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a b s t r a c t

Mobile malware’s alarming sophistication and pervasiveness have continued to draw the attention of
many cybersecurity researchers. Particularly on the Android platform, malware trojans designed to steal
user PIIs, crypto miners, ransomware, and on-device fraud continue to infiltrate the primary Google store
market and other secondary markets. While much effort has been put in place by the research com-
munity and industry to curb this menace since 2012, malware authors have consistently found ways to
circumvent the existing detection and prevention mechanisms. Largely this remains so because of the
restrictiveness of the feature set used in building the current classification models. Thus, the overarching
objective of this paper is to bridge the gap between static and dynamic analysis by exploring the use of
in-memory artifacts generated from the concrete execution of Android apps for effective malware
classification. Our proposed approach, called RGB_Mem trains RGB images generated from in-memory
allocation patterns in a Convolutional Neural Network. The result of our classification algorithm achieved
an accuracy of 95.98% for samples with known objects and 84.48% for samples with unknown features.
These results indicate that artifacts recovered from post-mortem memory forensics can provide a new
dimension for training Android malware classification. The post-execution features, which are not
impeded by any obfuscation and hooking constraints, provide a more accurate characterization of an app
and are, therefore more suitable for classification.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. All rights reserved. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the past twelve years, numerous research efforts have been
developed to address the challenges posed by Android malware,
particularly those leveraging machine learning. Traditional tar-
geted features include opcode values, permissions, API calls, etc.,
which are often hand-picked attributes chosen by experts. How-
ever, given the scale and sophistication of the malware problem,
these features are often limited and cannot adequately distinguish
between a malicious and benign app and/or execution. Hence in
this paper, we propose a methodology that leverages in-memory
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objects and their allocation sequence as features in a Convolutional
Neural Network Model. When applied in our proposed learning
algorithm, these distinct feature vectors that individually represent
the app’s functionality and behavior will result in amore robust and
resilient classifier that can detect malware variants with high ac-
curacy. Our proposed approach, titled RGB_Mem generates feature
vectors using a combination of memory acquisition, object recov-
ery, and reconstruction. We reconstructed objects allocated by each
target Android application during execution as an allocation
sequence or pattern that maintains its objects' identifications
(name) and allocation positions (address). These allocation patterns
are then converted to RGB images to form a representation for each
app in the dataset. Finally, the images are passed to a variant of the
RGB-LED Convolutional Neural Network (Guan et al., 2019) for
training and prediction. The evaluation result on our test dataset
shows that our optimized model with known features achieved
95.98% test accuracy and 84.48% on the model with unknown
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features, i.e., zero-day samples. We compared our accuracy with
DexRay (DaoudiJordan et al., 2021) - an existing CNN model that
utilizes opcode sequence-converted images as feature vectors for
classification. The result indicates RGB_Mem outperforms DexRay’s
79.20% accuracy in both the known and unknown feature models.
This result demonstrates that our novel features selection and en-
gineering, when combined with a CNN model like RGB_Mem, fare
better for malware classification than traditional approaches.

Relevance to DFIR - Digital Forensics and Incident Response
(DFIR) on mobile devices can be challenging. Its difficulty depends
on various factors, such as the examiner’s background, experience,
types and versions of applications, devices, and the specific context
of the incident being investigated. This research is particularly
relevant in making it easy for examiners to detect if any of the
processes running on a target Android device aremalicious. A study
conducted by AVG Technologies in 2015 found that the average
number of active processes on Android devices was around 35 (AVG
Technologies, 2015). This number was found to increase signifi-
cantly when additional applications were launched, with some
devices running up to 100 or more processes simultaneously.
Another study conducted by researchers at Purdue University in
2017 found that the average number of processes running on iOS
devices was around 45 (Chen et al., 2017). This number also varies
widely depending on the specific device and usage patterns. Thus,
going through each app’s runtime activity and memory on a target
device to explore their data, data structures, and code one after the
other to determine if they are benign or malicious is a very time-
consuming process and requires significant expert knowledge.
However, with the proposed RGB_Mem, the examiner can quickly
rule out malware with a high degree of accuracy for both known
variants and zero-day samples. In summary, the contributions of
our research are as follows.

� The development of new features and feature engineering for
Android malware classification that leverage memory alloca-
tions to generate RGB images as a representation of an app
execution sequence.

� The implementation of an enhanced model that takes the RGB
images as inputs and classifies them as malware or benign apps.

� The curation of an open-source repository of memory images
and RGB images, which can be utilized for Android malware
research.

The rest of the paper is organized as follows: Section 2 provides
a background on memory analysis; Section 3 presents the main
design idea of our proposed technique; Section 4 details the
implementation and Section 5 provides the evaluation and exper-
imental validation of the proposed approach; Section 6 discusses
the summary of related work; Section 7 summarizes our findings
and conclusions.

