

As if Time Had Stopped – Checking Memory Dumps for Quasi-Instantaneous Consistency

Jenny Ottmann, Üsame Cengiz, Frank Breitinger, Felix Freiling

Chair of IT Security Infrastructures Friedrich-Alexander-Universität Erlangen-Nürnberg

²Vömel and Stüttgen 2013; Gruhn and Freiling 2016

Ottmann et al.

FAU Erlangen-Nürnberg

²Vömel and Stüttgen 2013; Gruhn and Freiling 2016

Ottmann et al.

FAU Erlangen-Nürnberg

²Vömel and Stüttgen 2013; Gruhn and Freiling 2016

Ottmann et al.

FAU Erlangen-Nürnberg

²Vömel and Stüttgen 2013; Gruhn and Freiling 2016

Ottmann et al.

FAU Erlangen-Nürnberg

¹Case and Richard III 2017; Pagani, Fedorov, and Balzarotti 2019
²Vömel and Stüttgen 2013; Gruhn and Freiling 2016

Ottmann et al.

FAU Erlangen-Nürnberg

• Inhibit the analysis¹

¹Case and Richard III 2017; Pagani, Fedorov, and Balzarotti 2019 ²Vömel and Stüttgen 2013; Gruhn and Freiling 2016

Ottmann et al.

FAU Erlangen-Nürnberg

- Inhibit the analysis¹
- Not that easy to measure 2

¹Case and Richard III 2017; Pagani, Fedorov, and Balzarotti 2019 ²Vömel and Stüttgen 2013; Gruhn and Freiling 2016

Ottmann et al.

³Pagani, Fedorov, and Balzarotti 2019

Ottmann et al.

³Pagani, Fedorov, and Balzarotti 2019

Ottmann et al.

- Deliberately placed

³Pagani, Fedorov, and Balzarotti 2019

Ottmann et al.

- Deliberately placed
 - $\rightarrow Observe \ \mbox{quasi-instantaneous} \\ consistency$

³Pagani, Fedorov, and Balzarotti 2019

Ottmann et al.

Model

• Set of *n* memory regions: $R = \{r_1, \dots, r_n\}$

- Set of *n* memory regions: $R = \{r_1, \dots, r_n\}$
- Memory: $m: R \times T \rightarrow V$

- Set of *n* memory regions: $R = \{r_1, \dots, r_n\}$
- Memory: $m: R \times T \rightarrow V$
- Only events change contents,

- Set of *n* memory regions: $R = \{r_1, \dots, r_n\}$
- Memory: $m: R \times T \rightarrow V$
- Only events change contents, therefore, *T* is defined as the set of natural numbers ℕ

- Set of *n* memory regions: $R = \{r_1, \dots, r_n\}$
- Memory: $m: R \times T \rightarrow V$
- Only events change contents, therefore, *T* is defined as the set of natural numbers ℕ
- Snapshot: $s : R \rightarrow V \times T$

Quasi-Instantaneous Consistency

Instantaneous Consistency⁴

⁴Ottmann, Breitinger, and Freiling 2022.

Instantaneous Consistency⁴

⁴Ottmann, Breitinger, and Freiling 2022. Ottmann et al.

Quasi-Instantaneous Consistency⁵

⁵Ottmann, Breitinger, and Freiling 2022.

Quasi-Instantaneous Consistency⁵

⁵Ottmann, Breitinger, and Freiling 2022.

Observing Quasi-Instantaneous Consistency Idea

Idea

Idea

Local counters & global counter array

Local counters & global counter array

Local counters & global counter array

Prerequisites

• Detection of events

Observation Elements

Local counters & global counter array

Prerequisites

- Detection of events
- Ability to save counters locally
- Ability to save counters in global counter array

Formal Proof

We want to show that:

• Local counters & global counter array suffice to check quasi-instantaneous consistency

Only events change contents

Only events change contents

Only events change contents

Times

• *s*:
$$r_1 \cdot t = r_2 \cdot t = r_3 \cdot t = 3$$

Only events change contents

Times

s: r₁.t = r₂.t = r₃.t = 3
N(s):

$$r_{1}.t = 2$$

 $r_{2}.t = 1$
 $r_{3}.t = 3$

A snapshot is quasi-instantaneous if a hypothetical instantaneous snapshot with the same values exists

A snapshot is quasi-instantaneous if a hypothetical instantaneous snapshot with the same values exists

We can use \hat{s} to determine if the snapshot is quasi-instantaneous

We can use \hat{s} to determine if the snapshot is quasi-instantaneous

 s_1

Ottmann et al.

 s_1

•
$$T_{N(s_1)} = (2, 1, 0)$$

Ottmann et al.

 s_1

- $T_{N(s_1)} = (2, 1, 0)$
- $T_{N(\hat{s}_1)} = (2, 1, 0)$

 s_1

• $T_{N(s_1)} = (2, 1, 0)$ • $T_{N(\hat{s}_1)} = (2, 1, 0)$

s2

 s_1

T_{N(s1)} = (2, 1, 0)
T_{N(ŝ1)} = (2, 1, 0)

*s*₂

• $T_{N(s_2)} = (5, 1, 3)$

 s_1

T_{N(s1)} = (2, 1, 0)
T_{N(ŝ1)} = (2, 1, 0)

s2

- $T_{N(s_2)} = (5, 1, 3)$
- $T_{N(\hat{s}_2)} = (5, 4, 3)$

Practical Evaluation

Global Counter Array Simplification

Global Counter Array Simplification

- VM
- Ubuntu 18.04
- 4 GB RAM

⁶https://github.com/504ensicsLabs/LiME
⁷https://github.com/volatilityfoundation/volatility
⁸Pagani, Fedorov, and Balzarotti 2019
Ottmann et al. FAU Erlangen-Nürnberg

