ELSEVIER

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

DFRWS 2023 USA - Proceedings of the Twenty Third Annual DFRWS Conference

A study on cloud data access through browser credential migration in Windows environment

Uk Hur^a, Soojin Kang^a, Giyoon Kim^a, Jongsung Kim^{a, b, *}

^a Dept. of Financial Information Security, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, South Korea
 ^b Dept. of Information Security, Cryptology and Mathematics, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, South Korea

ARTICLE INFO

Article history:

Keywords: Cloud forensics Credential Data protection

ABSTRACT

Various user data stored in cloud services for data continuity and efficiency is one of the main collection targets in digital forensic investigation. Some forensic tools collect cloud data based on user account and password, or provide data collection functions based on user credentials stored in the web browser. However, because many web services require additional authentication using user devices to protect user data, access using only the account and password is becoming difficult. In the case of credentials generated by auto-login, it does not work or requires re-authentication when moved to the investigator's device. This is so that other devices cannot utilize the credentials that are kept on the device due to security measures. In this paper, we propose a new method to migrate the credentials stored by the web browser to other devices and effectively utilize them, unlike the forensic method that involves using local credentials. Our analysis revealed that the majority of browsers encrypt and store credentials, so we researched credential decryption methods. We proceeded with the migration; move and encrypt the decrypted credentials to the investigator's device, or move the not encrypted credentials simply. As a result, we conducted credentials migration experiments on a total of 28 browsers, among which we have clarified that migration is possible in all browsers except three that do not store data, such as Tor. We verified that it is possible to log in and collect data on 20 types of web services that are frequently used using migrated credentials. Although the approach we propose is straightforward, it allows for effective and efficient cloud data collection in digital forensic investigation.

© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cloud computing describes an environment where information technology (IT) services, such as data storage, networking, and content delivery, can be conducted through servers on the internet Mell and Grance (2011). In the meantime, connected devices including personal computers (PCs), smartphones, tablets, and wearable devices emerged with the development of IT. According to Cisco's research, each person has between 1 and 13 devices and connections, and by 2023, it is expected to have an average of more than 3 devices and connections worldwide Cisco (2020). In an environment where multiple devices are used, if the data is stored in local storage on each device, user cannot access the previous data

* Corresponding author. Dept. of Financial Information Security, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, South Korea.

E-mail addresses: gjdnr123@kookmin.ac.kr (U. Hur), szin31@kookmin.ac.kr (S. Kang), gi0412@kookmin.ac.kr (G. Kim), jskim@kookmin.ac.kr (J. Kim).

stored in another device. Therefore, cloud services that allow online synchronization have become good alternatives for users to seamlessly access data across multiple devices. For user convenience, an increasing number of businesses and services that provide ubiquitous and synchronized data are emerging. Thus, a considerable amount of user data, which was previously stored in local storage is moving to cloud storage. Among the several cloud services, cloud storage where data are stored, has become one of the main targets in digital forensic investigation. In addition to storing data, cloud storage services like Google Drive, Dropbox, OneDrive, and iCloud also provide several other features like emailing, document editing, file sharing, synchronization, and realtime sharing. These services can be accessed through exclusive programs or web browsers; even today, most tasks can be done with a single browser. However, as the data are stored in a cloud, obtaining user data for digital forensic investigations is getting more and more challenging. When users use cloud storage, it is difficult to determine the exact storage location of the data, and even if the location is identified, collecting the data is challenging.

https://doi.org/10.1016/j.fsidi.2023.301568

2666-2817/© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS All rights reserved. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Furthermore, user data can be encrypted, and data collection can be depending on national policies. An intriguing alternative to realistic data collection is the use of credentials, including passwords. For instance, the user password stored in the Chrome browser can be obtained by using NirSoft's ChromePass Sofer (2008); and the use of this password can lead to the acquisition of additional data on the websites. However, some websites, like Google, demand additional authentication through a device owned by the user, to log in. making it impossible to access data using just a password. Because of this additional authentication, the credentials¹ generated through auto-login do not work on other devices or require authentication again. As a result, the collected data are not available on the investigator's device. Furthermore, the use of credentials is limited when possession-based or biometric-based authentication is required in addition to the password, which is a knowledgebased authentication factor in, multi-factor authentication. To overcome this limitation, there are various techniques such as cloning a PC for data acquisition, but this approach requires a considerable amount of time and resources. When connecting to a network using a cloned PC, there are concerns about malware infection through the internal network. Furthermore, if the OS and boot images are separated on multiple disks, all of them must be cloned. Therefore, finding an efficient method for data acquisition is our main focus. During our research, we found that data on the trusted device, such as additional authentication through the browser, exists encrypted in a Cookie. We expect that if the encrypted data stored in the cookie can be used in other environments, it will be possible to bypass the additional authentication and log in. Therefore, we study how to use cookies by modifying and migrating various data, and consequently propose a data collection method based on this. In this paper, we describe a method to collect the data stored in various services by migrating the main data of various web browsers and bypassing the multifactor authentication procedure in a more effective way than the full cloning method.

1.1. Our contributions

In this paper, we propose a method of migrating browser data to an investigator device to collect user data from websites using stored credentials in a Windows PC environment. Migrated credentials enable to bypass the authentication process and successfully access cloud-based web services. As a result of our study, migration is possible with simple data movement in some browsers. However, data are typically encrypted in most browsers so that they cannot be used on other devices. To use encrypted credentials on other devices, it is necessary to decrypt and regenerate the credentials to fit other devices. We discovered that 25 different browsers, including some that require data modification, successfully migrate data. Migrated browsers can utilize credentials such as auto-login as before. Overall, to use migrated credentials for digital forensic investigation, we have enumerated websites that can utilize credentials and user data that can be effectively obtained. The following presumptions are necessary to use this study.

o Preparation and Assumption.

- 1) The target site's Auto-login or Trust-browser function is enabled.
- 2) The live system is accessible.
 - 2-1) The live system is inaccessible.

- Collection of Registry Hives (SYSTEM, SECURITY) is required.
- The user's password is required for Windows account login.
- o Impacts on digital forensic investigations (our results).
- 1) We discovered that data migration is possible in 25 popular browsers running in the Windows environment. Each browser is developed based on three browsers, and we found that browsers developed based on the same browser can easily migrate data in the same manner.
- 2) We propose a data regeneration method to use encrypted data when it is moved to another device based on the results of our browser migration experiment. We found the encrypted data in a browser developed based on the Chromium browser and showed that the data could be regenerated through decryption and encryption using a data protection application programming interface (DPAPI). Finally, we confirmed that the regenerated data behave exactly the same as before on the migrated device
- 3) Through the website credentials, we obtained users' chat history and media data stored in the cloud and showed that it is possible to track the users' real-time locations according to web services. o Our framework for browser credential migration

We propose a framework for migrating browser credentials (Fig. 1). The proposed framework migrates credentials inside browser data.

2. Background

2.1. How websites remember users

User authentication on each website is implemented by a Session/ Cookie and Token method. The Session/Cookie method sends the user ID of the session to the server, checks whether the ID exists in the database (DB) stored on the server, and proceeds with the user authentication Grassi et al. (2016). Credentials such as the session ID are stored in Cookie according to settings, and based on this, autologin is implemented. Meanwhile, the Token method conducts a signature algorithm on the user authentication data and related information. Examples of web token methods include JSON web token Jones et al. (2015) and OAuth Hardt (2012). The Token is stored on the user's computer, and when the browser sends the Token to the server, the server verifies that the *Token* is valid. When a user activates auto-login on a website, an auto-login token is generated and stored on the PC, and based on this, the auto-login is implemented. Auto-login is recommended to be performed on the user's trusted device and is provided under various names such as Remember me or Keep me signed in (Fig. 2). To properly authenticate on a website, the user does not need to input an ID, and password each time by using the auto-login method, which keeps the credentials in the browser on the device where the user logged in.

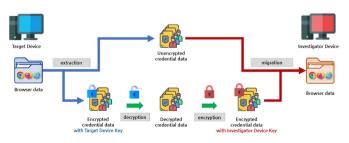


Fig. 1. Our framework for browser credential migration.

¹ Data that can identify and authenticate users is called credentials Grassi et al. (2020).

U. Hur, S. Kang, G. Kim et al.

Dropbox
Sign up

Sign in

or create an account

Continue with Google

Continue with Apple

or

or

Enall

Password

Fegatavyour password?

