
lable at ScienceDirect

Forensic Science International: Digital Investigation 45 (2023) 301569
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2023 USA - Proceedings of the Twenty Third Annual DFRWS Conference
Factorizing 2FA: Forensic analysis of two-factor authentication
applications

Jessica Berrios a, *, Elias Mosher a, Sankofa Benzo a, Cinthya Grajeda a, Ibrahim Baggili b

a Samuel S. Bergami Jr. Cybersecurity Center, Connecticut Institute of Technology, University of New Haven, 300 Boston Post Rd., West Haven, CT, 06516, USA
b Baggil(i) Truth (BiT) Lab, Center for Computation & Technology, School of Electrical Engineering & Computer Science, Louisiana State University, USA
a r t i c l e i n f o

Article history:

Keywords:
Digital Forensics
Artifacts
Two factor authentication (2FA)
Mobile applications
Windows
Android
iOS
* Corresponding author.
E-mail addresses: jberr6@unh.newhaven.edu

newhaven.edu (E. Mosher), sbenz14@newhaven.edu
newhaven.edu (C. Grajeda), ibaggili@lsu.edu (I. Baggi

https://doi.org/10.1016/j.fsidi.2023.301569
2666-2817/© 2023 The Author(s). Published by Elsevi
licenses/by-nc-nd/4.0/).
a b s t r a c t

Many sectors such as banking, academia, health care, and others have made Two-Factor Authentication
(2FA) mandatory for all their registered users. The growth in the usage of 2FA technology demonstrates
the need to understand how 2FA applications operate, the kind of information they store about their
users, and the implications, if any, that may arise if malicious actors exploit them. Our work focuses on
the forensic analysis of 15 2FA applications used by millions of people. Our analysis includes popular
applications such as FreeOTP, Google Authenticator, Microsoft Authenticator, Twilio Authy, and more. The
applications were tested on different operating systems (Android, iOS and Windows 10) and used with
applications such as Facebook, Twitter and Instagram. Our methodology focused on not just forensically
analyzing the devices’ storage, but also the network traffic of all devices and the memory of the Windows
machine. Results revealed that the majority of analyzed applications store encrypted/encoded and plain
text information, such as secret keys, timestamps, account names, e-mail addresses, the application
locking pin, and more. Consequently, we believe that the critical discovery of secret keys allows for the
2FA functionally to be bypassed and it is demonstrated in this work. Our results revealed that 14 of 15
applications stored the name of the social media application/account information, and 14 of 15 appli-
cations stored either plain text, or encoded/encrypted secret keys. Finally, 2 of 15 applications stored a
pin in plain text used to lock the application and/or encrypt all information on the disk.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

User accounts are hijacked on a daily basis. As adversaries pro-
duce more sophisticated attacks, users continue losing billions of
dollars from different types of internet scams. According to the 2022
Internet Crime Report released by the FBI, there have been 3.26
million cybercrime complaints from victims all over the world over
the last five years and they have resulted in $27.6 billion in total
losses (FBI, 2023). Account hijacking typically allows users to steal
and control a user’s data, money, or identity. Two-Factor Authenti-
cation (2FA) is a widely adopted approach for protecting user ac-
counts. 2FA is an identity verification approach that requires two
forms of identification to access a system (Microsoft, 2022). 2FA
technology has been around for years, as it was first introduced in
(J. Berrios), emosh1@unh.
(S. Benzo), cgrajedamendez@
li).

er Ltd on behalf of DFRWS This is a
1986 by RSA as a key fob (America, 2022). Since then, 2FA has rapidly
become the standard for login security across many sectors. For
instance, starting in 2021, Google began to automatically enroll 150
million of its users in 2-Step Verification (2SV), including 2 million
YouTube creators. Consequently, 50% of those user accounts avoided
being compromised (Kim, 2022). According to a study by Duo Labs,
there has been a significant surge of 2FA implementations between
the years 2017 and 2021. As of 2021, 79% of people reported using
some form of 2FA in comparison to only 28% in 2017 (Childers, 2021).

2FA works by enabling a second factor of verification during the
login process. Users first enter information they know such as a
username and password. This is followed by a second factor and can
either include (Fruhlinger, 2019):

� “Something you have” (e.g device)
� “Something you are” (e.g biometrics)
� “Somewhere you are” (e.g location based)

A few of the most common 2FA methods include text messages
(SMS), Time-based One Time Passwords (TOTP), pre-generated
n open access article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jberr6@unh.newhaven.edu
mailto:emosh1@unh.newhaven.edu
mailto:emosh1@unh.newhaven.edu
mailto:sbenz14@newhaven.edu
mailto:cgrajedamendez@newhaven.edu
mailto:cgrajedamendez@newhaven.edu
mailto:ibaggili@lsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301569&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301569
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2023.301569

Table 1
2FA applications tested.

Application Version Platform Downloads

Aegis 2.0.3 A 100Kþ
FreeOTP 1.5 A 1Mþ
TOTP 1.89 A 100Kþ
Google 5.20R4 A/I 100Mþ
Microsoft 6.2207.4624 A/I 50Mþ
2FAS 3.17.0 A/I 1Mþ
Twilio Authy 4.8.8 A/I/W 10Mþ
Okta Verify 7.9.0 I 36K
Two-Factor 1.5 I 25
FIS Authenticator 4.4.6 I 120
Epic Authenticator 1.0 I 21
IBM Verify 2.5.2 I 72
Authenticatorþ 2.0.4 I N/A
WinAuth 3.5.1 W N/A
2 Factor Auth 2.5.1804 W N/A

Key: A: Android, I: iOS, W: Windows.

J. Berrios, E. Mosher, S. Benzo et al. Forensic Science International: Digital Investigation 45 (2023) 301569
codes, push notifications, and Universal Second Factor (U2F) secu-
rity keys (Reese et al., 2019). Our work focuses only on 2FA appli-
cations that use TOTP, which in the majority of cases use time-
sensitive generated codes that are six digits in length. Given the
popularity and growth of 2FA, it will naturally attract adversaries.

Our research only focuses on artifacts left behind by various 2FA
mobile and desktop applications and not on the applications being
authenticated, i.e., Facebook. This is to understand the type of data
discovered through different types of forensic acquisitions (disk,
memory and network) and how that data can be utilized as evi-
dence during an investigation or for malicious purposes given the
situation. Therefore, our contributions are as follows:

� A primary digital forensics methodology and analysis of disk,
network, and memory of fifteen 2FA applications presented in
Table 1.

