
lable at ScienceDirect

Forensic Science International: Digital Investigation 45 (2023) 301561
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2023 USA - Proceedings of the Twenty Third Annual DFRWS Conference
Windows memory forensics: Identification of (malicious)
modifications in memory-mapped image files

Frank Block a, b, *

a Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
b ERNW Research GmbH, Heidelberg, Germany
a r t i c l e i n f o

Article history:

Keywords:
Memory forensics
Detection
Volatility
Hooking
Malware
Injection
* Friedrich-Alexander University Erlangen-Nürnber
E-mail address: dfrws-usa-2023@f-block.org.

https://doi.org/10.1016/j.fsidi.2023.301561
2666-2817/© 2023 The Author(s). Published by Elsev
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

Memory forensics plays a crucial role for the analysis of sophisticated malware, especially with memory-
only variants, and has in the past extended its capabilities for detecting various attacker techniques.
Several of these techniques affect the memory of victim processes, partly resulting in suspicious private
memory regions, but others affect especially the memory-mapped image files (executables and DLLs).
One infamous example are API hooks, which commonly are used to redirect the control flow by modi-
fying a few bytes/instructions in the existing code of memory-mapped image files. Other examples are
AMSI and ETW bypasses, which also modify just a few bytes, and Module Stomping which has a larger
modification effect. While there are already tools for the detection of modified pages and these attacker
techniques, one disadvantage they have in common is the inability to pinpoint the exact modified bytes.
Instead, they either report modifications on a page level, which means to present 4096 instead of only 3
bytes that actually have been modified, or they use pattern matching in order to identify malicious traces.
In this work, we will show that current detection approaches fail to reliably identify modified image-file
pages, and even if not, miss some malicious modifications. We then present our novel approach to
reliably detect modified pages and to reveal the exact bytes/instructions that have been modified, while
filtering benign modifications. With this work we also release a Volatility 3 plugin named imgmalfind,
which implements our approach and reports potentially malicious modifications, enriched with some
analysis details.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS All rights reserved. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Due to the rise of tools and techniques for attacker detection, we
naturally also see an increase in techniques to circumvent those
throughout the last years. Examples are AMSI and ETW bypasses
(S3cur3Th1sSh1t, 2022; Korkos, 2022; Teodorescu et al., 2021;
Chester, 2019; Kara-4search, 2021; bats3c, 2020), which effectively
deactivate detection functionality, but also Module Stomping
(Hammond, 2019a; Orr, 2020c) or Process Hollowing (Monnappa,
2017; Block, 2022b) which try to hide malicious content in alleg-
edly benign DLLs and processes. At the same time, older techniques
such as API hooks are up to this day still in use for malicious tasks
such as bypasses (bats3c, 2020; Cn33liz, 2020), keylogging and
password stealing (Case et al., 2019), but also for benign cases such
as backwards compatibility (Case et al., 2019). What these
g (FAU), Germany.
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techniques have in common is the modification of memory-
mapped image files (MMIFs), in particular DLLs and executables
in process space. Since these techniques affect running processes,
memory forensics is a crucial discipline for an efficient detection.
While there are already tools for the detection of modified MMIF
pages (Cohen, 2016; Orr, 2020b; Block, 2022c; Hammond, 2019b)
and these attacker techniques (Orr, 2020b; Case et al., 2019; Doniec,
2022; Ligh, 2015), they all have their shortcomings. Especially their
approaches for identifying modified pages are not reliable and are
prone to miss malicious modifications, in particular because of
Windows’ memory combining feature. Moreover, some tools rely
on pattern matching in order to identify specific techniques and by
that, fail to detect malicious modifications in some cases, besides
generating false positives.

In this work we will describe in detail why existing approaches
for identifying modified pages are not reliable and propose a new
technique, which is, based on our evaluation, reliable and immune
against memory combining effects. We furthermore present a new
approach for identifying the exact modified bytes by comparing the
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MMIF with file data in memory (more precisely the Image Section
Object (ISO)), and provide an analysis and filtering algorithm for
benign modifications. The resources and version numbers, required
to reproduce and verify our results, are either referenced in this
work or are part of our online repository (Block, 2023), including
our Volatility plugin imgmalfind which implements our research
results. It should be noted that while in this work, we focus on
modifications to executable MMIF pages, our approach is also
applicable to non-executable pages (see Section 6.2).

1.1. Related work

In the following, we briefly contrast our approach with related
work that either also used files in memory, or focused on attack
techniques also covered in this paper.

With the words “standing on the shoulders of giants”, our
contribution, on the one hand, wouldn't be possible without the
work by Butler and Murdock (2011), Hejazi et al. (2008) and van
Baar et al. (van Baar et al., 2008) who analyzed file objects in
memory, especially the Image Section Object (ISO) (Butler and
Murdock, 2011; Hejazi et al., 2008) which is the basis for this
work, and on the other hand builds on the approach taken byWhite
et al. (2013). Similar to our goal, they compareMMIFs with a ground
truth, which in their case are not files inmemory but the files on the
file system, which have to be pre-fetched. Furthermore, their
comparison approach includes the creation of a hash database,
which is then compared against the hashes for MMIF pages. This
has two disadvantages: At the one hand, the hash comparison only
returns a true for a modification, whereas our approach returns the
exact modified bytes. The second disadvantage is related to pre-
building the hash database. Since the position of te image file is
not known upfront, relocations are ignored for the comparison
(White et al., 2013, p. 61) and hence could be exploited by attackers.
Another work that analyzed files in memory in order to detect
malicious modifications has been done by Harrison (2014). Their
approach, however, requires a pre-setup environment for the
analysis, so it cannot be applied to a different infectedmachine, and
the comparison is only hash based, so again, no analysis of the exact
modified bytes.