2. Background and motivation

In recent years, the idea of leveraging memory analysis for cyber
threat investigation is consistently gaining ground. Tools like
Volatility have extended their capabilities beyond browser history
recovery, for instance, to identifying memory segments containing
potential malware code or hook tracing structures. In addition, the
preliminary work by Hussaini et al. showed that memory artifacts
and patterns could potentially indicate application maliciousness
(Hussaini et al., 2021). Hence, in this paper, we aim to explore
further and extend the capabilities of memory forensics to include
generating features for malware classification. By extracting and
analyzing these artifacts features, it is possible to classify malware
and determine its behavior. One way to do this is by using machine
2

learning techniques to train a model on a dataset of known mal-
ware and benign samples and then using that model to classify new
samples based on their in-memory artifacts. Compared with static
analysis, memory forensics is not typically affected by malware
obfuscation and thus can examine and extract functionalities
executed by a target app at runtime. Unlike dynamic analysis, on
the other hand, postmortem memory analysis for the purpose of
feature extraction does not interfere with the target process or
modify its execution environment, allowing the malware to exer-
cise its payload fully.

To illustrate the challenges of traditional feature extraction and
analysis methods, consider the Plankton malware - one of the first
Android malware to use dynamic class loading. Extracting static
features such as API calls using existing static analysis tools like
Androguard (Anthony and Gueguen, 2013) from this obfuscated
sample will result in fewer non-useful features that will negatively
affect the learning model. Naturally, we pivot to dynamic analysis
when faced with such a scenario. With the dynamic technique, we
first have to set up a monitoring/instrumentation environment
such as CuckooDroid to hook up all API calls and intermittently
hijack execution to perform logging. Here are its two significant
drawbacks - environment setup is version dependent, and
currently, CuckooDroid, for instance, only supports up to Android
v4. Secondly, Plankton hasmore than 10,000 APIs; hooking them all
will result in substantial performance costs and might result in the
process termination by the Android system. For instance, to trace all
the 10,000 APIs, at minimum, we will inject three new instructions
to each call - the trace entry, exit, and logging instructions. This
additional instruction will result in about 200% instruction over-
head. Given that an instruction overhead of less than 10% is
considered ideal for Java method profiling, a 200% increase will
tremendously impact CPU and memory usage and likely crash the
target app or make it infeasible to execute. Moreover, this change in
execution latency can be used by malware for anti-analysis. In
contrast, leveraging memory forensics for acquisition and feature
extraction of Plankton in-memory artifacts will have very negligible
overhead since only the acquisition process will be carried out
while the app is running, whereas the extraction process will be
wholly offline. More so, this technique is not affected by dynamic
class loading or other known traditional obfuscation techniques.

2.1. Android in-memory artifacts

Android applications are primarily written in Java and execute
in a runtime engine called the Android Runtime (ART). The primary
function of the runtime environment is to provide a tight and
unique execution sandbox for each process on the system. Google
designed the base runtime as a large structure holding important
process-level information such as types and addresses of memory
mappings, pointers to different memory segments, process state,
thread information, and other relevant process statistics. Thus, as a
process executes, it reads and writes data and code in its memory
regions within the runtime environment. Furthermore, the oper-
ating system also writes to the process memory copies of shared
libraries and any IPC objects sent to the process. Runtime object
allocations on Android use the Region-space memory allocation
algorithm (Ali-Gombe et al., 2019). This algorithm divides the
available process virtual address space into smaller regions of
256 KB. Objects are allocated sequentially, starting from the first
available region, except for specific threads that request a Thread
Local Allocation Buffer (TLAB). Those are allocated in specifically
tagged regions called the TLAB Regions. Thus, from a memory
analysis perspective, the type of data allocated within a region and
its allocation order or pattern can be invaluable in determining the
runtime structure of an Android process and, by extension, the
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functionality of an app and how that functionality is executed.
Hence, this research explores a methodology that leverages this
unique process allocation pattern in Android malware classifica-
tion. To this end, we seek to answer the following research
questions.

� R1: Can the proposed approach detect Android malware with
known features?

� R2: Can the proposed approach detect Android malware with
unknown or zero-day features?

� R3: What is the effectiveness of using in-memory allocation
patterns compared to traditional semantic artifacts such as
opcode sequences for malware classification?

3. Design overview

This research designs a methodology for Android malware
classification leveraging in-memory artifacts. The workflow of our
system, as shown in Fig. 1, is made up of three phases: 1) Feature
Fig. 1. Proposed design
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extraction, 2) Image generation, and 3) Classification. The feature
generation phase involves sourcing and acquiring runtime features
or in-memory artifacts as allocation patterns from a running
Android app. The image generation phase then takes the extracted
app’s allocation pattern and creates an image representation using
the RGB color scale. Finally, the classification phase takes the
generated image as input vector into a neural network model for
binary classification.

3.1. Phase 1 - Feature extraction phase

In this phase, we designed a runtime environment to execute
target Android applications for in-memory artifact extraction. Each
target app is installed, activated, and exercised before its memory is
imaged. Our environment is simulated with real mobile-based data
such as contacts, SMS, GPS simulations, files in the SD card, and
sample images in the gallery. Furthermore, we configured the
execution environment with additional real data, such as an actual
IMEI instead of zeros, etc. to thwart common analysis detection
workflow diagram.
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schemes. After every app execution, we kept a snapshot of the clean
configuration to restore the runtime environment to an uninfected
state. While it would have been ideal to collect the data on a real
Android device rather than an AVD, however, going through cycles
of infection, memory acquisition, snapshot restoration, and rein-
fection on a real device is infeasible.