� A notable amount of relevant digital forensic artifacts shared on
the open platform, the Artifact Genome Project(Grajeda et al.,
2018).1

This paper is organized as follows: Section 2 presents related
work. Section 3 explains the methodology, while Section 4 dis-
cusses the disk analysis and experimental results. Section 5 details
theWindowsmemory and network results. Section 6 demonstrates
2FA Bypass with TOTP and conclusion and future work are pre-
sented in Section 7 and 8 respectively.
2. Related work

The popularity of 2FA is vast, as it is supposed to provide another
layer of security to online information. The interest in discovering
how to bypass it, however, has never been greater. A simple Google
search on how to bypass 2FA produces hundreds of hits with blog
posts, YouTube videos, articles, and so on. Grimes (2019) explains
there are multiple ways to do this, for example, through session
hijacking, man-in-the-endpoint attacks, SMS rogue recovery, brute
force attack, duplicate code generators and more. One of the main
goals in some of these attacks and our main goal in this paper is to
acquire the secret “seed” or key as most applications refer to it, in
order to be able to reproduce the six digit code to authenticate a
user into an account.

At the time of writing and to the best of our knowledge, the
methodology to obtain not only secret keys but other personal
identifiable information from 2FA applications and a proof of
concept evaluation on bypassing 2FA using those secret keys is a
novel approach. Nevertheless, we acknowledge the work of (Ozkan
and Bicakci, 2020) where they used an Android emulator to fetch
secret keys from 2FA applications. In their results, they found five
applications containing secret keys in storage and seven applica-
tions containing keys in memory. This work was accomplished by
an entirely different method using basic reverse engineering
techniques.

Other research that has been previously written in relation to
2FA technology focuses on the growing prevalence of 2FA, as well as
a detailed analysis of their structures and how they work. Addi-
tionally, other research in general has focused on forensically
investigating mobile applications ranging from social media to
native device applications. Forensically investigating applications
in multiple devices is also the focus of this paper. Therefore, the
following subsections put the spotlight on related works conducted
in the last ten years.
1 https://agp.newhaven.edu.

2

2.1. Two-factor usability

The usability of 2FA has been researched in terms of what the
best applications are for 2FA and how these applications are
structured. Many of these studies specifically cover items such as
the 2FA methods with the fastest response time, how user-friendly
they are to set up, and how complicated they are to use (Reese et al.,
2019). What is interesting to note is how 2FA is gaining more
prevalence in many areas where security is becoming a larger
concern. For instance, the incorporation of 2FA on Bitcoin wallets
does not take the traditional route of using the five most common
methods, but instead uses signatures to generate 2FA (Mann and
Loebenberger, 2017). Another example of this involves imple-
menting TOTP 2FA in private cloud services such as OpenStack. The
advantages of adding this second level of security are discussed and
compared to other major platforms that are already making use of
2FA such as Facebook, Microsoft, and Apple (Gordin et al., 2019).
Additionally, 2FA is rapidly expanding and beginning to be incor-
porated into more of our daily tasks. For example, online trans-
actions are becoming more popular every day and the growth of
online stores poses a new challenge to securing online transactions.
Due to this, new technologies such as SecurePay are beginning to
appear to the public. SecurePay works to incorporate 2FA into a
more secure online transaction application (Konoth et al., 2020).

In a study conducted on the comparative usability of 2FA, par-
ticipants were asked what motivated them to begin using 2FA. The
majority felt more secure using it. In addition, other forms of 2FA
were analyzed and some drawbacks were mentioned. These
drawbacks included a dip in productivity from companies who
required 2FA access cards, which led to loss of revenue. The cause
was lost time from problems such as employees losing or forgetting
their access cards (De Cristofaro et al., 2013).

Consequently, 2FA can also be considered a security mechanism
for IoT devices. Although many of the methods being applied to IoT
devices do not follow the traditional methods for 2FA, they still
provide an additional level of security. For example, a method being
implemented on IoT devices includes sending a message to the
server to which the IoT device seeks to connect, while the server
responds with a one-time key (Gope and Sikdar, 2019).

Finally, one aspect that can cause hesitance when using 2FA is
the risk of losing access to your account. If a user were to lose their
device, then the user would lose access to their account. For this
reason, many applications have a recovery option set in place.
However, attackers can still use these mechanisms to gain unau-
thorized access to users’ accounts (Dimitrienko et al., 2014).

https://agp.newhaven.edu

J. Berrios, E. Mosher, S. Benzo et al. Forensic Science International: Digital Investigation 45 (2023) 301569
2.2. Other related works

Similar studies have been performed resulting in the findings of
many digital forensic artifacts. Such works include but are not
limited to investigations on extremist social media applications
(Johnson et al., 2022), Android Auto and Apple Carplay Forensics
(Mahr et al., 2022), video conferencing applications such as Zoom
(Mahr et al., 2021), virtual reality applications (Yarramreddy et al.,
2018), Chromecast forensic analysis (Sitterer et al., 2021), analysis
of social networking applications (Al Mutawa et al., 2012), Dones
(Clark et al., 2017), Amazon Alexa(Dorai et al., 2018) and many
more.

3. Methodology

The forensic investigation of fifteen 2FA applications consisted
of four main phases described in the following sections. These
included scenario creation & testing, data acquisition, data analysis
and 2FA bypass. It is important to note that out of the fifteen ap-
plications tested, six were only iOS platform compatible, threewere
Android, and two were Windows. One application was compatible
with all three operating systems, while three were compatible with
the Android and iOS operating systems.

The apparatus used to conduct this research is presented in
Appendix A, Table A.4. No APK reverse engineering tools were
utilized as that would retread the study by (Ozkan and Bicakci,
2020). Advanced analysis with decompilers/disassemblers is out
of the scope of this research.

3.1. Scenario creation & testing

The first phase consisted of testing fifteen two-factor applica-
tions, listed on Table 1, along with the number of downloads (if
available). Additionally, five social media and cloud storage service
applications were selected to authenticate, the applications con-
sisted of Facebook, Instagram, Dropbox, Twitter, and Snapchat. The
2FA applications were chosen based on two things, their popularity
and their lack of it. The reason being to make sure there was di-
versity within the applications that could yield comparable results.
This also allowed for a comparison to be made between applica-
tions that are created fromwell known organizations (i.e Google) to
smaller less known organizations.