Case et al. (2019) presented hooktracer, an improved detection
for API hooks especially in the sense of false positive reduction in
contrast to Volatility's apihooks plugin (Ligh, 2015). While one
major difference is their focus (both are not designed to detect
other modifications such as module stomping), another difference
is the approach for detecting inline hooks: They search for specific
patterns at the beginning of functions, characteristic for API hooks,
which can, however, be subverted. Our approach, on the other
hand, identifies the actual modifications no matter what or where
they are.

The Rekall project used the detection of modified pages in order
to narrow the search for API hooks (Cohen, 2016), but also relied on
pattern matching for these pages. Furthermore, the tool Moneta
(Orr, 2020b), the Volatility plugin ptemalfind (Block, 2022c) and the
approach described by Hammond (2019b) try to identify modified
pages but again, do not analyze them for the specific modifications
but only present them as modified. Furthermore, their approaches
for detecting modified pages are not reliable as wewill show in this
work.

Regarding AMSI bypasses, Manna et al. (2022) developed a
plugin to detect certain bypasses by analyzing specific members of.
NET classes. This form of bypass is not covered by our approach,
since it does not result in modifications on executable MMIF pages.
Another existing form, which does modify code in MMIFs, is not in
the scope of their research but according to them, probably
detectable by Volatility's apihooks plugin. We will show that this is
2

not the case and that our approach is able to detect this form,
including latest variants (Korkos, 2022).

Aside from memory forensics, the live analysis tool hollows_-
hunter does a similar comparison to our approach (it uses image
files from the file system). It is hence also able to detect the exact
modified bytes, but it lacks allow-listing capabilities (only allows to
ignore certain DLLs at a whole) and support for further analysis. A
more detailed comparison is part of our evaluation.

1.2. Contributions

The contributions of this paper are:

� A reliable detection of modified MMIF pages in the context of
memory combining.

� Identification of the exact modified bytes for an MMIF and
hence, the detection of not only API hooks but also other mali-
cious modifications such as AMSI and ETW bypasses and Mod-
ule Stomping.

� An analysis and filtering of benign modifications.
� A publicly available Volatility plugin (Block, 2023) for the
automatic detection and analysis of such modifications.
1.3. Outline

This work is structured as follows: Section 2 provides a brief
description of the malware techniques covered in this paper and
depicts the necessary details about Windows’ memory manage-
ment. Here on after, Section 3 presents our novel approach for
detecting MMIF modifications and Section 4 describes our analysis
of benign modifications, which is evaluated in Section 5 with
various malware techniques, other detection tools and a benign
system state. We conclude this paper in Section 6 and point out
limitations respectively future research directions.

2. Fundamentals

This chapter provides fundamental background knowledge for
the rest of this work.

2.1. MMIF modification techniques

This section shortly describes several publicly known tech-
niques used by attackers, which all result in modified executable
MMIF pages and in particular their machine code instructions.

API hooking is a technique that typically redirects the execution
flow from a victim function to another location and hence allows to
read and modify the API's arguments and return values. While this
can be realized in various ways (Sikorski and Honig, 2012), we will
focus on the inline hooking technique which manipulates the code
of a victim function. Other variants of this technique, namely virtual
table, IAT and EAT hooking, are not in the scope of this paper as they
do not affect executable pages (see also Section 6.2).

The Antimalware Scan Interface (AMSI) offers applications an
easy integration with antimalware products. It enables them for
example to scan processed data for malicious indicators and is
already integrated in Windows components such as PowerShell
and Windows Script Host (Microsoft Corporation, 2019). The pur-
pose of AMSI bypasses is to deactivate or bypass this functionality.
While there are different approaches to accomplish this (Korkos,
2022; Manna et al., 2022; S3cur3Th1sSh1t, 2022), we will focus
on those affecting the code in MMIFs (see Section 5.2). The same
applies to Event Tracing for Windows (ETW) bypasses (Teodorescu
et al., 2021). ETW provides valuable information for various
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components in the Windows operating system and is e.g., used by
various security tools such as AV and EDR systems, making it an
interesting target for attackers.

Module Stomping, also known as DLL Hollowing, on the other
hand does not manipulate existing code or functions, but simply
overwrites them. It uses an existing or newly loaded DLL as a victim
to hide its malicious code and overwrites parts or the whole DLL
either with shellcode or another DLL (Hammond, 2019a).

A similar technique is Process Hollowing, which creates a benign
victim process in suspended state and before it starts executing,
replaces the executable with a malicious one. While the more
commonly known approaches for this technique either unmap the
victim executable or allocate new memory (Monnappa, 2017), the
default approach for one of the earliest implementations of this
technique (Keong, 2004) was overwriting the victim executable in
memory with the new one. This approach is still feasible (Block,
2022b) and evaluated in this paper.

2.2. Files in memory

An image file can have at least four representations in memory
(Butler and Murdock, 2011; Uroz and Rodríguez, 2020):

� Memory-mapped in the process space and described by a Vir-
tual Address Descriptor (VAD).

� A pre-loaded template for image files, going to be mapped in a
process space, which is already page aligned and has relocations
applied (Uroz and Rodríguez, 2020). It can be accessed through a
field called ImageSectionObject and will be referred to in
this work as Image Section Object (ISO). As long as pages have
not been modified, each access to an MMIF page within a given
process goes to the corresponding ISO page.

� The DataSectionObject on the other hand is, besides po-
tential padding, identical to the file on disk. While it typically is
being used for non-image files, we observed this form also to be
present for image files in some cases.

� The fourth representation is SharedCacheMap, which is the
result of Windows' file caching functionality and, based on our
observations, also contains data identical to the file on disk.

The last three are normally only accessible from kernel space
and hence our candidates as ground truth. Based on our observa-
tions, the availability of DataSectionObjects and Share-

dCacheMaps is negligible for MMIFs and hence ignored for this
work. In the case of the Image Section Object, access to the corre-
sponding pages can be achieved by following the Subsection field
of an MMIF's VAD. The different PE sections with their varying
protections are managed by _SUBSECTION structs, while the cor-
responding memory is accessible via the SubsectionBase field
(Hejazi et al., 2008, p. 130). In this work, we will call pages within
the process address space VAD pages, whereas pages referenced by
these _SUBSECTION structs are referred to as ISO pages.

