
lable at ScienceDirect

Forensic Science International: Digital Investigation 45 (2023) 301563
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2023 USA - Proceedings of the Twenty Third Annual DFRWS Conference
Using relational graphs for exploratory analysis of network traffic data

Milan Cermak a, *, Tatiana Fritzov�a b, Vít Rus�n�ak a, Denisa Sramkova a

a Institute of Computer Science, Masaryk University, Sumavska 416/15, 60200, Brno, Czech Republic
b Faculty of Informatics, Masaryk University, Botanicka 68a, 60200, Brno, Czech Republic
a r t i c l e i n f o

Article history:

Keywords:
Relational analytics
Network forensics
Visual analytics
Granef
Cybersecurity
* Corresponding author.
E-mail addresses: cermak@ics.muni.cz (M. Cer

(T. Fritzov�a), rusnak@ics.muni.cz (V. Rus�n�ak), de
(D. Sramkova).

https://doi.org/10.1016/j.fsidi.2023.301563
2666-2817/© 2023 The Author(s). Published by Elsev
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

The human brain is designed to perceive the surrounding world as associations. These associations
between the individual pieces of information allow us to analyze and categorize new inputs and thus
understand them. However, the support for association-based analysis in traditional network analysis
tools is only limited or not present at all. These tools are mostly based on manual browsing, filtering, and
aggregation, with only basic support for statistical analyses and visualizations for communicating the
general characteristics. Yet, it is the relationship diagram that could allow the analysts to get a broader
context and reveal the associations hidden in the data. In this paper, we explore the possibilities of
relational analysis as a novel paradigm for network forensics. We provide a set of user requirements
based on the discussion with domain experts and introduce a novel visual analysis tool utilizing
multimodal graphs for modeling relationships between entities from captured packet traces. Finally, we
demonstrate the relational analysis process on two use cases and discuss feedback from domain experts.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS All rights reserved. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Every organization and device connected to the network
constantly faces cyber threats against which they are trying to
defend. On the other side, the attackers constantly react to such
efforts by inventing new ways to exploit weak points. When they
are successful, it is crucial to investigate the attack's type, origin,
impact, and spread to prevent similar threats in the future (ENISA,
2010). For example, the investigator needs to understand how the
malware got on the device or if the device has communicated with
others in the network. Such investigation can be effectively ach-
ieved through network traffic analysis (also referred to as network
forensics) (ENISA, 2018), which we focus on in this work. Even
though many automated network traffic analysis tools are available
to support the investigation (Sikos, 2020), the analyst often has to
perform the analysis manually to discover all crucial information.
He or she can be overwhelmed in the early stages of analysis as it is
unclear where to start since the volume of data is so extensive
(D'Alconzo et al., 2019). The automated tools often provide a sta-
tistical overview, intrusion detection functions, various
mak), 456264@mail.muni.cz
nisa.sramkova@mail.muni.cz

ier Ltd on behalf of DFRWS All rig
visualizations, and the ability to filter and browse the data. How-
ever, many hidden relations in the data may remain undiscovered.

The human brain is used to perceive characteristics of the sur-
rounding world as associations (Zhang et al., 2020). By linking
different information, we can analyze a given problem and under-
stand it. In the case of data analysis, this approach can be reflected
by modeling the associations through multimodal graphs (also
known as relational graphs), where nodes represent various mo-
dalities or types of entities. For example, this technique is already
used in criminal investigation (Atkin, 2011; Z�akop�canov�a et al.,
2021) or social network analysis (Tabassum et al., 2018) to build
situational awareness and explore broader context. Nevertheless, in
the case of network traffic analysis and forensics, this approach is
either not provided at all or only in a limited form. In contrast to
current methods focused only on network host relations, the
relational analysis of all significant attributes of the network traffic
(e.g., hosts, applications, connections, and data) provides better
insights and helps to reveal otherwise hidden information. To make
this possible, it is necessary to face challenges related to not only
the processing and storing of large volumes of network traffic data
but also their visualization and interactive exploration reflecting
the analysts’ needs.

To explore the feasibility of relational analysis in network traffic
forensics, we have designed and implemented an open-source
toolkit Granef, introduced in our previous work (Cermak and
Sramkova, 2021), that models attributes of the network traffic as
hts reserved. This is an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cermak@ics.muni.cz
mailto:456264@mail.muni.cz
mailto:rusnak@ics.muni.cz
mailto:denisa.sramkova@mail.muni.cz
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301563&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301563
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2023.301563


1 https://www.wireshark.org/.
2 https://arkime.com/.
3 https://www.brimdata.io/.
4 https://www.elastic.co/elastic-stack/.

M. Cermak, T. Fritzov�a, V. Rus�n�ak et al. Forensic Science International: Digital Investigation 45 (2023) 301563
entities, and store them in a graph database. This article extends
this work and focuses on the exploratory analysis of such data in a
novel user interface. We grounded the design requirements of the
interface based on analyzing commonly used tools for network
forensics and interviews with domain experts (cybersecurity inci-
dent analysts). As a result, the presented Granef User Interface
(Granef UI) allows analysts to interactively analyze the network
data by using predefined queries or fetching the neighbors of
selected nodes (depth search). In addition, the displayed relational
graph data can be searched, clustered, tagged, or visually modified
tomake it as easy as possible to navigate through the data. We have
prepared two use cases to demonstrate the capabilities of Granef UI
and evaluate it through a qualitative user study with five domain
experts. Although relational analysis was a new paradigm for them,
they were positive about the tool's features and quickly learned the
basic principles of relational analysis.

The contributions of our work are threefold. First, we define a
set of design requirements for using relational analysis in network
traffic analysis. Second, we design and implement a Granef UI and
provide it as open-source. Third, we demonstrate the proposed
analysis approach on two use cases and evaluate it using a quali-
tative user study. This work can be leveraged by both cybersecurity
specialists to explore the new approach to network traffic analysis,
as well as computer graphics and visualization specialists who
want to research the possibilities of using relational graphs for data
analysis.

2. State of the art

This paper focuses on a combination of analysis approach and
visual aspects of network data analysis. Therefore, we divide this
section into two parts. The first part focuses on analyzing network
traffic data and briefly introduces current tools used to analyze
such data and perform network forensics. The second part focuses
on relational analysis and introduces relevant analytical tools
applying this approach to analyzing various data types and sources.

