
Systematic Evaluation of Forensic Data Acquisition using Smartphone
Local Backup
Julian Geusa,∗, Jenny Ottmanna,∗ and Felix Freilinga,∗

aDepartment of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

A R T I C L E I N F O
Keywords:
Mobile Forensics
Storage Acquisition
iOS Backup
Android Backup

A B S T R A C T
Due to the increasing security standards of modern smartphones, forensic data acquisition from such
devices is a growing challenge. One rather generic way to access data on smartphones in practice is to
use the local backup mechanism offered by the mobile operating systems. We study the suitability
of such mechanisms for forensic data acquisition by performing a thorough evaluation of iOS’s
and Android’s local backup mechanisms on two mobile devices. Based on a systematic and generic
evaluation procedure comparing the contents of local backup to the original storage, we show that in
our exemplary practical evaluations, in most cases (but not all) local backup actually yields a correct
copy of the original data from storage. Our study also highlights corner cases, such as database files
with pending changes, that need to be considered when assessing the integrity and authenticity of
evidence acquired through local backup.

1. Introduction
Despite many advances over the years (Freiling, Groß,

Latzo, Müller and Palutke, 2018), forensic data acquisition
is a tough challenge, especially for smartphones, where
security features are making attempts of unauthorized data
collection from the devices themselves increasingly futile.
Many mobile devices, however, are heavily integrated into
networked ecosystems so that the devices themselves are
usually not the only storage location of interesting data.
Especially smartphones today are in many cases merely
the cache of data that is in fact stored on remote servers.
Furthermore, cloud storage is commonly used as the location
of backup data at the request of users. This has sparked an
interesting stream of research in cloud forensics (Roussev,
Ahmed, Barreto, McCulley and Shanmughan, 2016; Manral,
Somani, Choo, Conti and Gaur, 2020).

Tool manufacturers have, however, cleverly observed
that backup data can be accessed even without access to
cloud storage. The trick is to instruct smartphones to per-
form a local backup to an attached laptop and acquire data
from there. Judging from multiple blog posts, this method
appears to be commonly used by established “black box”
tools for forensic data acquisition (Oxygen Forensics, 2022a;
Lorentz and Mahalik, 2022; Magnet Forensics, 2019; Ma-
halik, 2021). But despite the fact that local backup appears
to be one of the few device and manufacturer independent
methods for data acquisition that does not need elevated
privileges, we are not aware of any related work that assesses
the reliability of such acquisition methods and the quality of
data which they acquire.

The fact that nobody currently appears to question the
suitability of local backup as a sound evidence acquisition

Copyright remains with the authors.
∗Corresponding authors.
Email addresses: julian.geus@fau.de (J. Geus);

jenny.ottmann@fau.de (J. Ottmann); felix.freiling@fau.de (F. Freiling)
ORCID(s): 0009-0001-8270-1964 (J. Geus); 0000-0003-1090-0566 (J.

Ottmann); 0000-0002-8279-8401 (F. Freiling)

method is worrisome since a negative answer would not
only affect future cases but also old ones. Consider, for
example, a case from the past in which decisive evidence
had been acquired from a mobile phone using the software
from a well-known forensic service provider. If it turned
out that that software was using local backup and that local
backup acquisition is commonly incomplete, unreliable or,
even worse, often leads to data alteration, the validity of the
evidence may be challenged, which could entail a reconsid-
eration of the case.

One reason why local backup methods have not yet been
evaluated could be that it is not exactly clear how to do it
for two main reasons. Firstly, with Android and iOS there
are two large families of backup methods with (at least for
Android) multiple variants that are hard to compare. This
matter is further complicated by the fact that the backup
process is usually app oriented, which leads to even more
variance. Secondly, backups regularly run concurrently to
the OS and applications which makes it hard to define a
ground truth to which any backup data can be compared.
1.1. Contributions

The main contribution of this paper is a generic yet
practical evaluation procedure to assess the reliability and
data quality of data acquired through local backup. We
demonstrate its usefulness by executing it on the two domi-
nating smartphone platforms, Google’s Android and Apple’s
iOS. More precisely, we evaluate what data can and cannot
be retrieved from using the local backup service of the
platform and to what degree the data retrieved from the
backup corresponds to the data that was originally stored
on the device. Our evaluation procedure can handle different
types of backup, namely content-based as well as file-based
backup, and allows for easy repeatability of the evaluation
for future versions of operating systems and apps.

More concretely, we executed our procedure on an in-
stance of Android’s full local backup and specific package
data backup with app-downgrading for various applications,

Proceedings of the Digital Forensics Research Conference (DFRWS US) Page 1 of 12

Geus et al. / Evaluation of Smartphone Local Backup

as well as iOS’s encrypted and unencrypted local back-
ups. We limit the evaluation to one Android and one iOS
device, because the differences between the OS versions
are unlikely to be significant, but the practical execution
entails considerable efforts. For every case, we executed a
total of 20 evaluation iterations to provide reliable results
and to locate outliers. The results for Android showed that
in the large majority of cases, the acquired data was the
same as the source data on the device. The cause of the
cases where files showed alterations could most likely be
accounted to concurrent background processes since those
occurred at random. The results for iOS were similar, but
most database files showed alterations compared to their
source counterpart. Further investigation showed that this
was due to the merging of uncommitted database changes
during the backup process. These altered files accounted for
over 10% of the data in both encrypted and unencrypted
backup runs, which both had around 700 files included in
the backup.

For our imaginary legal case, we therefore can attest the
forensic suitability of the evidence with the aforementioned
limitations.

In summary the contributions of this paper are the fol-
lowing:

• An in-depth categorization of different backup types
and an analysis of the amount of included data.

• The development of a generic evaluation procedure
which takes the type of data into account.

• Practical backup acquisition evaluations using an Ap-
ple iPhone and an Android device.

• The creation of comprehensive backup datasets, which
we make accessible to the community (Grajeda, Bre-
itinger and Baggili, 2017) upon request.1

1.2. Related Work
Analyses of backup data acquisition are often described

in various blog posts from forensic service providers e.g. Sal-
vationDATA (2020); Farley Forensics (2019). For the app-
downgrading process on Android devices, Oxygen Forensics
(2021, 2022b) posted information about the procedure and
its caveats. As mentioned above, to the best of our knowl-
edge, no comparable systematic and scientific evaluation
attempts for data acquisition using local backups of smart-
phones have been carried out so far.

Related work in a broader sense was done by Chang,
Teng, Tso and Wang (2015), who created an overview of
extractable data on jailbroken and non-jailbroken iPhones
and evaluated the impact of jailbreaking on the acquired
backup data. They concluded, that the jailbreak does not
seem to have an impact on the data. Similarly, Hassan and
Pantaleon (2017) analyzed the impact of rooting on the

1Due to the inclusion of sensitive data like geolocation information,
we are not able to make our datasets available for unauthenticated public
download. Interested researchers should contact the authors to get access to
the datasets.

acquired data of an Android device, with the conclusion that
no changes could be observed. These studies were carried
out on outdated OS versions using outdated jailbreaking and
rooting procedures, so it is hard to generalize the results.
They also did not publish their datasets. In contrast, we not
only consider current OS versions but, more importantly,
also provide a generic evaluation procedure that can be
repeated under different environmental conditions.

Generally related to the present paper is a study by Son,
Lee, Kim, James, Lee and Lee (2013) who describe a tool for
forensically sound Android data acquisition using a custom
recovery. While being interesting, this method is mostly
irrelevant on modern smartphones today due to the increased
security standards.
1.3. Paper Outline

In Section 2 we provide an overview of the different
backup mechanisms for Android and iOS. This is followed
by detailed information about our developed evaluation pro-
cedure, the data classification strategy, and the device prepa-
ration in Section 3. The results of the evaluation, as well as
the device specific procedures, are presented in Section 4
for Android and Section 5 for iOS, each accompanied by a
comprehensive analysis of the data. In Section 6, we lay out
the limitations of our work and draw a short conclusion in
Section 7.

2. A Visit to the Zoo of Backup Methods
The two major mobile platforms, Android and iOS, pro-

vide extensive backup functionalities to secure critical data.
This data consists primarily of user- and application data, as
well as device settings. The backup options can be classified
into different categories according to their storage location,
their scope and the type of backed up data, as described in the
following sections. We will focus exclusively on the backup
mechanisms provided by the OS while ignoring third-party
and vendor-specific solutions.
2.1. Local vs. Remote Backup

Both platforms offer a possibility to store the backup data
locally, on a connected PC, or on the accompanying cloud
services, i.e. Google Drive for Android and iCloud for iOS.