Remember me

Continue

Fig. 2. Auto-login settings screen of Dropbox and Apple's iCloud website.

Moreover, certain websites recommend that users to use additional authentication (multi-factor authentication, 2-step verification, or 2-factor authentication) as well as credentials to protect user data. The additional authentication process is slightly different for each website. In general, it is done by sending an authentication number to a user-controlled email and entering it, or by sending the authentication number to another trusted device owned by the user and utilizing that as a token (Fig. 3).

For user convenience, certain websites provide an option to omit additional authentication. For instance, options such as **Trust the computer** or **Trust the browser?** Are options that trust the browser or environment in which the user is login in, and the user only needs to enter the ID and password. However, when a user logs in for the first time with additional authentication using the aforementioned option, the related data are stored in the user's PC. Therefore, it is not necessary to conduct additional authentication when logging in later.

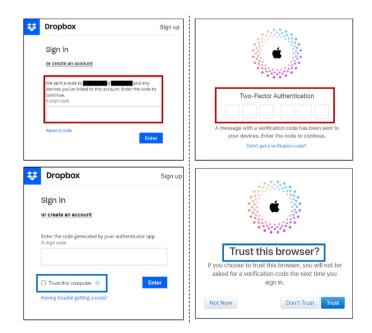


Fig. 3. 2-Step Verification of Dropbox and Apple's iCloud website.

2.2. DPAPI

DPAPI is an application programming interface (API) provided for data protection in Windows operating systems since Windows 2000 Satran et al. Particularly, the DPAPI is included in CryptoAPI and consists of two functions: CrvptProtectData and CrvptUnpro*tectData*. The DPAPI uses a device-dependent encryption key such that only a user with the same Windows logon credentials as the user who encrypted the data can decrypt the data. As a result, data encrypted with DPAPI cannot be decrypted when moved to another device. Because, when data are protected using DPAPI, information used for encryption and encryption key are encrypted and stored together. The Data Encryption Key (DEK), a random data, is generated to encrypt the data. The DEK is encrypted and stored as a master key (Key Encryption Key, KEK) dependent on a Windows account. A DPAPI binary large object (DPAPI BLOB), which refers to the data encrypted using the DPAPI, has a particular structure and is encoded with ASN.1 (Fig. 4).

The blob key data (DEK) is stored in the following paths with the globally unique identifier (GUID) of each key value as the file name.

- o %AppData%\Microsoft\Protect\<UserSID>
- o %windir%\system32\Microsoft\Protect\<UserSID>

The decryption of encrypted data using the DPAPI should be preceded by a KEK acquisition and DEK decryption. The KEK is created based on the Windows account, thus if it is possible to acquire the memory of the live system, the KEK can also be acquired through a tool such as the mimikaz Delpy (2020). In particular, the DEK can be acquired through the data in both the *Protect path* and the *system32 path*. Additionally, the DataProtectionDecryptor Sofer (2017), a tool that decrypts data encrypted using DPAPI, exists. Fig. 5 shows the entire operation process of the DPAPI.

3. Related work

With the emergence of various cloud services, various data collection studies on the use of exclusive applications and web browsers are being performed. For example, Chung et al. analyzed Amazon S3, Google Docs, Dropbox, and Evernote, which are cloud storage services that store and manage data in the cloud Chung et al. (2012). Specifically, in this study, to acquire cloud data, the user ID and password and the issuance of a seizure warrant were emphasized. They specifically obtained and arranged the artifacts produced by each application's use in the Windows, macOS, iOS, and Android environments, assuming the aforementioned

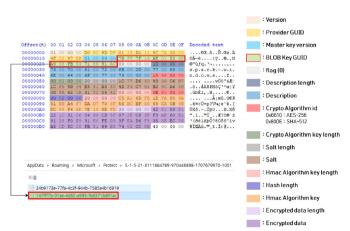


Fig. 4. Structure of the data encrypted using the DPAPI.

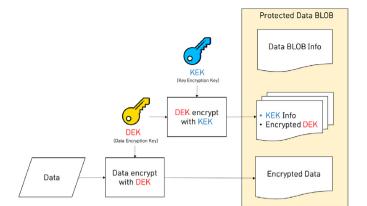


Fig. 5. The operation process of the DPAPI.

environment. However, as described in the paper, it is challenging to obtain the user ID and password, and the environment for obtaining them is a limited assumption. In addition, Quick et al. proposed a method to collect data without obtaining the user ID and password using the virtual forensic computing software, which utilizes the user credentials Quick and Choo (2014). They checked user data stored in Google Drive through synchronized account information. Furthermore, cho et al. conducted a study to log in to a user account using tokens generated for user authentication during auto-login in an Android environment Cho et al. (2018). They collected the credentials of Starbucks applications and anonymous social networking applications well-known in Korea and performed a case study to obtain the user data from the server. Roussev et al. investigated data collection methods for four different kinds of cloud storage: Google Drive, Dropbox, Onedrive, and Box Roussev et al. (2016a,b). They acquired the data in the storage by utilizing the API provided by the cloud storage and proposed a using method for digital forensic investigations. Yang et al. have enhanced collecting method by utilizing the suggested API Yang et al. (2022). They proposed a hybrid data acquisition method using both open and internal APIs, and based on this, improved the cloud data acquisition method. Moussa et al. proposed a model for cloud forensics Moussa et al. (2019). They outlined the limitations of the previously suggested cloud forensic model and suggested an approach to overcome them. In addition, they examined how well the cloud forensics process model requirements were followed via a survey. These articles undoubtedly share aspects with our paper, such as the usage of user credentials or cloud-based data acquisition. However, there is a unique distinction in terms of credentials, which is the focus of this paper. Prior research assumed that the user ID and password were collected or cloned credentials for autologin. However, in this paper, we focus on securing and utilizing credentials. Therefore, it is anticipated that our study's findings will complement those of earlier research.

4. Methodology of browser data migration

In general, browsers store various user data such as visit history, search history, and credentials. In this paper, we aim to log in from other devices by using certain credentials among various data. The method of storing credentials may be different for each browser. As a result, we propose a generalized browser credential utilization method. More precisely, the methodology we performed in this paper is as follows.

4.1. Data collection step

Browser data operating in the Windows environment is stored in two locations: one is where the browser is installed, and the other is a subpath of %Userprofile%\AppData. Except for information on program execution and setup, all the data stored in the two paths mentioned above are acquired. Subsequently, the collected data are inserted into other devices. If the user has enabled synchronization, the rest of the data can be regenerated by successful auto-login using the credentials. However, in some cases, synchronization may not be set, and there may be organizationally linked data for credential use. Therefore, we aim to collect all data for effective analysis.

4.2. Data migration step

The collected data from the target device is inserted into another device (e.g., an investigator device) and the result is adequately examined. Note that prior to installing the browser on the investigator device during migration, it is crucial to check the version of the browser installed on the target device. Particularly, depending on the version, data might be not compatible as browser updates and data structures change. Therefore, to prevent compatibility issues, the investigator device should use the same or a similar version of the browser as the target device. Our experiments have shown that if there are little version changes, none of the browsers cause problems. However, credentials could not be useable if the main version is changed because of incompatibility issues. When the browser is ready, the basic migration can be completed by inserting the collected data. Following this, whether or not auto-login is possible depends on the browser's security policy for credentials. In particular, moved credentials worked as expected for browsers with weak security rules. More precisely, the study on such browsers is achieved in this step. However, if the credentials do not operate normally, the next Data analysis and regeneration step should be conducted. As a result of our study, most browsers required the following additional processes to utilize credentials.

4.3. Data analysis and regeneration step

In the data analysis step, credentials are identified within the collected data, and how to use them is studied. Credentials are usually stored as cookies or tokens in the form of plaintext or encrypted text. First, data that is inferred as a credential is classified through the signature value and extension; encrypted data are also classified as an analysis target. For the classified data, we proceed to identify the structure and format of the detailed data. To evaluate whether plaintext data can be modified, it should specifically be checked for information on the device and information on user credentials. However, as a result of our study to date, plaintext data can be migrated without modification. More so, when there is a browser that encrypts credentials, we discovered the encryption process through reverse engineering. We confirmed that browsers use different encryption keys depending on the PC through reverse engineering. Therefore, when migrating encrypted data, a regeneration process is required to decrypt the data and re-encrypt it with the target device key.