2.1. Network traffic analysis

Network traffic analysis is a key element in understanding
network events and hosts' behavior while performing network
forensics. The crucial part is the analysis of collected data (e.g.,
packets or IP flows), aiming to extract the required information and
gain a situational overview. Such analysis can be partly automated
using anomaly or intrusion detection tools (Fernandes et al., 2018).
However, these tools may not reveal details important to evidence
collection, and therefore manual exploratory network data analysis
plays an important role, allowing analysts to verify detected
anomalies, examine contexts, or extract additional information.
Since network data are considered to be big data, their processing
and analysis face challenges of volume, velocity, variety, and ve-
racity (D'Alconzo et al., 2019). In the case of network forensics
(Messier, 2017), it is further emphasized by the requirement to
manually analyze all the data and preserve their origin, which also
limits the use of automated tools aggregating the data.

Typically, the analyst's steps during network forensics consist of
listing some statistics and then focusing more on investigating
suspicious or significant observations (�Sr�amkov�a, 2022). Therefore,
automated tools and statistical analysis are employed at the
beginning of the analysis to help point out such observations. If the
analyst identifies some notable network event (e.g., communica-
tion with malware C&C or unusual peak in the volume of trans-
ferred data), his or her objective is to identify the event's origin, its
essence, and trace all related hosts and connections. The same
applies if the analyst initially received information about the
2

suspicious event from an external source (e.g., an intrusion detec-
tion system). In the following list, we briefly introduce common
tools that are used today for network forensics and exploratory
network data analysis. Further details can be found either in the
tools documentation or in the survey by Sikos (2020).

C Wireshark1 e It is a de facto standard for packet trace
analysis widely used acrossmany commercial and non-profit
enterprises. It provides a rich feature set for in-depth analysis
of network data and supports deep inspection of hundreds of
network protocols in a three pane-view (packets list, packet
details, and packet bytes as hex dump). In the case of TCP or
UDP traffic, Wireshark organizes the captured data on a per-
ethernet-frame basis and allows the user to inspect different
layers by filtering and displaying the data or isolating the
TCP/UDP stream.

C Arkime2 e It is a large-scale, open-source, indexed packet
capture and search tool with aweb interface. Its main feature
is the ability to track and visualize network connections and
extract metadata. The main page of Arkime is the Sessions
page, which displays a timeline and a list of indexed com-
munications sessions for the filtered expression and allows
the export of them as packet trace. To provide a broader
picture, the SPI (Session Profile Information) View page
shows aggregated statistics on different session metadata
and allows their direct filtering. The tool also includes a
Connection page that displays a simple relational graph of
communicating hosts.

C Brim3 e An open-source tool for network forensics and
threat hunting, combining the Zeek network monitoring tool
(The Zeek Project, 2022) and Suricata intrusion detection
system (OISF, 2022). Both components produce contextual
data based on packet captures, which an analyst reviews.
Brim brings all of this together, presents the analyst with a
graphical user interface, and provides its own query lan-
guage (called ZQL) supporting aggregation functions to
inspect the data. The user interface consists of a timeline
showing the number of connections, a list of connections
corresponding to the selection, and a pane with selected
connection details. It also provides a direct link toWireshark,
where the analyst can further inspect selected network
connections.

C Elastic Stack4 e A universal tool for the storage and analysis
of various textual data. Although it is not directly designed
for network forensics, it can be used for this purpose, but the
network traffic needs to be processed by another tool first
(e.g., Zeek). The Elastic Stack consists of multiple tools that
can work together or separately, whereas the main parts are
Elasticsearch, which is used to store the data, and Kibana,
providing a user interface offering many data visualizations.
In the case of network forensics, Elastic Stack is mainly used
to obtain a macro-view through various visualizations of
aggregated data.

In addition to standalone tools, the capabilities of modern web
browsers initiated the development of tools providing network
traffic analysis as a service. For example, CapAnalysis (Costa, 2019)
allows users to review large PCAP files, parse the data streams, filter
out ports, protocols, or IP addresses, and associate them with

https://www.wireshark.org/
https://arkime.com/
https://www.brimdata.io/
https://www.elastic.co/elastic-stack/


Fig. 1. Simplified diagram of the relational network traffic data model (based on
(Cermak and Sramkova, 2021)).

M. Cermak, T. Fritzov�a, V. Rus�n�ak et al. Forensic Science International: Digital Investigation 45 (2023) 301563
geographical areas. A-packets (A-Packets, 2022) and PacketTotal
(2022) provide multiple individual views on PCAP files through a
set of dashboards focused on individual characteristics extracted
from the data (e.g., application, TLS certificates). NetCapVis (Ulmer
et al., 2019) and PCAPFunnel (Uhl�ar et al., 2021) provide both
overview and support for explorative analysis through step-by-step
data filtering.

Although there is a wide variety of tools for network data
exploration that differ in features, visualization capabilities, and
adoption, their focus is only on modeling relations between hosts
(i.e., communications between network nodes). None of them
genuinely leverages the paradigm of relational analysis.

2.2. Relational analysis

Relational analysis has proven to be useful in various contexts
and domains. Notably in criminal investigations, where this
approach is traditionally used by criminalists (Atkin, 2011) and
being integrated into analytical tools such as Visilant (Z�akop�canov�a
et al., 2021). In computer science, Feijs et al. (1998) showed its
potential for analyzing software architectures. Ah-Pine and Mar-
cotorchino introduced a general framework for data mining and
decision making (Ah-Pine and Marcotorchino, 2010). In digital fo-
rensics, Chen and Malin (2011) used the technique in anomaly
detection based on the access logs analysis. There are also general
tools focused on relational analysis, such as Neo4j,5 but they are not
prepared for exploratory analysis of network traffic data.

Granef is a pioneering example of applying relational analysis in
network forensics. To the best of our knowledge, our approach
brings a fresh perspective to traditional network analysis and in-
troduces the principles of association-based network traffic rep-
resentation into the visual analytics workflow. It is supposed to
help the analysts think about the data in away closer to the general
perception of how computer networks work.

3. Data model

Proper data representation and storage are key prerequisites for
exploratory network traffic analysis using relational graphs. In our
previous work, we addressed these areas, introduced data pro-
cessing parts of the Granef toolkit, and simplified the network
traffic data model proposed by Neise (2016) and Leichtnam et al.
(2020). In general, the model follows the format of Zeek logs, pre-
serves their relation, and eases extension by other data sources. The
base model consists of the following four vertex types:

� e a device with an IP address observed in the network
traffic capture;

� e information related to the host extracted from
network traffic (e.g., hostname, TLS or e-mail certificates,
downloaded files);

� e general information about individual network
connections (e.g., protocol, ports, connection time, number of
packets);

� e application data extracted from the connection
(e.g., DNS, HTTP, TLS data).

Edges between vertices represent their relations and preserve
the information about their origin. A simplified diagram of vertices
and edges is shown in Fig. 1. All edges are bidirectional to allow
reverse processing for querying from an arbitrary node regardless
5 https://neo4j.com/.

