PREE: Heuristic Builder for Reverse Engineering of Network Protocols in Industrial Control Systems

Syed Ali Qasim, Wooyeon Jo, Irfan Ahmed (qasimsa, jow, iahmed3) @vcu.edu Virginia Commonwealth University Richmond, VA

Introduction

Industrial Control Systems

Attacks on ICS and Forensic Challenges

The New York Times

NEWS ANALYSIS

A Silent Attack, but Not a Subtle One

f 🔉 🖌 🗖 🔶 🗍

Iran's Natanz nuclear enrichment site is the focus of speculation about the int target of a broad and unsubtle cyberattack. Majid Saeedi/Getty Images

Cyberattack on Critical Infrastructure: Russia and the Ukrainian Power Grid Attacks

The proprietary nature of ICS protocols presents significant challenges for the security and forensic analysis of PLCs

Current Methods for Protocol Reverse Engineering & their Limitations

Current methods include:

- Manual Reverse Engineering
- Automatic Reverse Engineering (Binary and Network)

Limitations

- Manual Analysis: Large Data Volume, Time consuming, Unreadable Binary Messages
- Binary Analysis: Program execution and memory usage, executables files
- Network Analysis: Require Large Data Volumes, High False positive rates

Discovering Common Ground: Unveiling Shared Fields in ICS Protocols

ICS protocol field categories

Configurational Fields

Fixed Fields

Variable Fields

Semantic	Modbus	Modbus M221	ENIP	PCCC	CLICK	Omron FINS	Field Type
PLC ID	×			0			Configuration
Transaction/Message ID	1		~	1	~	1	Variable
Session ID			~			~	Variable
Message Type ID			~	1	~	~	Variable
Message Length	✓	✓	~	√	~	~	Variable
Function Code		1	~	1	~	~	Variable
PLC Memory Data Size		~	~	1	~	~	Variable
PLC Memory Address		~	√	√	√	1	Variable
Protocol Identifiers	1	✓	~	~	 ✓ 	1	Fixed

Protocol Reverse Engineering Engine (PREE)

SAFE Lab

Session Extraction

 Separates sessions using four-tuple: source IP, source port, destination IP, destination port

Message Pairing

Pairs request and response messages and maintains the sequence

Message Grouping

Groups similar messages based on payload length or total size

PREE Architecture: Data Analytics

Message-Level Analysis

- Certain protocol fields, such as
- "Length field" can be identified
- using information within the message

Session-Level Analysis

 Focuses on session-wide patterns in protocol fields.

Summary of PREE data analytics functionalities

Function	Description	Type	
Function	Description	Type	
sim_msg	Find similarity between two messages	Message-Level	
C 1	Search the given sequence of bytes in		
find_msg	messages	Message-Level	
diff mag	Find difference between tow messages	Mossage Lovel	
uminisg	Find difference between tow messages	wiessage-Lever	
h movo	Give all possible substrings and their	Mossage Lovel	
n-move	indices in a message	wiessage-Lever	
. 1	Generates substrings inside a window		
window_gen	given message, window size and increment	Message-level	
	Find the longest common subsequence		
longestSubstringFinder	of two messages	Session-Level	
	Gives array of substring inside the given	Caralian Taral	
v_move	window for all messages	Session-Level	
	Makes frequency table containing frequency		
nnd_req	of each byte at each index in the pcap file	Session-Level	
for a second set	Find Messages that have bytes with	C1	
Ireq_match	frequency > given threshold	Session-Level	
free charge	Find indices in messages with frequency	Consign Lossal	
ireq_cnange	change lower than given threshold	Session-Level	

Finding Configuration and Fixed Fields

Finding Configuration Fields:

- No heuristics required
- •Use "find_msg" function in PREE
- Takes target sequence of bytes (known configuration field value)
- Returns location/index in all messages of a session if found

Finding Fixed Fields:

- •Use "find_feq" function in PREE
- Generates frequency table of values across message indices in a session.

• Fixed fields found where frequency is 100% (value stays the same)

Finding Variable Fields: Rolling Window Technique

Rolling Window:

- Sliding window of varying sizes (1, 2, ..., n bytes) over the message
- Applies user-defined function to all substrings
- Potential fields selected if consistently appearing across similar messages

Finding Varaiable Fields: Rolling Window Techinque

Length field:

- User provides function f(x) to calculate payload length
- Window location marked as a length field if value matches output of f(x)

Checksum field:

- User provides potential checksum function
- Rolling window technique identifies the location of the checksum field

Finding Variable Fields: Vertical Window Technique

Vertical Window:

Moves a window of varying sizes over

all messages in a session

- Checks if user-defined function f(y) = y+1
 - for consecutive message pairs
- Window location labeled a potential protocol field based on f(x)