2.3. PTEs and the Page Frame Number database

A Page Table Entry (PTE) is part of the translation process from a
virtual to a physical address and consists of a 64 bit value, split into
bitfields (Intel Corporation, 2022, p. 4-27). A prototype PTE on the
other hand is a special type, which is not part of the PTEs used by
the MMU for translation processes but are related to _SUBSECTION

structs and used in the context of shared memory (Martignetti,
2012, pp. 295-300). If either PTE type references data in RAM, it
contains a field called Page Frame Number (PFN), which points to a
physical page. Depending on the bitfields, a PTE can be in different
states, including some that indicate no RAM-resident data. For this
3

paper, we define the states as follows:

� HARD: The PTE is valid and has a corresponding physical page in
RAM.

� TRANS: The PTE is not valid and the corresponding physical page
might get dropped from RAM, but it is currently still in RAM.

� SOFT: Depending on the bitfield values, this state either in-
dicates a paged out, memory compressed or demand zero page.

� SUBSEC: This is a state only used by prototype PTEs and means
in our context that the corresponding ISO page is not accessible
from RAM but must be gathered from the image file on the file
system.

The Page Frame Number Database (PFN DB) on the other hand is
an array of MMPFN structs, indexed by the PFN, and manages the
physical pages (Yosifovich et al., 2017, p. 425). Every PFN DB entry
describes one physical page and contains, among others, two fields,
which will be covered in this work: The PrototypePte field
(accessible via the u4 member), which is set when the PTE, that
describes this physical page, is a prototype PTE (means shared
memory) (Cohen, 2016), and the Modified field (accessible via the
u3.e1members), which is set when a page has been modified and
its content is not yet backed by a file (Yosifovich et al., 2017, p. 441).

3. Identification of MMIF modifications

This chapter describes our approach for identifying modified
data in memory-mapped image files (MMIFs), which essentially
consists of identifying modified MMIF pages and determining the
exact modified bytes within those pages. While in this work we
focus on code in executable pages, the approach described in this
chapter is also applicable to non-executable pages.

3.1. Identifying modified pages

There are already three publicly known approaches for identi-
fying modified content for MMIFs, which we will call PrototypePte
(Cohen, 2016), QueryWorkingSetEx (Orr, 2020a) and ModifiedList
(Hammond, 2019b). The PrototypePte approach, which is imple-
mented by the ptemalfind (Block, 2022c) Volatility plugin and
builds the basis for Rekall's API hook detection (Cohen, 2016), is an
approach mainly used in memory forensics (because it requires
kernel access) and tests the MMPFN's PrototypePte field.
Depending on the value of this field, a given physical page
belonging to an MMIF is considered either modified or not. The
QueryWorkingSetEx approach on the other hand, which is used
e.g., by the tool Moneta (Orr, 2020a, 2020b) queries the operating
system for information about a given page and again, considers a
page eithermodified or not based on a resulting field called Shared

(Orr, 2020a). What both have in common is the test for a page being
shareable, in contrast to being a private page. Unmodified pages
belonging to MMIFs are typically shareable, as they are shared
among multiple processes. By utilizing the fact that a modification
to a page, belonging to an MMIF, results in a private copy of that
page (copy-on-write mechanism), these two approaches are in
theory able to reliably detect modifications respectively pages
which are not modified.

And this is, in part, also still the case: A page belonging to an
MMIF, which is not shareable, can be considered modified and will
be detected by both approaches. It turns out, however, the other
way around is not true: A page, which is shareable, cannot be
considered unmodified. The reason for this is Windows' memory
combining feature, which tries to minimize memory consumption
by combining pages with the same content into one page. Memory
combining can be started explicitly via the NtSetSystemInformation
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API (Yosifovich et al., 2017, p. 459), but is also started automatically
by the OS (in our test VMs with Windows 10 21h1 every couple of
minutes). The result of such a combination is one remaining
physical page for all corresponding duplicates, shared among all
affected processes and works as follows: In the beginning, our
victim MMIF page is mapped in two separate processes and the
virtual address in both processes points to the same physical page,
while the PrototypePte and Shared field state this physical page
is shareable. When an attacker modifies the MMIF page with the
same data in both processes, each process gets a private copy for
that page, containing the same data. Since these are private copies,
they are not shareable and their PrototypePte and Shared fields
are set accordingly. As soon as the memory combination is done,
the virtual address for the modified MMIF page in both processes
points to the same physical page, which is hence now shared be-
tween the two and the PrototypePte and Shared field for this
page state shareable. We tested this mechanism and its effect on
the detection approaches with custom modifications, API hooks,
AMSI bypasses and Module Stomping (see Section 5.2 for the used
tools). In all these cases, without any modifications to the attack
tools, we observed automatic memory combinations (invoked by
the OS) of modified pages when at least two pages were modified
with the same data, resulting in malicious modifications not being
detected by ptemalfind or Moneta. For AMSI and most ETW by-
passes, duplicate pages are almost unpreventable when targeting at
least two processes, since they use static bytes. The same applies to
Module Stomping, if the same victim DLL is chosen. For API hooks,
on the other hand, it depends on the hook-target's address, which
can be random. As it turns out, NetRipper tries to stay near the
legitimate DLLs and hence, hooks for the same function share the
same target across multiple processes, resulting in duplicate pages.
It should be noted that for memory combining to occur, the pages
do not have to belong to separate processes but can e.g., also be
mapped next to each other in the same process space.