3

of its type. Formally, the model represents the entities in a multi-
modal graph described by Ghani et al. (2013) as “the traditional
ordered pair G ¼ (V, E) comprises of a set of vertices V and edges E,
but where vertices can be partitioned using a modality equivalence
relation ~mod. This modality relation ~mod is defined using the
notion of vertex type, and the equivalence classes (partitions)
defined by relation are called modes. We can further define a mo-
dality relation for edges based on a tuple of the modes of the two
vertices an edge connects.” The advantage of such an approach to
data representation is a simple extension by adding new data
sources (e.g., IDS alerts, OSINT data) as vertices and analyzing them
with network traffic data within a unified visual environment.

To extract and store the network traffic data in a defined data
model, we use the transformation and data storage modules of the
Granef toolkit (Cermak and Sramkova, 2021). It provides the
pipeline for extracting the data from network traces and stores
them in a graph database. The main components of the pipeline are
the Zeek network security monitor and Dgraph6 database. Zeek is
used to extract information from a network packet trace file, such
as connection information, related metadata, statistical properties,
and cleartext partitions of application protocols (even encrypted
ones). This extracted data is transformed into the defined data
model and stored in the database. The database can be queried
using Dgraph Query Language (DQL) based on GraphQL, a modern
data query language providing high versatility. The toolkit provides
an abstract layer API with common analysis functions such as
neighbor discovery or data filtering to ease the analysis. It is worth
mentioning that the initial version of the Granef toolkit provided
simple graph visualization of the stored data. However, it was
intended for demonstration purposes and lacked functionality for
an effective exploratory analysis.
4. User tasks and requirements

The key requirement for exploratory analysis and data visuali-
zation is to support analysts and provide themwith answers to the
analytical questions as easily and fast as possible. In general, it must
not only allow them to browse collected data (micro-view) but also
provide an overview and broader context (macro-view). To prop-
erly design and develop such an analytical system, we have closely
cooperated with domain experts from an incident response team
and specialists focused on network forensics. Together with them,
we have identified typical questions for network traffic analysis on
which we defined requirements for exploratory analysis using
relational graphs.
6 https://dgraph.io/.

https://neo4j.com/
https://dgraph.io/


M. Cermak, T. Fritzov�a, V. Rus�n�ak et al. Forensic Science International: Digital Investigation 45 (2023) 301563
4.1. User tasks

In general, any security and forensics analysis tries to answer the
common questions: what, when, where, how, and who. The pur-
pose of the analysis then determines how detailed answers are
needed. In the case of analysis during incident response, it is crucial
to find information as quickly as possible to recover from an inci-
dent and go back to “business as usual”. In contrast, forensic anal-
ysis is usually associated with law enforcement, and the goal is to
“solve the case” The analysis must therefore be more thorough and
focused onmore details. In the following sections, for simplicity, we
will focus on the analysis of network data performed as part of
incident response, but note that the principles and results we will
present are applicable in both domains.

As a basis for defining common user tasks, we have used rec-
ommendations by ENISA, 2010 and CISA, 2021 organizations that
describe a typical analysis workflow in incident response. We have
further consulted our findings through semi-structured interviews
with domain experts in network and cybersecurity analysis from
our university CSIRT, representing the target users of the tool. This
led to the definition of the following five typical analytical ques-
tions, which are designed to verify incident severity, understand its
origin, and evaluate its impact.

C How was the host infected? e Determine the type of attack
and how it was performed.

C Did the attacker scan for open services or vulnerabilities? e

Determine if any vulnerability of an available service has
been exploited.

C Did the host communicate to a malware C&C or another sus-
picious IP address? e Identify indicators of compromise (IoC)
and verify that there are no other compromised machines.

C Did the host send a large amount of data outside the local
network? e Verify that no sensitive data has been exfiltrated.

C Did the host communicate with other devices in the local
network? e Check whether the attacker infected other
network hosts.
4.2. Requirements

We have used defined typical analytical questions to evaluate
commonly used tools described in the State of the Art section and
identified the functionality they provide to answer these questions.
In addition, we have also analyzed the initial prototype of
demonstration visualization provided by the Granef toolkit. The
result of this evaluation is a set of functional and non-functional
requirements, which we generalized and formulated as the
following five key user requirements for exploratory analysis of
network traffic data using relational graphs.

C R1: Visualizing entities and their relationships e The main
attributes of the network traffic data will be displayed using
an oriented multimodal graph. The interactive relationship
visualization should allow the analyst to inspect details
about any selected node and gain new observations through
in-depth graph exploration. Basic statistical information
(e.g., number of results, minimum, maximum, and average
values of entity attributes) will be available for the displayed
data.

C R2: Facilitating graph interaction e The user will be able to
customize the graph's layout and other interface elements,
including aggregation. The tool should facilitate getting
initial insights about network connections. It should also
4

allow distinguishing regular and suspicious network traffic
at first glance based solely on the resulting pattern.

C R3: On-demand data enrichment e The analyst can enrich
network traffic data with additional information from
external sources linked to displayed nodes (e.g., asset man-
agement, shared threat intelligence, device logs, notes). The
tool should also allow the analyst to include the results of
anomaly detections in a visualization.

C R4: Visual and parametric filteringe The data selection and
filtering will be possible both by entering into a form and by
direct interaction with the graph (i.e., visual query). The user
will be able to filter the displayed data globally by time in-
terval, node attributes, and graph edges, as well as locally by
relationships to the selected node or group of nodes.

C R5: Scalability e The system must be able to display graphs
with thousands of graph nodes seamlessly while keeping the
high responsibility of the user interface.

5. Visual analytics interface

Considering defined requirements and user tasks, we have
extended the Granef toolkit by Granef UI providing a visual ana-
lytics interface for exploratory analysis of stored data. The interface
is designed as a web application to ensure compatibility across
different systems. It is currently provided as an integrated module
for the Granef toolkit. However, in the future, we plan to allow
independent application operation with a connection to different
graphic databases and user management. This section presents
Granef UI components, describes their functionality, and discusses
how they can be used during the investigation.

Since the analysts prefer working on desktop computers, the
application layout is designed for a horizontal resolution of at least
1920 pixels. Graph view, rendering the relational graph on a canvas
(Fig. 2 ), occupies the majority of the screen. Menus and dialog
boxes are organized in a three-column layout as canvas overlays.
The top-left corner occupy Tools (Fig. 2 ) for graph interaction.
Child windows (Detail, Search, and Timeline) display in the middle
and the left third of the screen. The Detail shows various details for
the selected graph element(s) (Fig. 2 ), the Search enables the
selection of visualized data and loading new data based on queries
(Fig. 2 ), and Timeline enables to filter visualized data based on a
time (not shown in the figure).