For the memory acquisition, a per-process memory dumping
tool called Memfetch, which was cross-compiled for Android, is
executed in the runtime environment, targeting the app under
execution. The output of memfetch (the process memory image) is
then copied from the emulator to our analysis machine. The clean
state of the emulator is restored for the next app execution. Our
choice of process-level memory acquisition is two-fold - 1) given
that Android apps execute within their own instance of the run-
time, the allocations, and memory mappings for both private and
shared processes are carried out within that specific instance; and
2) we can leverage the ART object allocation algorithm to deter-
mine allocation regions along with its metadata and the allocated
objects. Each acquired memory image thus represents a single
execution snapshot for a unique app. This is especially crucial
because our goal is to create a resilient model that can detect
Android malware without knowing all of its features. Hence the
model needs to identify distinct generic behaviors in malware and
benign Android apps such that when there is zero-day malware,
this model can effectively detect it even when all of its features are
not known.

Next, each acquired process memory image is analyzed using an
updated version of DroidScraper (Droidscraper, 2019) to retrieve
the objects allocated during its execution. These objects are later
used for generating the feature set for the model training, valida-
tion, and testing. Droidscraper is a userland in-memory object re-
covery and reconstruction tool that recovers the runtime artifacts
from Android process memory space. Our choice of Droidscraper as
an artifacts recovery tool is motivated by the following reasons.

1. It is the only publicly available tool that parses the region-space
allocator and recovers runtime in-memory artifacts from newer
Android devices that run ART instead of the older Dalvik
runtime.

2. Droidscraper recovers spatiotemporal data from memory allo-
cation regions, meaning the output of its Heapdump plugin
dumps objects in the order in which they are allocated, i.e., in
regions and sequentially, which translates to the concrete
execution flow of the program under analysis. The ability to
train a classifier to identify execution patterns is especially
crucial since malicious Android apps, based on their character-
ization (Zhang et al., 2020), often perform similar functions,
such as sending SMS or accessing contacts, and are thus likely to
have similar execution patterns.

3. Data collection with Droidscraper does not involve building or
instrumenting an engine into the emulator or the device and
hence it is not associated with any resource overhead (memory
or CPU usage) or memory modification during app execution.

4. Unlike traditional methods for dynamic analysis, leveraging
Droidscraper does not require expert knowledge of where and
what to instrument and log; all that is needed is the snapshot of
the target process memory.

5. Related literature has established that Androidmalware variants
are often createdmainly by transforming existing samples using
obfuscation mechanisms (ZhangFrank and LuechingerStephen,
2021) or the repackaging of malware code into benign appli-
cations (Tian et al., 2017). Thus, recovered in-memory execution
patterns as features will likely fare better in malware classifi-
cation than static features.
4

Thus, in this tool’s updated version, we extract objects sequen-
tially by resolving the address and index of every allocation region,
which is provided as fields in the region’s struct. Starting at offset
0 in each region, we read the first couple of bytes to resolve the
object class, name, and size and then add the size to the current
offset to get the next object. This step, as shown in Algorithm 1, is
repeated for all of the allocated memory regions. The result is an
allocation list (also called the allocation pattern)made up of 3-tuple
values - the address, object name, and object size.

Algorithm 1. Resolving object allocation patterns for the memory
snapshots

To illustrate this dataset, we assume an app a with n allocated
objects at the time of memory acquisition. Its allocation pattern Pa
is a 3-tuple list of all live objects currently in its runtime memory:

Pa ¼ [[addr1, object1, alloc_size1], [addr2, object2, alloc_size2], …,
[addrn, objectn, alloc_sizen]]where addrn is the allocation address,
e.g., 0x12C00000, objectn is the object name, e.g., java.lan-
g.ref.FinalizerReference, and alloc_sizen is the allocation size, e.g.,
36 bytes.

3.2. Phase 2 - image generation phase

Now that we have collected all allocation pattern lists for our
target applications, the next task is to process them into a suitable
input for machine learning. Given that this research proposes a
CNN-based model, the objective in this phase is to convert the
allocation list into an image representation. The options for creating
image representations are either grayscale or RGB images. How-
ever, grayscale can only represent 256 unique colors from 0 (black)
to 255 (white), while RGB can represent up to 16777216 (256� 256
x 256) unique colors. Considering that object-oriented program-
ming languages such as Java tend to have many diverse object
types, RGB image representation is more suitable. Before parsing
each input allocation pattern list to create an image, we have to
aggregate all the unique objects in the dataset into a repository
called the Global Sequence Dictionary. Like the Term Dictionary in
document classification, this dictionary serves as a global
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repository for all unique objects such as android.os.HandlerThread,
java.lang.string, com.google.android.gms.analytics.internal.zzag etc. in
our dataset. An entry in the dictionary, which we call a token, is
mapped to a unique object name as the key and a 3-tuple item that
holds the object’s category, a unique index key, and a unique RGB
value.