The ModifiedList approach is described by Hammond (2019b)
and uses the Modified field of the MMPFN struct (Hammond,
2019c), which indicates that this physical page is part of the list
of modified pages. The problemwith this approach is similar to the
one described above: If this field is set, it correctly indicates a
modified page, but an unset Modified field does not mean the
corresponding page has not beenmodified. Modified in this context
means the page's content is not yet backed by a file, which for the
private copy of a modified MMIF page would be the pagefile
(Yosifovich et al., 2017, p. 441) (Martignetti, 2012, pp. 192-193). As
soon as the content of the modified page has been written to the
pagefile, this field is cleared. We verified this by forcing modified
and executable pages into SOFT state and afterwards reading them
back in. After this process, the Modified field is cleared while the
page is still modified.

The hint for the solution was found in the book by Martignetti,
(2012, p. 352), describing the content of the MMPFN's OriginalPte
field: “For a mapped file backed page, it stores an _MMPTE_-

SUBSECTION pointing to the subsection which covers the file page
mapped by the PTE.” The OriginalPte field value is used in the
case the physical page of an MMIF is removed from memory, in
which case the prototype PTE is replaced with the OriginalPte.
But as long as the MMIF page is in physical memory and unmodi-
fied, the OriginalPte stays in SUBSEC state. So, by resolving the
OriginalPte's state for anMMIF page, we are able to determine if
it is modified. One issue with this approach could have been
memory combining, since anonymous shared memory also uses
_SUBSECTION structs, but this is not the case and the Origi-

nalPte stays only in SOFT state.
4

3.2. Identifying the exact modified bytes

Our approach for identifying the exact modified bytes of an
MMIF is a comparison of the VAD page with a ground truth, which
in this work is the Image Section Object because it is directly
available from RAM, but could also be something else (see Section
6.2). Furthermore, since the ISO's version of the MMIF is already
memory mapped and relocated, the comparison between a VAD
and ISO page can be done without any pre-adjustments. In order to
compare a given VAD page with its ISO pendant, we first gather the
PTE for the ISO page by enumerating the _SUBSECTION structs,
referenced by the VAD's Subsection field, and following the
SubsectionBase pointer to the prototype PTE array. If the PTE is
either in HARD or TRANS state, we read the content of the whole
referenced page. The final step is a byte-by-byte comparison be-
tween each VAD-page byte and ISO-page byte and if e.g., the 10th
byte in the VAD page has not the same value as the 10th byte in the
ISO page, this VAD byte is marked modified.

3.3. Implementation

We created a Volatility 3 plugin named imgmalfind (Block,
2023), which uses a modified version of the ptemalfind plugin
(Block, 2023) that has mainly been updated with our new approach
for identifying modified MMIF pages. For each modified page
returned by ptemalfind, we gather the corresponding ISO page and
compare every byte between the two. The result is split into chunks
of contiguous modified bytes, so if there are somemodified bytes in
the beginning of a page and some at the end, these modifications
result in two chunks and each one is interpreted and reported
separately. Before reporting a chunk, we apply our filtering logic in
order to discard benign modifications as described in Section 4.2.
This logic can be extended with additional benign triples of affected
processes, modified MMIFs and target MMIFs (process - modified
MMIF - target MMIF) by supplying them as a plugin argument, and
also accepts wildcards for all three. The current implementation
uses for example a process-wildcard for the AVG filters. If a modi-
fication is not considered benign, we report it and enrich the output
with additional information as can be seen in Listing 1. In this order,
Line 1 shows the victim PID and process name, the modified MMIF,
the affected PE section, the address of the first modified byte and its
nearest function, and the number of modified bytes. Starting with
Line 3, the bytes and assembly instructions from the ISO page are
shown, which represent our ground truth, and Line 10 and below
contain the patched bytes and instructions. If the ISO page is un-
available, the Original Data part remains empty and New Data is
filled with the first 64 bytes of the VAD page while the number of
modified bytes is set to -1. If the patched bytes contain a hook that
redirects into another memory region, the target is analyzed and
the results added to the output. In the case of an MMIF, the plugin
verifies if the target page has been modified and includes this in-
formation in the output. The output following Line 17 shows an
example, where the target is an unmodified page of an MMIF.
imgmalfind has furthermore a precontext and postcontext

option, which both accept an integer as argument specifying the
number of bytes to additionally include in the modification-
analysis. Section 4.1 describes one use case for these options.

4. Benign modifications

In this chapter we are describing our analysis of benign modi-
fications identified with imgmalfind and present our algorithm to
filter these.
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4.1. Analysis of benign modifications

During our evaluation of the new approach with benign mem-
ory dumps, we came across two major types of benign hooks,
which we will discuss in this section. The first type was found in
Firefox, Microsoft Edge, Chromium and Chrome processes and
every time consisted of the same pattern: First, a movabs instruc-
tion, storing a memory address in a register and afterwards a jump
(jmp) instruction to that register. Listing 1 shows an example of
such a hook. In most observed cases, these hooks were installed in
functions of the ntdll.dllDLL and eachmemory address pointed
into the executable of that process (so e.g., into msedge.exe as
shown in Line 17). As every browser instance results in multiple
processes (at least eight) and most of them contained 9 to 17 hooks
of this type, the total number of these benign modifications was at
least around 320. Based on our analysis, the cause for these hooks is
the sandbox functionality by the Chromium project (Mozilla
Corporation, 2022a), whose list of hooked APIs matches the APIs
we identified as hooked. While Microsoft Edge is also based on
Chromium (Microsoft Corporation, 2018), Firefox uses at least some
functionality such as the sandbox (Mozilla Corporation, 2022b). We
confirmed this by analyzing the Firefox executable with debug
symbols and identified corresponding handler functions for the
hooked APIs.
Listing 1: imgmalfind output for benign Browser-Sandbox API
Hook