In order to implement realistic testing and acquire real-world
datasets, the tests were performed on a rooted Galaxy S6 smart-
phone, a jailbroken iPhone 7 and aWindows 10 desktop set-up on a
virtual machine (VM). As part of our controlled environment for
testing, a WiFi hotspot was created to isolate all network traffic
from all devices. The testing applications used were downloaded
from the Google Play Store,2 Apple App Store,3 the Microsoft Store,4

Github,5 and the Authy website.6

Note, as expected, some of the applications automatically
updated during the testing phase, however, this did not affect re-
sults in our process.

The process of testing all 2FA applications using five services to
authenticate, which included four social media applications and
one cloud service, consisted of five main steps with small differ-
ences between them. It is important to note that the method uti-
lized here was to manually obtain the key from the application
2 https://play.google.com/store/games?hl¼en&gl¼US.
3 https://www.apple.com/app-store/.
4 https://apps.microsoft.com/store/apps.
5 https://winauth.github.io/winauth/download.html.
6 https://authy.com/download/.

3

instead of scanning the QR code provided. To demonstrate this
process, refer to Fig. 1 as it depicts the Facebook application being
authenticated using the TOTP Authenticator application. The most
common steps are highlighted below:

1. Set-up 2FA applications in devices and provided a phone num-
ber on one occasion.

2. Where optional, created a pin or password in order to lock the
2FA application and/or encrypt all its data in the device. Tests
were conducted with both options.

3. Enabled 2FA in the service needing authentication (i.e., Face-
book) and opted to use an authentication application, such as
TOTP Authenticator.

4. Copied the secret key provided by the service needing authen-
tication (i.e., Facebook) and entered it manually in the 2FA
application in order to add the account. In some cases, to
identify the account, the name was also added as well as the
name of the service application.

5. The latter process created the six digit code required by the
service needing authentication in order to be verified.

6. Logged in to the social media application using the six digit
code.
3.2. Data acquisition

In order to acquire disk images and network traffic from each
mobile device tested, a diverse set of acquisition tools were utilized
(see Appendix A, Table A4). This includesMagnet Acquire7 to obtain
physical forensic images of the Android and ArtEx8 to acquire im-
ages from the iPhone. Note that no Secure Digital (SD) cards were
acquired in this research as their storage was not necessary for the
purpose of this investigation. Themain disk in themobile devices is
where the applications were installed by default.

Additionally, in our preliminary analysis, network traffic was
acquired from mobile devices using Wireshark.9 However, it was
discovered that the traffic was either encrypted or encoded which
caused it to be out of the scope of this research. The tool Fiddler10

was another network traffic capturing tool used on these devices
to decrypt HTTPS traffic. The initial goal was to intercept the 2FA
secret keys as theywere generated by the social media applications.
Unfortunately, the traffic could not be captured with Fiddler. This
was likely due social media applications using certificate pinning
(Telerik, 2014), which can block Fiddler-generated certificates.
Fiddler was successfully used to monitor traffic from the 2FA ap-
plications themselves, but this produced nothing of value as these
applications perform all operations related to calculating the OTPs
locally (M’RaihiBellare, 2005). In terms of the Windows VM, to
speed up the process, disk images were not needed and only a file
system acquisition of the target locations was implemented.
Network traffic was acquired using Fiddler, and memory dumps
were completed using iDumpIt11 after each major test per
application.

4. Disk analysis & experimental results

During the setup process of the 2FA applications, it was
7 https://www.magnetforensics.com/resources/magnet-acquire/.
8 https://www.doubleblak.com/.
9 https://www.wireshark.org/.

10 https://www.telerik.com/fiddler.
11 https://www.magnetforensics.com/resources/magnet-dumpit-for-windows/
#Our%20Blog.

https://play.google.com/store/games?hl=en&gl=US
https://play.google.com/store/games?hl=en&gl=US
https://play.google.com/store/games?hl=en&gl=US
https://play.google.com/store/games?hl=en&gl=US
https://www.apple.com/app-store/
https://apps.microsoft.com/store/apps
https://winauth.github.io/winauth/download.html
https://authy.com/download/
https://www.magnetforensics.com/resources/magnet-acquire/
https://www.doubleblak.com/
https://www.wireshark.org/
https://www.telerik.com/fiddler
https://www.magnetforensics.com/resources/magnet-dumpit-for-windows/#Our%20Blog
https://www.magnetforensics.com/resources/magnet-dumpit-for-windows/#Our%20Blog

Fig. 1. Authentication process.

J. Berrios, E. Mosher, S. Benzo et al. Forensic Science International: Digital Investigation 45 (2023) 301569
discovered that some of them had the option to lock the application
via a four-digit pin or another type. Locking the application pro-
vided a layer of security to avoid unauthorized access. In some
cases, this extra layer also encrypted the information stored in the
device. In this phase, only four applications had this option and
they were tested with and without assigning a pin. These config-
urations yielded different results which are highlighted in Table 3.

A granular breakdown of where these artifacts are stored in the
device is presented in Table A.5, Appendix A. The most relevant
results extracted from all devices in all tested applications are
discussed in the following subsections. Refer to Table 2 for a sum-
mary of the number of applications containing this important
information.

Consequently, it is critical to mention that twenty-five artifacts
were discovered to store the most important information. Out of
twenty-five artifacts, thirteen (50%) were extracted from the
Android device and the remaining were extracted from the iOS
device and the Windows VM.

4.1. Account information

Account information is extremely useful to find as it identifies
Table 2
2FA artifact commonalities.

Artifact Total App Number Percentage

Issuer Name 14/15 93%
Account Name 12/15 80%
Secret Key 10/15 67%
Timestamps 8/15 53%
Encrypted Secret Key 7/15 47%
UUID 5/15 33%
Email 5/15 33%
Application Pin 2/15 13%
IP Address 2/15 13%
Location 2/15 13%

4

the user of the account. During the set-up process of the 2FA ap-
plications and while adding a service to authenticate, certain in-
formation was required. Out of the fifteen applications examined,
twelve (80%) stored account names in plain text (see Fig. 2). The
account name could have been anything the user decided to name
it, such as a username, email address or simply the name of the
service being authenticated. Moreover, out of the fifteen applica-
tions tested, fourteen (93%) returned the issuer name of the
application being authenticated, for example Facebook or Insta-
gram. Other similarities found include the Universally Unique
Identifier (UUID) which was stored in five out of the fifteen (33%)
applications tested. The UUID serves as an identifier for each social
media application tested with 2FA. Timestamps were also found in
eight out of the fifteen (53%) applications tested. These timestamps
were found across all three devices and presented the date and
time that an account, such as Facebook, was added to the 2FA
application.