U Window →

Msg1	0e 4d 00 00 00 05 01 5a 00 01 00
Msg2	0e 4e 00 00 00 04 01 5a 00 11
Msg3	0e 4f 00 00 00 28 01 5a 00 10 00
Msg4	0e 50 00 00 00 04 01 5a 24 12
Msg5	0e 51 00 00 00 04 01 5a 00 02
Msg n-1	0f 09 00 00 00 41 01 5a 00 24 0a
Msg n	0f 0a 00 00 00 2f 01 5a 00 24 07

SAFE Lab

Finding Variable Fields: Vertical Window Technique

Transaction ID:

- Increases constantly with each new message
- Define f(x) to add a fixed number to x
- Sliding window represents potential "Transaction ID"

PLC Memory Address:

- Address changes by the size of data written/read in consecutive messages
- Use f(x) to add current memory address and data size
- Vertical window identifies "PLC Memory Address"

Msg1	0e 4d 00 00 00 05 01 5a 00 01 00
Msg2	0e 4e 00 00 00 04 01 5a 00 11
Msg3	0e 4f 00 00 00 28 01 5a 00 10 00
Msg4	0e 50 00 00 00 04 01 5a 24 12
Msg5	0e 51 00 00 00 04 01 5a 00 02
Msg n-1	0f 09 00 00 00 41 01 5a 00 24 0a
Msg n	Of 0a 00 00 00 2f 01 5a 00 24 07

Frequency Table:

- Identifies variable fields without a specific pattern
- Stores frequency and values of each byte at each index in a session

Frequency Table

1	2	3	4	•	•	n
'0e':52 '0f':60	'4d':1 '4e':1 '4f':1 	'00':102	'00':102	••	•••	••••

SAFE Lab

Finding Variable Fields: Frequency Table Technique

Session ID:

- Exchanged in the beginning and stays constant afterwards
- Query frequency table for indices with limited changes
- Search bytes in initial messages to find "Session ID"

Function Code:

- Limited set of codes in requests and responses
- Query frequency table for limited variance in request messages and constant values in response messages
- Indices may indicate "Function Code" in ICS protocol

Message Type ID:

- Unique values in request and response messages
- Create separate frequency tables for request and response messages
- Compare bytes with 100% frequency in each table to find "Message Type ID"

Evaluation Metrics for PREE

Coverage:

Percentage of messages covered by PREE as protocol fields.

Perfection:

Quality of perfect extraction of existing ground truth fields.

Conciseness:

 How efficiently we are able to extract the relevant ground truth fields.

$$Conciseness = \frac{\# of \ extracted \ ground \ truth \ fields}{\# of \ extracted \ fields}$$

$$Coverage = \frac{\# of \ labeled \ bytes}{\# of \ extracted \ bytes}$$

 $Perfection = \frac{\# of \ extracted \ ground \ truth \ fields}{\# of \ total \ ground \ truth \ fields}$

PREE Evaluation: Modbus

Comparison of PREE and Ground Truth For Modbus

Field	PREE Location	Ground Truth Location	PREE Semantic	Ground Truth Semantic	#PREE types	# Ground Truth types
1	1-2	1-2	Transaction ID	Transaction ID	1	1
2	5-6	5-6	Length	Length	1	1
3	3-4	3-4	Protocol ID	Protocol ID	1	1
4	7	7	Protocol ID	Protocol ID	1	1

PREE Evaluation: UMAS

Fields Identified In UMAS Protocol

Comparison of PREE and Ground Truth for UMAS

Field	PREE Location	Ground Truth Location	PREE Semantic	Ground Truth Semantic	#PREE types	# Ground Truth types
1	1	1	Protocol ID	Protocol ID	1	1
2	3	3	Function Code	Function Code	1	1
3	4-5	4-5	PLC Memory Address	PLC Memory Address	1	1
4	8-9	8-9	Length	PLC Memory Data Size	1	1

PREE Evaluation: PCCC

PREE Evaluation: ENIP

Fields Identified in ENIP Protocol

Comparison of PREE and Ground Truth for ENIP

Transactio ID	n P	roto lent	ocol ifiei	r S	essi Fiel	on d	Pr Ide	otoc entif	ier	eng	ţth	Ses I	sior D		roto lent	ocol ifier ≰
Protocol	f9	F2	96	89	00	00	6f	00	28	00	3e	02	47	65	00	00
FIOLOCOT	00	00	86	01	00	00	78	04	51	02	00	00	00	00	00	00
Identifier	00	00	05	00	02	00	85	00	0f	00	31	39	32	2e	31	36
0060	38	2e	31	30	2e	31	31	39	00	91	00	09	00	Of	00	01
Message	dc	a1	10	00	00	00	1	_			Koto		X	and the second	0.2250	
Type ID				A	PLC ddr	IP ess	*	L	engtl		ent	ifier	Le	engt	h	