4.4. Verification step

We examine whether auto-login is possible using existing or

U. Hur, S. Kang, G. Kim et al.

regenerated credentials. The successful migration of the auto-login previously set on the target device to the investigator device is confirmed through this process. If auto-login is working on the investigator device, verify whether the synchronization account that exists in each browser is also operating normally. Next, when synchronization is operating normally, we collect additional data and conduct real-time monitoring. As a result, we determined the types of information that can be acquired by using credentials for each browser and each website. However, if auto-login is not activated, we decided that the migration failed and moved to the **Data analysis and regeneration** step and reanalyzed.

5. Browser data migration process

Based on the data of StatCounter, which provides web traffic analysis information, we conducted an experiment on browser data migration for a total of 27 browsers with high usage operating in a Windows environment as of 2022 StatCounter (2022). In particular, the browsers we selected for our study were all developed based on Chromium, Firefox, and Internet Explorer (Fig. 6). In addition, in the case of browsers that operate only in incognito mode, including Tor browser, migration is not possible because user data is not saved.

5.1. Chromium-based browser

This is a browser developed based on the Chromium browser, an open-source browser project developed by Google (Google). Representative browsers include Google's Chrome and Microsoft Edge, officially released in January 2020 support (c). Interestingly, the majority of the most popular browsers used today were built using the Chromium, except for Firefox and Safari used in Apple OS.

5.2. Firefox-based browser

This is a browser developed based on the Mozilla Foundation's open-source web browser, Firefox Mozilla. Representative browsers include the Firefox browser and Tor browser which is primarily used to access the dark web.

5.3. Internet Explorer-based browser

This is a browser developed based on Internet Explorer provided

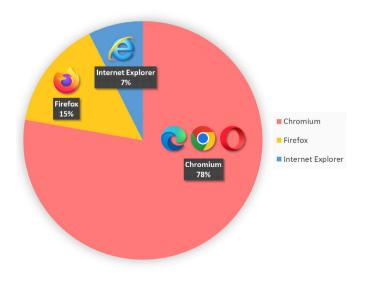


Fig. 6. Classification of types by browser.

by default in Windows. Particularly, the development of Internet Explorer was stopped after Windows' default browser was changed to Chromium-based Edge. Representative browsers include Internet Explorer 11, the last version before development was terminated, and the Edge legacy browser developed later. Intriguingly, Internet Explorer-based browsers are still used to access services developed long ago.

As a result of our study, browsers based on the same browser have similar data structures. Furthermore, data migration was possible in the same way. In particular, we discovered six types of browsers that can be migrated only by simple data migration; 19 types of browsers that need to be migrated after modifying data; and two types of browsers that operate only in incognito mode and do not store data. Additionally, all browsers that required data modification were Chromium-based, and the only browsers that could be transferred were those that relied on Firefox and Internet Explorer. Table 1 shows the data migration experiment result for each browser.

Meanwhile, in cases where migration is possible by moving data without suitable modification, the migration process is completed simply by collecting files and subsequently moving them to another device. Thus, we describe the detailed process of data migration of Chromium-based browsers that require analysis and modification of the data. The entire process of browser migration is shown in Fig. 7.

5.4. Migration method for chromium-based browser credentials

5.4.1. Decryption method for chromium-based browser credentials

The user data path of the Chromium-based browser (CBB) is as follows. Depending on the CBB, data can exist in either path, or both paths. If both paths exist, the location where the "User Data" directory exists is the user data path.

o %LocalAppData%\[Browserprovidername]\ [Browsername] o%AppData%\[Browserprovidername]\[Browsername]

Moreover, under "User Data" of the CBB, data are divided and stored for each browser account. The data of the default account is stored in the "Default" folder, and the data of the accounts registered by the user are stored in the "Profile *N*" folder sequentially. Credentials used in each user account are stored in a different location depending on the Chromium version. Particularly, depending on the Chromium version, credentials are stored in the "Default", "Profile *N*" folder, otherwise these are stored under "Default\Network", "Profile *N*|Network". As for the Chromium development version 80.0.3947.0, credentials are stored within a database in the form of a SQLite database and encrypted in a separate way. The encryption process for each version is as follows.

5.4.1.1. Case 1. version 80 and lower versions. Fig. 8 is the encrypted data stored in the old version cookies.

All data stored in each column is in the form of a DPAPI blob. The DPAPI blob can be decrypted in different ways depending on the state of the PC to be collected. Specifically, if the target device is available and a Windows user account is accessible, decryption is possible without the need for any additional information through the *CryptUnprotectData* function provided by Windows. Otherwise, additional information is required to decrypt the DPAPI blob: Two folders (see. Section 2.2) where the encrypted key is stored are the Registry Hives (SYSTEM, SECURITY) files for using master key information, and the user login information. Additionally, when the DPAPI BLOB is decrypted using these data, the plaintext of the data needed to activate the session can be obtained.

Table 1

List of browsers used in the migration experiment and results.

Browser name	type	version	User Data path	Migration
Avast Secure Browser	Chromium	108.0.19667.125	%LocalAppdata%\AVAST Software\Browser	1
Brave	Chromium	109.1.47.171	%LocalAppdata%\BraveSoftware\Brave-Browser	1
Chromium	Chromium	111.0.5501.0	%LocalAppdata%\Chromium	1
Chrome	Chromium	108.0.5359.125	%LocalAppdata%\Google\Chrome	1
Comodo Dragon	Chromium	108.0.5359.95	%LocalAppdata%\Comodo\Dragon	1
Epic Privacy Browser	Chromium	104.0.5112.81	Incognito mode only	-
FlashPeak Slimjet (64 bit)	Chromium	107.0.5304.62	%LocalAppdata%\Slimjet	1
Iridium	Chromium	2022.04	Incognito mode only	-
Maelstrom	Chromium	42.0.1.36	%LocalAppdata%\Maelstrom	1
Edge	Chromium	109.0.1518.52	%LocalAppdata%\Local\Microsoft\Edge	1
Opera	Chromium	94.0.4606.38	%Appdata%\Opera Software\Opera Stable	1
Tungsten	Chromium	2.14	%Appdata%\Tungsten	1
UC Browser	Chromium	6.0.1308.1016	%LocalAppdata%\Maxthon\Application	1
Vivaldi	Chromium	5.6.2867.50	%LocalAppdata%\Vivaldi	1
Yandex	Chromium	23.1.0.2539	%LocalAppdata%\Yandex\YandexBrowser	1
Whale	Chromium	3.18.154.7	%LocalAppdata%\Naver\Naver Whale	1
360 Safe Browser	Chromium	13.1.6410.0	%Appdata%\360se6	1
QQ Browser	Chromium	11.5	%LocalAppdata%\Tencent\QQBrowser	1
Coc Coc	Chromium	114.0.140	%LocalAppdata%\CocCoc\Browser	1
Sogou Explorer	Chromium	11.0.1.34700	%Appdata%\SogouExplorer\Webkit	1
Maxthon	Chromium	6.2.0.2000	%LocalAppdata%\Maxthon\Application	1
Firefox	Firefox	108.0.1	%LocalAppdata%\Maxthon\Application	1
Comodo ice dragon	Firefox	65.0.2.15	%LocalAppdata%\Comodo\IceDragon	1
SeaMonkey	Firefox	2.53.14	%LocalAppdata%\Mozilla\SeaMonkey	1
Pale Moon	Firefox	31.4.2	%LocalAppdata%\Moonchild Productions\Pale Moon	1
Tor	Firefox	12.0.4	Incognito mode only	_
Internet Explorer 11	IE	11.0.18362.997	%LocalAppdata%\Microsoft\Windows	1
Edge Lagacy	IE	44.19041.610.0	%LocalAppdata%\Microsoft\Windows	1

*'\': Successfully migrated, '-': Supports only incognito mode and does not save data.

5.4.1.2. Case 2. version 80 and upper versions. Fig. 9 is the encrypted data in a changed form.

Encrypted data of version 80 or upper is stored as BLOB data starting after the string "v10".

As a result of our analysis, the data are encrypted with the AES-GCM. More specifically, the encryption key used for encryption is a 32-byte random value generated through pseudorandom number generator (PRNG), and the encryption key is encrypted and stored in the "LocalState" file in the "User Data" directory. The "LocalState" file is in JSON format, and the encryption key is stored in JSON object name "encrypted_key". The value stored in "encrypoted_key" is a DPAPI blob that has been Base64 encoded. Therefore, if the "encrypted_key" value is decrypted in the same way as Case 1 after Base64 decoding, it is possible to obtain an encryption key (Fig. 10).