Algorithm 2. Creating the sequence dictionary

As shown in Algorithm 2, we traverse all the object allocation
patterns in our dataset consecutively to retrieve all unique tokens.
We check every object during our traversal to see if it exists in our
sequence dictionary; otherwise, we add a new entry and assign a
new index and RGB value for the object. Furthermore, a category of
enum data type is added to the entry’s item based on whether the
object is found in malware only, benign apps only, or both. It is
important to note that, like in Document classification, no hard and
fast rule dictates whether the dictionary of words should only
containwords that are present in the training set but not the testing
set. However, building the dictionary based on the full corpus,
including both the training and testing sets, is generally recom-
mended. According to the textbook ”Speech and Language Pro-
cessing” by Dan Jurafsky and James H. Martin, ”the vocabulary used
for classification should be derived from the entire collection of
documents, not just the training documents, to avoid overfitting
the vocabulary to the training data” (JurafskyJames and Martin,
2009). Similarly, the PyTorch documentation for the Torchtext li-
brary, which provides tools for text data preprocessing and
modeling, recommends building the vocabulary based on the
entire corpus: ”It is important to build the vocab using only the
training set, and not to include any words from the validation and
test sets. However, it is still important to ensure that the vocab is
built from the entire corpus and not just the training set to avoid
encountering out-of-vocabulary (OOV) words at inference time”
(PyTorch, 2021). Thus, based on the aforementioned reasons, we
built our Global Sequence using all the tokens in our entire corpus.

The final sequence dictionary consists of tokens in three cate-
gories: those exclusively in benign apps, those exclusively in ma-
licious apps, and overlapping tokens (present in benign and
malicious apps). An example of sequence dictionary token entry is
{java.lang.ref.WeakReference: [2, 66, [115,32,55]]}, where java.lan-
g.ref.WeakReference is the token name which also serves as the key;
2 indicates that the token appears in both malware and benign
apps; 66 is its index value and [115,32,55] is the computed RGB
value. After this initial data processing, the sequence dictionary is
now an aggregated list of all unique tokens mapped to their unique
RGB values.
5

To create an image representation for an app, we traverse its
allocation pattern, decoding each allocated object (token) into a
color by looking up its RGB value in the sequence dictionary. Thus,
each final image output consists of a band of colors arranged col-
umn-wise sequentially following the original in-memory allocation
addressing. For example, suppose the sequence dictionary has the
following entries: (java.lang.String, Index1, RGB1), (java.lang.Float,
Index2, RGB2), …, (java.lang.Thread, Index100, RGB100), …, (Tokenn,
Indexn, RGBn) and an App a has an allocation pattern Pa as [[0x0,
java.lang.String, 12], [0xC, java.lang.Thread, 36], [0x30, java.lang.-
String, 24], [0x48, java.Lang.Float, 24]],then the image Ia will be
represented as (RGB1, RGB100, RGB1, RGB2). For better visualization,
we assigned RGB values for benign-only tokens toward the red side
of the spectrum (red, yellow, green), and the malicious-only tokens
were assigned toward the blue side of the spectrum (blue, purple,
and magenta). The RGB values for the overlapping tokens are at the
intersection of the spectrum.
3.3. Phase 3 - Classification phase

A Convolutional Neural Network (CNN) is an artificial neural
network designed for learning and classifying structured data such
as images. CNN is a multi-layer network with convolutional filters
trained using the backpropagation. These layers are arranged to
detect simpler patterns, such as lines, curves, colors, etc., first, then
more complex designs, such as faces and objects. In recent years,
CNN has been widely adopted as the base algorithm for general
malware classification and Android in particular. To the best of our
knowledge, the inputs to the different CNN models in the related
literature are either code sequences or other semantic features
extracted using static and/or dynamic analysis. In contrast, this
paper aims to train a CNN model to take our generated RGB images
as inputs and classify them either as representations of malware or
benign apps. To this end, we created a network similar to the RGB-
LED (Guan et al., 2019). The RGB-LED network is designed as a CNN
classifier that learns to uniquely detect and recognize different
LEDs in Visible Light Communication (VLC). We chose this CNN
model as a classification algorithm primarily due to the uniqueness
of our inputs being RGB images and since the allocation patterns for
which the input images were created are spatialetemporal, i.e., it
exist in both space (the type of data allocated in each address) and
time (the order of allocation or feature sequence). Thus, we find the
RGB-LED-like CNN model to be a suitable fit.

As shown in Fig. 2, our model is a sequential CNN container
comprising 2-stacks of a convolution layer and a max pooling layer,
a final convolution layer, a flattening layer, and a linear trans-
formation layer. Our inputs are passed to the model as 200 � 200 x
3 pixels images. A kernel size of 3 � 3 is used in the first two
convolution layers for feature extraction, and then a 2 � 2 kernel
size in the two max pooling layers for downsampling the feature
map. The features are then passed to the last convolution layer,
which has a kernel size of 25 � 25, to scale down the feature
dimension, after which the down-sized features are flattened and
linearized. For prediction, our network uses the Argmax function
for the binary classification of the input images.
4. Implementation

We implemented our approach as a system with two modules
for 1) Data Engineering and 2) CNNModule. The data engineering is
a helper module for feature generation, selection and engineering
while the CNN module implements the RGB_Mem algorithm.