- VM
- Ubuntu 18.04
- 4 GB RAM

Tools

- LiME 6
- Volatility ⁷

⁶https://github.com/504ensicsLabs/LiME
⁷https://github.com/volatilityfoundation/volatility
⁸Pagani, Fedorov, and Balzarotti 2019
Ottmann et al. FAU Erlangen-Nürnberg

- VM
- Ubuntu 18.04
- 4 GB RAM

Tools

- LiME 6
- Volatility ⁷

⁶https://github.com/504ensicsLabs/LiME
⁷https://github.com/volatilityfoundation/volatility
⁸Pagani, Fedorov, and Balzarotti 2019
Ottmann et al. FAU Erlangen-Nürnberg

Consistency indicators

• Local counters & global counter array in pivot program

- VM
- Ubuntu 18.04
- 4 GB RAM

Tools

- LiME 6
- Volatility ⁷

⁶https://github.com/504ensicsLabs/LiME
⁷https://github.com/volatilityfoundation/volatility
⁸Pagani, Fedorov, and Balzarotti 2019
Ottmann et al. FAU Erlangen-Nürnberg

Consistency indicators

- Local counters & global counter array in pivot program
- VMA count comparison⁸

Ottmann et al.

FAU Erlangen-Nürnberg

16

Load

• Low: One thread

Ottmann et al.

Load

- Low: One thread
- High: Eight threads

Ottmann et al.

Load

- Low: One thread
- High: Eight threads

System states

• Frozen

Load

- Low: One thread
- High: Eight threads

System states

- Frozen
- Live

Ottmann et al.

Sytem State	Inconsistency type	Activity	Min	Max	Average	Affected dumps
Live	Quasi-instantaneous	Low	0	3	0.8	5/10
		High	0	37	13.8	7/10
Live	VMA	Low	0	1	0.1	1/10
		High	3	7	4.9	9/9

Discussion

#	Inconsistencies	Range (in pages)	Distances $<= 10$ pages	Max distance
1	37	224 575	61	103 122
2	30	423 245	47	79613
3	21	141 591	20	54774
4	17	150 635	33	53 319
5	16	267 028	44	82 596
6	15	79 296	85	71 215
7	2	99 921	81	55 761
8	0	82 526	76	62 653
9	0	12132	75	3 170
10	0	4 4 3 1	97	2 665

Dump no. 1

• Exact quantification & localization of inconsistencies

- Exact quantification & localization of inconsistencies
- Observe the influence of fragmentation

- Exact quantification & localization of inconsistencies
- Observe the influence of fragmentation
- Size of observed range flexible

- Exact quantification & localization of inconsistencies
- Observe the influence of fragmentation
- Size of observed range flexible

Possible adjustments

- Exact quantification & localization of inconsistencies
- Observe the influence of fragmentation
- Size of observed range flexible

Possible adjustments

• Influence fragmentation

Benefits

- Exact quantification & localization of inconsistencies
- Observe the influence of fragmentation
- Size of observed range flexible

Possible adjustments

- Influence fragmentation
- Influence position in physical address space

Conclusion

- Observation method works
 - Theoretical proof
 - Practical case study

- Observation method works
 - Theoretical proof
 - Practical case study

• Most memory dumps are not quasi-instantaneous

- Observation method works
 - Theoretical proof
 - Practical case study

- Most memory dumps are not quasi-instantaneous
- Benefits of deliberately placed consistency indicators

• Influence position of pivot program

- Influence position of pivot program
- Observe quasi-instantaneous consistency at a higher level

- Influence position of pivot program
- Observe quasi-instantaneous consistency at a higher level

- Influence position of pivot program
- Observe quasi-instantaneous consistency at a higher level

• Extensive tool evaluations

- Influence position of pivot program
- Observe quasi-instantaneous consistency at a higher level

- Extensive tool evaluations
- Search for additional consistency indicators

- Influence position of pivot program
- Observe quasi-instantaneous consistency at a higher level

- Extensive tool evaluations
- Search for additional consistency indicators

Thank you for your attention!

References

- Case, Andrew and Golden G Richard III (2017). "Memory forensics: The path forward". In: *Digital Investigation* 20, pp. 23–33.
- Gruhn, Michael and Felix C Freiling (2016). "Evaluating atomicity, and integrity of correct memory acquisition methods". In: *Digital Investigation* 16, S1–S10.
- Lempereur, Brett, Madjid Merabti, and Qi Shi (2012). "Pypette: A Platform for the Evaluation of Live Digital Forensics". In: *Int. Journal of Digital Crime and Forensics* 4.4, pp. 31–46.

- Ottmann, Jenny, Frank Breitinger, and Felix Freiling (2022). "Defining Atomicity (and Integrity) for Snapshots of Storage in Forensic Computing". In: *Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU)*. Oxford.
- Pagani, Fabio, Oleksii Fedorov, and Davide Balzarotti (2019). "Introducing the temporal dimension to memory forensics". In: ACM Transactions on Privacy and Security (TOPS) 22.2, pp. 1–21.
- Vömel, Stefan and Johannes Stüttgen (2013). "An evaluation platform for forensic memory acquisition software". In: *Digital Investigation* 10, S30–S40.