Furthermore, the GCM nonce uses the upper 12-bytes of the encrypted data and the lower 16-bytes are the GCM tag. By using the acquired encryption key and nonce, encrypted data can be decrypted.

5.4.2. Regeneration method for chromium-based browser credentials

To decrypt the DPAPI blob, the Windows account information used during encryption is required. As a result, it is impossible to decrypt data simply by moving data (Fig. 11).

For migration, it is necessary to decrypt the DPAPI blob in advance on the target device. After moving the decrypted data to the investigator device, the migration is completed by encrypting the data using DPAPI in the investigator device (Fig. 12).

5.4.2.1. Case 1. version 80 and lower versions. The decrypted data stored in each column is encrypted with a *CryptProtectData* function provided by Windows. There is no need for additional information for this process, which is carried out on the investigator device. Fig. 13 is the result of running the browser after encrypting

the actual data. Additionally, we confirmed that using our migration strategy, it is possible to successfully log in from a device that has never done so before.

5.4.2.2. Case 2. version 80 and upper versions. Migration from version 80 consists of the following process. First, generate a random GCM key and nonce. Afterwards, the decrypted data is encrypted with the GCM key and nonce. In particular, the GCM key used for encryption is encrypted with the *CryptProtectData* function provided by Windows, Base64 encoded and stored in "LocalState". There was no additional validation of the plaintext data, GCM key, or nonce. Therefore, migration is possible by decrypting only the GCM key after moving all data.

5.5. Migration method for other browsers' credentials

Browsers based on Firefox and Internet Explorer do not have encrypted credentials. Therefore, migration was possible with simple data movement. In particular, the migrated credentials contain information about computers, such as encrypted Security identifiers (SID). To modify the encrypted data, a protocol analysis with the web page is necessary. In this paper, the migration process was carried out without modifying the encrypted data. Accordingly, when the migrated credentials are used, the session operates as if it were operating on the target device. However, there is a possibility that the session could be terminated if the device information is incompatible when upgrading the session on the target device or terminating the session. Additionally, migrated credentials will not be available even after the expiration time of the session. As a result of our study, properly migrated credentials were able to use all functions such as access history, auto-complete data, and stored passwords in addition to the used auto-login. Further, it should be noted that if the browser's synchronization feature is activated, the user data may also be collected after the point of collection.

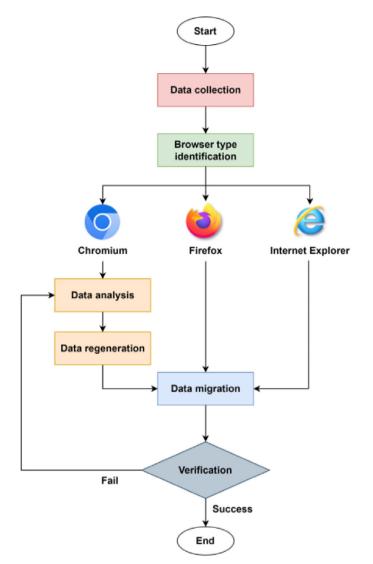


Fig. 7. The entire process of browser migration.

6. Utilization of browser data migration in digital forensic investigations

We can effectively collect the data stored in the cloud from various services through the credentials stored in the browser that has completed migration. Depending on the service provided by the website, collectible data may contain a variety of user information, including emails that users exchange and files stored in the cloud. More so, it is even possible to track user locations through real-time location information on user devices provided on the homepage, such as Microsoft, Google, and Apple. Furthermore, if synchronization is set for each browser, even after the data collection point, the data generated through another device (not the target device) with synchronization enabled can be additionally obtained. Finally, we summarized elements that can be used in digital investigation by the website with credentials obtained through browser data migration. The list of websites that can be auto-logged into is as follows (Table 2).