Additionally, the Twilio Authy application was the only one that
required a phone number to be entered as part of the initial 2FA
account setup. The phone number was found within the disk image
of the Android device. Other important information found in the
disk of the Windows VM stored by the Twilio Authy application
included timestamps and identifiable information about the device
such as IP addresses, region, city, and country. It also contained
information about all of the devices registered under the phone
number that was given at the creation of the account. All incidences
of when Twilio Authy was downloaded and used with the partic-
ular phone number given while testing were logged in this central
file. Each device logged in this application was given a unique
identification number(UID).

4.2. Secret/encrypted keys

Encrypted and non-encrypted secret keys were stored in four-
teen out of the fifteen (93%) 2FA applications tested. The keys were
found in either an encrypted format or in plain text (see Fig. 2). Any

Fig. 2. Artifact from Microsoft Authenticator.

J. Berrios, E. Mosher, S. Benzo et al. Forensic Science International: Digital Investigation 45 (2023) 301569
encrypted keys found were only decrypted if a pin was found to do
so, any other attempts to perform advanced decryption were out of
the scope of this paper.

For instance, the Twilio Authy application stored both, the plain-
text and encrypted keys. Twilio Authy was one of the four appli-
cations that had the option of using a pin to lock the application.
This pin also encrypted the secret keys.

Tests on the other three applications that had the option to use a
pin rendered different results from the Twilio Authy application.
Initially, it was believed that by setting a pin the information in the
artifacts would be encrypted immediately, but this was not the
case. It was discovered that six artifacts found in the disk stored
encrypted keys without the need for a pin to be set. These six ar-
tifacts were spread between three applications. The 2FAS applica-
tion for example, allowed for a pin to be set, but returned encrypted
keys with and without the pin. The WinAuth application also did
not require a pin to be set, and when the disk was analyzed,
encrypted secret keys were found to be stored. Meanwhile, the
application Aegis, allowed the user to set a pin and rendered only
encrypted keys when the pin was in use, compared to plain text
secret keys when the pin was not employed.

5. Windows memory & network results

As previously discussed, only the Windows VM was used to
acquire its memory and capture the network traffic after each test
from the three applications. Two memory captures were taken for
each application, one while the 2FA application was opened during
the testing process and one when the application was completely
closed in the system. The idea was to test the concept of verifying
that when the application is opened in the system and running,
traces would be left in memory and more results would be found.
However, the case might not be the same when the application is
closed, and thus we wanted to see what information would remain
in memory after the fact. This was proven to be true as the majority
of the significant results that were found came from the memory
capture that was taken while the application was opened.

When inspecting the memory and the network, there was no
ambiguity about what had to be found. In terms of analyzing the
memory, the tool Bulk Extractor was initially used, however, it did
not provide any targeted relevant artifacts. On the other hand,
Strings was the preferred tool to use as it allowed to search for
targeted text strings in the memory dumps. This included secret
keys and more.

Finally, network forensics was performed on the Windows VM
by capturing the traffic with the Fiddler tool. The tool not only
successfully decrypted HTTPS traffic, but also made it very conve-
nient to search for the exact information that needed to be found in
5

the network packets, such as secret keys. The results found are
presented in Table 3.

5.1. Personally identifiable information(PII)

Thememory and network both returned PII. In the memory, this
included timestamps, location data, IP addresses, phone numbers,
and email addresses. The network returned a phone number.
Across the three applications tested on the desktop, the phone
numbers and email addresses were returned for all of them. The
timestamps, location data, and IP addresses were only returned for
Twilio Authy.

5.2. Secret/encrypted keys

The secret key created by the application being authenticated
(i.e. Facebook) was stored unencrypted in the memory and over the
network. Encrypted secret keys were only found in the memory for
Twilio Authy andWinAuth. In all three of the applications tested on
the Windows VM, the plain-text secret keys were only discovered
for the Facebook application being authenticated and not the rest of
the applications tested.

6. Bypassing 2FA with TOTP

Although 2FA has proven to be successful in providing a second
layer of security to user accounts, we have previously established
that it is not completely secure against all threats. Take the case of
Comcast Xfinity, where, according to several media outlets, hackers
were able to bypass the 2FA mechanism on user accounts. It is
believed the bad actors implemented credential stuffing attacks in
order to establish login credentials for Xfinity accounts. Then they
used a privately circulated OTP bypass tool to falsify 2FAverification
requests that successfully allowed the 2FA to be bypassed and
provided access to user accounts (Abrams, 2022).

In order to understand 2FA TOTP, it is first necessary to briefly
introduce the Hash-Based Authentication Code (HMAC), the
fundamental underlying algorithm that powers TOTP. HMAC uses a
function that hashes input data and outputs a hash of fixed length,
but unlike a standard hashing function such as SHA256, HMAC also
hashes a secret key value along with the input data. The hash
created using the data and secret key is a form of verification for
two-factor authentication alongside a standard password
(KrawczykBellare, 1997).

TOTP is a form of HMAC One Time Password (HOTP), which uses
the current time (UTC or GMT) as input data hashed alongside a
secret key to create the one-time password used for 2FA. In most
2FA applications, this takes the form of a 6-digit one-time password

Table 3
2FA important artifacts found across all acquisition types.

Issuer Name Account Name Email Secret Keys Timestamps Encrypted Secret Keys Salt Phone Number Application Lock Pin

Aegis Locked A A
Aegis Unlocked A A A A
Authenticatorþ I I I I
Epic Authenticator I I
FIS Authenticator I I I
FreeOTP A A A
Google Authenticator A A A A
IBM Verify I I I
Microsoft Authenticator A A A
Okta Verify I I
TOTP Locked A A A A A A
TOTP Unlocked A A A A A
Twilio Authy Locked A A A A A A A A
Twilio Authy Unlocked A A A A/W A A A
Twilio Authy Memory* W W W W
Twilio Authy Network* W W W
Two-Factor I I I I
WinAuth W W W
WinAuth Memory* W W W
WinAuth Network* W W
2FAS Locked A A
2FAS Unlocked A/I A/I A A
2 Factor Authenticator Memory* W W W W W
2 Factor Authenticator Network* W W

Key: A: Android Mobile, I: iOS Mobile, W: Windows, Memory* or Network*: Memory or network acquisition only.

