
July	2023	@	DFRWS

RGB_Mem : At the Intersection of
Memory Forensics and Machine

Learning

Aisha Ali-Gombe, Sneha Sudhakaran, Ramypandian
Vijayakanthan, Golden G. Richard III

Systems Security Labs (SySec)
Louisiana State University

Motivation

Step 1: Preparation

Step 2: Identification/Analysis

Step 3: Containment

Step 4: Eradication

Step 5: Recovery

Step 6: Lessons Learned

Incident Response Steps

• runtime behavioral monitoring
• quick analysis, resilient to common obfuscation
• drawback – preconfigured environment requiring execution

tracing, low-level system modification

Dynamic
analysis

Traditional Malware Analysis Techniques

• examine program file
• extract data such as permissions, API calls, strings, resources

and instructions
• detailed
• drawback – time consuming and obfuscation

Static analysis

Memory Forensics

Kernel-land Memory Forensics

Userland Memory Forensics (UMF)

I stole the
squirrels

sbcjkshuqeh
qwnbNjhfiid

IP
Header

Apps

Android Framework

Native Libraries

Android Runtime
HAL/HIDL

Linux Kernel

• post-mortem investigation of memory dump
• extract running processes and kernel data structures and modifications
• offline analysis – no system modification, resilient to obfuscation

DroidScraper (Ali-Gombe et. al, 2019)

Reverse engineer the
Android runtime

Runtime
GC

Threads
Heap

Allocator

android.content.Intent
java.lang.String
java.lang.String

android.content.ComponentName
java.lang.String

android.app.ActivityThread$BindServiceData
…..

Apps

Android Framework

Native Libraries

Android Runtime
HAL/HIDL

Linux Kernel

• App-gnostic	tool	for	in-memory	
data	recovery	and	reconstruction	

interpretation is often very time consuming

Research Questions

1. Can	the	recovered	in-memory	artifacts	from	memory	forensics	be	
used	to	generate	robust	and	uniquely	identifiable	features?

2. Can	these	features	be	leveraged	for	effective	malware	
classification?

RGB_Mem
• Automated	Android	malware	
classification	engine
• Leverages	Droidscraper	to	
generate	allocation	patterns	
• These	patterns	are	processed	
into	an	RGB	image	
representation	and	then	passed	
to	a	CNN	model	as	feature	
vectors
• Objectives	–
• overcome	obfuscation,	scalability,	
interpretation	challenges	of	
traditional	techniques

• develop	effective	classification	
model	for	Android

Android (ART) Region Space Allocator

'RegionSpace' : [0xa8, {
 'ContinuousMemMapAllocSpace' : [0],
 'region_lock_': [56],
 'time_': [96],
 'num_regions_': [100],
 'num_non_free_regions_': [104],
 'regions_': [108],
 'non_free_region_index_limit_': [112],
 'current_region_': [116],
 'evac_region_': [120],
 'full_region_': [124],
 'mark_bitmap_': [164],
}

'Region' : [0x28, { 'idx_' : [0],
 'begin_': [4],
 'top_': [8],
 'end_': [12],
 'state_': [16],
 'type_': [17],
 'objects_allocated_': [20],

'alloc_time_': [24],
 'live_bytes_': [28],

'is_newly_allocated_': [32],
 'is_a_tlab_': [33],
 'thread_': [36],
}]

inline mirror::Object* RegionSpace::Region::Alloc(size_t num_bytes, size_t* bytes_allocated,
size_t* usable_size, size_t* bytes_tl_bulk_allocated) {
 uint8_t* old_top; uint8_t* new_top;
 do {
 old_top = top_.LoadRelaxed()
 new_top = old_top + num_bytes;
 ….
 } while (!top_.CompareAndSetWeakRelaxed(old_top, new_top));

RGB_Mem Phase 1 – Feature Extraction

RGB_Mem Phase 1 – Sequence Dictionary

(java.lang.String, Index1, RGB1),
(java.lang.Float, Index2, RGB2), ...,
(java.lang.T hread, Index100,RGB100),...,
(Objectn,Indexn,RGBn