The local backup mechanisms have a high value in foren-
sics, due to their ease of use and scope of data. For Android,
it can be executed with the backup command from the An-
droid Debug Bridge (ADB) command-line tool. For iOS the
local backup can be created natively on an Apple Mac, using
the iTunes software for Windows, or OS independent with
the open-source toolset libimobiledevice (libimobiledevice,
2022), which is a community project that reimplements
Apple’s proprietary iDevice communication protocol.

The remote backup is often created automatically, de-
pending on the user’s settings, to either of the cloud services.
Free storage is already included for iCloud and Google Drive
with a user’s Google or Apple account. Access to this data
for forensic purposes is, however, complicated, or in some
instances impossible.

Proceedings of the Digital Forensics Research Conference (DFRWS US) Page 2 of 12

Geus et al. / Evaluation of Smartphone Local Backup

The trend of backups is moving strongly towards remote
backups, with the ADB backup command already marked
deprecated since 2019. Therefore, it might be omitted com-
pletely in future updates. Furthermore, apps targeting An-
droid 12 and up are automatically disabled for ADB backup.
On iOS, however, the local backup function is still actively
supported. iOS’s local backup can additionally be decrypted
using a user-defined password, which leads to the inclusion
of more sensitive user data in the backup.
2.2. Full vs. Selective Backup

Every installed app can decide which of its files will be
included or excluded from the backup operation. This can be
done, for both Android and iOS by saving a file to a specific
filesystem location that is excluded or included by default or
by manually excluding or including files from the backup.
The platform’s backup mechanism works mostly in an app
or package oriented way, which defines the granularity of the
backup. We refer to the backup of only one or more specified
packages as selective backup. Whereby, the backup, which
iterates all packages, is called a full backup.

However, there are exceptions, since not only app data
can be included in a local backup. On Android, the media
folder, containing files like images or documents, can op-
tionally be included. iOS follows the concept of domains in
its backup mechanism, where one domain in the backup data
corresponds to a filesystem location and a certain group of
files. The package data is stored in an AppDomain folder,
one for each application in the backup data. Further domain
examples are the CameraRollDomain, which includes the
images from the phone’s camera, or the HomeDomain, with
various files from the user’s home directory.

For Android, a selective backup can be created by speci-
fying the packages with ADB’s backup command. By using
the -full switch, all packages are iterated and therefore
included. On iOS, no such possibility exists, only a full
backup including all domains and packages can be created.
The only influence on the amount of data included in an iOS
backup is by enabling or disabling the backup encryption,
since encrypted backups contain more sensitive data, like
health data or stored passwords.
2.3. File-based vs. Content-based Backup

The problem with app-oriented backup design is that
only the app itself can really know the meaning of the data
it contains, and therefore, which data needs to be included
in a backup. The freedom of applications to determine the
content of their backups results in two different types of
data that needs to be treated differently when performing
acquisition: file-based and content-based data (see Figure 1).

We refer to one-by-one copies of files from the device’s
filesystem as file-based data. In contrast to file-based data,
content-based data is a copy of only partial data contents out
of a file. The resulting file may be of the same format with
reduced or rearranged content or of a completely different
file format. Therefore, the resulting data does not represent
an entire file but rather a subset of data stored in the file (e.g.

only one table from a bigger database). There are content-
based parts in both platforms’ backup mechanisms, with
Android having a broader spectrum. In Android, especially
system packages use the so-called key-value backups to store
valuable information, like device settings and the call his-
tory. Key-value backup is a special backup mechanism, that
stores the data as key-value pairs. By default an app’s backup
is file-based, but a developer can choose to use key-value
backups instead, by defining its own BackupAgent class or
extending from it. By doing so, the entire backup and restore
procedure for the data has to be implemented. However,
not many third-party apps are using this legacy mechanism
anymore. A special case of content-based data is Android’s
SMS backup, which is not exactly a key-value backup but
still only includes parts from the original database file.

iOS has no equivalent to Android’s key-value backups.
Almost the entire backup mechanism is file-based, with one
exception which is the backup of the device’s keychain.
The keychain is a database containing separately encrypted,
sensitive bits of data, like the user’s login passwords. Parts
of that keychain are included in an encrypted backup as
content-based data.

file 1

file 2

file 3

file 1

file 2

file 3

partial

FILE-BASED ACQUISITION

CONTENT-BASED ACQUISITION

Figure 1: Data types that can be acquired by the different
acquisition methods.

2.4. App-downgrading
The fact that the apps themselves decide on how to

participate in a backup implies that different versions of apps
might also behave differently regarding backup requests by
the OS. If an app behaves more favorable regarding backup
in an older version than in the current version, one strategy is
to re-install the older version before performing the backup
operation. This procedure is known as app-downgrading.
Selecting a particular version of an app therefore is a way
to influence the behavior of the local backup.

App-downgrading is of special importance for Android,
since many applications in their latest version no longer
support local backups of their data. However, in older app
versions Android’s local backup mechanism was often avail-
able. Therefore, by downgrading the app, it is possible to
access local files of many forensically relevant applications
that would otherwise be inaccessible. In Android the process
involves multiple steps. First, a backup of the application’s
current APK file is created, followed by uninstalling the
current version without deleting its local data, installing an

Proceedings of the Digital Forensics Research Conference (DFRWS US) Page 3 of 12

Geus et al. / Evaluation of Smartphone Local Backup

older version with backup support and executing the backup
process for this package. After a successful backup, the
current app version can be reinstalled to restore the initial
state.

A patch was applied to the Android Open Source Project
(AOSP) in 2016, that should prevent data access by down-
grading (Klyubin, 2016). However, this technique is still
working and is evidently also being used by forensic service
providers (Oxygen Forensics, 2021; Cellebrite, 2019; Belka-
soft, 2021).

3. Evaluation Methodology and Experimental
Setup
There are different ways to conduct an evaluation, which

can generally be distinguished between more practical ap-
proaches, using real devices, and laboratory approaches,
with an emulator or development boards. In this paper, the
evaluation is performed with actual hardware to simulate
conditions as close to the forensic practice as possible. But
this approach also entails some disadvantages, especially
concerning the accessibility of data.

The focus of this work lies on (1) local backup and (2)
the backup service offered by the two platforms Android
and iOS. We therefore neither consider data acquisition from
cloud storage nor from backups performed by specialized
third-party software. Within this scope, we evaluate data
acquisition both from file-based as well as content-based
backup.
3.1. Evaluation Model

Based on the previous considerations, we present a
generic practical evaluation approach, which serves as a
template for the specific evaluation processes. The method
of differential forensic analysis, similar to Garfinkel, Nelson
and Young (2012), is used as a baseline for the experiments.

To generalize from file- and content-based data, we
consider all backed up data as consisting of name-value pairs
(𝑛, 𝑣). For file-based backup, the name 𝑛 corresponds to the
unique filepath including the filename and the value 𝑣 to the
file’s content, i.e., the complete bitstring stored under the
filename in the filesystem. For content-based backup, 𝑛 has
to identify the unique file but also the data object inside that
file (e.g., a tag or column name from a database) while 𝑣 is
the value of that data object.

The evaluation is performed by systematically compar-
ing the values acquired from local backup to those values
that were previously existing under the same name on the
device, a process that we call an iteration and which is
depicted in Figure 2. To reduce the effect of noise we
perform multiple iterations.

In practice, the local backups contain both, file-based
and content-based data. For the file-based parts, a simple
hash-sum comparison is used to test for equality. For the
content-based data, which mostly stems from structured
files, like databases, the data itself is divided by the small-
est indivisible unit, according to the original filetype. The

time

pre-acquisition
reference data

perform
backup

post-acquisition
reference data

Pre Backup Post

Figure 2: Generic evaluation model

comparison is made by simply comparing these values,
according to their original interpretation, which is mostly
string-based.

In each iteration, three steps are performed:
1. We collect a set of pre-acquisition reference data

denoted as Pre. Pre corresponds to the maximal set
of name-value pairs that can be obtained by the local
backup method to be evaluated.