5.1. Graph view

The graph view is the key part of the analytical interface. It
provides an interactive representation of an oriented graph that
matches the visual encoding of , and

(i.e., graph nodes), and relations between them (i.e.,
oriented edges) (R1). Besides color encoding, nodes, and edges are
accompanied by a short text label. Users can select one or more
nodes or gather them into node clusters to avoid graph cluttering.
Selected nodes are encircled with a magenta ring, and their prop-
erties are shown in the Detail child window. Node clusters are
represented as larger gray circles without any label, as shown in
Fig. 2. When loaded, the graph layouting algorithm provides an
initial positioning that can be adjusted by the user later on, either
manually or using various layout algorithms.

5.1.1. Context menu
Users can interact with the chart through the context menu (see

Fig. 3) that is invoked by a right-click. Its content varies depending
on a graph element under the cursor. If there are some nodes in the
selection, the operations in the context menu apply to all selected



Fig. 2. Granef UI's visual analytics interface: graph view with rendering oriented relational graph; tools menu providing different options to interact with the graph;
Detail child window providing various details related to the selected node(s) or edge(s) of the graph; Search dialog for structured filtering and data querying.

Fig. 3. Context menu with actions for a group of selected nodes.

M. Cermak, T. Fritzov�a, V. Rus�n�ak et al. Forensic Science International: Digital Investigation 45 (2023) 301563
nodes. If the user clicks on a node, actions will be applied to the
node. However, the same items will be available for the selection. If
no selection is defined, the context menu only offers the user to
select all nodes.
Fig. 4. Tools menu e actions are grouped into ten categories: a) view manipulation, b)
node locks, c) node hiding, d) graph actions, e) clustering actions, f) export and save, g)
timeline controls, h) selection mode, i) other.
5.2. Tools

The Tools menu provides direct access to the most frequent
interaction tasks (R2). Each action is represented by a buttonwith a
unique icon, and its brief description appears in a tooltip on
mouseover. The related actions are grouped into nine sections as
shown in Fig. 4:

C View manipulation contains Zoom in/out and Fit buttons to
adjusts the view of the graph.
5



M. Cermak, T. Fritzov�a, V. Rus�n�ak et al. Forensic Science International: Digital Investigation 45 (2023) 301563
C Node locks provide twomodes for locking node positions. The
global one locks the node position on the canvas regardless
of further modifications in the graph. Graph-aware locking
continuously recalculates and adjusts the position of the
locked node due to further graph changes caused by user
interaction.

C Node hiding allows hiding the nodes to unclutter the view
and show them again.

C Graph actions section contains node removal feature, invert
selection, tag and color assigning showing corresponding
child windows where the user can assign nodes with one or
more tags or colors. The last option shows the Detailwindow.

C Clustering actions allows the user to apply four graph clus-
tering operations to aggregate selected nodes and unfold
clustered (aggregated) nodes. The clustering actions include:
clustering the outliers (nodes with the node degree 1),
manual clustering of selected nodes, automated clustering of
all nodes, and clustering of selected edges. The last button
performs the cluster unfolding. The automated clustering is
based on the Chinese Whispers algorithm (Biemann, 2006)
and is further described in Section 6.2.

C Export and Save tools allow users to export the current graph
as a serialized visualization in a JSON format or an image, or
save the current analytical case, including the visualization
state (i.e., definitions of nodes and edges, characteristics of
the current view and data necessary for cluster
manipulation).

C Timeline controls displays Timeline child window showing
the number of the connections (y-axis) related to the time (x-
axis).

C Selection mode allows changing the mode between rectan-
gular and lasso (freehand).

C Other actions display the Search child window, open view
configuration, and allow adding notes.
5.3. Child windows

The visual analytics interface of Granef UI provides three types
of child windows with a distinct focus. The Detail offers additional
information related to the selected nodes (R3), Search allows the
user to filter the data using parametric querying (R4), and Timeline
allows the user to filter the data based on connection time.
5.3.1. Detail
The child window appears automatically if the user holds the

mouse over the node for at least 250 ms or by selecting it with a
double click. In such a case, the child window remains on the
screen, and the content is locked to the selected node(s). If only one
node is selected, the child window displays only its attributes. If
multiple nodes are selected, it contains summarized information
about them. Since the nodes’metadata and attributes are extensive
and it does not make sense to display them altogether, the Detail is
therefore divided into several tabbed views (R3). Such an organi-
zation also allows us to extend the functionality with new views in
the future. Currently, Granef UI provides five of them: Types, Sta-
tistics, Data, Timeline, and Chord.

� Types e The tab displays a donut chart (see Fig. 2 ) summa-
rizing the number of selected nodes by their type, with the
colors corresponding to the colors of the nodes in the chart. At
the bottom of the detail, there is a close button and a button that
copies to the clipboard the identifiers of selected nodes for
which the detail was created.
6

� Statistics e The summary statistics tab complements the Data
tab with charts summarizing the data obtained from the Granef
analytical interface. Statistics are calculated only for some types
and part of their attributes (e.g., communication protocols, a
payload of requests and responses, or HTTP methods and
response codes). The data is usually visualized using a bar chart
or donut chart.

� Data e The data tab allows the analyst to browse raw data and
attributes of selected nodes. For each type of node, there is a
table whose records are the individual nodes and their attri-
butes in columns.

� Timeline e The timeline shows the nodes distribu-
tion in the selection regarding the time of the connection. The x-
axis displays moments in time (5-min intervals by default). The
y-axis then plots the number of connections for each time
instant using a bar chart. Below the chart are options where the
analysis can switch between linear and logarithmic scales for
the timeline bar chart and the length of the intervals.

� Chord e The last tab displays a chord diagram that shows the
number of connections between pairs of hosts, always consid-
ering the number of connections initiated by a particular host.
This tab is displayed only if and nodes are in
the selection. The chord diagram was chosen as a convenient
way to visualize the volume of data transferred between two
hosts allowing the analyst to identify those who communicated
heavily.
5.3.2. Search
The analyst can use two types of searches. The first serves for

selecting nodes in the current visualization (R4). The analyst may
search nodes based on their labels, tags (if assigned), and inter-
mediate or eigenvector centrality values (similarly to Page-Rank).
This search makes it easy to select nodes even if the visualization
becomes large and less clear. The second search utilizes extended
Granef analysis API to query data from the graph database. The
analyst can either write queries in the Data Query Language (DQL)
or use predefined queries with user-defined parameters (see Fig. 2).
When submitting a query, the user can choose whether to clear the
current visualization or add a new result. In addition, the analyst
can choose whether the result should be clustered. There are two
clustering methods: a single cluster where all new result data will
be visualized as a single cluster, or timeline clustering that clusters

nodes based on the connection time. These options are
beneficial when the query result is expected to contain a large
number of nodes that would clutter the visualization (R5).