J. Berrios, E. Mosher, S. Benzo et al. Forensic Science International: Digital Investigation 45 (2023) 301569
(OTP). This password is recalculated every 30 s using the new
current time variable. The password is calculated approximately
simultaneously by both the 2FA application of the user and the
service (such as social media application) on which they have
activated 2FA. Back in 2011, TOTP was the most common and
popular form of 2FA application (M’RaihiMachani, 2011) and it still
continues to be highly prevalent today, with Google Authenticator,
Twilio Authy, andMicrosoft being the most used TOTP applications.
However, in recent years, push notification applications such as
Duo Mobile have become the most popular 2FA Authentication
method, and as of 2019, it makes up 68% of 2FA users (DataProt,
2021).

When a user enables 2FA on a service, such as a social media
account, the user is provided with a secret key wrapped inside a QR
code, alongside additional accountmetadata. This QR code can then
be scanned or decoded, and the secret key is then loaded into the
2FA application, which can then begin calculating the TOTP. Some
services also support giving the secret key directly without a QR
code, which is the option used in this research.

Because all TOTP applications use the same HMAC algorithm (an
RFC under review by the IETF), the theory was that if a plain-text
HMAC secret key could be forensically extracted from a disk im-
age, researchers could input that key into any TOTP application,
produce an identical one time password to that of the original, and
use it to gain access to a 2FA protected social media account. The
work produced in (Ozkan and Bicakci, 2020) established that it is
possible to extract a valid secret key from an application’s file
system using reverse engineering tools. These extracted secret keys
could then be used to log into a 2FA-protected service.

The general method of copying TOTP through acquiring the
secret key is one that the security community has been aware of
since the creation of HMAC (M’RaihiMachani, 2011), which is why
IETF urges developers to protect and encrypt their secret keys in
any system that uses TOTP (such as a 2FA application). The work
laid out in (Ozkan and Bicakci, 2020) showed where these keys are
stored and how to extract them using reverse engineering and
memory forensic techniques. We sought to learn from their
methodology but from the angle of disk, memory and network
6

forensics (with an emphasis on artifact location), and extend the
scope of the study to not only Android applications but also iOS and
Windows, all while testing additional applications on all three
platforms.

Therefore, we developed the following proof of concept to verify
the validity of output OTPs from different 2FA applications using
extracted keys from different acquisition methods. This concept
was tested with multiple 2FA applications and different secret keys
to prove that using any key created by the same algorithm can
bypass 2FA on a user account, even if it was not created with the
same user account and application. See Fig. 3 for a high-level
demonstration along with the steps below.

� Use any unencrypted secret key that was forensically extracted
from either the disk images, network traffic, or memory from
each application.

� Input each secret key into a different 2FA application, not the
one originally used to create the key.

� This new 2FA applicationwill nowgenerate a valid 2FAOTP code
every 30 s.
Fig. 3. 2FA bypass process.

12 https://agp.newhaven.edu.

J. Berrios, E. Mosher, S. Benzo et al. Forensic Science International: Digital Investigation 45 (2023) 301569
� Use the generated OTP/code to access 2FA protected service/
account.

The challenges to this 2FA bypass primarily have to do with
encryption. If a 2FA application encrypts its secret keys, either by
default or as an optional setting, those keys first need to be
decrypted before they are used as it is the precise series of char-
acters (then hashed via HMAC) which generates the OTP
(M’RaihiMachani, 2011). Another challenge lies in verifying the
legitimacy of the secret key. If 2FA has been disabled, or disabled
and then re-enabled, the secret key will have been changed by the
service; thus the 2FA applications key will be out of date and no
longer be generating valid OTPs which can be used for
authentication.

6.1. TOTP bypass implementation & results

In order to verify the 2FA bypass could still be valid, tests were
conducted using TOTP secret keys created through Twitter and
Facebook accounts. The keys were then loaded into a selection of
Android, iOS, and Windows 2FA apps that we already tested for
artifact extraction.

The one-time password generated on the applications were
then compared to one another across all devices and platforms to
verify they were identical. Once verified, each account was logged
onto each of the 2FA-protected social media accounts to verify the
one-time password was valid.

Consequently, the 2FA bypass was executed successfully with
identical results on all 2FA applications tested. All OTPs generated
were identical if using the same secret key. This in turn allowed us
to use known credentials to log into the 2FA-protected social media
accounts. It is important to note that in order for the bypass to be
successful, the bypasser must have the target’s login credentials in
order to authenticate. Credentials could be obtained in different
ways, for instance by extracting them from disk or even memory.
Some login information was discovered on our disk investigation,
such as username or email address. Another example could include
credential stuffing as mentioned in (Abrams, 2022). This proof of
concept assumes the algorithm creating the keyswas identical in all
applications and that, if given identical input, keys would output
identical OTPs.

From a criminal perspective, to successfully perform this bypass
locally, and assuming the target device is securely locked, the
attacker would to have obtain access to the target’s mobile or
desktop device in order to acquire the 2FA secret key through the
file system (if accessible) or forensic acquisition of an image.

The far more practical and concrete application for this meth-
odology is with regard to forensic examiners. The ability to extract a
2FA secret key allows the examiner to generate a valid 2FA OTP
without the use of the original device thereby reducing the need to
directly handle the device and potentially altering the data. By
having your own copy of the key, the original device can be
transported, handed over to other examiners, or stored away and
you will still have the valid credentials needed to access the 2FA-
protected service. This applies even in a disastrous scenario in
which the original device is wiped or destroyed. As long as the 2FA
feature of the protected service has not been disabled, the extracted
key will remain valid for authentication.

7. Conclusion/discussion

With an increase in the digitization of different sectors,
including critical institutions, two-factor or multi-factor authenti-
cation has been established as a standard for securing information.
Still, it is always better to use multiple layers of security than
7

nothing at all. Two-factor authentication is a large step towards
having a more secure environment in a user’s personal and pro-
fessional life. Nevertheless, while these technologies reduce risk,
the research discussed in this paper demonstrates that more work
needs to be done to improve such technologies and that organi-
zations need to strongly consider using encryption when trans-
ferring and storing user data.