Fig. 2. The architecture of the proposed CNN model.
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4.1. Data engineering module

In last decade, there has been significant effort by the research
community in developing malware feature datasets such as MIST
(Ramilli, 2016), which researchers utilized for developing classifi-
cation and detection algorithms. Nonetheless, these datasets were
generated from pure static or dynamic analysis. To our knowledge,
there is no publicly available in-memory object artifacts or memory
snapshot repository for Android. More so, dynamic artifacts data-
sets are generally hard to generate for the reasons itemized in
section 3.1. As such, the first module in our system is the data en-
gineering module. This module includes sub-modules for auto-
mated app execution and memory acquisition called ADBAutomate,
a module for sequence dictionary generation, and a module for
image creation.

Using ADBAutomate, we executed 850 Android malware and
600 benign apps within two semesters in 2021 with the help of five
undergraduate students on different instances of customized
Genymotion images. The malware samples were downloaded from
VirusShare, and the benign apps were sourced from AndroZoo
(Kevin et al., 2016). Thememory images of each app executionwere
acquired one-time using Memfetch. It is important to note that
memory is one of the important components of a system that se-
curity-wise is unlikely to be affected by traditional obfuscation,
thus making its content very valuable for any kind of analysis.
However, its acquisition is arduous and precarious; hence, we had
to take extra measures during the acquisition process. First, we had
to use an emulator instead of real devices, mainly because we had
to re-image with a clean state after every app execution, both for
malware and benign samples. Secondly, before the acquisition
process is started, we check for evidence that the process is active
and in the foreground, and after the acquisition, we repeat the same
sanity check. This validation is vital because apps moved to the
background are more likely to be garbage collected, which may
adversely affect the training data. Secondly, because the acquisition
process is very intrusive, there are chances of memory corruption in
the target process address space, which could result in restarting
the process. Thus, a process that is killed and restarted before the
acquisition is complete will have to be restarted, re-exercised and
reacquired.

With this system setup and the automated utility, we acquired
1411 memory images (823 malware and 588 benign) out of the
1450 apps in our corpus. These apps were correctly executed,
exercised, acquired, and reconstructed without error. The acquired
memory images are then pre-processed with Droidscraper to
extract their allocation patterns. These allocation patterns are fed to
the sequence dictionary generation module, which creates a dic-
tionary of tokens, each with a 3-tuple value for the app category, an
6

index, and an RGB value. After the initial data processing, the
sequence dictionary contains 18,659 unique tokens, broken down
into 9191 benign-only tokens, 6986malware-only tokens, and 2479
combined tokens, i.e., tokens present in both malware and benign
allocations. Using the sequence dictionary as a look-up table, we
decode each object in the 1411 allocation patterns into their RGB
values. The resulting RGB sequence for each allocation pattern is
then plotted as a single image. After this initial conversion, the
images in the dataset are of variable sizes. For the training and
evaluation, the model requires all input images to be the same size;
hence resizing the images before feeding them to the model
became necessary. We leverage the resize function of the Torchvi-
sion-transforms class to resize all the images in the dataset to a
fixed size of 200 by 200. Finally, our dataset is nowmade up of 1411
RGB images, all of the same size.

4.2. RGB_Mem Classification module

We implemented the 2-class CNN classifier illustrated in the
previous section using the Python PyTorch library (Adam et al.,
2019). Additional hyper-parameters such as loss function, optimi-
zation function, and epoch were fine-tuned during the model
implementation. Our network uses a cross-entropy loss function to
minimize loss and an Adam function with a learning rate of 0.001
for model optimization. We choose the Adam algorithm over SGD
mainly because of the size of our features and the nature of the
allocation patterns, which may contain noisy data. We split the
generated image dataset into 70% training, 16% validation, and 14%
testing to achieve. The model uses the samples in the training set to
identify patterns specific to benign and malicious memory alloca-
tion lists. Validation data is used to fine-tune the algorithm’s pa-
rameters and protect the model from over-fitting the training data.
In validation and test data, if a particular token is not found in the
global sequence dictionary, such tokens are labeled as unknown
tokens and are removed from the pattern list during the image
generation. The test images are used to evaluate the model’s clas-
sification accuracy and other associated metrics.

4.2.1. RGB_Mem model optimization -
After generating the initial sequence dictionary, the 1411 image

dataset, and the RGB_Mem model, we examine if all the tokens
currently in the sequence dictionary are useful to our classifier, i.e.,
the tokens are not redundant. We trained the model with the
training set and optimized it with the validation set. Setting the
epoch to 20, we compute each epoch’s training and validation loss,
and the corresponding optimization learning curve is plotted as
shown in Fig. 4. This optimization learning curve, an essential tool
for identifying and selecting the optimal number of features, shows



Fig. 5. Image representation for a benign and malware before dimensionality
reduction.

Fig. 3. Token frequency distribution chart.
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a noisy validation loss and somewhat flat training loss. This in-
dicates that the model could not learn from the training dataset
mainly due to noisy and redundant data.