One exception, regarding hooks only in the ntdll.dll DLL
respectively just pointing to the executable, is Firefox, where hooks
have also been installed in functions of the DLLs kernel32.dll,
KernelBase.dll and user32.dll and furthermore, some hooks
pointed to either Firefox's mozglue.dll or xul.dll DLL. The
other exception are the browsers Edge, Chrome and Chromium. In
their case, in exactly one of the processes for each browser (a
started Chrome browser for example consists of multiple chro-

me.exe processes in the background), exactly one hook (NtMap-
ViewOfSection in ntdll.dll) was pointing to the DLL
chrome_elf.dll for Chrome and Chromium, respectively to
msedge_elf.dll for Edge. The cause for this is functionality that
prevents block-listed third party DLLs from being loaded into the
process space (The Chromium Authors, 2018) by inspecting image
files going to be mapped via NtMapViewOfSection. This hook also
5

results in two benign modifications in the msedge_elf.dll

respectively chrome_elf.dll DLL, which themselves are no
hooks: A copy of the original NtMapViewOfSection code is stored in
the.crthunk PE section, which is called if the DLL is not block-
listed, and a pointer to it is written into the.oldntma PE section.
The NtMapViewOfSection-hook in the other processes for the three
browsers was pointing to the executable.

The second major type of hooks was found in Excel and Word
processes and is probably also part of further Microsoft Office
products. We found them in 10 different DLLs, with the most hooks
being installed in ntdll.dll (33 hooks), kernel32.dll (10
hooks) and combase.dll (10 hooks) and an overall total of 142 for
both processes. As can be seen in Listing 2, the patched instruction
for this type is just a jmp to a memory address, which does not
belong to the executable or anyMMIF, but to a private memory area
with PAGE_EXECUTE_READWRITE protection, like a common
malicious-hook scenario.
Listing 2: Benign Office Hook

While the addresses for the jmp-targets were differing, the in-
struction located at the target address was in all cases the same.
Listing 3 shows one instance of this instruction in Line 3, which
reads a pointer from memory, lying right before the instruction
itself (the hex bytes in Line 1), and jumps to it. In all observed cases,
the target image file was either MSO.DLL, AppvIsvSubsys-

tems64.dll or Mso40UIwin32client.dll. Those hooks are
probably related to Microsoft's Application Virtualization.
Listing 3: Benign Office Trampoline

One edge case that we encountered for this second hook type are
existing jumps that get patched with another jump. As the byte for
the jmp instruction is not changed, only the jump-target is recog-
nized as modified. An example is shown in Listing 4: Line 2 shows
the unmodified bytes and Line 5 the modified bytes, but both
without the jmp byte. Line 8, on the other hand, shows the modified
bytes including the preceding jmp byte (precontext) and the
resulting instruction in Line 9. This is a differentiation to be made
clear: On a page level we can spot which page has been written to,
but on a byte level we can only identify the bytes that have changed.
While this is no problemwhen it affects a few bytes in the middle of
modifications, it can, however, lead to disassembly and filtering
problems when it happens in the beginning or end of written bytes.
Our plugin has support for such edge cases (see Section 4.2 and 3.3).
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Listing 4: Patched jmp

We also tested AVG Free Antivirus, which mainly uses hooks of
the second type and in all observed cases redirected to DLLs in the
AVG directory. Our other results are in essence already covered by
Case et al. (2019), except for modifications on AVG's own processes:
AVGUI. exe maps the DLL chrome_elf.dll with the same
NtMapViewOfSection-hook related modifications as described
above, and all AVG processes seem to bypass their SetUnhand-
ledExceptionFilter API with a return 0 (see also AMSI bypasses
described in Section 5.2).

The last benign modifications that we encountered affect the
DLL clr.dll. These modifications are no hooks, but mostly array-
index changes for the TlsSlots array within the TEB struct. The
original instructions involved are mostly in the form of mov r11,

qword ptr gs:[0x1480] and the patch changes only the index
from 0x1480 to e.g., 0x1590. One exception are three dummy
functions only containing a jmp instruction to a return 0, which
are patched with the instructions mov rax, qword ptr

gs:[0x1590] and ret (but with differing array indexes). Besides
the TlsSlots related patches we also identified a function called
JIT_WriteBarrier that contains placeholder pointers:
0xf0f0f0f0f0f0f0f0. The modifications to this function do,
however, not only affect these pointers, but also the function logic
and it seems to be related to. NET's garbage collection (Microsoft
Corporation, 2007). A deeper analysis of this function has not
been done and it is the last benign modification that we
encountered.
4.2. Filtering benign modifications

Despite the described differences, both hook types shared a
similar pattern and, moreover, were all in the end pointing to a
page in the target DLLs, which was unmodified. In order to filter the
benign hooks, we implemented a filter which evaluates the
following questions:

� Is the process - modified MMIF - target MMIF combination
allow-listed (see Section 3.3)?

� Does the instruction sequence exactly match our known pat-
terns (e.g., movabs and then jmp)?

� Is the final jmp target an unmodified page?
� If it is a modified page, are all modifications allow-listed (hap-
pens in rare cases for AVG)?

If the first modified byte has a distance of one or two bytes from
the start of a function, the filter algorithm is again run with these
bytes included (see Section 4.1). Only if all four tests are answered
with yes, the modification is discarded. Since our approach does not
search for hook patterns but identifies the actual modifications, the
variety of hooks to consider is minimal. They hence can be filtered
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based on an exact instruction flow (in contrast to primarily focusing
on jump targets), which e.g., prevents allow-listing a hook that
executes malicious code before performing a jump into an allow-
listed target. Also, our test for an unmodified page in the hook
target prevents an allegedly benign target from being allow-listed,
since the target MMIF could have been modified and contain ma-
licious code (e.g., the result of Module Stomping). Based on the
paper by Case et al. (2019), this is different to the approach taken by
HookTracer, which does not seem to verify the integrity of the target
DLL and hence might allow-list an API hook leading to a malicious
implant within an allegedly benign DLL. It should be noted, how-
ever, that since HookTracer is not publicly available, we were not
able to verify this assumption.