6.1. Browser synchronization account

Each browser provides a function to synchronize data through a

Forensic Science International: Digital Investigation 45 (2023) 301568

	ho	st_ke	y		n	ame			ex	pires	s_utc	: IS	t_ac	cess	_ut	ncrypte	d_value	ame	sit€
	Filter			Filter					Filte	er		F	ilter			Filter		Filter	r
1	.360.0	om		gu	id				133	3614	1531.	1	13318	8272	0	BLOB			-1
2	.360.0	n		hu	id				1363	3361	1311.		13318	8272	0	BLOB			-1
3	.360.0	om		hu	id				1363	3361	1311.	1	13318	8272	0	BLOB			-1
4	hao.3	60.co	m	uc	silent				1331	1833	3951.	1	13318	8272	0	BLOB			-1
5	hao.3	60.co	m	sess	ionID				133	3183	3395.	1	13318	8272	0	BLOB			-1
6	.look.	360.ci	n	tt ds	id				133	2084	4511.		13318	3272	í	BLOB		١.	0
7	.look.	360.ci	n	xxl_h	ldr_in	fo			133	3188	3579.	7	13318	3272	1	BLOB		Ň.	-1
8	.goog	le.con	n	- 1P_J	AR				133	3208	3464.					BLOB		Ì	0
9	.goog			AEC					-		3064.		13318	8258	0	BLOB			X
10	.9000			OGP					133	3208	3464.								-1
11		le.con		OGP	с				133	3208	3464.								-1
 : E	}inary	~													i	<u></u>	1 🗔	œ	-
					8c	9d (df (01	15	d1	11	8c				•			
00	3inary 01 00 4f c:	00	00	d0									7a	00	c0				.z.
00	01 00	0 00	00 eb	d0 01	00	00	00 (eb	02	e8	88	c7	7a 3c	00 d0	c0 43	· · · · · · · · · · · · · · · · · · ·			.z.
00 10 20	01 00 4f ci	0 00 2 97 3 93	00 eb 01	d0 01 b2	00 c8	00 (74 (00 0	eb 00	02 00	e8 00	88 00	c7 02	7a 3c 00	00 d0 00	c0 43 00	 0 .S			.z. .<.
00 10 20 30 40	01 00 4f c: 96 5: 00 00 11 30	0 00 2 97 3 93 0 10 1 9e	00 eb 01 66 dl	d0 01 b2 00 9b	00 c8 00 e8	00 74 00 1f	00 0 05 0 01 0 ea 0	eb 00 00 0f	02 00 00 d1	e8 00 20 f3	88 00 00 01	c7 02 00 73	7a 3c 00 00 d5	00 d0 00 ec ff	c0 43 00 d7 21	 0 .S f	t.		.z. .<.
00 10 20 30 40 50	01 00 4f c: 96 5: 00 00 11 30 2d 50	0 00 2 97 3 93 0 10 1 9e 0 63	00 eb 01 66 d1 e7	d0 01 b2 00 9b 1b	00 c8 00 e8 17	00 74 00 1f a2	00 0 05 0 01 0 ea 0	eb 00 00 0f 4c	02 00 00 d1 74	e8 00 20 f3 8d	88 00 00 01 48	c7 02 00 73 bd	7a 3c 00 00 d5 4a	00 d0 00 ec ff 00	c0 43 00 d7 21 00	 0 .s f .= -Pc.	t.	 Lt.F	.z. .<. s
00 10 20 30 40 50 60	01 00 4f c3 96 53 00 00 11 30 2d 50 00 00	0 00 2 97 3 93 0 10 1 9e 0 63 0 0e	00 eb 01 66 d1 e7 80	d0 01 b2 00 9b 1b 00	00 c8 00 e8 17 00	00 74 00 1f a2 00	00 0 05 0 01 0 ea 0 51 0 02 0	≥b 00 00 0f 4c	02 00 00 d1 74 00	e8 00 20 f3 8d 20	88 00 00 01 48 00	c7 02 00 73 bd 00	7a 3c 00 00 d5 4a 00	00 d0 00 ec ff 00 ff	c0 43 00 d7 21 00 ea	 0 .s. f .= -Pc.	t.	 Lt.F	.z. .<. s I.J.
00 10 20 30 40 50 60 70	01 00 4f c: 96 5: 00 00 11 30 2d 50 00 00 54 c:	0 00 2 97 3 93 0 10 1 9e 0 63 0 0e 2 5e	00 eb 01 66 d1 e7 80 fd	d0 01 b2 00 9b 1b 00 06	00 c8 00 e8 17 00 a1	00 74 00 1f a2 00 2d	00 0 05 0 01 0 ea 0 51 0 02 0 64 0	≥b 00 00 0f 4c 00 4d	02 00 d1 74 00 12	e8 00 20 f3 8d 20 86	88 00 00 01 48 00 4f	c7 02 00 73 bd 00 a9	7a 3c 00 00 d5 4a 00 74	00 d0 00 ec ff 00 ff 56	c0 43 00 d7 21 00 ea 87	 0 .s. f .= -Pc. T.^.	t. Q	Lt.F	.z. .<. s I.J.
00 10 20 30 40 50 60 70 80	01 00 4f c3 96 53 00 00 11 30 2d 50 00 00	0 00 2 97 3 93 0 10 1 9e 0 63 0 0e 2 5e 4 13	00 eb 01 66 d1 e7 80 fd 70	d0 01 b2 00 9b 1b 00 06 ed	00 c8 00 e8 17 00 a1 4b	00 74 00 1f a2 00 2d 7f	00 (05 (01 (51 (64 (dd)	≥b 00 0f 4c 00 4d	02 00 d1 74 00 12 d8	e8 00 20 f3 8d 20 86 98	88 00 01 48 00 4f 15	c7 02 00 73 bd 00 a9 89	7a 3c 00 00 d5 4a 00 74 d1	00 d0 00 ec ff 00 ff 56 40	c0 43 00 d7 21 00 ea 87 00	 0 .s f .= -Pc. T.^. '\$.p		Lt.F	.z. .<. s I.J.
00 10 20 30 40 50 60 70 80 90	01 00 4f c: 96 5: 00 00 11 30 2d 50 00 00 54 c: 27 20	0 00 2 97 3 93 0 10 1 9e 0 63 0 0e 2 5e 4 13 0 08	00 eb 01 66 d1 e7 80 fd 70 e8	d0 01 b2 00 9b 1b 00 06 ed 7d	00 c8 00 e8 17 00 a1 4b 29	00 74 00 1f a2 2d 7f 61	00 (05 (01 (51 (64 (dd)	eb 00 00 10 40 40 40 80	02 00 d1 74 00 12 d8 91	e8 00 20 f3 8d 20 86 98 8c	88 00 01 48 00 4f 15 75	c7 02 00 73 bd 00 a9 89 0d	7a 3c 00 00 d5 4a 00 74 d1 de	00 d0 00 ec ff 00 ff 56 40 28	c0 43 00 d7 21 00 ea 87 00 33	 0 T.^ '\$.p	di	Lt.F	.z. .<. s I.J. 0 .tV 0
00 10 20 30 40 50 60 70 80 90 a0 b0	01 00 4f c: 96 5: 00 00 11 30 2d 50 00 00 54 c: 27 20 00 00 93 ci 74 3:	0 00 2 97 3 93 0 10 1 9e 0 63 0 0e 2 5e 4 13 0 08 0 e3 9 88	00 eb 01 66 d1 e7 80 fd 70 e8 40 e7	d0 01 b2 00 9b 1b 00 06 ed 7d 23 55	00 c8 00 e8 17 00 a1 4b 29 8a 78	00 74 00 1f a2 2d 7f 61 0e d8	00 (05 (01 (51 (64 (dd) dd) 43 (≥b 00 0f 4c 00 4d fc 8d 9b 55	02 00 d1 74 00 12 d8 91 7a 29	e8 00 20 f3 8d 20 86 98 8c 6b 94	88 00 01 48 00 4f 15 75 ef eb	c7 02 00 73 bd 00 a9 89 0d b7 3f	7a 3c 00 d5 4a 00 74 d1 de ac b1	00 d0 00 ec ff 56 40 28 f1 a9	c0 43 00 d7 21 00 ea 87 00 33 4b d8	0 	t. Q di di K })a. # Ux.C	Lt.F	.z. .<. s .J. U. Q Q
00 10 20 30 40 50 60 70 80 90 a0 b0 c0	01 00 4f c: 96 5: 00 00 11 30 2d 50 00 00 54 c: 27 20 00 00 93 c! 74 30 77 31	0 00 2 97 3 93 0 10 d 9e 0 63 0 0e 2 5e 4 13 0 08 0 e3 9 88 0 c3	00 eb 01 66 d1 e7 80 fd 70 e8 40 e7 14	d0 01 b2 00 9b 1b 00 06 ed 7d 23 55 de	00 c8 00 e8 17 00 a1 4b 29 8a 78 b3	00 74 00 1f a2 2d 7f 61 0e d8 20	00 0 05 0 01 0 51 0 64 0 dd 1 dd 1 09 9 43 0 cd 1	≥b 00 01 4c 00 4d 5d 8d 9b 55	02 00 d1 74 00 12 d8 91 7a 29 83	e8 00 20 f3 8d 20 86 98 6b 98 6b 94 94	88 00 01 48 00 4f 15 75 ef 84	c7 02 00 73 bd 00 a9 00 89 0d b7 3f fc	7a 3c 00 00 d5 4a 00 74 d1 de ac b1 ec	00 d0 00 ec ff 00 ff 56 40 28 f1 a9 b0	c0 43 00 d7 21 00 ea 87 00 33 4b d8 44	0 		Lt.F	.z. .<. s I.J. .tV .@ 1(
00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0	01 00 4f c: 96 5: 00 00 11 30 2d 50 00 00 54 c: 27 20 00 00 93 ci 74 30 77 31 f0 90	0 00 2 97 3 93 0 10 d 9e 0 63 0 0e 2 5e 4 13 0 08 0 e3 9 88 0 c3 c 40	00 eb 01 66 d1 e7 80 fd 70 e8 40 e7 14 00	d0 01 b2 00 9b 1b 00 06 ed 7d 23 55 de 00	00 c8 00 e8 17 00 a1 4b 29 8a 78 b3 00	00 74 00 1f a2 2d 7f 61 0e d8 20 fd	00 (05 (01 (51 (64 (d0 (d0 (d0 (d0 (d0 (d0 (d0 (d0	≥b 00 00 10 4c 00 4d 5c 8d 9b 55 56c	02 00 dl 74 00 12 d8 91 7a 29 83 ef	e8 00 20 f3 8d 20 86 98 8c 6b 94 94 9a	88 00 01 48 00 4f 15 75 ef 84 11	c7 02 00 73 bd 00 a9 00 b7 3f fc fc	7a 3c 00 00 d5 4a 00 74 d1 de ac b1 ec f2	00 d0 00 ecff 00 ff 56 40 28 f1 a9 b0 ba	c0 43 00 d7 21 00 ea 87 00 33 4b d8 44 3c	 		Lt.F	.z. .<. s 1.J. 0 .tV @
00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0	01 00 4f c: 96 5: 00 00 11 30 2d 50 00 00 54 c: 27 20 00 00 93 ci 74 3: 77 3i f0 90 64 fa	0 00 2 97 3 93 0 10 1 9e 2 5e 4 13 0 08 2 5e 4 13 0 08 8 8 0 08 3 0 2 6 3 9 3 8 8 0 5 0 3 0 2 6 3 9 3 8 8 0 5 0 0 00 0 10 0 10 0 10 0 10 0 10 0 1	00 eb 01 66 d1 e7 80 fd 70 e8 40 e7 14 00 45	d0 01 b2 00 9b 1b 00 06 ed 7d 23 55 de 00 44	00 c8 00 e8 17 00 a1 4b 29 8a 78 b3 00 e7	00 74 00 1f a2 2d 7f 61 0e d8 20 fd cb	00 6 05 0 01 0 64 6 dd 2 dd 2 dd 3 dd 3 dd 3 dd 3 dd 3 dd 3	≥b 000 000 4c 000 4d fc 8d 9b 55 56c 6c	02 00 d1 74 00 12 d8 91 7a 29 83 ef e9	e8 00 20 f3 8d 20 86 98 6b 98 6b 94 94 59 4f	88 00 01 48 00 4f 15 75 ef 84 11 46	c7 02 00 73 bd 00 a9 89 0d b7 3f fc fc f6	7a 3c 00 00 d5 4a 00 74 d1 de ac f2 3c	00 d0 00 ec ff 00 ff 56 40 28 f1 a9 b0 ba d0	c0 43 00 d7 21 00 ea 87 00 33 4b d8 44 3c a7	0 S -Pc. T.^. '\$.F @ t9 w; dE	t. Q di 	Lt.F MC	.z. .<. I.J.).tV @ 1(?
00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0	01 00 4f c: 96 5: 00 00 11 30 2d 50 00 00 54 c: 27 20 00 00 93 cl 74 39 77 31 f0 90 64 fa d1 41	0 00 2 97 3 93 0 10 1 9e 2 5e 4 13 0 08 0 08 0 08 0 08 0 08 0 08 0 08 0 0	00 eb 01 66 d1 e7 80 fd 70 e8 40 e7 14 00 45 31	d0 01 b2 00 9b 1b 00 06 ed 7d 23 55 de 00 44 fc	00 c8 00 e8 17 00 a1 4b 29 8a 78 b3 00 e7 0b	00 74 00 1f 2d 61 61 0e d8 20 fd cb 52	000 (000 (000 (000 (000 (000 (000 (000	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	02 00 00 d1 74 00 12 d8 91 7a 29 83 ef e9 6e	e8 00 20 f3 8d 20 86 98 8c 6b 94 94 59 4f be	88 00 01 48 00 4f 15 75 ef 84 11 46 78	c7 02 00 73 bd 00 a9 0d b7 3f fc f8 f6 33	7a 3c 00 00 d5 4a 00 74 d1 de ac b1 ec f2 3c 52	00 d0 00 ec ff 00 ff 56 40 28 f1 a9 b0 ba d0 76	c0 43 00 d7 21 00 ea 87 00 33 4b d8 44 3c 8b	 			.z. .<. I.J. .0.tV .0 1(?
00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0 00	01 00 4f c: 96 5: 00 00 11 30 2d 50 00 00 54 c: 27 20 00 00 93 ci 74 3: 77 3i f0 90 64 fa	0 00 2 97 3 93 0 10 4 9e 2 5e 4 13 0 08 0 08 0 08 0 08 0 08 0 08 0 08 0 0	00 eb 01 66 d1 e7 80 fd 70 e8 40 e7 14 00 45 31 79	d0 01 b2 00 9b 1b 00 06 ed 7d 23 55 de 00 44 fc 01	00 c8 00 e8 17 00 a1 4b 29 8a 78 b3 00 e7 0b f4	00 74 00 1f 2d 61 61 0e d8 20 fd cb 52	000 (000 (000 (000 (000 (000 (000 (000	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	02 00 00 d1 74 00 12 d8 91 7a 29 83 ef e9 6e	e8 00 20 f3 8d 20 86 98 8c 6b 94 94 59 4f be	88 00 01 48 00 4f 15 75 ef 84 11 46 78	c7 02 00 73 bd 00 a9 0d b7 3f fc f8 f6 33	7a 3c 00 00 d5 4a 00 74 d1 de ac b1 ec f2 3c 52	00 d0 00 ec ff 00 ff 56 40 28 f1 a9 b0 ba d0 76	c0 43 00 d7 21 00 ea 87 00 33 4b d8 44 3c 8b	 			.z. .<. I.J. .0.tV .0 1(?