Field	PREE Location	Ground Truth Location	PREE Semantic	Ground Truth Semantic	#PREE types	# Ground Truth types
1	1-2	1	Protocol ID	Protocol ID	1	1
2	3-4	3	Length	NA	1	1
3	5-8	4-5	Session ID	NA	1	1
4	9-12	8-9	Protocol ID	PLC Memory Data Size	1	1
5	13-14	13-14	Transaction ID	Transaction ID	1	1
6	15-20	15-20	Session Field	Session Field	1	1
7	21-28	21-28	Protocol ID	Protocol ID	1	1
8	29-30	29-30	Message Type	Message Type	2	2
9	31-32	31-32	Protocol ID	Protocol ID	1	1
10	34	34	Protocol ID	Protocol ID	1	1
11	35-36	35-36	Length	Length	1	1
12	37-50	NA	PLC IP	NA	1	1
13	52-53	52-53	Protocol ID	Protocol ID	1	1
14	54-55	54-55	Length	Length	1	1

PREE Evaluation: CLICK

Fields Identified in CLICK Protocol

Comparison of PREE and Ground Truth for CLICK

Field	PREE Location	Ground Truth Location	PREE Semantic	Ground Truth Semantic	#PREE types	# Ground Truth types
1	1-4	1-4	Protocol ID	Protocol ID	1	1
2	5-6	5-6	Transaction ID	Transaction ID	1	1
3	9	9	Length	Length	1	1
4	10-11	10-11	Protocol ID	Protocol ID	1	1
5	15	15	PLC Memory Data Size	PLC Memory Data Size	1	1
6	16-19	16-19	PLC Memory Address	PLC Memory Address	1	1
7	20	20	Length	PLC Memory Data Size	1	1

PREE Evaluation: OMRON FINS

Fields Identified in FINS Protocol

Comparison of PREE and Ground Truth for FINS

Field	PREE Location	Ground Truth Location	PREE Semantic	Ground Truth Semantic	#PREE types	# Ground Truth types
1	1-6	NA	Protocol ID	NA	1	NA
2	7-8	NA	Length	NA	1	NA
3	9-16	NA	Length	NA	1	NA
4	17	NA	Message Type ID	NA	1	NA
5	18	NA	Protocol ID	NA	1	NA
6	19	NA	Message Type ID	NA	1	NA
7	20	NA	Protocol ID	NA	1	NA
8	21	NA	Message Type ID	NA	1	NA
9	22-23	NA	Protocol ID	NA	1	NA
10	24	NA	Message Type ID	NA	1	NA
11	25	NA	Protocol ID	NA	1	NA
12	26	NA	Transaction ID	NA	1	NA

Evaluation Summary

- Five PLCs from four ICS vendors
- Six ICS protocols tested
- Three techniques and seven heuristics used
- Eight protocol fields effectively identified

Results	Modbus TCP	Modbus M221	CLICK	ENIP	PCCC	Omron FINS
Ground Truth Fields	4	5	6	13	8	NA
PREE Identified	4	4	6	14	5	13
Conciseness	100%	100%	100%	100%	100%	-
Perfection	100%	80%	100%	100%	62.5%	_

Summary of Fields Identified by PREE

PREE Application I: Vulnerability Discovery on Click PLC

Adversary Model:

- Adversary inside the ICS network
- •Can communicate with the target PLC

•Can sniff communication, initiate connections, and send malicious messages

Attack Implementation:

- Changing the mode of a PLC using engineering software
- Capturing network traffic and analyzing differences
- Identifying messages responsible for switching the PLC from start to stop

PREE Application II: Forensic Analysis of ICS Attacks on Click PLC

Snort Rules

Control Engine Attack

 SNORT rule raises an alert for messages containing the signature of a PLC mode change

Control Logic Injection Attack

Raises alert when it detects a write request
 FC '05'

Control Logic Theft Attack

Raises alert when it detects a read request
 FC '04'

Snort Rule Template for Detecting Control Engine Attack

alert udp any any -> PLCIP 25425 (content:"|4b 4f 50 00|";offset:0; depth:4; content:"|07 00 4d 01 43 00|"; offset:8; depth:6; msg:"PLC Mode change attempted")

Snort Rule Template for Detecting Control Logic Injection Attack

alert udp any any -> PLCIP 25425 (content:"|4b 4f 50 00|";offset:0; depth:4; content:"|0a 00 4d 01 65 05|"; offset:8; depth:6; msg:"Control Logic write attempt")

Snort Rule Template for Detecting Control Logic Theft Attack

alert udp any any -> PLCIP 25425 (content:"|4b 4f 50 00|";offset:0; depth:4; content:"|0a 00 4d 01 65 04|"; offset:8; depth:6; msg:"Control Logic Read attempt")

Conclusion

Developed PREE: a tool for reversing proprietary ICS protocols based on shared common fields

PREE assists users in creating heuristics for identifying fields in various protocols

Applied seven heuristics to six protocols (Modbus, UMAS, ENIP, PCCC, CLICK, OMRON FINS) using three techniques

Successfully identified several common fields in these protocols

Demonstrated practical applications for investigating 3 different network-based attacks on CLICK PLC

Thank You

Questions?