2. We then perform data acquisition using that backup
method. The resulting set of name-value pairs is de-
noted by Backup.

3. After the backup is complete, we collect a set of post-
acquisition reference data denoted as Post. The scope
of this data set should be identical to that of Pre.

The necessity to create a maximal set results from the
fact that the selection of backup data is performed by each
specific app, i.e., we do not know beforehand which data
objects will be part of Backup. In this sense, Pre and Post are
an overapproximation of Backup regarding the set of name-
value pairs. This implies that not all files contained in Pre
and Post will also be present in Backup. Still, Backup may
contain data that is not present in either Pre or Post. We
explain the different conditions that may occur below.

The creation of Pre and Post critically depends on the
platform and the concrete device. Conceptually, it is similar
to the creation of Backup, but since it serves as a reference,
any reliable data acquisition method that creates a snapshot
of the filesystem can be used here.

Creating snapshots on mobile devices requires privi-
leged access (as root user). The only possibility for full data
access on iOS devices is to enable privileged access by ex-
ploiting vulnerabilities. This process is called jailbreaking;
it introduces many changes to iOS and is accompanied by
the installation of an unofficial app store most of the time.
But due to the lack of options, we chose this method for the
iPhone, to enable reference data access.

Certain Android phones offer the option to unlock their
bootloader, which disables Android’s Verified Boot, and
thus, enables booting custom systems. With an unlocked
bootloader, there are two options to gain access to the filesys-
tem data for reference data acquisition. A custom recovery
system, like TWRP, can be booted instead of Android and
can be used to access the phone’s data or the Android OS
can be modified to enable access to the root account. To be
in line with iOS and to increase the methods comparability,
the reference data acquisition for Android will take place

Proceedings of the Digital Forensics Research Conference (DFRWS US) Page 4 of 12

Geus et al. / Evaluation of Smartphone Local Backup

from within the OS as well, by enabling root access on
an unlocked phone. This method was also chosen, because
tests showed a huge amount of data alterations during the
reboot necessary for the recovery mode option, which can
be mitigated with the acquisition from within Android.
3.2. Data Evaluation

After performing the above steps, we evaluate the data.
Generally, the basic item of interest in our evaluation is a
single name-value pair. Depending on whether or not a pair
with a specific name exists in Pre, Post, or Backup and what
value is associated with it, we distinguish the following data
sets. For ease of notation, by names(𝑋) we refer to the set of
all names occurring in the set 𝑋 of name-value pairs.

• 𝐸: The set of all observed names in Pre together with
those in Backup. Formally:

names(Pre) ∪ names(Backup)

This set characterizes the size of the data acquisition
experiment.

• 𝑁𝑜𝑣𝑒𝑟: The set of all names that are in Pre but not in
Backup. Formally:

names(Pre) ⧵ names(Backup)

This set characterizes the amount of existing data
that was not backed up. Since Pre is intentionally
an overapproximation of Backup, the size of this set
merely quantifies the degree of overapproximation.

• 𝑁𝑛𝑒𝑤: The set of names that are in Backup but not in
Pre. Formally:

names(Backup) ⧵ names(Pre)

This set characterizes the spurious or “new” data in
the backup that did not appear to exist before.

• 𝑁𝑏𝑜𝑡ℎ: The set of all names that are both in Backup
and in Pre. Formally:

names(Pre) ∩ names(Backup)

This set characterizes the amount of existing data that
was backed up.
Note that by construction |𝐸| = |𝑁𝑜𝑣𝑒𝑟| + |𝑁𝑛𝑒𝑤| +
|𝑁𝑏𝑜𝑡ℎ|.

• 𝑉𝑒𝑞: The set of all names of all name-value pairs where
the names are both in Backup and in Pre and where the
corresponding values are equal. Formally:

names(Backup ∩ Pre)

Note that the intersection is on name-value pairs and
not only on names. Therefore this set characterizes the
elements that were backed up and whose content in the
backup did not change.

• 𝑉𝑐ℎ: The set of all names of name-value pairs whose
names are both in Pre and Backup but where the values
are different. Formally:

{𝑛 ∶ (𝑛, 𝑣) ∈ Pre ∧ (𝑛, 𝑣′) ∈ Backup ∧ 𝑣 ≠ 𝑣′}

This set is comprised of backed up elements whose
content appears to have changed.
Note that by construction |𝑁𝑏𝑜𝑡ℎ| = |𝑉𝑒𝑞| + |𝑉𝑐ℎ|

The following sets further subdivide the set 𝑉𝑐ℎ, i.e., those
data objects that have changed before or during backup.
Based on a comparison with Post this subdivision attempts
to characterize possible causes of the change of content:

• 𝑃𝑚𝑖𝑠: The set of all names in 𝑉𝑐ℎ which do not occur
in Post. Formally:

𝑉𝑐ℎ ⧵ names(Post)

• 𝑃𝑚𝑏𝑎𝑐𝑘: The set of all names in 𝑉𝑐ℎ that appear in Post
and where the value in Backup is equal to that in Post.
Formally:

{𝑛 ∶ 𝑛 ∈ 𝑉𝑐ℎ ∧ (𝑛, 𝑣) ∈ Backup ∧ (𝑛, 𝑣) ∈ Post}

This set characterizes those elements that changed
before the backup but not thereafter. If the creation
of Pre happens shortly before the backup, elements
in this set may have been changed by the backup
mechanism.

• 𝑃𝑚𝑝𝑟𝑒: The set of all names in 𝑉𝑐ℎ where the value in
Backup neither matches the value in Pre and Post but
where Pre and Post agree on the value. Formally:

{𝑛 ∶ 𝑛 ∈ 𝑉𝑐ℎ ∧ (𝑛, 𝑣) ∈ Backup ∧ (𝑛, 𝑣) ∉ Post
∧ (𝑛, 𝑣′) ∈ Pre ∧ (𝑛, 𝑣′′) ∈ Post
∧ 𝑣′ = 𝑣′′}

This set characterizes backed up elements, where the
original data on the storage device does not appear
to have changed but where the backed up value is
different.

• 𝑃𝑛𝑜𝑚: The set of all names in 𝑉𝑐ℎ where the value in
Backup neither matches the value in Pre and Post and
where also Pre and Post disagree. Formally:

{𝑛 ∶ 𝑛 ∈ 𝑉𝑐ℎ ∧ (𝑛, 𝑣) ∈ Backup ∧ (𝑛, 𝑣) ∉ Post
∧ (𝑛, 𝑣′) ∈ Pre ∧ (𝑛, 𝑣′′) ∈ Post
∧ 𝑣′ ≠ 𝑣′′}

This set characterizes elements where the cause of the
mismatch is hard to determine because the data in Post
does not provide any helpful information.
Note that by construction |𝑉𝑐ℎ| = |𝑃𝑚𝑖𝑠| + |𝑃𝑚𝑏𝑎𝑐𝑘| +
|𝑃𝑚𝑝𝑟𝑒| + |𝑃𝑛𝑜𝑚|.

Proceedings of the Digital Forensics Research Conference (DFRWS US) Page 5 of 12

Geus et al. / Evaluation of Smartphone Local Backup

𝐸

𝑁𝑜𝑣𝑒𝑟 𝑁𝑛𝑒𝑤 𝑁𝑏𝑜𝑡ℎ

𝑉𝑒𝑞 𝑉𝑐ℎ

𝑃𝑚𝑖𝑠 𝑃𝑚𝑏𝑎𝑐𝑘 𝑃𝑚𝑝𝑟𝑒 𝑃𝑛𝑜𝑚

union

union

union

Acquisition Experiment
union of 𝑃𝑟𝑒 and 𝐵𝑎𝑐𝑘𝑢𝑝

Name Comparison
between 𝑃𝑟𝑒 and 𝐵𝑎𝑐𝑘𝑢𝑝

Value Comparison
between 𝑃𝑟𝑒 and 𝐵𝑎𝑐𝑘𝑢𝑝

Mismatch Classification
using 𝑃𝑜𝑠𝑡

Figure 3: Relations between the data sets

The relations between the defined sets of data are depicted
in Figure 3.