Fig. 8. Chromium cookie data of the version 80 and lower.

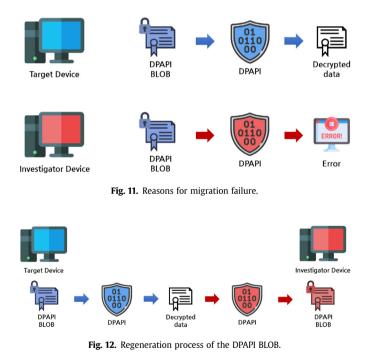

	host_key	name	expires_utc	ist_access_ut	encrypted_value	₃amesite
	Filter	Filter	Filter	Filter	Filter	Filter
1	.360.com	guid	133614531	133182720	BLOB	-1
2	.360.cn	huid	1363361311	133182720	BLOB	-1
3	.360.com	huid	1363361311	133182720		-1
4	hao.360.com	_uc_silent	1331833951	133182720	BLOB	-1
5	hao.360.com	sessionID	133183395	133182720	BLOB	-1
6	.look.360.cn	tt_dsid	1332084511	133182721	BLOB	0
7	.look.360.cn	xxl_hdr_info	133188579	133182721		\ -1
8	.google.com	1P_JAR	133208464	133182580		` ` 0
9	.google.com	AEC	133338064	133182580	BLOB	1
10	.google.com	OGP	133208464	133182580	BLOB	1 1
11	.google.com	OGPC -	133208464	133182580	BLOB	-1
						,
 =: []	Binary v				l 🔒 📮	
		24 36 a8 34 97 c	2 09 d4 31	46 f8 8b 7	e v10\$6.4	1F~
000	76 31 30 27 3d 25		e 42 9a 08		e v10\$6.4 a '=%4.	

Fig. 9. Chromium cookie data of the version 80 and upper.

user account. When users use the synchronization function, data including access history from various devices can be integrated and managed. Furthermore, it is possible to additionally collect data on user actions that take place after the data collection point and data produced by another device.