Furthermore, the images in Fig. 5 visibly illustrated that mal-
ware and benign images generated from the noisy tokens are
indistinguishable. Hence, we need to employ additional feature
selection criteria that enhance themodel’s performance. To address
this, we employ a Recursive Feature Elimination method that
eliminates features based on their frequency of occurrence in the
entire sample set. From the frequency distribution in Fig. 3, it is
clear that some tokens have excessively high frequencies, especially
in the overlapping category. In contrast, others have moderate to
low frequencies, especially in the malware category. More so, the
average mean of the token frequency is about 4,159,479, with the
highest frequency token being java.lang.String with a frequency of
8,318,957, while more than 17,000 tokens have frequencies less
than 100,000. The token frequency distribution is clearly unequal,
and tokens such as java.lang.String adds no value to the model.

As such, we begin the elimination method by removing all
Fig. 4. Before dimensi
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tokens with a frequency greater than 2000 from the sequence
dictionary. This process decreases the size of the sequence
onality reduction.



Fig. 6. Dimensionality reduction with object frequency less 2000.
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dictionary to 17,917, out of which 1740 are overlapping tokens. We
then re-generate the RGB images and re-execute the CNN model
with the same initial hyperparameters. As shown in Fig. 6, the
model has begun to learn our training dataset, but the noisy vali-
dation loss, especially at the end of the epoch, shows the model is
still underfitting. Fig. 7 further shows that the malware and benign
images generated with the reduced tokens after eliminating some
redundancy are somewhat visible and distinguishable (see Fig. 8).

Next, we repeated the same elimination process for tokens with
more than 1000 frequencies. This further reduces our sequence
dictionary to 17,666 total tokens with 1489 overlapping tokens. The
plot, as shown in 8, indicates the best optimization curve compared
to the remaining two. Both the training and validation loss curves
decrease and stabilize with a slight increase in validation loss
compared to training loss towards the end of the epoch. The opti-
mization learning curve for the training and validation loss shows
that the model fits both the training and new datawith the reduced
features (frequency < 1000). This result is further illustrated by
visualizing the image generated with these reduced tokens. Fig. 9
shows that the malware and benign RGB images generated with
the reduced tokens after eliminating highly frequent and redun-
dant tokens have more distinct colormaps and patterns. Thus, we
Fig. 7. Image representation after dimensionality reduction with token frequency less
than 2000.
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conclude that the model performs better when redundant features
with high frequencies are eliminated.

Now that we have an optimized model, the next task is to test
and evaluate our model.

5. Evaluation

To evaluate the effectiveness of our approach, we tested our
model on the following objectives.

� RO1 - Androidmalware detection based on known features - can
themodel correctly classify an appwhose allocated objects were
part of the sequence dictionary?

� RO2 - Android malware detection based on unknown features -
can the model correctly classify an app in which some of its
uniquely allocated objects are not part of the sequence
dictionary?

� RO3 - Comparative analysis with state-of-the-earth Android
malware detection tools - how effective is the proposed
approach compared to existing analysis systems that leverage
traditional features such as code sequences, API calls, control
flow graphs, etc.?
5.1. Experiments

We conducted three different tests to evaluate these objectives.
All our experiments were conducted offline on a MacBook Pro with
2.9 GHz Quad-Core Intel Core i7 and 16 GB memory capacity.

1. RO1 - Android malware detection based on known features -
In this experiment, the goal is to examine the performance of
our model in terms of F1 score, model accuracy, precision, and
recall. The sequence dictionary used by this model has a total of
17,666 tokens (1489 overlapping, 9191 benign-only, and 6986
malware-only tokens). These tokens were used to create 1411
image representations consisting of 823 malware images and
588 benign images. We trained the model with 70% of the data
and 16% was used for validation. The performance learning of



Fig. 8. Dimensionality reduction with object frequency less 1000.

Fig. 9. Image representation after dimensionality reduction with token frequency less
than 1000.
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this model indicates that the model achieves up to 97% valida-
tion accuracy.

We then tested the model on the remaining 14% test RGB im-
ages. Note, the test images in this experiment may contain previ-
ously seen or unseen features, thus we consider this evaluation as
variant detection capability. From the confusion matrix in Table 1,
our model achieves an accuracy of 95.98% with an F1-score of
95.24%, 95.89% precision, and a recall rate of 94.59%. This result
strongly suggests that with a single memory scan at a random time,
our classifier can correctly classify malware and benign apps more
than 95% of the timewith amalware detection rate of about 94.59%.
Furthermore, the feature extraction process is not hindered by
obfuscation nor is it affected by resource constraints or human
knowledge of what feature to extract and how to extract them. We
believe this approach opens a new dynamic to Android malware
Table 1
Confusion matrix for R0.

[[97 3]
[4 70]]
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classification, which, when transferred into an online-realtime
detection, can significantly improve the security posture in the
Android mobile environment.