For the items in 𝑉𝑐ℎ, i.e., those that changed between
Pre and Backup, we provide an indication of the degree of
changes that occurred (or the degree of similarity). There-
fore, the similarity ratio 𝑟 is calculated with the quick_ratio
function from the SequenceMatcher in Python’s difflib li-
brary (Python Software Foundation, 2022), which can de-
termine the similarity between two byte sequences. This is
done by comparing the values of the two matching names for
their likeness and as result, a value between 1.0 (identical)
and 0.0 (completely different) is returned. The number of
items considered for this value is the cardinality of the set
𝑉𝑐ℎ and thus the sum of all value-mismatches, with a name
that exists in both Pre and Backup. To avoid the distortion
caused by different sized sets, the average is weighed by the
sizes 𝑠. Thus, the 𝑟𝑤 value is the weighted arithmetic mean
of all 𝑟, calculated by the formula

𝑟𝑤 = 1
∑

|𝑉𝑐ℎ|
𝑖=1 𝑠𝑖

(

|𝑉𝑐ℎ|
∑

𝑖=1
𝑠𝑖 ⋅ 𝑟𝑖

)

and similarly the weighted standard deviation 𝜎𝑤 is calcu-
lated as

𝜎𝑤 =

√

√

√

√

√

1
∑

|𝑉𝑐ℎ|
𝑖=1 𝑠𝑖

(

|𝑉𝑐ℎ|
∑

𝑖=1
𝑠𝑖(𝑟𝑖 − 𝑟𝑤)2

)

.

These values provide a general indication of the number
of changes within the files that are affected by a value-
mismatch.
3.3. Android Device Setup

The device used for the Android evaluation is a Google
Pixel 2. It has the benefits of enabling a bootloader unlock
and all released OS images can be officially downloaded
from Google’s website. Detailed information about the de-
vice and the software tools used for the acquisition are listed
in Table 1.

PIXEL 2 DEVICE INFORMATION

Device Google Pixel 2
Codename walleye
Storage 64 GB
Android 11
Build Number RP1A.201005.004.A1
Encryption File-Based (FBE)

SOFTWARE INFORMATION

adb 28.0.2-debian
Android Backup Extractor v20210530
Magisk 25.2

Table 1
Hardware and software details of the Pixel 2 device and
software information used for the acquisition.

To perform the evaluation, a possibility to obtain refer-
ence data is crucial. As described above, the reference data is
acquired within Android using root privileges. Furthermore,
a credible usage behavior has to be simulated. Accordingly,
the device needs to be prepared for our needs.

The first step was to unlock the bootloader of the phone
to enable the installation of custom partition images, which
allows for the neccessary system adjustments required for
rooting. The actual rooting process was accomplished with
Magisk. Magisk is delivered as Android APK file which
enables patching the default boot.img which is part of the
factory image. The patch enables apps and shell sessions
over ADB to acquire root privileges. Therefore, the patched
boot.img file has to be flashed onto the device’s boot partition
using fastboot.

After the device is set up to enable full data access, basic
traces to simulate a normal usage behavior have to be cre-
ated. This includes some incoming and outgoing phone calls,
SMS messages, and emails. Furthermore, contacts have been
added and pictures were taken with the device’s camera.
Moreover, the widely used messenger applications What-
sApp, Telegram, and Facebook Messenger were installed,
alongside the Firefox browser, Instagram, and Twitter.

The state of the device before the acquisition is of im-
portance as well. To simulate an acquisition under realistic
circumstances, the device is assumed to be in a currently
seized state with default settings and the device is protected
with a passcode. Furthermore, in compliance with the foren-
sic guidelines for mobile devices (Ayers, Brothers, Jansen
et al., 2014, p.28), the SIM card was removed before the
acquisition and it was ensured that the device cannot connect
to any network.
3.4. iOS Device Setup

The device chosen for the iOS backup evaluation is an
iPhone 8, which was released in 2017, but still supports the
latest OS version (iOS 16). This device has the benefit of
being susceptible to the checkm8 BootROM vulnerability,
and hence, privileged access can be gained. Detailed device

Proceedings of the Digital Forensics Research Conference (DFRWS US) Page 6 of 12

Geus et al. / Evaluation of Smartphone Local Backup

IPHONE 8 DEVICE INFORMATION

Device iPhone 8
Model Number MQ6G2ZD/A
Storage 64 GB
iOS Version 14.6

SOFTWARE INFORMATION

libimobiledevice 1.3.0-160
iproxy 2.0.2-24
checkra1n 0.12.4 beta
iOSbackup (python library) 0.9.923
irestore 1a78c2f

Table 2
Hardware and software details of the iPhone 8 and software
information used for the acquisition.

information and the software used for the acquisition is
provided in Table 2.

The iPhone must also be prepared for the evaluation with
default usage behavior and privileged access for reference
data gathering. Therefore, the preparation steps include ap-
plying a jailbreak to the device and creating usage traces.

The jailbreaking of the iPhone is accomplished with the
checkra1n tool (checkra1n) that uses the checkm8 BootROM
vulnerability. After a successful jailbreak, a new app symbol
with the checkra1n logo appears on the home screen. This
app can be used to remove the jailbreak from the device or
to install Cydia, which enables the installation of various
packages and system modifications. To enable access over
SSH, Cydia is utilized to install the OpenSSH package. After
the installation, an SSH connection over the default port 22
is possible.

Similar to the Android device, some default usage be-
havior was simulated, to ensure a realistic dataset. For that
purpose, the apps WhatsApp, Telegram, Signal, and Youtube
were installed, activated, and basic usage was simulated.
For the Apple account, the default settings for iCloud and
privacy options were used. Moreover, an email account was
set up, SMS messages were received and sent, contacts were
created, calls simulated, and photos taken.

Again, the state of the device, in which the evaluation
takes place needs to be considered. Since the reference data
is gathered from within the OS using the elevated privileges
from the jailbreak, the device’s pre-acquisition state is pow-
ered on, locked, but without a lock screen passcode, due
to limitations of the jailbreak. And in compliance with the
aforementioned guidelines, all communication capabilities
were disabled.

The method of reference data gathering must be im-
plicitly trusted. Apart from the jailbreak tool, of which
the source code is only partially published, all tools are
open-source and widely used. However, the jailbreak tool
is not explicitly used for data acquisition but only provides
the necessary privileges and its developers are well-known.
This leads to reasonable confidence about the soundness
of the reference data acquisition process. However, since

the jailbreak tool has full access to the OS, a compromised
system cannot entirely be ruled out, which should at least be
noted.

4. Android Backup Results
We now present the evaluation process and its results

for Android using ADB’s local backup function. This is
Android’s most generic acquisition method that can be used
on any device, no matter the OEM or software version.
Since the amount of data that can be acquired with a local
backup is limited, the method was complemented by app-
downgrading, with numerous apps that have special rele-
vancy for forensics.
4.1. Evaluation Process

The data included in the backup process is a subset of
the files from the /data/data/, /data/user_de/0/, and /data/

media/0/Android/data/ package directories, which depends
on the installed apps and their respective backup settings.
In addition, the user’s media files, which are located in the
subfolders of the /data/media/ directory can be backed up,
which is also taken into account in the evaluation.

The reference data sets 𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡 for the evaluation
process are acquired using the root account and the tar and
nc command-line tools. The reference data sets for the full
backup include the entire contents of the folders described
above. For the app-downgrading process, only the package-
specific subdirectory inside those folders was considered.

The actual backup acquisition process was executed
by using ADB’s backup command. For a full backup, the
corresponding ADB command is used with the respective
parameters to include all app data, media files, and key-
value data. It results in an Android Backup (.ab) file, which
is converted to a tar archive using the Android Backup
Extractor utility.

For the evaluation of the app-downgrading method the
apps displayed in Table 3 are chosen. These apps were
activated and used prior to the evaluation to ensure con-
ditions and data sets are reasonably realistic. The versions
to downgrade to were determined using a blog post by
Oxygen forensics as a reference (Oxygen Forensics, 2021).
The respective APK files can easily be found with a quick
online search. This process, again, results in an Android
Backup file, which can be converted to a tar archive that
contains the data of the respective package.

The evaluation of file-based backup contents is based
on comparing filenames and hash-values of the file content.
However, since the file structure of the backup does not
match the structure of the filesystem, the backup’s file paths
need to be mapped to their original locations first. This is
possible with the names of the package’s subfolders, which
identify the original file location.