The following modifications are not covered by our generic
hook-filtering algorithm and hence implemented as specific filters.
For TlsSlots patches we first test if the instruction is one of the
already known ones and thenwe verify that the memory reference
points inside TEB's TlsSlots array. For.oldntma on the other
hand we verify that it is a pointer to the.crthunk PE section and
furthermore that.crthunk contains the actual NtMapVie-
wOfSection instructions by comparing the modified bytes with the
function definition from the ISO page. The AVG related SetUn-
handledExceptionFilter patch is only filtered for the AVG processes
and this API exactly, and only if the patched instructions match.

5. Evaluation

In this chapter we evaluate our now approach for identifying
modified MMIF pages, test our plugin with different MMIF modi-
fication techniques, evaluate the remaining benign modifications,
compare the results with other detection tools and evaluate the
availability of ISO pages.

5.1. Identification of modified pages

We evaluated our approach by first verifying that we identify all
pages that are also detected by the other approaches. This has been
done with a custom-built Volatility plugin and several memory
dumps, enumerating all pages of MMIFs (including non-executable
ones) that have either the PrototypePte field unset or the
Modified field set and tested whether these also had an Origi-

nalPte not in the SUBSEC state. In order to identify modified pages
which are only detected by our approach, we performed the test in
a second step the other way around and found tens to thousands of
pages with an OriginalPte not in the SUBSEC state (a modified
page), but with either the PrototypePte field set or the Modified

field unset (both indicating an unmodified page). We also found 2
to 4 instances in most memory dumps where both, PrototypePte
and Modified indicated an unmodified page, while the page was in
fact modified. Finally, we tested the correct identification of
modified pages after memory combination with custom modifica-
tions, API hooks, AMSI bypasses and Module Stomping (see Section
5.2 for the used tools). In summary, our approach detected all pages
reported by the other approaches, but also identified modified
pages not covered by those.

5.2. MMIF modification techniques

The first test focuses on AMSI and ETW bypasses. We use all
AMSI bypasses listed in the Github repository (S3cur3Th1sSh1t,
2022) mentioned by Manna et al. (2022), which result in a modi-
fication of MMIFs (numbers 1, 2, 3, 5, 16 and 17) and five publicly
available ETW bypasses (Chester, 2020; Chester, 2019; Kara-
4search, 2021; Cn33liz, 2020; bats3c, 2020). Most of them basi-
cally patch the first bytes of a function with a return, as shown in
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Listing 5 for the AmsiScanBuffer function where the first 3 bytes
are replaced by a return 0. There are just two exceptions (bats3c,
2020; Cn33liz, 2020), which use a movabs-jmp hook instead. All
these bypasses are detected by imgmalfind.
Listing 5: imgmalfind output for AMSI Bypass

In the second test we evaluate the detection of API hooking by
targeting oneMicrosoft Edge and one Google Chrome instancewith
the NetRipper project (Popescu, 2022), which intercepts network
traffic and encryption related functions. As each browser instance
creates multiple processes, in our case a total of 17 processes, the
execution of NetRipper resulted in 114 inline hooks. Listing 6 shows
the output for one of the hooks in one of the Microsoft Edge pro-
cesses, where the first bytes of the recv function have been replaced
by a jump to NetRipper controlled code. One observed discrepancy
between the expected hooks and the ones identified by imgmalfind
were missing hooks for EncryptMessage and DecryptMessagewithin
secur32.dll. The reason is NetRipper's use of GetProcAddress to
resolve these APIs, which returns SealMessage and UnsealMessage
from sspicli.dll instead and hooks these APIs. All installed
hooks were identified by imgmalfind.
Listing 6: imgmalfind output for API Hooking

In our third test we have a look at Module Stomping and use the
Phantom DLL hollowing (Orr, 2020c) project as the injector tool. The
injected code creates a MessageBox and is written to the first
executable page of the victim DLL. Listing 7 shows an excerpt of the
265 lines long imgmalfind output for this injection with several
strings in the highlighted ASCII dump. Line 1 reports a total of 270
modified bytes, while the actual shellcode is 276 bytes long. The
reason for the discrepancy are 6 bytes distributed throughout the
written shellcode, which coincide with the same byte in the original
data. One example is highlighted in the hex dump in lines 8 and 16.
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Listing 7: imgmalfind output for Module Stomping

The last test uses Process Hollowing with the overwrite
approach. The resulting imgmalfind plugin output consisted of 270
chunks of modified bytes and a total of 64.627 modified bytes,
clearly indicating a major modification of the original data. The
discrepancy with the actual size of the written PE file (69.120 bytes)
is, besides some bytes again coinciding with the original, mainly
due to imgmalfind's current focus on executable pages: The used
tool (Block, 2022a) sets protections according to the injected PE file
in order to appear benign (the header is e.g., read-only).

5.3. Evaluation on benign system state

In this section we analyze the remaining benign modifications
for our plugin and describe potential issues due to missing ISO
pages. For this purpose, we set up a Windows 10, version 22h2 VM
with 4 GB RAM and Firefox, Microsoft Edge, Chrome, Chromium,
cmd, PowerShell, Excel and Word running (exact version numbers
are documented in our repository (Block, 2023)). If the ISO pages
for corresponding modifications in VAD pages are available,
imgmalfind filters 628 benign modifications and reports only one
modification: The function JIT_WriteBarrier in clr.dllmentioned
in Section 4.1. If, however, certain ISO pages are not memory resi-
dent, we are not able to determine the exact modified bytes and
hence, the filtering algorithm cannot be applied leading to the
whole page being reported for every benign modification (in
essence the same result as with ptemalfind and Moneta). During
our tests, this happened especially with DLLs not used by many
other processes such as clr.dll, chrome_elf.dll and msedg-

e_elf.dll, resulting in 3e35 benign modifications being re-
ported. Section 6.2 discusses several approaches to cope with this
issue. The probability for this to happen depends on the OS’ overall
memory consumption, the number of other processes using the
unmodified ISO pages and on the frequency of accesses to them. A
corresponding evaluation of this topic is described in Section 5.5.
Regarding AVG, we used the same VM, installed AVG and set up the
same running processes as described above, which totaled in 1735
filtered benign modifications and again, only the JIT_WriteBarrier
modification being reported.

