graph) instead of pattern



This work is supported by the U.S. National Science Foundation under the awards -

NSF-CRII-SaTC-1850054

THANKYOU! QUESTIONS!

aaligombe@lsu.edu @aishagombe