For the evaluation of content-based backup data, we
focus on key-value backups which can be utilized by appli-
cations instead of the more modern file-based alternative.
Furthermore, the backup of SMS data is content-based be-
cause it is stored as a compressed archive containing a JSON

Proceedings of the Digital Forensics Research Conference (DFRWS US) Page 7 of 12

Geus et al. / Evaluation of Smartphone Local Backup

App Package Name Installed Version Downgrade Version

WhatsApp com.whatsapp 2.23.1.76 2.11.399
Telegram org.telegram.messenger 8.9.3 1.3.1
Firefox org.mozilla.firefox 109.1.1 39
Facebook Messenger com.facebook.orca 393.0.0.18.92 14.0.0.16.14
Twitter com.twitter.android 9.73.0-release.0 4.0.3
Instagram com.instagram.android 267.0.0.18.93 7.9.0

Table 3
Information about the apps chosen for the downgrading acquisition.

file, with partial data from the database. The evaluation of
key-value backups pose a challenge, because an app has full
control over the backed-up data and the format of the key-
value items can vary. Therefore, analyzing the data from
third-party applications might not be useful, but is also not
of particular relevance, since none of the considered third-
party applications support this legacy backup mechanism.
However, Android system applications still make use of this
feature to backup valuable data. Khatri (2019) analyzed key-
value backups in a series of blog posts, with a special focus
on the call logs and system settings, which are used as a
reference for the evaluation.

The entire process was repeated for a total of 20 times
for the full backup and app-downgrading procedures to
eliminate outliers.
4.2. File-Based Backup

The results of the file-based parts of the backup process
are presented in Table 4. These include all files that can
be acquired with a local backup and the app-downgrading
process. The vertical categories are therefore divided by
the Full Backup and App-Downgrading data, which in
turn is segmented by the individual applications (WhatsApp,
Telegram, Firefox, Facebook Messenger, Twitter, and Insta-
gram).

Due to the large number of evaluation runs, the results
shown in the table were grouped based on equal values in the
Value Mismatch Classification (𝑃𝑥 classes). The number
of runs in a group can be taken from the first column (#).
Thus, all remaining values in the table are averaged, as can
be seen in the heading. The rows are arranged in descending
order according to the group’s magnitude, i.e. according to
its significance.

The File Classification (𝑁𝑥) sets are an indicator of the
validity of each individual run. Especially the 𝑁𝑛𝑒𝑤 class,
which indicates omissions of 𝐵𝑎𝑐𝑘𝑢𝑝 data in the reference
set, is crucial for the value comparison. Thus, an empty set,
which we can observe in most cases, means that all files
from 𝐵𝑎𝑐𝑘𝑢𝑝 are included in the value comparison. In the
case of an empty 𝑁𝑛𝑒𝑤 set, the magnitude of set 𝑁𝑏𝑜𝑡ℎ must
be equal to the size of 𝐵𝑎𝑐𝑘𝑢𝑝. On some iterations, we
encountered a non-empty 𝑁𝑛𝑒𝑤 set, which can occur due
to issues during the copying process of the reference data,
or by newly created temporary data in the timeslot between
acquiring 𝑃𝑟𝑒 and 𝐵𝑎𝑐𝑘𝑢𝑝.

The Value Classification (𝑉𝑥), provides an insight into
the quality of the acquired data from the backup process.
Therefore, data alterations between 𝑃𝑟𝑒 and 𝐵𝑎𝑐𝑘𝑢𝑝 are
reflected in the number of elements in set 𝑉𝑐ℎ. As can be
seen in the table, the app-downgrading processes where
affected in numerous cases, especially in the case of Insta-
gram. However, since it is not a regular phenomenon, but
only affects a limited number of runs, it can be concluded
that these changes are not an indication for alterations due
to the backup process or the app-downgrading procedure.
They merely capture the degree of concurrency of a given
program.

According to the observed alterations, the interesting
segments of the table concerning the Value Mismatch Clas-
sification are the app-downgrading sections. Here we can
observe several classes of mismatches according to the 𝑃𝑜𝑠𝑡
data comparison. However, their occurrence is only spo-
radic and scattered among the classes. No repeating patterns
can be observed. Thereby, the suspicion of concurrent data
changes, during or between the individual acquisition pro-
cesses, is reinforced.
4.3. Content-Based Backup

Now, the results and the scope of content-based data in
the backup process are presented. Therefore, the following
content-based files from the backup were considered for the
evaluation due to their importance:
• File: 000000_sms_backup
The com.android.providers.telephony/d_f/ directory from
the backup includes this file, it contains the user’s SMS data
and is available even without including key-value backup
data. There can be more than one SMS backup file, num-
bered sequentially in ascending order, but due to the over-
seeable amount of messages, only one was created in the
process. The Backup data consists of the logical values of
this file, mapped to their original location. Those are the
values address, body, date, date_sent, read, status, and type
from the sms table and the recipients from the threads and
canonical_addresses table of the mmssms.db file. Therefore,
the Pre and Post data sets were comprised of the contents
from the mmssms.db database file, which again is an overap-
proximation of the backup data.
• File: com.android.calllogbackup.data
This key-value backup from the com.android.calllogbackup/

k/ directory contains information about the call history.

Proceedings of the Digital Forensics Research Conference (DFRWS US) Page 8 of 12

Geus et al. / Evaluation of Smartphone Local Backup

Filecount File/Value Classification Value Mismatch Classification
|𝐸| |𝑁𝑏𝑜𝑡ℎ| |𝑉𝑐ℎ| Similarity Ratio

|𝑃𝑟𝑒| |𝐵𝑎𝑐𝑘𝑢𝑝| |𝑃𝑜𝑠𝑡| |𝐸| |𝑁𝑜𝑣𝑒𝑟| |𝑁𝑛𝑒𝑤| |𝑁𝑏𝑜𝑡ℎ| |𝑉𝑒𝑞 | |𝑉𝑐ℎ| |𝑃𝑚𝑖𝑠| |𝑃𝑚𝑏𝑎𝑐𝑘| |𝑃𝑚𝑝𝑟𝑒| |𝑃𝑛𝑜𝑚| 𝑟𝑤 𝜎𝑤

Full Backup
20 10853 1365 10856 10856 9511 0 1365 1365 0 0 0 0 0 0.0000 0.0000

App Downgrading
WhatsApp
15 226 217 226 226 9 0 217 217 0 0 0 0 0 0.0000 0.0000
5 204 214 223 223 9 19 195 194 1 0 1 0 0 0.7951 0.0000
Telegram
20 374 157 374 374 217 0 157 157 0 0 0 0 0 0.0000 0.0000
Firefox
11 2179 185 2178 2179 1994 0 185 185 0 0 0 0 0 0.0000 0.0000
4 2178 185 2179 2179 1994 0 184 183 1 0 1 0 0 0.6936 0.0000
3 2179 185 2178 2179 1994 0 185 184 1 1 0 0 0 0.4442 0.0000
2 2178 185 2178 2179 1994 0 184 183 1 0 0 0 1 0.5565 0.0000
Facebook Messenger
11 719 643 713 719 75 0 643 643 0 0 0 0 0 0.0000 0.0000
5 713 643 719 720 77 6 636 634 2 0 2 0 0 0.8648 0.0139
3 730 646 727 740 94 10 636 633 3 0 3 0 0 0.9915 0.0352
1 720 645 724 720 75 0 645 644 1 0 1 0 0 0.8550 0.0000
Twitter
11 146 89 147 146 57 0 89 89 0 0 0 0 0 0.0000 0.0000
7 145 89 145 146 56 0 88 87 1 0 1 0 0 0.9615 0.0000
2 144 88 145 144 56 0 88 86 2 0 2 0 0 0.8160 0.0888
Instagram
16 748 683 746 762 78 14 669 665 4 0 3 1 0 0.9942 0.0283
1 741 683 748 741 58 0 683 682 1 0 1 0 0 0.9905 0.0000
1 763 712 776 774 62 11 701 698 3 0 2 1 0 0.9928 0.0325
1 745 685 750 763 78 18 667 661 6 0 5 1 0 0.9961 0.0223
1 744 684 749 762 78 18 666 659 7 0 6 1 0 0.9964 0.0242

Table 4
Results of Android’s file-based data evaluation of the full backup and the app-downgrading evaluation runs.