5.4. Comparison with other detection tools

In this section we apply the following detection tools on the
previously described cases (where applicable) and compare the
results with apihooks, hollowfind, ptemalfind, hollows_hunter and
Moneta. As the hooktracer plugin is not yet publicly available, we



F. Block Forensic Science International: Digital Investigation 45 (2023) 301561
use the apihooks output as a comparison basis since hooktracer
“consumes the output of apihooks” (Case et al., 2019), while
ignoring false positives. The tool byWhite et al. (2013) has not been
included, since it does not support Windows 64bit.

All MMIF modifications described in Section 5.2 were also
detected by ptemalfind, hollows_hunter and Moneta. For ptemalfind
andMoneta this is, however, only true as long asmodified pages are
not combined (see Section 3.1). hollowfind on the other hand, failed
to detect the overwrite-Process-Hollowing and apihooks failed to
detect all tested AMSI and ETW bypasses, including those using an
actual hook instead of a return-patch (even after deactivating
apihooks’ allow-listing). This means, also hooktracer would
currently fail to detect these AMSI and ETW bypasses respectively
the movabs-jmp hooks in general. Besides that, we tested more
ways to successfully circumvent a detection by apihooks such as
changing the pattern, overjumping an invalid opcode (apihooks
stops when encountering an invalid instruction) or placing the
hook after three NOPs (apihooks only analyzes three instructions
and then stops). As it would be possible to add more patterns and
increase the number of instructions to be analyzed, this also would
increase the number of false positives and still could be circum-
vented by changing the hook pattern. This is themajor difference to
our approach, which identifies MMIF modifications no matter what
or where they are.

Regarding the output details for further analysis, apihooks is
comparable to imgmalfind (except for the focus on the exact
modified bytes with imgmalfind). pteamlfind and Moneta are only
able to pinpoint on a page level, meaning the analyst has the task of
identifying the malicious modification(s), which could be just one
byte within at least 4096 bytes of code. The reported number of
modified bytes by imgmalfind, on the other hand, allows a quick
differentiation between a potential API hook or AMSI/ETW patch
(typically 1e16 bytes), and a potential Module Stomping or Process
Hollowing (hundreds to thousands of bytes). This differentiation is
also possible with hollows_hunter since it creates so called tag files,
containing the address and number of modified bytes, and for
hooks also the first jump-target, but not more. Listing 8 shows two
examples of such tag entries, the first being an AMSI bypass and the
second an API hook. While hollows_hunter also dumps themodified
MMIF, a deeper analysis means to load every dumped file with an
appropriate tool. Moreover, in the context of API hooks, for every
new jump-target, the corresponding memory must be gathered
from the running process, if still possible, and again be loaded with
an analysis tool.
Listing 8: hollows_hunter tag file content

Regarding the benign system state described in Section 5.3,
both, hollows_hunter and Moneta report the benign modification
mentioned there and the ones from Section 4.1 as potentially ma-
licious because these tools do not, to the best of our knowledge,
possess any allow-listing functionality for such modifications. api-
hooks on the other hand reported 39.441 inline/trampoline hooks,
containing some of the benign modifications but not the movabs-
jmp hooks. A runtime comparison shows a large gap between
apihooks and all other tools: apihooks takes 1:57:20 h to analyze
the benign system state (kernel space excluded), imgmalfind takes
4:30 min, ptemalfind 4:19 min, Moneta 2:58 min, and hollows_-
hunter takes 2:14 min. While these runtimes are not ideal for an
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accurate comparison (taken in a VM vs. on the host system), they
primarily shall give a rough impression on the differences.

5.5. ISO-page availability

In order to evaluate the availability of executable ISO pages, we
set up aWindows 10 VMwith 2 GB of RAM and five processes. Each
process maps a given image file, reads all executable pages of that
mapped file to get the corresponding VAD and ISO pages in
memory, then modifies each VAD page by changing the first byte of
each page (resulting in a private copy) and finally pauses execution
without any further access to these pages. After the processes were
set up, the systemwas left alone for 72 h without any interaction or
further manual process creations. During this timeframe, we took
several memory dumps via the hypervisor (so no interactionwithin
the VM) at these time intervals: After 10 min, 90 min, 3.5 h, 7 h,
24 h, 48 h and 72 h. The memory overall consumption during this
test in the VM resided between 52 and 56 percent. For this evalu-
ation, pages inHARD and TRANS state are considered available, since
their content can be retrieved from a RAM dump, while pages in
SUBSEC state are considered unavailable. The following list de-
scribes the executable ISO pages for all five MMIFs at the beginning
of this evaluation, right after reading and modifying all pages:

� rdpnano.dll: 368 pages in TRANS state, resulting in a total of
368 available pages. This DLL is notmapped by any other process
in our VM so we do not expect any process from accessing the
ISO pages of this DLL.

� ntdll.dll: 283 pages in HARD state, resulting in a total of 283
available pages. Since this DLL is also mapped in 86 out of 88
other processes in our VM, we expect accesses to corresponding
pages (see Section 2.2).

� kernel32.dll: 41 pages in HARD and 85 in TRANS, resulting in
a total of 126 available pages. Since this DLL is also mapped in 82
out of 88 other processes, we expect accesses to corresponding
pages.

� mod.exe: 8 pages in TRANS state, resulting in a total of 8
available pages. This is a unique executable and only mapped in
its own process.

� ws2_32.dll: 23 in HARD and 37 in TRANS state, resulting in a
total of 60 available pages. Since this DLL is also mapped in 48
out of 88 other processes, we expect accesses to corresponding
pages.

All executable ISO pages remained available during the 72 h,
except for 18 ws2_32.dll pages, which got dropped between the
48 h and 72 h dump.