2. RO2 - Android malware detection based on unknown fea-
tures - In the second research question, the goal is to generate
the sequence dictionary with only tokens from the training set.
This experiment aims to establish if the classifier can detect
zero-day malware designed with new data structures and ob-
jects unknown to the sequence dictionary. Thus, our validation
and test images will only have tokens present in the training set.
In this experiment, we still employed the frequency-based
dimensionality reduction of < 1000. The total size of our new
sequence dictionary is 13,458 (with 1308 overlapping, 6400
benign, and 5750 malware), indicating 4208 fewer tokens. New
images are generated from the RGB values of the tokens in the
sequence dictionary and then passed to the same model as
input. We divided the samples into the same training, and
validation split as R0. The performance learning of the model
achieves up to 86.9% validation accuracy. When applied to the
test dataset, the RGB_Mem model achieved an accuracy of
84.48%, with a precision of 81.33%, a recall rate of 82.43%, and an
F1-score of 81.88%. The confusion matrix is shown in Table 2.
This result indicated that the model could detect unknown,
zero-day malware 84% of the time. While the RGB_Mem model
did not do as well compared to the testing in R0, we believe the
training could be improved with an additional dataset. More so,
given that Android malware are known to heavily use repack-
aging, a more comprehensive sequence dictionary can improve
the classifier’s detection accuracy.

3. RO3 - Comparative Analysis - In this last experiment, we
compare the performance of our model with the state-of-the-
art tool that was published recently and had publicly available
code.We aim to select a tool that leverages the same CNNmodel
on different feature sets and performs similar feature engi-
neering compared to our approach. To this end, we leverage the
work of (DaoudiJordan et al., 2021) titled DexRay which was
published in 2021. DexRay converts the Android app’s bytecode



Table 2
Confusion matrix for R1.

[86 14]
[13 61]

Table 3
Comparative analysis with DexRay

Tool Accuracy F1-Score Precision Recall

DexRay 79.30 83.49 85.90 81.21
RGB_Mem Known features 95.98 95.23 95.89 94.49
RGB_Mem Unknown features 84.48 81.88 81.3 82.48
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into grey-scale images. These images are then fed into a 1-
dimensional Convolutional Neural Network model for training
and testing. The published article shows DexRays achieves an
F1-score of 96% when evaluated on 158k apps. DexRay’s code is
available on GitHub (TruX Trustworthy Software at University of
Luxembourg). The similarity between our approach and theirs is
that both converted features into images which are then used as
input to a CNN model. Hence, this is a more accurate and fair
comparative analysis. We use the same 1411 apps utilized in our
dataset to generate DexRay’s images and train its classifier. Their
trained model on the same dataset achieved an accuracy of 79%,
with 86% precision and 81% recall rate. The model has F1_score
83%. This comparative result, as shown in Table 3 indicates that
our classifiers (with known and unknown features) outperform
their model’s accuracy and recall, even though our model has
very minimal training data.
5.2. Discussion

The experiments conducted in R01 and R02 show that RGB_Mem
can correctly classify Android malware with high accuracy, espe-
cially for known variants. We examined the three malware mis-
classifications and four benign false negatives in R01 and found a
common trend - partial execution. Although the app process was
not terminated during execution, and the foreground activity
continued running, the background services were inactive. For
instance, the malware cff7b956f043124a71f6973d8e34770f, which
is an SMS trojan by design, has a very minimal footprint. Because
that SMS functionality was not activated during execution, the
recovered allocation has only a very scanty overlapping pattern and
is hence categorized as benign. Likewise, the execution of the other
three samples - 9d3bba4d77baef885f8e63fa036b7228,
41f3a952454c4ae5740566aed58d2436 and 25f222a1cf4feaaa7b3-
dee43d4de7191 did not perform their background functions and
thus no connection were made to their servers. More so, the RGB
colors for the three benign apps after the image generation were
visually only in the overlapping category and thus were also mis-
classified by RGB_Mem. For R02, even though an 84% accuracy will
still be considered acceptable for zero-day malware classification,
our conclusion after visualizing the samples is that most of the false
positives and negatives fall within the overlapping RGB colors
range. This is primarily because their new tokens were unknown to
the sequence dictionary and misclassified. Hence, as part of future
work, we plan to adopt continual reinforcement learning so that
the model can adapt and learn new and unseen tokens during
execution.

For R03, our detection accuracy outperforms an existing
comparative model with static features. Overall, in terms of feature
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selection and engineering, the proposed approach explores a novel
methodology that may change the community’s approach to mal-
ware classification. Much like how memory forensics improves
incident response with tools like Volatility’s Malfind, APIHook, and
Hooktracer, RGB_Mem can potentially improve malware
classification.

5.2.1. Limitation -
Nonetheless, we also acknowledge that the proposed approach

has the following limitations - 1) The size of the training and testing
dataset- as discussed in section 3, there is currently no known re-
pository for memory images and certainly for recovered allocation
patterns. While this is undoubtedly an important limitation, our
evaluation result shows that evenwith a limited dataset, RGB_Mem
can learn from rich engineered in-memory features to correctly
classify knownmalware variants with excellent accuracy and make
a good effort for zero-day malware. 2) The detection accuracies for
both R01 and R02 are not perfect. These metrics could be improved
with an increased dataset and the introduction of continual rein-
forcement learning in the model. 3) Currently, the allocation
pattern is determined solely by the allocation address, which may
sometimes be inaccurate. Thus, as part of future work, we plan to
resolve the allocations into an object allocation graph as proposed
in the work of (Ali-Gombe et al., 2020). RGB_Mem will learn the
allocation pattern with better and well-established allocation
relation.