The Backup data consists of a subset of the calllog.db
file. This data includes the values _id, number, presenta-
tion, date, duration, type, subscription_component_name,
subscription_id, phone_account_address, and block_reason
from the calls table. The database file, therefore, determines
the content of the Pre and Post data sets.
• File: com.android.providers.settings.data
This key-value backup file from the com.android.providers.

settings/k/ directory contains a subset of settings from
various files. Therefore, Pre and Post were comprised of the
values in the files settings_config.xml, settings_global.xml,
and settings_secure.xml, which contain various device set-
tings, and of the values of WifiConfigStore.xml, and Wifi-
ConfigStoreSoftAp.xml, that store various WiFi and network
settings.

The detailed results of the content-based evaluation are
depicted in Table 5. The content-based data was taken from
the full backup runs used for the file-based evaluation,
whereby only one instance is shown in the table since there
were no variations. Furthermore, columns that do not pro-
vide additional information have been dropped. The values
with matching names were compared using a string-based
comparison. More key-value files existed in the backup data,
but most of them are dummy files or don’t include relevant
data, and since the content-based evaluation is more time-
consuming, only parts deemed forensically relevant were
considered.

As can be seen in the table, the content-based parts of
the evaluation process did not show any signs of alterations
or deviations over all backup iterations. This result was
expected, due to the very limited amount of data.

Atomic Elements Name/Value Classification
|𝐸| |𝑁𝑏𝑜𝑡ℎ|

|𝑃𝑟𝑒| |𝐵𝑎𝑐𝑘𝑢𝑝| |𝑃𝑜𝑠𝑡| |𝐸| |𝑁𝑜𝑣𝑒𝑟| |𝑁𝑛𝑒𝑤| |𝑁𝑏𝑜𝑡ℎ| |𝑉𝑒𝑞 |

SMS Backup
365 56 365 365 309 0 56 56

Calllog Backup
101 20 101 101 81 0 20 20

Settings Backup
494 51 494 494 442 0 51 51

Table 5
Results of the content-based evaluation runs.

4.4. Summary
Overall, Android’s backup process shows a high level of

data integrity, which is only affected by the program’s and
the OS’s concurrency. However, these effects were expected
and should always be taken into account. Particularly in
the case of the app downgrading procedures, which require
significant modifications, it is noteworthy that the private
application data of the corresponding packages does not
experience any alterations in the process. Of course, these
results are not generally applicable and have to be redone for
different applications or under different circumstances.

5. iOS Backup Results
In the following, we present the results and the evaluation

process of iOS’s backup function. Contrary to Android,
iOS’s backup mechanism is still actively supported and
enables access to a large set of forensically important data.

Proceedings of the Digital Forensics Research Conference (DFRWS US) Page 9 of 12

Geus et al. / Evaluation of Smartphone Local Backup

5.1. Evaluation Process
The amount of data acquired by iOS’s backup mecha-

nism cannot be specified in advance, since it depends on
the installed apps, their data quantities and backup policies,
the iCloud settings, and others. Therefore, the set of data
acquired as reference data for 𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡, is again an over-
approximation, that ensures a backing of all files contained
in the backup. Since iOS’s backup process also includes files
from various folders in its filesystem, the overapproximation
will contain the entire contents of the data partition, mounted
at /private/var/.

The acquisition of 𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡 is accomplished by
using the previously applied jailbreak, which enables root
access over SSH. The SSH access to the iPhone is estab-
lished over USB using iproxy from the libimobiledevice
project. The data copy process is carried out by compressing
the directory with the tar command whose output is piped
over SSH to the connected PC.

For the backup creation, libimobiledevice’s idevice-
backup2 tool is used since it enables easy utilization under
Linux without the need for iTunes or macOS. Furthermore,
two datasets, with and without backup encryption are cre-
ated. The unencrypted backup is comprised of a subset
of the data of an encrypted backup, but since no further
processing steps are necessary, it can be ensured that any
modifications to the data originate from the backup process.
For the decryption of the encrypted backups, the python
library iOSbackup is used. Because of some shortcomings of
this library, which led to broken database files, the irestore
tool, that is publicly available on GitHub (Dunham, 2021),
was used in addition.

iOS’s backup contains file-based data for the most part.
However, some content-based data is present as well, which
needs to be considered separately.

Similar to the previous evaluation processes, iOS’s local
backup mostly creates direct file copies. These files can then
simply be compared to their reference counterpart. However,
the assignment of the files to their original filesystem loca-
tion is not trivial since all filenames and the file structure
differ. The mapping to the respective filesystem data can
be achieved with the contents of the Manifest.db, which
contains a domain and the relative path including the original
filename for each file.

We now turn to the content-based data. On encrypted
backups, some of the keychain entries are included, which
contain valuable user passwords and login information. The
decryption of this data is achieved by using the irestore tool,
which offers the option to extract the keychain entries as a
JSON file. Since the keychain database in the reference data
set is encrypted using the device’s hardware key, encryption
of the database entries is not possible. However, several login
passwords are stored on the phone, which can in turn be
compared to the acquired backup data.

A total of twenty evaluation runs for the encrypted- and
unencrypted backup processes are executed consecutively.
The chosen quantity provides a good compromise between a
big enough number of test runs for a conclusive outcome

while keeping the required storage space and the runtime
within reasonable limits.
5.2. File-Based Backup

The evaluation results of the file-based data of iOS’s
local backup are displayed in Table 6. The table is separated
into Encrypted Backup and Unencrypted Backup, which
each include an additional |𝑉𝑐ℎ| Overlapping Files row, as
a measurement of files that are affected in each 𝑃𝑥 category
in every run. Similar to Android’s result table, the rows are
grouped by the 𝑃𝑥 categories and sorted in descending order
by the group’s magnitude.

The general Filecount sections show that the amount of
data in the reference sets 𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡 is slightly changing.
This was expected due to the size of the data sets and
concurrently running programs. However, the 𝐵𝑎𝑐𝑘𝑢𝑝 data
stayed constant over all runs, which indicates a high degree
of determinism in this process. The discrepancy between the
amount of files included in encrypted and unencrypted back-
ups is based on the fact that encrypted backups generally
contain more data.

The table’s File Classification section especially high-
lights the validity of all runs, since set 𝑁𝑛𝑒𝑤 is empty, and
therefore, 𝑁𝑏𝑜𝑡ℎ always contains the entire 𝐵𝑎𝑐𝑘𝑢𝑝 set. This
leads to the inclusion of all files in the value comparison in
every iteration.

The 𝑃𝑚𝑖𝑠 set from the Value Classification category, that
is empty in each iteration, again reinforces the validity, as it
indicates that all the files from 𝑁𝑏𝑜𝑡ℎ are also present in the
𝑃𝑜𝑠𝑡 set, and therefore, can be classified in greater detail.
𝑃𝑚𝑏𝑎𝑐𝑘 always contains at least one file, which is affected
in every iteration, as can be observed in the overlapping
row. Since its values are always equal between 𝐵𝑎𝑐𝑘𝑢𝑝 and
𝑃𝑜𝑠𝑡, the change occurs between𝑃𝑟𝑒 acquisition and backup
creation. On further examination, the file contains uniden-
tifiable metadata in XML format, including a timestamp,
that seems to be updated every time the backup process
is executed. The remaining occasionally occurring cases
are probably attributable to concurrency, which can also be
stated about the single entry in 𝑃𝑛𝑜𝑚, which has a different
value in all three data sets. The most interesting observation
is the high value of 𝑃𝑚𝑝𝑟𝑒 elements, that are constant over
all iterations, and as the overlapping row suggests, also con-
cerns the same files in each iteration. This set represents files
that are identical before and after the backup’s execution,
but with value changes in the 𝐵𝑎𝑐𝑘𝑢𝑝 data. This suggests
an alteration that is happening during the backup process.
Furthermore, the Similarity Ratio section attests high value
similarities, but the 𝑟𝑤 and 𝜎𝑤 values are almost identical
over all runs. This leads to the assumption that the files are
subject to the same changes in every iteration.