After the 72 h we took a VM snapshot and performed three
further tests, all starting from that snapshot and again for 72 h with
the same intervals for dump creation as described above.

� The test t_medium simulated a moderate usage scenario
(memory wise) by keeping the total memory consumption be-
tween 59 and 72 percent, with temporary peaks up until 74
percent but not up to 75.

� In test t_high we simulated a high-usage scenario by keeping
the total memory consumption between 70 and 90 percent,
with temporary peaks up until 95 percent.

� The test t_purge was not designed as a long-term test but was
intended to see how low the amount of available pages can get.
For this purpose, we started every minute a custom program,
which solely allocates and writes 100 MB of memory (with a
unique pattern to prevent memory savings from memory
combining) and re-reads those pages every minute (to prevent
these pages from dropping out before others). So in theory, after



Fig. 1. t_high - executable ISO pages.

Fig. 2. t_purge - executable ISO pages.
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10 min there are 10 new processes with a total of 1 GB of allo-
cated memory.

In the case of t_medium and t_high, we periodically started and
stopped instances of Edge,Microsoft Store,Notepad and cmd in order
to simulate user behavior and to create the desired memory load.
The threshold of 75 percent for t_mediumwas chosen during some
tests for our snapshotted state, in which we observed rapid page-
drops when crossing this mark: All rdpnano.dll- and 74 ker-

nel32.dll-ISO pages got unavailable. So besides simulating
moderate usage, the other goal of the t_medium test was to eval-
uate how long these pages would stay in memory when not
reaching this threshold, while still interacting with the OS and
creating newmemory consumptions. The result is that the first and
only drop occurred with the 48 h dump, where 290 rdpnano.dll

and 62 kernel32.dll ISO pages got unavailable and stayed at this
level until the end. All other ISO pages remained available.

The changes for t_high were more diverse and are hence illus-
trated in Fig. 1 (in percent). The available ISO pages percentage for
both, rdpnano.dll and mod.exe, dropped to 0% within the first
10 min, but mod.exe regained 100% after 3.5 respectively
rdpnano.dll 21% after 7 h (there was no read triggered by us or
the five processes), which again dropped to 0% for both between 48
and 72 h. While the pages for kernel32.dll and ws2_32.dll

mostly remained between 40 and 50%, the available pages for
ntdll.dll stayed at 100% up until the last memory dump, where
3 pages got unavailable.

After 10 min in t_purge, the overall memory consumption
reached 99% for the first time and from there on, reached this value
every time all processes re-read their pages (with top peaks of
99.7%), followed by a quick drop of most of those VAD pages by the
OS, dropping the consumption to 92% until the next process crea-
tion and re-read. After 61 min, a last memory dump was taken, and
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the test stopped because the VM got unresponsive and the screen
went black. As can be seen in Fig. 2, all pages for rdpnano.dll and
mod.exe got unavailable after the first minute. The pages of
ntdll.dll, however, stayed in the first 14 min at 100% and af-
terwards did not drop below 67%, while ws2_32.dll remained
around 50% and kernel32.dll around 30%. Also interesting to
note is the rise of available pages at the end, potentially due to some
activity in order to handle the emergency situation.

6. Conclusion and future work

In this work, we demonstrated that by using the Image Section
Object, we can pinpoint the exact changes to a memory-mapped
image file (MMIF) no matter what and where they are. This al-
lows us to detect not only API hooks but also other MMIF modifi-
cations such as AMSI and ETW bypasses, Module Stomping and
Process Hollowing. Our approach has, moreover, identified API
hooks respectively AMSI and ETW bypasses, which were not
detected by Volatility's apihooks plugin. Also, the new technique for
identifying modified MMIF pages has shown to be more reliable
than existing ones, and immune against memory combining effects.
We furthermore analyzed benign modifications and proposed a
filtering algorithm, which, combined with our approach, is prob-
ably more robust against potential subversions than others (due to
the lack of a publicly available implementation, wewere not able to
verify this assumption). Our main advantage is the ability to verify
hooks based on an exact instruction flow and the test for an un-
modified hook target. Our research results have been implemented
in a Volatility 3 plugin that automates the identification of such
modifications and filters benign ones.

6.1. Limitations

While our approach identifies modifications in MMIFs, which
allows to detect the attacker techniques covered in this work, it is
not able to detect variants of these techniques that do not modify
executable MMIF pages, such as. NET based AMSI bypasses.
Furthermore, if the ISO page for a modification is unavailable, we
are not able to identify the exact modified bytes and hence can only
report the whole page as modified. Different solutions to handle
and resolve this situation are discussed in the next section. A
similar case might occur for packed binaries, which get extracted
during runtime. Since the Image Section Object does not contain
the corresponding unpacked data, imgmalfind will report every
unpacked page as modified. While we did not encounter such cases
in our evaluations, this might happen for some applications. Lastly,
for an attacker with kernel space access, it would be possible to
subvert our detection approach since he could manipulate the
OriginalPte value and ISO pages.

6.2. Future work

For cases inwhich the corresponding ISO page is not available, it
is still possible to either use other approaches such as pattern
matching in order to identify the malicious modifications, or to
include further resources as ground truth. While it would also be
possible to compare modified pages against the Data-

SectionObject and SharedCacheMap, their availability for
MMIFs is, based on our observations, negligible. More promising
and reliable (in the sense of availability) are the actual image files,
which can be memory-mapped and used as a similar ground truth
as the Image Section Object. Besides the file system, an advanta-
geous resource (independent from the accessibility of the file sys-
tem andmore trustworthy than a potentially compromised system)
to gather them from are symbol servers, which, at least in the case
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of Microsoft, not only provide the symbols but also the image files
themselves. The range of files available from the symbol servers
must, however, be evaluated. While in this work we only focused
on executable pages, our approach is also applicable to non-
executable memory and might be used to detect IAT, EAT and vir-
tual table hooks.
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