5.2.2. Future work -
In addition to utilizing an object allocation graph and adopting

continual reinforcement learning, we plan to extend RGB_Mem into
an online real-time learning system. The goal is to improve the
model’s accuracy and evaluate its performance on system resources
as an on-device memory scanner.

6. Related work

6.1. ML-Based android Classification Based on static Features

Mahindru and Sangal proposed MLDroid, a web-based frame-
work to detect malware in real-world apps. The model is trained
using static features as inputs into four different ML algorithms
(MahindruAL, 2021). The evaluation of MLDroid on more than
500,000 apps shows that the model achieves up to 98.8% detection
accuracy. Nguyen Vu and Jung, on the other hand, proposed AdMat
e a framework for characterizing Android applications by extract-
ing the static API calls as nodes in a graph, which are processed into
an adjacency matrix that serves as “input images” for the CNN
model. The evaluation of AdMat shows that the algorithm adapts to
various training ratios and achieves an average detection rate of
98.26% in different malware datasets. It also achieves a 97% accu-
racy for malware familial classification (Vu and Jung, 2021).
Almomani et al. (2022) presented a comprehensive vision-based
model for Android malware classification comprising 16 fine-tuned
CNN algorithms. The evaluation of (Almomani et al., 2022) on
DEBRIN and AMDmalware datasets based on static feature analysis
showed that the model achieves an accuracy of 99.40% for balanced
samples and 98.05%. Other related works are (Hsien-De Huang and
Kao, 2018; D'Angelo and PalmieriAntonio Robustelli, 2021;
DaoudiJordan et al., 2021; Bissyand�e and Klein, 2021; Ali-Gombe
et al., 2015; Aisha Ibrahim Ali-Gombe, 2017), all of which leverage
the machine and statistical learning-based models with static fea-
tures for Android malware classification. While almost all the
performance metrics of these related researches are commendable,
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the use of static features such as opcode sequences and/or other
semantic information like API calls, permissions, control flow, etc.,
have significant limitations. It is an established fact that even
benign apps today employ some form of obfuscation to deter
reverse engineering, and malware heavily relies on obfuscation to
hide their behavior. Thus, the static feature extraction process used
by these existing approaches is likely to be affected adversely by
different obfuscation such as dynamic class, Java reflection, and
encryption (Rastogi et al., 2013). On the contrary, this paper pro-
poses a new dimension to feature engineering using in-memory
object allocations and their allocation sequences as feature vectors
for a classifier. Our performance metric shows that the proposed
technique’s accuracy is at par with the related works without the
likelihood of our features being adversely affected by simple
traditional obfuscation or transformation techniques.
6.2. ML-Based android malware Classification Based on dynamic/
hybrid Features

Rodrigo et al. proposed a hybrid machine-learning model
named BrainShield for Android malware classification (Rodrigo
et al., 2021). Brainshield is designed as three fully connected neu-
ral networks trained on the Omnidroid dataset containing more
than 22,000 samples. The first neural network leverages 840 static
features, the second network is trained on 3722 dynamic features,
and the last is a hybrid network trained on 7081 static and dynamic
features. The model evaluation shows that Brainshield achieves an
accuracy of 92.9%, 81.1%, and 91.1% for the three networks,
respectively. Other related Android machine-learning models that
utilize either dynamic or hybrid features as input vectors to ma-
chine-learning models are the works of (Sihag et al., 2021;
Alzaylaee et al., 2020; Faruki et al., 2019; Rasthofer et al., 2014; Ali-
Gombe et al., 2016, 2018). The hybrid/dynamic features range from
API call tracing, dynamic permissions, Intents, CPU, Memory,
Network, sensor data system, and binder calls or their combina-
tions. While the evaluation results of each of these related works
posted more than 90% accuracy rate, compared with the proposed
RGB_Mem, these traditional hybrid techniques are built purely on
manual expert definition of the features, such as what API calls or
system calls to trace?What intent to hook and log? Etc. As malware
and the number of samples to analyze and classify continuously
grow, an expert knowledge-based feature selection may not scale
as much compared to our proposed feature engineering process.
Moreover, setting and building a robust execution environment for
dynamic feature extraction is prone to instrumentation and hook-
ing overhead, thus limiting the amount and type of features to
extract. In contrast, RGB_Mem takes a more holistic approach to
feature engineering and selection by leveraging the in-memory
footprint of the app as features without the drawback of resource
overhead and/or expert knowledge.
7. Conclusions

This research presents RGB_Mem - a CNN model that leverages
runtime in-memory artifacts for malware classification. RGB_Mem
introduces the concept of memory analysis to extract and recon-
struct object allocation patterns which are then transformed into
RGB images before being processed by the CNN model. The eval-
uation of the proposed feature engineering on an RGB-CNN shows
the model can adequately distinguish malware from benign exe-
cutions with more than 95% accuracy in known variant detection
and 84% accuracy for zero-day malware. Additional comparative
analysis shows RGB_Mem 0s accuracy surpasses the state-of-the-art
algorithm that leverages static features on a similar CNN model.
11
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