The forensic analysis performed on these applications (Table 1)
discovered an abundant amount of user or account information
stored in plain text or encrypted on disk in the device and some in
the memory and network traffic of the Windows VM. The diversity
of devices used with different operating systems offered a better
insight into how these different technologies store and transfer
user data. Our results demonstrated that out of the fifteen appli-
cations tested, Android devices contained the most user/account
information overall with about (50%). In terms of overlap between
the applications tested, only Twilio Authy was tested on all three
devices with no other overlap between the Windows machine and
the mobile phones. The iPhone and Android devices did see more
overlap with four applications in total being tested on both. The
results included account names (80%), issuer/service name (93%), IP
addresses (13%), locations (13%), four-digit pins (13%) and most
importantly, secret keys (73%). All of these artifacts can be freely
accessed and downloaded from the Artifact Genome Project.12

Consequently, the discovery of plain text secret keys allowed us
to bypass 2FA and gain access to an account without needing the
device fromwhich the two-factor authenticationwas originally set-
up on. From a criminal perspective, in order to bypass a 2FA-pro-
tected application, a criminal would need to launch a certain type of
attack to be successful as highlighted in Grimes (2019). As previ-
ously mentioned the practical use of this bypass would have a
larger appeal to forensic examiners. This bypass could be a critical
method to use in the event law enforcement needed to triage a
criminal event where access to a user’s account was the main goal.

The prevalence of PII in plain text within these 2FA applications
should be noted. While the information collected in these appli-
cations is necessary for their functionality, the lack of secure stor-
age of the data is a privacy and security concern. In the case that
these applications are exploited by an external attacker, it could
lead to the identification of users and the compromise of their ac-
counts. It is recommended that companies and developers making
2FA applications take steps to secure their users’ data by way of
encryption.

Expanding further, this is why it is not necessarily invalid to
explore the plain text artifacts as opposed to trying to seek out
encrypted data and decrypt it. Not only are encryption algorithms
difficult to break, requiring many hours and sophisticated com-
puter technology, but many companies do not encrypt a lot of their
information to begin with. Instead of focusing on a practice that is
seldom used, we focused on the plain text data because of its
prevalence within the applications.

8. Future work

Workmust continue in terms of analyzing future versions of the
applications originally investigated, as well as new applications
especially to verify that perhaps more attention is being put on
encrypting secret keys and PII in storage. Research could involve
implementing the different types of attacks discussed in this paper.
Furthermore, focus should be put on the other types of multi-factor
authentication as they were not explored in this research.

Much research can be done in this field, as prior studies have

https://agp.newhaven.edu

J. Berrios, E. Mosher, S. Benzo et al. Forensic Science International: Digital Investigation 45 (2023) 301569
focused on the usability or specific attacks that can be performed
on it. With this future research, law enforcement may have a new
way to collect evidence that can be useful in their investigations
that have a 2FA element.

Acknowledgements

This material is based upon work supported by the National
Table A.4
Apparatus

Hardware/Software Use

Galaxy S6 2FA Accounts
iPhone 7 2FA Accounts
Android Debug Bridge (ADB) Data Extract
Magnet Acquire Data Extract
FTK Imager Data Extract
ArtEx Data Extract
Autopsy Data Analysis
Wireshark Network Extract/Analysis
Fiddler Network Extract/Analysis
DB Browser for SQLite File Analysis
Instagram 2FA Testing
Facebook 2FA Testing
Twitter 2FA Testing
Dropbox 2FA Testing
Snapchat 2FA Testing
VMware Fusion Platform to Host VM
Windows 10 Education Windows VM for Testing
Bulk Extractor Memory Analysis
Linux Strings Command Memory Analysis

Table A.5
Important Data Path Directories and Files Found in Disk Across Devices

File
ID

Path

1.1 /vol_vol20/data/com.beemdevelopment.aegis/files/aegis.json

1.2 /vol_vol20/data/com.beemdevelopment.aegis/files/aegis.json

1.3 /vol_vol20/data/org.fedorahosted.freeotp/shared_prefs/tokens.xml

1.4 /vol_vol20/data/com.google.android.apps.authenticator2/databases/databases

2.1 /vol_vol20/data/com.azure.authenticator/databases/PhoneFactor
2.2 /private/var/mobile/Containers/Data/Application/72DAEA2F-0067-4D16-882Fe03

Documents/PhoneFactor.sqlite
2.3 /vol_vol20/data/com.authenticator.authservice2/shared_prefs/TOTP_Authenticato

2.4 /vol_vol20/data/com.authenticator.authservice2/shared_prefs/TOTP_Authenticato

3.1 /vol_vol20/data/com.twofasapp/shared_prefs/SecurePrefernces.xml
3.2 /private/var/mobile/Containers/Shared/AppGroup/786DC57B-8EA6-4BC5-9436-C6

TwoFAS.sqlite
3.3 /vol_vol20/data/com.twofasapp/shared_prefs/com.twofasapp_preferences_encryp
3.4 /vol_vol20/data/com.authy.authy/databases/authy_database
4.1 /vol_vol20/data/com.authy.authy/shared_prefs/com.authy.authy.storage.UserInfoS
4.2 /vol_vol20/data/com.authy.authy/shared_prefs/

com.authy.storage.authenticator_password_manager.xml
4.3 /vol_vol20/data/com.authy.authy/shared_prefs/com.authy.storage.tokens.authent

4.4 /vol_vol20/data/com.authy.authy/shared_prefs/tokenConfig.xml
5.1 /private/var/mobile/Containers/Data/Application/EC0F1491-9034-436B-8AB9-B75

Library/Preferences/com.okta.mobile.plist
5.2 /private/var/mobile/Containers/Data/Application/9AEE80C4-6616-426A-AB13-896

Library/Application Support/Main_sqlite
5.3 /private/var/mobile/Containers/Data/Application/E2444C86eB1B9e43C6eB99E-4

Library/LocalDatabase/fisauth.db
5.4

8

Science Foundation under Grant Number 1900210. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

Appendix A. Apparatus & Relevant Artifacts Found in Disk
Company Software Version

Samsung 7.0
Apple 14.7.1
Android Studio Developers N/A
Magnet Forensics 2.56.0.31667
AccessData 4.7.1
DoubleBlak 2.4.12
Basis Technology 4.19.3
Wireshark, Inc 3.6.6
Telerik, Inc v5.0.20211
DB N/A
Meta Platforms, Inc. 254.0.0.19.109
Meta Platforms, Inc. 386.0.0.35.108
Twitter, Inc. 9.61.0-release.0
Dropbox, Inc. 298.2.2
Snap, Inc. 12.01.0.33
VMware, Inc. 12.2.4
Microsoft, Inc. 21H2
N/A 2.0.0
N/A N/A