🔚 Local State, jsc																	
40 🖨				t":													^
41		apr	b b	ound	d_f	ixe	d_c	lata	e" : .								
		'AQA	AAA	NCM1	nd8	BFd	ERj	HoF	WE,	/c1-	+sB	AAA	Acy	LRt	fs	AAE+	+I432WGnxSUQA
													jkX	vZE	142	29U6	6mENPSAKNTNbi
	2	(r61	(HH)	aDI	iVC	6ap	vcl	'm+}	:5B-	+cC:	rI=	",					
42		enc	cry	pte	d_k	ey"	:										
		RFF	BUI	EkBi	AAA	AOI	yd3	WE\	70R0	GMe	gDA	T8K	Хби	EAA	ADI	lest	+gzS7ISambBk0
	V	Ny:	5FA	AAA	AAI	AAA	AAA	BBn	AA	AAA	QAA	IAA	AAC	5c5	W41	[sV}	kIf7nSYUpHNbc
	Г	dXF	KELI	DLX:	2rn	kGL	B42	ARE		AAA	A6A	AAA	AAg	AAI	AAA	AAP	gq7mloGmt8Q1T
	0)+T2	21+2	Zzkl	JNN	aV7	4cH	1001	AE	j PH:	S3D	MAA	AAF	'cjE	Yrl	Irer	nOIuLXOUyXrRk
	F	21D2	Zm7,	/k20	GBs	HgC	zYj	eb1	eLl	vjw:	LqA	I5C	loz	41e	XV	OCEA	AAAACxROi+cMH
	п	uns	SBxI	E689	QV1	VhJ	J/F	va4	hD	vow	7a4	/8L	3Si	s6W	ICM/	Az7]	L0y78yPZNkwo2
	P	4C4]	[nM	VDG:	sRp	k28	kvE	Fes	5"								
43 -	},									_							
													Ba	ise	64		
									-		-			coc		-	
										_			Dee	200	ung	g	
										•							
decodedblo	D																
ffset(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	OD	0E	OF	Decoded text
0000000	44	50	41	50	49	01	00	00	00	DO	8C	9D	DF	01	15	Dl	DPAPIĐŒ.ß
0000010	11	8C	7A	00	CO	4F	C2	97	EB	01	00	00	00	CD	7A	CF	.Œz.ÀO—ëÍz
0000020	2.0	CD	2E	C8	49	A9	9B	06	4D	~ ~					00	00	
	A0							~~	4D	30	37	2E	45	00	00	00	Í.ÈI©>.M07.E
0000030		02	00	00	00	00	00	10		00	37 00	2E 00			00	20	I.EI©>.M07.E
		02	00 00	00 3E		00 E5	00 6E										>\ån.±Y³Òa
0000040	00							10	66	00	00	00	01	00	00	20	>\ån.±Y³Òa
0000040	00	00	00	3E	5C	E5	6E	10 13	66 B1	00 59	00 08	00 7F	01 B9	00 D2	00 61	20 4A	>\ån.±Y³Òa G5∙.ur",2ñÚ³ä.° Ø.D€.
0000040	00 00 47	00 35	00 B7	3E 03	5C 75	E5 72 00	6E 84	10 13 2C	66 B1 32	00 59 F1 00	00 08 DA	00 7F B9	01 B9 E4	00 D2 18	00 61 B0	20 4A 78	>\ån.±Y³Òa G5 .ur",2ñÚ³ä.° Ø.D€
00000040 0000050 0000060 0000070 0000080	00 00 47 D8	00 35 04	00 B7 44 00	3E 03 00	5C 75 00	E5 72 00	6E 84 00 69	10 13 2C 0E	66 B1 32 80	00 59 F1 00	00 08 DA 00	00 7F B9 00	01 B9 E4 02	00 D2 18 00	00 61 B0 00	20 4A 78 20	>\ån.±Y'òa G5ur",2ñÚ'ä. Ø.D€ ø*îih.k BTôŭ ^ùœäPóZW¾C«.F
00000040 0000050 0000060 0000070 0000080 0000080	00 00 47 D8 00 88 1D	00 35 04 00	00 B7 44 00 9C	3E 03 00 F8	5C 75 00 2A	E5 72 00 EE	6E 84 00 69	10 13 2C 0E 68	66 B1 32 80 1A	00 59 F1 00 6B 1C 3D	00 08 DA 00 7C 1F 7A	00 7F B9 00 42 43 CD	01 B9 E4 02 54 AB AD	00 D2 18 00 F4	00 61 B0 00 F9	20 4A 78 20 3D CF 22	>\ån.±Y²Òċ G5 .ur,,2ñŮšă.' Ø.D€ Ø*îih.k BTôù `ùœãPÓZW¾C«.i Ã0W≢=ZÍ.éċ
00000040 00000050 00000060 00000070 00000080 00000090 00000080	00 00 47 D8 00 88 1D E2	00 35 04 00 F9 2D D7	00 B7 44 00 9C	3E 03 00 F8 E4	5C 75 00 2A 50 00	E5 72 00 EE D3	6E 84 00 69 5A	10 13 2C 0E 68 57	66 B1 32 80 1A BE	00 59 F1 00 6B 1C	00 08 DA 00 7C 1F 7A 66	00 7F B9 00 42 43 CD EF	01 B9 E4 02 54 AB AD F9	00 D2 18 00 F4 00 E9	00 61 B0 00 F9 48	20 4A 78 20 3D CF 22 1B	f. >\ån.±Yò∂a G5 .ur",2ñŬ'ā. Ø.D€ @*îih.k BTÖû ^ùœăPÔZW4C«.I Ã0W≢=21.éć â×ŇL″6fiù6.
00000040 00000050 00000060 00000070 00000080 00000080 00000080 00000080	00 00 47 D8 00 88 1D E2	00 35 04 00 F9 2D	00 B7 44 00 9C C3 D1 2C	3E 03 00 F8 E4 30	5C 75 00 2A 50 00	E5 72 00 EE D3 00 AD	6E 84 00 69 5A 00 19 F5	10 13 2C 0E 68 57 57	66 B1 32 80 1A BE 23	00 59 F1 00 6B 1C 3D	00 08 DA 00 7C 1F 7A 66 C0	00 7F B9 00 42 43 CD EF BA	01 B9 E4 02 54 AB AD F9 80	00 D2 18 00 F4 00 E9	00 61 B0 00 F9 48 F4 18 90	20 4A 78 20 3D CF 22	f
0000030 0000040 0000050 0000060 0000070 0000080 0000090 0000080 0000080	00 00 47 D8 00 88 1D E2	00 35 04 00 F9 2D D7	00 B7 44 00 9C C3 D1	3E 03 00 F8 E4 30 4C	5C 75 00 2A 50 00 97 8D	E5 72 00 EE D3 00 AD	6E 84 00 69 5A 00 19	10 13 2C 0E 68 57 57 0F	66 B1 32 80 1A BE 23 94	00 59 F1 00 6B 1C 3D 36	00 08 DA 00 7C 1F 7A 66	00 7F B9 00 42 43 CD EF	01 B9 E4 02 54 AB AD F9	00 D2 18 00 F4 00 E9 36	00 61 B0 00 F9 48 F4 18	20 4A 78 20 3D CF 22 1B	
0000040 0000050 0000060 0000070 0000080 0000090 0000080 0000080 0000080	00 47 D8 00 88 1D E2 07	00 35 04 00 F9 2D D7 80	00 B7 44 00 9C C3 D1 2C	3E 03 00 F8 E4 30 4C D8	5C 75 00 2A 50 00 97 8D	E5 72 00 EE D3 00 AD E6	6E 84 00 69 5A 00 19 F5	10 13 2C 0E 68 57 57 0F 78	66 B1 32 80 1A BE 23 94 B3	00 59 F1 00 6B 1C 3D 36 63	00 08 DA 00 7C 1F 7A 66 C0	00 7F B9 00 42 43 CD EF BA	01 B9 E4 02 54 AB AD F9 80	00 D2 18 00 F4 00 E9 36 23	00 61 B0 00 F9 48 F4 18 90	20 4A 78 20 3D CF 22 1B B5	
00000040 00000050 00000060 00000070 00000080 00000080 00000080 00000080	00 47 D8 00 88 1D E2 07 A3	00 35 04 00 F9 2D D7 80 3E	00 B7 44 00 9C C3 D1 2C 35	3E 03 00 F8 E4 30 4C D8 79	5C 75 00 2A 50 00 97 8D 7B	E5 72 00 EE D3 00 AD E6 E8	6E 84 00 69 5A 00 19 F5 08	10 13 2C 0E 68 57 57 0F 78 40	66 B1 32 80 1A BE 23 94 B3 00	00 59 F1 00 6B 1C 3D 36 63 00	00 08 DA 00 7C 1F 7A 66 C0 00	00 7F B9 00 42 43 CD EF BA B1	01 B9 E4 02 54 AB AD F9 80 44	00 D2 18 00 F4 00 E9 36 23 E8	00 61 B0 00 F9 48 F4 18 90 BE	20 4A 78 20 3D CF 22 1B B5 70	>\&n.iY'0 G5.ur,,2ÅU:4.' Ø.D€. @*iih.k BTG 'u&&P62Wk.Cw.: ÅOW==z1.éc &*NL*GflüG. .€,Ø.æ5v.ch*Ef. &Sy(è.@20H Åm*t.NFA]U.'. .,:&ÅT_3A-J+XX
00000040 00000050 00000060 00000070 00000080 00000080 00000080 00000080 000000	00 47 D8 00 88 1D E2 07 A3 C1 B8	00 35 04 00 F9 2D D7 80 3E E6	00 B7 44 00 9C C3 D1 2C 35 BA	3E 03 00 F8 E4 30 4C D8 79 74 E8	5C 75 00 2A 50 00 97 8D 7B 81 C3	E5 72 00 EE D3 00 AD E6 E8 C4	6E 84 00 69 5A 00 19 F5 08 4E	10 13 2C 0E 68 57 57 0F 78 40 BC	66 B1 32 80 1A BE 23 94 B3 00 41	00 59 F1 00 6B 1C 3D 36 63 00 5D F7	00 08 DA 00 7C 1F 7A 66 C0 00 55 4A	00 7F B9 00 42 43 CD EF BA B1 84	01 B9 E4 02 54 AB AD F9 80 44 92 3A	00 D2 18 00 F4 00 E9 36 23 E8 7F	00 61 B0 00 F9 48 F4 18 90 BE 02 23	20 4A 78 20 3D CF 22 1B B5 70 F6 00	

Fig. 10. DPAPI BLOB stored in LocalState

6.2. OS provider's website

OS providers such as Microsoft, Google, and Apple collect various information from devices using their OS and services. In particular, information collected by the OS can be partly obtainable through each website (e.g., Microsoft, Google, and iCloud). User device information logged in with the same account can be obtained, and location information of Windows, macOS, Android, and iOS devices can be inquired based on the user settings (Fig. 14).

In addition, Microsoft, Google, and iCloud sites provide useful information in digital investigations. According to Microsoft, the

Forensic Science International: Digital Investigation 45 (2023) 301568

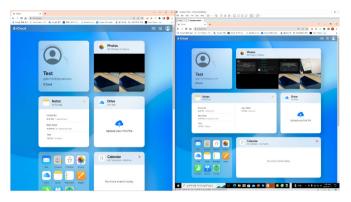


Fig. 13. Migration results for Chrome browser (left: target device, right: migrated virtual device).

default storage location of the recovery key for Bitlocker data decryption is the Microsoft account; and it can be obtained through the website login support (d). Furthermore, Google provides information not only on Android devices, but also on devices using the Chrome browser support (a). Meanwhile, Apple can also access a variety of data, such as synchronized contacts, calendars, and downloaded files, via iCloud support (b). Additionally, the websites for Microsoft, Google, and iCloud sites provide e-mail, cloud storage, and productivity services (documents, memos, and so on), which will be described later. As a result, various types of data can be collected together.