5.3.3. Timeline
The timeline shows the distribution of connections in the

visualization and allows to filter off the data using a visual selection
of the interval (R4). The main element is a bar chart displaying the
sum of connections (y-axis) aggregated in sampled time intervals
(x-axis). The connections are aggregated in the 5-min interval by
default, but the user can change this value in the visualization
settings. The user can interact with the chart in two interaction
modes, either by selecting one time interval or multiple intervals. In
the first case, the user can select only one moment by clicking on
the graph. This comes in handy in visualizing changes in the graph
over time. In the second case, it is possible to select multiple in-
tervals with gaps between them. Inactive intervals are gray and
active intervals, matching the color of the connection nodes, are
orange, as shown in Fig. 5 ②. The timeline only influences

nodes and clusters containing that type. A cluster will

only be hidden if none of the contained fall into active



Fig. 5. Visualization of analysis steps for Case Study 2: ① initial event analysis with node data details; ② connections and application data selection using timeline visualization; ③
clustered view of application data with details about the cluster content.

8 https://nivo.rocks/.

M. Cermak, T. Fritzov�a, V. Rus�n�ak et al. Forensic Science International: Digital Investigation 45 (2023) 301563
intervals.
Below the diagram are buttons for faster navigation: to display

the first and last interval, the next and previous interval, and the
next and previous non-empty interval (i.e., containing at least one
connection). In the multiple intervals selection mode, there are
buttons to show/hide nodes in all intervals and an inversion of the
selected ones. Additionally, users may change visualization settings
and switch between linear and logarithmic scales for the bar chart,
the length of the intervals, and the time boundary for which the
timeline data will be recalculated.

6. Implementation

We have implemented the proposed approach of using rela-
tional graphs for exploratory analysis of network traffic data as an
open-source module for the Granef toolkit (publicly available at
https://granef.csirt.muni.cz/). The architecture of Granef UI is
described in the first part of this section. The second part describes
the workflow of graph nodes clustering since it is one of the key
features of the visual analysis interface.

6.1. System architecture

We have designed Granef UI iteratively with several versions,
each reflecting the feedback from the domain experts who partic-
ipated in user tasks and requirements formulation. From the early
phases of the design process, we aimed to create a client-server
application using modern web technologies and open-source
frameworks. Granef UI builds upon the Granef toolkit and ex-
tends it with an interface for visual analysis. It provides REST API
over the Dgraph database with features allowing exploratory
browsing of stored data and retrieval of aggregated information.
This API is used by the server side of Granef UI, which processes
analytical queries and stores information necessary for efficiently
running the client side of the tool provided as a web application.

Besides the visual analytics interface, which is the main view of
the tool where analysts work, the application consists of three
other pages. The home page contains the list of cases (i.e., graph
visualizations) stored in the database. The user can create new or
filter, search or delete existing ones. Next, there are two configu-
ration pages containing the global application preferences and
user-defined tag management, respectively. The latter is used for
node labeling during the case investigation. In the future, we plan
to add a fourth page with a brief tutorial for novice users.

Both client and server sides of the application are written in
TypeScript language. The client uses React.js, with Material-UI7 and
7 https://mui.com/.

7

Nivo libraries8 for GUI components and charts. The key library for
implementing graph visualizations is Cytoscape.js9 which was
chosen due to its features supporting the graph analysis, extensi-
bility, and a live community of developers. The server side is
running on Node.js. It uses the NestJS10 and TypeORM11 frame-
works and PostgreSQL database as storage. It provides a REST API
allowing to store and search the database for visualizations, pref-
erences, annotations, and annotated nodes. We also used Docker to
ease deployment and facilitate the configuration of backend and
frontend parts.
6.2. Clustering of graph nodes

Node clustering addresses the scalability requirement (R5) and
overcomes the issues with decreasing graph clarity, as well as
performance degradation with the growing number of graph ele-
ments. The logic of creating clusters is based on selecting nodes
that are grouped into one node, preserving all adjacent edges. The
computation starts by identifying the nodes and edges, which will
not directly appear in the visualization because these will be
replaced by the cluster. Their definitions are stored with the cluster
definition, so they can be usedwhen the cluster is opened.When all
the nodes and edges are identified, the new node element repre-
senting the cluster appears colored in gray. Its size is calculated
based on the number of contained nodes. Next, the computation
proceeds by obtaining the definitions of the new aggregated edges
that will be adjacent to the cluster. The edges’ thickness corre-
sponds to the number of base edges it replaces. Finally, the clus-
tering index, which maps the base node identifiers (keys) to the
cluster identifiers (values), is updated.

The cluster can be opened to the original relational diagram of
nodes as follows. First, all edges adjacent to the selected cluster are
found in their base edges. Then the cluster can be removed from the
visualization and replaced by the inner nodes. The clustering index
is also updated. Next, Granef UI maps the base edges to the cluster
edges, and then adds them to the visualization.

Basic node clustering algorithms find suitable nodes mainly
based on the numerical values computed from node attributes.
However, this is not always appropriate since the logical graph
topology needs to be considered. Therefore, the Granef UI offers
three clustering options. The first is the Chinese Whispers
(Biemann, 2006) algorithm e a random graph-clustering applying
the idea of the “Chinese Whispers” game (also known as
9 https://js.cytoscape.org/.
10 https://nestjs.com/.
11 https://typeorm.io/.

https://granef.csirt.muni.cz/
https://mui.com/
https://nivo.rocks/
https://js.cytoscape.org/
https://nestjs.com/
https://typeorm.io/


M. Cermak, T. Fritzov�a, V. Rus�n�ak et al. Forensic Science International: Digital Investigation 45 (2023) 301563
“Telephone”). Each node in the graph is given an initial label, and
the labels are then iteratively updated based on the neighbors’ la-
bels. A node adopts the most common label among its neighbors in
each iteration until the labels converge or a maximum number of
iterations is reached. The second algorithm creates clusters by
merging so-called outliers, i.e., nodes with a single neighbor. The
third algorithmwas designed with knowledge of the shared nature
of network traffic data. The analysts are often interested in links
modeled as single nodes and their contextualization in some time
range. Therefore, it was natural to cluster the connections just by
time stamps, which proved practical in practice.