App OS Description

Aegis* Android Encrypted Secret key, Salt & Nonce,
UUID

Aegis Android Secret Key, Issuer Name, Account Name,
UUID

FreeOTP Android Account Name, Issuer Name, and
Encrypted secret keys

Google Android Account Name, Issuer Name, and Secret
Keys

Microsoft Android Account Name, Issuer Name, Secret Keys
197441C97C/ Microsoft iOS UUID

r_Preferences.xml TOTP* Android 2FA Pin, Issuer Name, Account Name,
and Secret key

r_Preferences.xml TOTP Android Issuer Name, Account Name, and Secret
key

2FAS* Android Encoded Pin
F302CCF5C4/ 2FAS iOS Account Name, Issuer Name,

Timestamps, and Secret Keys
ted.xml 2FASþ Android Encrypted secret keys

Authy Android Private RSAKey
torage.xml Authy Android User phone number, email

Authy* Android Timestamp 2FA password

icator.xml Authy Android Issuer name, Salt, and Secret/Encrypted
keys

Authy Android Issuer name
D578DFDF2/ Okta iOS Account Name and Issuer Name

D6F13B046/ Two-
Factor*

iOS Account Name, Issuer Name,
Timestamps, UUID, and Secret Keys

2F6DF8DCF1F/ FIS iOS Account Name, Issuer Name, and Secret
Keys

Epic iOS Account Name and Secret Keys

Table A.5 (continued)

File
ID

Path App OS Description

/private/var/mobile/Containers/Data/Application/42F6A8C9-8458-4386-9C28-D0919FD4A4A7/
Documents/tokens

6.1 /private/var/mobile/Containers/Data/Application/F651A073-ECEA-4D25-9B3CeB82A71FAE610/
Library/Application Support/61D927A9-CC77-45BD-B4C9-43CE70925E15

IBM iOS Account Name, Issuer Name, and Secret
Keys

6.2 /private/var/mobile/Containers/Data/Application/F651A073-ECEA-4D25-9B3CeB82A71FAE610/
Library/Application Support/ADAD21C0-FA72-460D-8744-195E5B31AD09

IBM iOS Account Name, Issuer Name, and Secret
Keys

6.3 /private/var/mobile/Containers/Data/Application/37D75154-4AAA-45FD-9D43-9C533DB10A5F/
Library/LocalDatabase/auth

Authþ iOS Account Name, Issuer Name,
Timestamps, and Secret Keys

6.4 C:nUsersn“Username”nAppDatanRoamingnAuthy DesktopnLocal Storagenleveldbn000004 Authy Windows Locations, Device Type, Device Name,
Timestamps, and Secret Keys

7.1 C:nUsersn“Username”nAppDatanRoamingnAuthy
DesktopnIndexedDBnfile_0.indexeddb.leveldbn000003

Authy Windows Registration Status, Registration Time,
Refresh Token

7.2 C:nUsersn“Username”nAppDatanRoamingnWinAuthnwinauth.xml WinAuth Windows Social Media Name, ID, Time Created,
Secret Key

Key: Artifacts from Pin Activated Applications *.

J. Berrios, E. Mosher, S. Benzo et al. Forensic Science International: Digital Investigation 45 (2023) 301569
References

Abrams, L., 2022. Comcast xfinity accounts hacked in widespread 2fa bypass at-
tacks. https://www.bleepingcomputer.com/news/security/comcast-xfinity-
accounts-hacked-in-widespread-2fa-bypass-attacks/. URL:.

Al Mutawa, N., Baggili, I., Marrington, A., 2012. Forensic analysis of social
networking applications on mobile devices. Digit. Invest. 9, S24eS33.

America, N. (2022), ‘What is two-factor authentication (2fa)?’. URL: https://
www.newamerica.org/in-depth/getting-internet-companies-do-right-thing/
case-study-2-offering-two-factor-authentication/#::etext¼Though%20there%
20have%20been %20several,a%20key%20fob%20in%201986.

Childers, D., 2021. State of the auth 2021. https://duo.com/assets/ebooks/state-of-
the-auth-2021.pdf. URL:

Clark, D.R., Meffert, C., Baggili, I., Breitinger, F., 2017. Drop (drone open source
parser) your drone: forensic analysis of the dji phantom iii. Digit. Invest. 22,
S3eS14.

DataProt, 2021. Two-factor authentication statistics. DataProt. URL:. https://
dataprot.net/statistics/two-factor-authentication-statistics/.

De Cristofaro, E., Du, H., Freudiger, J., Norcie, G., 2013. A Comparative Usability Study
of Two-Factor Authentication. arXiv preprint arXiv:1309.5344.

Dimitrienko, A., Liebschen, C., Rossow, C., 2014. Security analysis of mobile two-
factor authentication schemes. Intel Secur. J. 18 (4), 138e161.

Dorai, G., Houshmand, S., Baggili, I., 2018. I know what you did last summer: your
smart home internet of things and your iphone forensically ratting you out. In:
Proceedings of the 13th International Conference on Availability, Reliability and
Security, pp. 1e10.

FBI, 2023. Internet crime report 2022. https://s3.documentcloud.org/documents/
23707016/2022_ic3report.pdf. URL:.

Fruhlinger, J., 2019. 2fa explained: how to enable it and how it works. https://www.
csoonline.com/article/3239144/2fa-explained-how-to-enable-it-and-how-it-
works.html. URL:

Gope, P., Sikdar, B., 2019. Lightweight and privacy-preserving two-factor authenti-
cation scheme for iot devices. IEEE Internet Things J. 6 (1), 580e589.

Gordin, I., Graur, A., Potorac, A., 2019. Two-factor authentication framework for
private cloud. In: 2019 23rd International Conference on System Theory, Con-
trol and Computing (ICSTCC), pp. 255e259.

Grajeda, C., Sanchez, L., Baggili, I., Clark, D., Breitinger, F., 2018. Experience con-
structing the artifact genome project (agp): managing the domain’s knowledge
one artifact at a time. Digit. Invest. 26, S47eS58.

Grimes, R., 2019. 12þ ways to hack multi-factor authentication. https://www.
knowbe4.com. https://www.knowbe4.com/hubfs/12þ_Ways_to_Hack_Two-
9

Factor_Authentication-1.pdf. URL:
Johnson, H., Volk, K., Serafin, R., Grajeda, C., Baggili, I., 2022. Alt-tech social foren-

sics: forensic analysis of alternative social networking applications. Forensic Sci.
Int.: Digit. Invest. 42, 301406.

Kim, G., 2022. Making you safer with 2sv. https://blog.google/technology/safety-
security/reducing-account-hijacking/. URL:

Konoth, R.K., Fischer, B., Fokkink, W., Athanasopoulos, E., Razavi, K., Bos, H., 2020.
Securepay: strengthening two-factor authentication for arbitrary transactions.
In: 2020 IEEE European Symposium on Security and Privs, pp. 569e586.