6.3. Email service

Most e-mail services used in the Windows environment provide services through web pages without programs. In particular, e-mail exchanged through web pages is not stored locally except when used in conjunction with programs such as Outlook, such that cloud data collection is required. Additionally, the majority of e-mails are sent using a secure protocol that allows end-to-end encryption like PGP, thus even if the data stored on the server is collected, decryption is impossible. As a result, security features like additional authentication can be bypassed if access to an e-mail account is available using credentials stored in the web browser.

6.4. Cloud storage

If the cloud storage is accessible, various data including photos, videos, and document data uploaded therein can be acquired. Given that cloud storage often and automatically synchronizes the many types of data generated by user devices, it provided by OS providers can be particularly helpful in digital investigations. In addition to common cloud storage, private network storage such as the network attached storage (NAS) also provides an interface through websites, to ensure it can be utilized in the same way.

6.5. Productivity service

Document tools provided by web pages such as Google Docs and various productivity services that provide functions such as collaboration, video conferencing, and memos, provide interfaces through web pages to respond to various work environments. Particularly, the cloud-based productivity tools provide the ability to import documents from specific points in the past and independently record changes for user convenience. By using this, even if there are deleted items inside the document, the data before it was deleted can be restored from the cloud.

Table 2

The list of websites that can be auto-logged into.

Name	URL	OS	Email	Social	Cloud storage	Productivity
Google	https://www.google.com/	1	1	1	1	1
iCloud	https://www.icloud.com/	1	1		1	✓
Microsoft	https://account.microsoft.com/	1	1		1	✓
Proton	https://proton.me/		1		1	✓
Naver	https://www.naver.com/		1	1	1	✓
Daum	https://www.daum.net/		1	1	1	
Yandex	https://yandex.com/		1	1	1	
Dropbox	https://www.dropbox.com/				1	
Box	https://www.box.com/				1	
Mega	https://mega.io/				1	
Zoom	https://zoom.us/			1		
Trello	https://trello.com/					1
Notion	https://www.notion.so/					1
Facebook	https://www.facebook.com/			1		
Instagram	https://www.instagram.com/			1		
Youtube	https://www.youtube.com/			1		
Twitter	https://twitter.com/			1		
Tiktok	https://www.tiktok.com/			1		
Reddit	https://www.reddit.com/			1		
Linkedin	https://www.linkedin.com/			1		

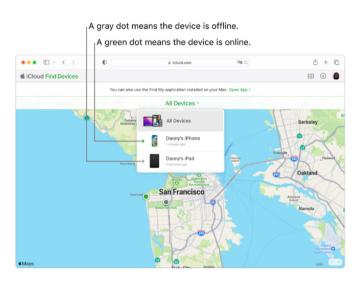


Fig. 14. Find devices on iCloud.com.

6.6. Social networking service

Social network service (SNS) includes data that is not accessible only to certain users, such as the direct message between users or secret posts, in addition to services through public posts. To obtain those data, it is necessary to access the user account. It is simple to determine whether a user has utilized services like anonymous posting by gaining access to their user account.

Additionally, websites that provide auto-login can utilize migration data in the same way until the credentials expire, as well as the functions mentioned above. Above all, the credentials of websites like Google, Apple, and Facebook, that provide single signon (SSO) functions can be used as credentials for other services on their own.

7. Conclusion

As the number of devices used by one person increases, there has been a corresponding increase in services that store data in the cloud to provide a seamless user experience in various devices and environments. In addition, for services provided based on the data stored in the cloud, it is challenging to obtain and analyze data only with the previous digital forensic investigation method, which analyzes the data stored in devices. At this time, credentials remaining in the browser can be used very useful. In this paper, we proposed a method of migrating browser data to the investigator device to utilize credentials stored in the browser data. As a result of our experiment, we were able to migrate the same user environment such as auto-login and password autocomplete through data migration. Furthermore, if the auto-login and browser trust options are enabled, it is possible to log in normally to websites that could not be logged into using only ID and password. Additionally, we were able to obtain various data, which can be efficiently used for digital forensic investigation related to user behavior such as email, chat history, and location information on web pages accessible via auto-login. Overall, we believe that the results of this paper will be useful in digital forensic investigation.

Acknowledgement

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2021-0-00540, Development of Fast Design and Implementation of Cryptographic Algorithms based on GPU/ASIC).

References

- Cho, J., Kim, D., Kim, H., 2018. User credential cloning attacks in android applications: exploiting automatic login on android apps and mitigating strategies. IEEE Cons. Electron. Magazine 7, 48–55.
- Chung, H., Park, J., Lee, S., Kang, C., 2012. Digital forensic investigation of cloud storage services. Digit. Invest. 9, 81–95.
- Cisco, 2020. Cisco annual internet report(2018–2023) white paper. https://www. cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.pdf. 01-Jau-2023.
- Delpy, B., 2020. mimikatz. https://github.com/ParrotSec/mimikatz.
- Google. The chromium projects. https://www.chromium.org/chromium-projects/. Grassi, P., Garcia, M., Fenton, J., 2020. Digital Identity Guidelines. National Institute
- of Standards and Technology. Technical Report. Grassi, P.A., Fenton, J.L., Newton, E.M., Perlner, R.A., Regenscheid, A.R., Burr, W.E., Richer, J.P., Lefkovitz, N.B., Danker, J.M., Choong, Y., et al., 2016. Draft Nist Special Publication 800-63b Digital Identity Guidelines. National Institute of Standards and Technology (NIST) 27.

Hardt, D., 2012. The OAuth 2.0 Authorization Framework (Technical Report). Jones, M., Bradley, J., Sakimura, N., 2015. Json Web Token (Jwt). Technical Report. Mell, P., Grance, T., et al., 2011. The Nist Definition of Cloud Computing. Moussa, A.N., Ithnin, N., Almolhis, N., Zainal, A., 2019. A consumer-oriented cloud

U. Hur, S. Kang, G. Kim et al.

forensic process model. In: 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC). IEEE, pp. 219–224.

Mozilla. Firefox browser. https://www.mozilla.org/en-US/firefox/.

- Quick, D., Choo, K.K.R., 2014. Google drive: forensic analysis of data remnants. J. Netw. Comput. Appl. 40, 179–193.
- Roussev, V., Ahmed, I., Barreto, A., McCulley, S., Shanmughan, V., 2016a. Cloud forensics-tool development studies & future outlook. Digit. Invest. 18, 79–95. Roussev, V., Barreto, A., Ahmed, I., 2016b. Forensic Acquisition of Cloud Drives arXiv
- preprint arXiv:1603.06542. Satran, M., Sharkey, K., Jacobs, M., Coulter, D., Ashcraft, A., Cng dpapi, https://learn. microsoft.com/en-us/windows/win32/seccng/cng-dpapi. (Accessed 14 January 2023).

Sofer, N., 2008. Chromepass - chrome browser password recovery for windows. https://www.nirsoft.net/utils/chomepass.html. (Accessed 14 January 2023). Sofer, N., 2017. DataProtectionDecryptor v1.11. https://www.nirsoft.net/utils/dpapi_

data_decryptor.html. (Accessed 14 January 2023).

- StatCounter, 2022. Desktop browser market share worldwide. https://gs. statcounter.com/browser-market-share/desktop/worldwide.
- support, G., a. Lock or erase your lost phone or computer. https://support.google. com/accounts/answer/7177579?hl=en&ref_topic=7189123.
- support, G., b. Lock or erase your lost phone or computer. https://support.apple. com/ko-kr/guide/icloud/mm281e3e7d/1.0/icloud/1.0.
- support, M., c. Download the new microsoft edge based on chromium. https:// support.microsoft.com/en-us/microsoft-edge/download-the-new-microsoftedge-based-on-chromium-0f4a3dd7-55df-60f5-739f-00010dba52cf.
- support, M., d. Finding your bitlocker recovery key in windows. https://support. microsoft.com/en-us/windows/finding-your-bitlocker-recovery-key-inwindows-6b71ad27-0b89-ea08-f143-056f5ab347d6.
- Yang, J., Kim, J., Bang, J., Lee, S., Park, J., 2022. Catch: cloud data acquisition through comprehensive and hybrid approaches. Forensic Sci. Int.: Digit. Invest. 43, 301442.