On closer inspection, we found that the affected files
were exclusively SQLite databases. The majority of databases
that were subject to changes were still contextually identical
to the reference set concerning their logical data, however,
some showed alterations to various degrees. This anomaly
could be traced to the Write-Ahead Logging mode of an

Proceedings of the Digital Forensics Research Conference (DFRWS US) Page 10 of 12

Geus et al. / Evaluation of Smartphone Local Backup

Filecount File/Value Classification Value Mismatch Classification
|𝐸| |𝑁𝑏𝑜𝑡ℎ| |𝑉𝑐ℎ| Similarity Ratio

|𝑃𝑟𝑒| |𝐵𝑎𝑐𝑘𝑢𝑝| |𝑃𝑜𝑠𝑡| |𝐸| |𝑁𝑜𝑣𝑒𝑟| |𝑁𝑛𝑒𝑤| |𝑁𝑏𝑜𝑡ℎ| |𝑉𝑒𝑞 | |𝑉𝑐ℎ| |𝑃𝑚𝑖𝑠| |𝑃𝑚𝑏𝑎𝑐𝑘| |𝑃𝑚𝑝𝑟𝑒| |𝑃𝑛𝑜𝑚| 𝑟𝑤 𝜎𝑤

Encrypted Backup
14 39400 715 39401 39400 38685 0 715 630 85 0 1 84 0 0.9275 0.1438
4 39401 715 39399 39401 38686 0 715 629 86 0 2 84 0 0.9275 0.1438
1 39398 715 39398 39398 38683 0 715 628 87 0 2 84 1 0.9275 0.1438
1 39402 715 39402 39402 38687 0 715 628 87 0 3 84 0 0.9275 0.1438

|𝑉𝑐ℎ| Overlapping Files 0 1 84 0

Unencrypted Backup
18 39404 682 39404 39404 38722 0 682 611 71 0 1 70 0 0.9310 0.1351
1 39405 682 39405 39405 38723 0 682 610 72 0 2 70 0 0.9310 0.1351
1 39406 682 39407 39406 38724 0 682 609 73 0 3 70 0 0.9311 0.1351

|𝑉𝑐ℎ| Overlapping Files 0 1 70 0

Table 6
Results of the file-based data evaluation for the encrypted and unencrypted backups.

SQLite database, that, when in effect, creates a WAL file,
which contains not yet committed database changes. These
files, however, are not included in the backup process, but
when their content is committed manually to the databases
in the reference data, the mismatches disappear. This leads
to the conclusion, that the backup process commits the data
of the WAL files to the backed up databases. According
to (Caithness, 2012), a deletion in a database with Write-
Ahead Logging that is not yet committed would still be
recoverable. This information is therefore missing in the
acquired data of an iOS backup.
5.3. Content-Based Backup

The only content-based data of iOS’s local backup is
the keychain. The keychain on the device consists of the
single database file /private/var/Keychains/keychain-2.db.
Its contents, however, are separately decrypted using the
device’s hardware key, and therefore, their decryption is
not possible. Hence, no 𝑃𝑟𝑒 and 𝑃𝑜𝑠𝑡 data sets are obtain-
able. On a backup, the keychain-backup.plist file is created,
which contains a subset of the database file as encrypted
entries that are only protected with the backup password.
The 𝐵𝑎𝑐𝑘𝑢𝑝 set is therefore comprised of the decrypted
values from this file. But since the contents of the keychain-
2.db is not decryptable, our evaluation procedure cannot be
applied to this data. To at least provide an indication of the
data’s integrity, various browser login information, as well as
WLAN authentication data were stored on the device. This
data is secured in the keychain and included in the backup.
The comparison of those values to their 𝐵𝑎𝑐𝑘𝑢𝑝 counterpart
showed no alterations.
5.4. Summary

In summary, iOS’s backup process is a good source
for forensically relevant data. It should, however, be noted
that the acquired data is partially subject to changes due
to the backup process. But since the alterations stem from
the inclusion of already executed database changes, the
data still reflects the actual database state. Therefore, some
forensically relevant data might be missing, but this does
not invalidate the acquired data. Similar to Android, some
concurrency related changes occured, which were expected

and cannot completely be ruled out since the acquisition
process uses the OS of the mobile device.

6. Limitations
It is important to note that the differences between OS

and application versions, as well as device manufacturers,
can be considerable. Consequently, the result cannot be
generalized, instead, the evaluation is intended to provide a
reference that must be redone under different environmental
conditions.

Since backup data compatibility is necessary between
different OS versions, we do not expect the results of the
general backup mechanism to differ significantly. Changes
can, however, not be ruled out without a thorough evaluation.
Especially app-downgrading should be taken with a grain of
salt since the outcome of that procedure is strongly depen-
dent on the application and its handling of its private data.
According to a blog article by Oxygen Forensics (Oxygen
Forensics, 2022b), huge differences between OS versions
and device manufacturers exist for this method, which might
lead to the inability to restore the app’s initial state or even
the loss of data. Accordingly, if this method is deemed nec-
essary, an evaluation under similar environmental conditions
should be carried out first.

Furthermore, one can question the viability of local
backups in the future, since, as already mentioned, Android’s
local backup method has already been marked as deprecated.
However, the method is still widely used as an acquisition
method and the evaluation of its forensic suitability applies
not only to future investigations but also serves as validation
of past cases. If the ADB backend to create a local backup
to a PC is ultimately removed from Android, it is still
possible to copy the phone’s data onto another device due to
Android’s data migration feature. Accordingly, the backup
data might still be obtainable using a prepared device, that
serves as an intermediate backup destination. However, the
app-downgrading procedure might not be possible anymore.
With iOS, on the other hand, it is unlikely for the local
backup method to disappear in the foreseeable future. In
general, some form of local backups will probably be around
for quite some time, as there are still users with limited

Proceedings of the Digital Forensics Research Conference (DFRWS US) Page 11 of 12

Geus et al. / Evaluation of Smartphone Local Backup

internet access as well as those who prefer to handle their
private data locally due to privacy concerns.

7. Conclusion and Future Work
Based on our evaluation model, including the data clas-

sification and categorization, we were able to make compre-
hensive observations about the backup processes of Android
and iOS.

In summary, our developed evaluation procedure was
successfully executed on two instances and provides, de-
spite the described limitations, a better understanding of the
validity of the data acquired during a backup acquisition.
Especially for forensic purposes, where the data can deter-
mine the outcome of a legal case, accuracy is of particular
significance.

Since we cannot make our dataset publicly available
due to privacy reasons, one of our goals for future research
is to repeat the experiments on a publishable yet realistic
dataset. Furthermore, the scope of the practical evaluation
can always be extended to more OS versions, device manu-
facturers, or apps. Accordingly, a fully automated test envi-
ronment with the use of virtual devices would be a logical
continuation.
Acknowledgements

Work was supported by Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) as part of the
Research and Training Group 2475 “Cybercrime and Foren-
sic Computing” (grant number 393541319/GRK2475/1-
2019).

We specifically wanted to thank Janine Schneider, Jan
Gruber, Frank Breitinger and Immanuel Lautner for their
helpful comments and the useful discussion about the con-
tents of the paper.

References
Ayers, R., Brothers, S., Jansen, W., et al., 2014. Guidelines on mobile device

forensics .
Belkasoft, 2021. How to acquire data from an Android device using

APK downgrade method. URL: https://belkasoft.com/Android_APK_

downgrade_method. accessed: 2022-09-22.
Caithness, A., 2012. The forensic implications of sqlite’s write ahead log.

Digital Investigation-Digital evidence: if it’s there, we’ll find it .
Cellebrite, 2019. Exclusive access to WhatsApp data and another 40

apps on Android devices. URL: https://www.cellebrite.com/en/

productupdates/exclusive-access-to-whatsapp-data-and-another-40-

apps-on-android-devices/. accessed: 2022-09-22.
Chang, Y.T., Teng, K.C., Tso, Y.C., Wang, S.J., 2015. Jailbroken iphone

forensics for the investigations and controversy to digital evidence.
Journal of Computers 26, 19–33.

checkra1n, . checkra1n Jailbreak for iPhone 5s through iPhone X, iOS 12.0
and up. URL: https://checkra.in/. accessed: 2022-09-22.

Dunham, S., 2021. iOS Backup Extraction. URL: https:

//github.com/dunhamsteve/ios. accessed: 2022-09-16, Commit:
1a78c2f935f112f30840e5d871805dfbb092348d.

Farley Forensics, 2019. Forensic Analysis of iTunes Backups.
URL: https://farleyforensics.com/2019/04/14/forensic-analysis-of-

itunes-backups/. accessed: 2023-03-29.