Krawczyk, Bellare, C., 1997. Hmac: keyed-hashing for message authentication. RCF.
URL:. https://www.ietf.org/rfc/rfc2104.txt.

Mahr, A., Cichon, M., Mateo, S., Grajeda, C., Baggili, I., 2021. Zooming into the
pandemic! a forensic analysis of the zoom application. Forensic Sci. Int.: Digit.
Invest. 36, 301107.

Mahr, A., Serafin, R., Grajeda, C., Baggili, I., 2022. Auto-parser: Android auto and
apple carplay forensics. In: ‘Digital Forensics and Cyber Crime: 12th EAI Inter-
national Conference, ICDF2C 2021, Virtual Event, Singapore, December 6-9,
2021, Proceedings’. Springer, pp. 52e71.

Mann, C., Loebenberger, D., 2017. Two-factor authentication for the bitcoin protocol.
Int. J. Inf. Secur. 16 (2), 213e226.

Microsoft, 2022. What is two-factor authentication? https://www.microsoft.com/
en-us/security/business/security-101/what-is-two-factor-authentication-2fa.
URL:

M'Raihi, Bellare, H.N.R., 2005. Hotp: an hmac-based one-time password algorithm.
RCF. URL:. https://datatracker.ietf.org/doc/html/rfc4226.

M'Raihi, Machani, P.R., 2011. Totp: time-based one-time password algorithm. RCF.
URL:. https://www.rfc-editor.org/rfc/rfc6238.

Ozkan, C., Bicakci, K., 2020. Security analysis of mobile authenticator applications.
In: ‘2020 International Conference on Information Security and Cryptology
(ISCTURKEY)’, pp. 18e30.

Reese, K., Smith, T., Dutson, J., Armknecht, J., Cameron, J., Seamons, K., 2019.
A usability study of five two-factor authentication methods. In: Proceedings of
the Fifteenth Symposium on Useable Privacy and Security.

Sitterer, A., Dubois, N., Baggili, I., 2021. Forensicast: a non-intrusive approach & tool
for logical forensic acquisition & analysis of the google chromecast tv. In: ‘The
16th International Conference on Availability, Reliability and Security’, pp. 1e12.

Telerik, 2014. Http(s) sniffing doesn’t work in some app. Tele. URL: https://www.
telerik.com/forums/http-s-sniffing-doesn't-work-in-some-app.

Yarramreddy, A., Gromkowski, P., Baggili, I., 2018. Forensic analysis of immersive
virtual reality social applications: a primary account. In: ‘2018 IEEE Security and
Privacy Workshops (SPW)’, IEEE, pp. 186e196.

https://www.bleepingcomputer.com/news/security/comcast-xfinity-accounts-hacked-in-widespread-2fa-bypass-attacks/
https://www.bleepingcomputer.com/news/security/comcast-xfinity-accounts-hacked-in-widespread-2fa-bypass-attacks/
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref2
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref2
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref2
https://duo.com/assets/ebooks/state-of-the-auth-2021.pdf
https://duo.com/assets/ebooks/state-of-the-auth-2021.pdf
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref5
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref5
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref5
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref5
https://dataprot.net/statistics/two-factor-authentication-statistics/
https://dataprot.net/statistics/two-factor-authentication-statistics/
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref7
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref7
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref8
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref8
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref8
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref9
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref9
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref9
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref9
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref9
https://s3.documentcloud.org/documents/23707016/2022_ic3report.pdf
https://s3.documentcloud.org/documents/23707016/2022_ic3report.pdf
https://www.csoonline.com/article/3239144/2fa-explained-how-to-enable-it-and-how-it-works.html
https://www.csoonline.com/article/3239144/2fa-explained-how-to-enable-it-and-how-it-works.html
https://www.csoonline.com/article/3239144/2fa-explained-how-to-enable-it-and-how-it-works.html
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref12
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref12
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref12
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref13
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref13
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref13
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref13
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref14
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref14
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref14
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref14
https://www.knowbe4.com
https://www.knowbe4.com
https://www.knowbe4.com/hubfs/12+_Ways_to_Hack_Two-Factor_Authentication-1.pdf
https://www.knowbe4.com/hubfs/12+_Ways_to_Hack_Two-Factor_Authentication-1.pdf
https://www.knowbe4.com/hubfs/12+_Ways_to_Hack_Two-Factor_Authentication-1.pdf
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref16
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref16
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref16
https://blog.google/technology/safety-security/reducing-account-hijacking/
https://blog.google/technology/safety-security/reducing-account-hijacking/
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref18
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref18
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref18
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref18
https://www.ietf.org/rfc/rfc2104.txt
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref20
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref20
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref20
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref21
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref21
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref21
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref21
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref21
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref22
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref22
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref22
https://www.microsoft.com/en-us/security/business/security-101/what-is-two-factor-authentication-2fa
https://www.microsoft.com/en-us/security/business/security-101/what-is-two-factor-authentication-2fa
https://datatracker.ietf.org/doc/html/rfc4226
https://www.rfc-editor.org/rfc/rfc6238
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref26
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref26
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref26
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref26
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref27
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref27
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref27
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref28
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref28
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref28
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref28
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref28
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref28
https://www.telerik.com/forums/http-s-sniffing-doesn't-work-in-some-app
https://www.telerik.com/forums/http-s-sniffing-doesn't-work-in-some-app
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref30
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref30
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref30
http://refhub.elsevier.com/S2666-2817(23)00078-1/sref30

	Factorizing 2FA: Forensic analysis of two-factor authentication applications
	1. Introduction
	2. Related work
	2.1. Two-factor usability
	2.2. Other related works

	3. Methodology
	3.1. Scenario creation & testing
	3.2. Data acquisition

	4. Disk analysis & experimental results
	4.1. Account information
	4.2. Secret/encrypted keys

	5. Windows memory & network results
	5.1. Personally identifiable information(PII)
	5.2. Secret/encrypted keys

	6. Bypassing 2FA with TOTP
	6.1. TOTP bypass implementation & results

	7. Conclusion/discussion
	8. Future work
	Acknowledgements
	Appendix A. Apparatus & Relevant Artifacts Found in Disk
	References