Besides, the application also allows loading data in separate
clusters. The idea behind the algorithm is first to give the user the
opportunity to inspect statistics and diagrams and thus quickly get
an initial idea at a higher level of abstraction than by looking at
individual nodes in turn. At the same time, this does not prema-
turely reduce the clarity of the visualization. If the analyst is
interested in the cluster, he or she can open it and further explore it
at the level of individual nodes or smaller clusters.

7. Use cases and evaluation

To show how the analyst may utilize Granef UI, we have pro-
posed two use cases representing different aspects of relational
analysis. The analytical process for investigating these use cases is
described in the first part of this section. We have also conducted a
user study with domain experts. The findings from this evaluation
are summarized in the second part of this section.

7.1. Use cases

To illustrate Granef UI capabilities, we present two scenarios
focused on incident analysis based on real-world scenarios. The
first one deals with the intrusion detection system (IDS) alert
analysis and investigation of a malicious host and shows the data
enrichment capabilities, including the use of external information
from the threat intelligence database MISP.12 The second scenario
aims to analyze a web service attacks and documents Granef UI
capabilities to process large amounts of network traffic data.

7.1.1. Use case 1: Malicious domain connection
This use case is based on the SAPPAN dataset (Cermak and

Obrecht, 2021) containing network traffic from a local network
with multiple infected hosts communicating with the command
and control center. The dataset is extended with the threat intel-
ligence data from the MISP database describing indicators of
compromise related to the used malware. The analysis starts with
an IDS system alert identifying communication with a malicious
domain. The goal is to verify the incident and determine its impact,
as described in Section 4.1.

The first step e the false positive verification of the alert e is
done by investigating related connections via the “Connections by
hosts and/or time” search. The displayed relational graph shows
two nodes and three nodes, in whose detail we
can see that they were normal HTTPS connections. Selection of all

nodes and fetching data using the context
menu option adds several SSL/TLS nodes to the graph. Loading the
next level of neighboring nodes (neighbors of the
nodes) revealed the relation of all these connections to one host-
name mentioned in the alert. Loading of hostname node neighbors
confirms this as IoC and MISP nodes with details about the threat
12 https://www.misp-project.org/.

8

are added to the graph. These nodes, representing an external data
source, are colored blue to be easily distinguishable.

To further investigate the incident, we continue to explore the
relational graph by selecting neighbors of the malicious host.
Fetching reveals an association of multiple hostnames
and TLS certificates. Retrieving the neighbors shows that these
nodes are also present in the MISP database, so we continue to
check whether any other hosts in the local network have commu-
nicated with the malicious host. It shows to be a valid assumption,
and by fetching its neighbors, the graph visualizes another
node communicating with the malicious one. We may fetch con-
nections between these nodes and investigate them further. The
resulting graph, shown in Fig. 2, displays the final result fromwhich
we can see all the communication between the malicious host and
other hosts in the network.

7.1.2. Use case 2: Web attack
In the second scenario, we explore the dataset

CSEeCICeIDS2018 (Sharafaldin et al., 2018), part Thurs-22-02-
2018. The analysis starts with an alert with a brute force attack
observed in a 1-h window. The investigation aims to verify the
incident and check whether the attacker performed any other at-
tacks. Fig. 5 illustrates key steps in the analytical process.

We follow the same approach as in the previous use case using
the “Connections by hosts and/or time” search. However, the bigger
time window of the alert leads to a larger number of
nodes, making the visualization cluttered. Therefore, we aggregate
the connections into clusters based on 15-min intervals by “Time-
line clustering”. The detail of nodes in the one opened
cluster shows standard HTTP connections (see Fig. 5 ①). We then
fetch the data and inspect them individually. The de-
tails of obtained HTTP nodes reveal that all connections refer to the
login page, which confirms that the alert is a true positive.

To follow up on the analysis, we select the attacker node
(IP: 18.218.115.60) and fetch all neighboring connection nodes
(using “Timeline clustering”). As expected, more clusters will
appear, so we use the Timeline child window revealing that the
attacker has communicated with the server in three intervals,
where the first corresponds to the alert. Repeating the procedure of
alert verification for the second interval, we see the patterns
(”<script>” tag in the URI) indicating the cross-site scripting attack
(see Fig. 5 ②). Instead of opening a cluster and loading
nodes for each connection, we can also select all clusters, load
application neighbors as a single cluster, and investigate them in
the Details child window (see Fig. 5③). Repeating the steps for the
third time interval reveals an SQL injection attack. So the attacker
tried three different attacks on the website.

7.2. User study

To verify that an analyst without more profound knowledge of
the Granef UI can also effectively utilize the proposed analysis
approach, we invited five experts in the cybersecurity data analysis
domain to replicate the second use case. The participants had
experience with cybersecurity data analysis between 5 and 12
years (8 years on average). The evaluation aimed not only to verify
whether they are able to use Granef UI for alert analysis but also to
check how they work with the visualization in general. We
designed an online form to guide participants through the testing.
It served to collect participants’ feedback and present the in-
structions throughout the evaluation session. The sessions lasted
between 45 and 60 min.

The evaluation sessions were realized in hybrid mode (i.e., we

https://www.misp-project.org/


M. Cermak, T. Fritzov�a, V. Rus�n�ak et al. Forensic Science International: Digital Investigation 45 (2023) 301563
were present in person or online throughout the session and
answered any questions). The session started with a brief intro-
duction to the relational data model of network traffic data and a
presentation of the key functions of Granef UI. Users were then
given a set of simple tasks to control the visualization so that they
could become more familiar with the tool and try out its features.
Subsequently, the domain experts were pointed to the alert. Their
task was to verify it and identify other possible attacks in the
dataset. At the end of the evaluation, the participants provided
feedback and filled out a System Usability Scale (SUS)
questionnaire.

7.3. User study results and discussion

After the initial indecision, each expert verified alert correct-
ness, analyzed related network traffic, and identified the two
additional attacks. The resulting SUS score was 78, which can be
interpreted as an Acceptable or Good (Bþ) system in adjective
interpretation or the numeric values (average score is 68). In
addition, each expert stated that they could imagine working with
the tool in the future and using it for certain types of network traffic
analysis.

The biggest difficulty for participants was unfamiliarity with the
data model, as they expected application data within the connec-
tion nodes, for example. That was a problem especially at the
beginning of the alert verification task. However, after a short time,
they got used to the model and could quickly analyze attacks from
other time intervals and use the context menu to fetch related
nodes. We attribute this initial confusion to the lack of visual
demonstrations in the initial familiarization phase of the applica-
tion. To avoid this in the future, we plan to extend Granef UI with an
additional page containing a simple tutorial with analysis exam-
ples. A positive surprise for us was that the participants were able
to use clusters intuitively, which allowed them to get an overview
of the contained data quickly. Participants also intuitively started
using neighbor node fetching when they did not know how to
proceed. Using this naive approach, they obtained additional in-
formation that helped them to discover other attacks and finish the
task.