RGB_Mem Phase 2 – Image Generation

Patterna à [[0x0,java.lang.String, 12],
 [0xC, java.lang.Thread, 36],
 [0x30, java.lang.String, 24],
 [0x48, java.Lang.Float, 24]],

Imagea à (RGB1, RGB100, RGB1, RGB2)

RGB_Mem Dataset Sequence Dictionary

• Dataset = 1411 memory images (823 malware and
588 benign)
• Size of sequence dictionary = 18,659 unique

objects
• Malware-only objects = 6986
• Benign-only objects = 9191
• Overlapping objects = 2479

RGB_Mem Phase 3 – Classification Model

CNN - Model

Data	split	-	70%	training,	16%	validation,	and	14%	

Is the Model Optimal?

Benign Malware

Optimization Learning Curve

This indicates that the model could not learn from the training dataset
mainly due to noisy and redundant data

Model Optimization - Recursive Feature Elimination

• Dimensionality Reduction with Token Frequency < 2000
Sequence dictionary = 17,917
1740 are overlapping tokens

Model Optimization - Recursive Feature Elimination

• Dimensionality Reduction with Token Frequency < 1000
Sequence dictionary = 17,666
1489 are overlapping tokens

RGB_Mem Dataset

• Dataset = 1411 memory images (823 malware and
588 benign)
• Size of sequence dictionary = 17,666 unique

objects
• Malware-only objects = 6986
• Benign-only objects = 9191
• Overlapping objects = 1489

• Goals	
• T_01:	Android	malware	detection	based	on	known	features	-	can	the	model	
correctly	classify	an	app	whose	allocated	objects	were	part	of	the	sequence	
dictionary?	
• T_02	-	Android	malware	detection	based	on	unknown	features	-	can	the	
model	correctly	classify	an	app	in	which	some	of	its	uniquely	allocated	objects	
are	not	part	of	the	sequence	dictionary?	
• T_03	-	Comparative	analysis	with	state-of-the-earth	Android	malware	
classification	techniques	-	how	effective	is	the	proposed	approach	compared	
to	existing	methods	

RGB_Mem Evaluation

T_01 - Android malware detection based on known features

Accuracy = 95.98%
F1-score = 95.24%
Precision = 95.89%
Recall rate = 94.59%.

• Maintain dimensionality reduction with object
frequency < 1000
• Goal is to generate the sequence dictionary with

all tokens from all dataset
• Size of sequence dictionary = 17,666 unique

objects
• Malware-only objects = 6986
• Benign-only objects = 9191
• Overlapping objects = 1489

• Dataset = 1411 memory images (823 malware and
588 benign)

T_02 - Android malware detection based on unknown features

Accuracy = 84.48%
F1-score = 81.88%
Precision = 81.33%
Recall rate = 82.43%.

• Maintain dimensionality reduction with object
frequency < 1000
• Goal is to generate the sequence dictionary with

only tokens from the training set
• Size of sequence dictionary = 13,458 unique

objects
• Malware-only objects = 5750
• Benign-only objects = 6400
• Overlapping objects = 1308

• Dataset = 1411 memory images (823 malware and
588 benign)

T_03 - Comparative Analysis

Summary

• In-memory	forensics	artifacts	can	be	leveraged	for	robust	
feature	engineering
• These	features	can	be	used	for	an	effective	malware	
classification
• RGM_Mem	could	potentially	aid	incident	response	on	
Android	involving	malware

RGB_Mem Limitations and Future Work

• Size	of	dataset	(impact	on	accuracy	
metric)–	currently	no	repository	
for	memory	images
• Increase	dataset

• Learns	better	from	known	features
• Continual	reinforcement	learning

• Features	from	object	allocation	
relation	(graph)	instead	of	pattern

Acknowledgement

This	 work	 is	 supported	 by	 the	 U.S.	
National	 Science	 Foundation	 under	
the	awards	-

NSF-CRII-SaTC-1850054

THANK YOU!
QUESTIONS!

aaligombe@lsu.edu
@aishagombe