Freiling, F.C., Groß, T., Latzo, T., Müller, T., Palutke, R., 2018. Advances
in forensic data acquisition. IEEE Des. Test 35, 63–74. URL: https:

//doi.org/10.1109/MDAT.2018.2862366, doi:10.1109/MDAT.2018.2862366.
Garfinkel, S., Nelson, A.J., Young, J., 2012. A general strategy for

differential forensic analysis. Digital Investigation 9, S50–S59.
Grajeda, C., Breitinger, F., Baggili, I., 2017. Availability of datasets for

digital forensics–and what is missing. Digital Investigation 22, S94–
S105.

Hassan, M., Pantaleon, L., 2017. An investigation into the impact of rooting
android device on user data integrity, in: 2017 Seventh International
Conference on Emerging Security Technologies (EST), IEEE. pp. 32–
37.

Khatri, Y., 2019. ADB keyvalue backups and the .data format.
URL: https://www.swiftforensics.com/2019/10/adb-keyvalue-backups-

and-data-format.html. accessed: 2022-08-17.
Klyubin, A., 2016. Disallow downgrading of non-debuggable pack-

ages. URL: https://android.googlesource.com/platform/frameworks/

base/+/921dd75. accessed: 2022-09-22.
libimobiledevice, 2022. libimobiledevice A cross-platform FOSS library

written in C to communicate with iOS devices natively. URL: https:

//libimobiledevice.org/. accessed: 2022-09-22.
Lorentz, P., Mahalik, H., 2022. Android Data Collection Sim-

plified. URL: https://cellebrite.com/en/android-data-collection-

simplified/. accessed: 2022-09-11.
Magnet Forensics, 2019. How to Image a Smartphone with Magnet

ACQUIRE. URL: https://www.magnetforensics.com/resources/image-

smartphone-magnet-acquire/. accessed: 2022-09-12.
Mahalik, H., 2021. How To Find iTunes Backup Data. URL: https://

cellebrite.com/en/how-to-find-itunes-backup-data/. accessed: 2022-
09-12.

Manral, B., Somani, G., Choo, K.R., Conti, M., Gaur, M.S., 2020. A
systematic survey on cloud forensics challenges, solutions, and future
directions. ACM Comput. Surv. 52, 124:1–124:38. URL: https://doi.
org/10.1145/3361216, doi:10.1145/3361216.

Oxygen Forensics, 2021. Android App Downgrade. URL: https://blog.
oxygen-forensic.com/android-app-downgrade/. accessed: 2022-08-29.

Oxygen Forensics, 2022a. Android Extraction Updates in Oxygen
Forensic® Detective 14.2. URL: https://blog.oxygen-forensic.com/

android-extraction-updates-in-oxygen-forensic-detective-14-2/. ac-
cessed: 2022-09-11.

Oxygen Forensics, 2022b. Downgrade Method: what should be known be-
fore the procedure. URL: https://blog.oxygen-forensic.com/downgrade-
method-what-should-be-known-before-the-procedure/. accessed: 2023-
01-12.

Python Software Foundation, 2022. difflib - Helpers for computing
deltas. URL: https://docs.python.org/3/library/difflib.html. ac-
cessed: 2022-09-11.

Roussev, V., Ahmed, I., Barreto, A., McCulley, S., Shanmughan, V., 2016.
Cloud forensics-tool development studies & future outlook. Digit.
Investig. 18, 79–95. URL: https://doi.org/10.1016/j.diin.2016.05.001,
doi:10.1016/j.diin.2016.05.001.

SalvationDATA, 2020. [Case Study] Mobile Forensics: Forensic Data
Extraction from Android Devices Using ADB (Android Debug Bridge)
Part III. URL: https://blog.salvationdata.com/2020/08/07/case-study-
mobile-forensics-forensic-data-extraction-from-android-devices-

using-adb-android-debug-bridge-part-iii/. accessed: 2023-03-29.
Son, N., Lee, Y., Kim, D., James, J.I., Lee, S., Lee, K., 2013. A study of user

data integrity during acquisition of android devices. Digital Investigation
10, S3–S11.

CRediT authorship contribution statement
Julian Geus: Conceptualization, Methodology, Inves-

tigation, Writing - Original Draft, Writing - Review and
Editing. Jenny Ottmann: Conceptualization, Methodology,
Investigation, Writing - Original Draft, Writing - Review and
Editing. Felix Freiling: Conceptualization, Methodology,

Proceedings of the Digital Forensics Research Conference (DFRWS US) Page 12 of 12

https://belkasoft.com/Android_APK_downgrade_method
https://belkasoft.com/Android_APK_downgrade_method
https://www.cellebrite.com/en/productupdates/exclusive-access-to-whatsapp-data-and-another-40-apps-on-android-devices/
https://www.cellebrite.com/en/productupdates/exclusive-access-to-whatsapp-data-and-another-40-apps-on-android-devices/
https://www.cellebrite.com/en/productupdates/exclusive-access-to-whatsapp-data-and-another-40-apps-on-android-devices/
https://checkra.in/
https://github.com/dunhamsteve/ios
https://github.com/dunhamsteve/ios
https://farleyforensics.com/2019/04/14/forensic-analysis-of-itunes-backups/
https://farleyforensics.com/2019/04/14/forensic-analysis-of-itunes-backups/
https://doi.org/10.1109/MDAT.2018.2862366
https://doi.org/10.1109/MDAT.2018.2862366
http://dx.doi.org/10.1109/MDAT.2018.2862366
https://www.swiftforensics.com/2019/10/adb-keyvalue-backups-and-data-format.html
https://www.swiftforensics.com/2019/10/adb-keyvalue-backups-and-data-format.html
https://android.googlesource.com/platform/frameworks/base/+/921dd75
https://android.googlesource.com/platform/frameworks/base/+/921dd75
https://libimobiledevice.org/
https://libimobiledevice.org/
https://cellebrite.com/en/android-data-collection-simplified/
https://cellebrite.com/en/android-data-collection-simplified/
https://www.magnetforensics.com/resources/image-smartphone-magnet-acquire/
https://www.magnetforensics.com/resources/image-smartphone-magnet-acquire/
https://cellebrite.com/en/how-to-find-itunes-backup-data/
https://cellebrite.com/en/how-to-find-itunes-backup-data/
https://doi.org/10.1145/3361216
https://doi.org/10.1145/3361216
http://dx.doi.org/10.1145/3361216
https://blog.oxygen-forensic.com/android-app-downgrade/
https://blog.oxygen-forensic.com/android-app-downgrade/
https://blog.oxygen-forensic.com/android-extraction-updates-in-oxygen-forensic-detective-14-2/
https://blog.oxygen-forensic.com/android-extraction-updates-in-oxygen-forensic-detective-14-2/
https://blog.oxygen-forensic.com/downgrade-method-what-should-be-known-before-the-procedure/
https://blog.oxygen-forensic.com/downgrade-method-what-should-be-known-before-the-procedure/
https://docs.python.org/3/library/difflib.html
https://doi.org/10.1016/j.diin.2016.05.001
http://dx.doi.org/10.1016/j.diin.2016.05.001
https://blog.salvationdata.com/2020/08/07/case-study-mobile-forensics-forensic-data-extraction-from-android-devices-using-adb-android-debug-bridge-part-iii/
https://blog.salvationdata.com/2020/08/07/case-study-mobile-forensics-forensic-data-extraction-from-android-devices-using-adb-android-debug-bridge-part-iii/
https://blog.salvationdata.com/2020/08/07/case-study-mobile-forensics-forensic-data-extraction-from-android-devices-using-adb-android-debug-bridge-part-iii/

Geus et al. / Evaluation of Smartphone Local Backup

Investigation, Writing - Original Draft, Writing - Review and
Editing, Supervision.

Proceedings of the Digital Forensics Research Conference (DFRWS US) Page 13 of 12

	Introduction
	Contributions
	Related Work
	Paper Outline

	A Visit to the Zoo of Backup Methods
	Local vs. Remote Backup
	Full vs. Selective Backup
	File-based vs. Content-based Backup
	App-downgrading

	Evaluation Methodology and Experimental Setup
	Evaluation Model
	Data Evaluation
	Android Device Setup
	iOS Device Setup

	Android Backup Results
	Evaluation Process
	File-Based Backup
	Content-Based Backup
	Summary

	iOS Backup Results
	Evaluation Process
	File-Based Backup
	Content-Based Backup
	Summary

	Limitations
	Conclusion and Future Work