The evaluation also revealed several bugs in implementation
(e.g., incorrect alignment of elements, confusing button de-
scriptions, and data loading indicator), which we subsequently
corrected in new versions of Granef UI. We also gathered users’
ideas for visualization improvements that we plan to implement in
the future.

8. Conclusion

In this work, we presented a new approach to network forensics
using relational graphs visualization. This data representation
method offers a new way of data analysis inherent to the human
brain that is used to analyze and understand a given problem by
associating different information. Our work builds on the Granef
toolkit (Cermak and Sramkova, 2021), which introduced processing
and storing network traffic data as associations in a graph database.
We designed and implemented an open-source module Granef UI,
that utilizes the graph database of the Granef toolkit and allows the
analyst to visualize the data in relational graphs and explore them
using predefined queries or interactive fetching of related nodes.
When designing the tool, we drew on discussions with domain
experts and requirements derived from common tasks that an
analyst performs during network forensics and incident investi-
gation. To show how the implemented visualization tool fulfills
these requirements, we presented two analytical use cases and
performed a user study with five domain experts. Their results and
9

positive feedback showed that the proposed analysis approach
fulfills the defined requirements and allows the analyst to explore
data at different levels of detail. At the same time, the evaluation
showed that once the analysts got used to the new data model, they
could quickly investigate the incident and reveal all necessary in-
formation. In the future, we plan to perform a more comprehensive
evaluation with a larger sample of analysts and compare Granef
with other commonly used tools to demonstrate its benefits and
challenges.

We believe that Granef toolkit (available as open-source at
https://granef.csirt.muni.cz/) extended by the visual interface will
complement the portfolio of network traffic analysis tools and offer
the forensics and cybersecurity community new insights into the
data allowing them to uncover hidden data associations. We also
expect that the relational analysis concept will be progressively
used to analyze other data types, such as logs or system events. An
interesting opportunity is a combination of multiple (heteroge-
neous) data types within a single relational analysis. As a result, the
analyst could easily navigate within a unified visual interface e e.g.,
between data from network traffic and system processes that
initiated the network connections e without combining different
tools and their outputs. The broader use of the relational analysis
concept thus has great potential to accelerate exploratory data
analysis in both digital forensics and incident response.

Acknowledgments

This research was supported by ERDF “CyberSecurity, Cyber-
Crime and Critical Information Infrastructures Center of Excellence”
(No. CZ.02.1.01/0.0/0.0/16_019/0000822).

References

A-Packets, 2022. Online PCAP file analyzer designed to visualize HTTP, Telnet, FTP.
URL. https://apackets.com/. (Accessed 14 July 2022).

Ah-Pine, J., Marcotorchino, J.F., 2010. Overview of the relational analysis approach in
data-mining and multi-criteria decision making. In: Usmani, Z.U.H. (Ed.), Web
Intelligence and Intelligent Agents. Intech, pp. 325e346. https://doi.org/
10.5772/8387.

Atkin, H., 2011. Criminal Intelligence: Manual for Analysts. UNODC Criminal Intel-
ligence Manual for Analysts, United Nations Office on Drugs and Crime
(UNODC).

Biemann, C., 2006. Chinese Whispers: an efficient graph clustering algorithm and
its application to natural language processing problems. In: TextGraphs-1:
Proceedings of the First Workshop on Graph Based Methods for Natural Lan-
guage Processing. Association for Computational Linguistics, USA, pp. 73e80.

Cermak, M., Obrecht, M., 2021. SAPPAN: Advanced Threat Data. https://doi.org/
10.5281/zenodo.5547862. (Accessed 14 January 2023).

Cermak, M., Sramkova, D., 2021. GRANEF: utilization of a graph database for
network forensics. In: Proceedings of the 18th International Conference on
Security and Cryptography - SECRYPT, INSTICC. SciTePress, pp. 785e790.
https://doi.org/10.5220/0010581807850790.

Chen, Y., Malin, B., 2011. Detection of anomalous insiders in collaborative envi-
ronments via relational analysis of access logs. In: Proceedings of the First ACM
Conference on Data and Application Security and Privacy. Association for
Computing Machinery, New York, NY, USA, pp. 63e74. https://doi.org/10.1145/
1943513.1943524.

Costa, Gianluca, 2019. CapAnalysis. URL: http://www.capanalysis.net/. (Accessed 14
July 2022).

Cybersecurity and Infrastructure Security Agency, 2021. Cybersecurity incident &
vulnerability response playbooks. URL: https://www.cisa.gov/sites/default/files/
publications/Federal_Government_Cybersecurity_Incident_and_Vulnerability_
Response_Playbooks_508C.pdf.

D'Alconzo, A., Drago, I., Morichetta, A., Mellia, M., Casas, P., 2019. A survey on big
data for network traffic monitoring and analysis. IEEE Transactions on Network
and Service Management 16, 800e813. https://doi.org/10.1109/TNSM.2019,
2933358.

European Network and information Security Agency (ENISA), 2010. Good practice
guide for incident management. URL: https://www.enisa.europa.eu/
publications/good-practice-guide-for-incident-management.

European Network and information Security Agency (ENISA), 2018. Introduction to
Network Forensics. European Union Agency for Cybersecurity. https://doi.org/
10.2824/995110.

Feijs, L., Krikhaar, R., Van Ommering, R., 1998. A relational approach to support
software architecture analysis. Software Pract. Ex. 28, 371e400.

https://granef.csirt.muni.cz/
https://apackets.com/
https://doi.org/10.5772/8387
https://doi.org/10.5772/8387
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref3
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref3
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref3
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref4
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref4
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref4
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref4
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref4
https://doi.org/10.5281/zenodo.5547862
https://doi.org/10.5281/zenodo.5547862
https://doi.org/10.5220/0010581807850790
https://doi.org/10.1145/1943513.1943524
https://doi.org/10.1145/1943513.1943524
http://www.capanalysis.net/
https://www.cisa.gov/sites/default/files/publications/Federal_Government_Cybersecurity_Incident_and_Vulnerability_Response_Playbooks_508C.pdf
https://www.cisa.gov/sites/default/files/publications/Federal_Government_Cybersecurity_Incident_and_Vulnerability_Response_Playbooks_508C.pdf
https://www.cisa.gov/sites/default/files/publications/Federal_Government_Cybersecurity_Incident_and_Vulnerability_Response_Playbooks_508C.pdf
https://doi.org/10.1109/TNSM.2019
https://www.enisa.europa.eu/publications/good-practice-guide-for-incident-management
https://www.enisa.europa.eu/publications/good-practice-guide-for-incident-management
https://doi.org/10.2824/995110
https://doi.org/10.2824/995110
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref13
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref13
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref13


M. Cermak, T. Fritzov�a, V. Rus�n�ak et al. Forensic Science International: Digital Investigation 45 (2023) 301563
Fernandes, G., Rodrigues, J.J.P.C., Carvalho, L.F., Al-Muhtadi, J.F., Proença, M.L., 2018.
A comprehensive survey on network anomaly detection. Telecommun. Syst.
https://doi.org/10.1007/s11235-018-0475-8.

Ghani, S., Kwon, B.C., Lee, S., Yi, J.S., Elmqvist, N., 2013. Visual analytics for multi-
modal social network analysis: a design study with social scientists. IEEE Trans.
Visual. Comput. Graph. 19, 2032e2041. https://doi.org/10.1109/TVCG.2013.223.

Leichtnam, L., Totel, E., Prigent, N., M�e, L., 2020. Sec2graph: network attack detec-
tion based on novelty detection on graph structured data. In: Detection of In-
trusions and Malware, and Vulnerability Assessment. Springer International
Publishing, pp. 238e258.

Messier, R., 2017. Network Forensics. John Wiley & Sons, Ltd. https://doi.org/
10.1002/9781119329190.

Neise, P., 2016. Intrusion detection through relationship analysis. Technical report.
SANS institute. URL: https://www.sans.org/reading-room/whitepapers/
detection/paper/37352.

PacketTotal, 2022. Simple, free, high-quality PCAP analysis. URL: https://packettotal.
com/. (Accessed 14 July 2022).

Sharafaldin, I., Habibi Lashkari, A., Ghorbani, A.A., 2018. Toward generating a new
intrusion detection dataset and intrusion traffic characterization. In: Pro-
ceedings of the 4th International Conference on Information Systems Security
and Privacy - ICISSP. INSTICC. SciTePress, pp. 108e116. https://doi.org/10.5220/
0006639801080116.

Sikos, L.F., 2020. Packet analysis for network forensics: a comprehensive survey.
Forensic Sci. Int.: Digit. Invest. 32, 200892. https://doi.org/10.1016/
j.fsidi.2019.200892.

�Sr�amkov�a, D., 2022. Graph-based anomaly detection in network traffic. Master’s
10
thesis. Masaryk University, Faculty of Informatics, Brno. https://is.muni.cz/th/
mtuer/.

Tabassum, S., Pereira, F.S.F., Fernandes, S., Gama, J., 2018. Social network analysis: an
overview. WIREs Data Mining and Knowledge Discovery 8. https://doi.org/
10.1002/widm.1256.

The Open Information Security Foundation (OISF), 2022. Suricata. URL: https://
suricata.io/. (Accessed 14 July 2022).

The Zeek Project, 2022. The Zeek network security monitor. URL: https://zeek.org/.
(Accessed 14 July 2022).

Uhl�ar, J., Holkovi�c, M., Rus�n�ak, V., 2021. PCAPFunnel: a tool for rapid exploration of
packet capture files. In: Banissi, Ebad, Anna Ursyn, e.a (Eds.), 2021 25th Inter-
national Conference Information Visualisation (IV). The Institute of Electrical
and Electronics Engineers, Inc., pp. 69e76. https://doi.org/10.1109/
IV53921.2021.00021

Ulmer, A., Sessler, D., Kohlhammer, J., 2019. NetCapVis: web-based progressive vi-
sual analytics for network packet captures. In: 2019 IEEE Symposium on
Visualization for Cyber Security (VizSec), pp. 1e10. https://doi.org/10.1109/
VizSec48167.2019.9161633.

Z�akop�canov�a, K., �Reh�a�cek, M., B�atrna, J., Plakinger, D., Stoppel, S., Kozlíkov�a, B., 2021.
Visilant: visual support for the exploration and analytical process tracking in
criminal investigations. IEEE Trans. Visual. Comput. Graph. 27. https://doi.org/
10.1109/TVCG.2020.3030356.

Zhang, H., Zeng, H., Priimagi, A., Ikkala, O., 2020. Viewpoint: pavlovian materi-
alsdfunctional biomimetics inspired by classical conditioning. Adv. Mater. 32.
https://doi.org/10.1002/adma.201906619.

https://doi.org/10.1007/s11235-018-0475-8
https://doi.org/10.1109/TVCG.2013.223
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref16
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref16
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref16
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref16
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref16
http://refhub.elsevier.com/S2666-2817(23)00072-0/sref16
https://doi.org/10.1002/9781119329190
https://doi.org/10.1002/9781119329190
https://www.sans.org/reading-room/whitepapers/detection/paper/37352
https://www.sans.org/reading-room/whitepapers/detection/paper/37352
https://packettotal.com/
https://packettotal.com/
https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1016/j.fsidi.2019.200892
https://doi.org/10.1016/j.fsidi.2019.200892
https://is.muni.cz/th/mtuer/
https://is.muni.cz/th/mtuer/
https://doi.org/10.1002/widm.1256
https://doi.org/10.1002/widm.1256
https://suricata.io/
https://suricata.io/
https://zeek.org/
https://doi.org/10.1109/IV53921.2021.00021
https://doi.org/10.1109/IV53921.2021.00021
https://doi.org/10.1109/VizSec48167.2019.9161633
https://doi.org/10.1109/VizSec48167.2019.9161633
https://doi.org/10.1109/TVCG.2020.3030356
https://doi.org/10.1109/TVCG.2020.3030356
https://doi.org/10.1002/adma.201906619

	Using relational graphs for exploratory analysis of network traffic data
	1. Introduction
	2. State of the art
	2.1. Network traffic analysis
	2.2. Relational analysis

	3. Data model
	4. User tasks and requirements
	4.1. User tasks
	4.2. Requirements

	5. Visual analytics interface
	5.1. Graph view
	5.1.1. Context menu

	5.2. Tools
	5.3. Child windows
	5.3.1. Detail
	5.3.2. Search
	5.3.3. Timeline


	6. Implementation
	6.1. System architecture
	6.2. Clustering of graph nodes

	7. Use cases and evaluation
	7.1. Use cases
	7.1.1. Use case 1: Malicious domain connection
	7.1.2. Use case 2: Web attack

	7.2. User study
	7.3. User study results and discussion

	8. Conclusion
	Acknowledgments
	References


