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➤ Deterministic, Collision resistant etc. 

➤ Used to verify integrity

➤ Concise unique representation of a digital artifact

Cryptographic Hashes

Background
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➤ Non-cryptographic hashes (not collision resistant etc.)

➤ Used to determine similarity 

➤ Concise similarity preserving representation of a digital artifact

Fuzzy Hashes

Background
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Background
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Fuzzy Hashing Schemes / Approximate Matching

Simplified overview similar to Ren, Liwei [1] (DFRWS EU 2015)
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Background

5

Anomaly Detection

      

          

                  

             

            

      

      

                 

                    

Approximate Matching Deep Learning Approximate Matching (DLAM)
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Deep learning approximate matching (DLAM)

Current research impressions:
Peiser et al.  [3]

Related Work
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Deep learning approximate matching (DLAM)

Related Work

[2] (→ Google: combing through the fuzz)
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➤ Is DLAM more effective than conventional approximate matching?

➤ Is the classification performance dependent on the file type?

➤ Are transformers better for DLAM?

➤ Is DLAM able to compensate for weaknesses in conventional 

approximate matching?

Research Questions

Background
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Training and Evaluation Pipeline

Setup
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Evaluation Pipeline (simplified for FN’s, TP’s) 

Setup
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Background
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Creating embeddings for deep learning
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Results (Accuracies) 

Classification

Mrsh-cf MRSH-v2 ssdeep TLSH ssdeep (FF) TLSH (FF) ssdeep (TF) TLSH (TF)

JS 81.54 67.38 50.02 50.02 92.70 82.08 92.70 87.90

PDF 97.3 95.44 50.04 49.98 79.10 78.42 94.34 82.60

XLSX 96.78 88.22 52.54 51.17 93.80 90.28 97.36 90.74

FF: feed-forward network
TF: transformer model (small BERT)

conventional approximate matching DLAM
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Is DLAM more effective ? (Accuracy)

Classification

Mrsh-cf MRSH-v2 ssdeep TLSH ssdeep (FF) TLSH (FF) ssdeep (TF) TLSH (TF)

JS 81.54 67.38 50.02 50.02 92.70 82.08 92.70 87.90

PDF 97.3 95.44 50.04 49.98 79.10 78.42 94.34 82.60

XLSX 96.78 88.22 52.54 51.17 93.80 90.28 97.36 90.74

FF: feed-forward network
TF: transformer model (small BERT)
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Is the classification performance dependent on the file type? (Accuracy)

Classification

Mrsh-cf MRSH-v2 ssdeep TLSH ssdeep (FF) TLSH (FF) ssdeep (TF) TLSH (TF)

JS 81.54 67.38 50.02 50.02 92.70 82.08 92.70 87.90

PDF 97.3 95.44 50.04 49.98 79.10 78.42 94.34 82.60

XLSX 96.78 88.22 52.54 51.17 93.80 90.28 97.36 90.74

FF: feed-forward network
TF: transformer model (small BERT)



Frieder Uhlig DFRWS US 2023 – 2023-07-11 15

Are transformers better for DLAM ? (Accuracy)

Classification

Mrsh-cf MRSH-v2 ssdeep TLSH ssdeep (FF) TLSH (FF) ssdeep (TF) TLSH (TF)

JS 81.54 67.38 50.02 50.02 92.70 82.08 92.70 87.90

PDF 97.3 95.44 50.04 49.98 79.10 78.42 94.34 82.60

XLSX 96.78 88.22 52.54 51.17 93.80 90.28 97.36 90.74

FF: feed-forward network
TF: transformer model (small BERT)
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Deep learning assisted approximate matching - TLSH

Classification
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Deep learning assisted approximate matching - ssdeep

Classification
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Adversarial Resilience
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Digest Comparison Impediment 
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Classification accuracy in face of repetition

Adversarial Resilience



Frieder Uhlig DFRWS US 2023 – 2023-07-11

Conclusion

➤ DLAM is a strong alternative to anomaly detection with conventional approximate matching.

➤ 12 minutes for training on a conventional GPU (100,000 hashes.)

➤ DLAM is an enabler for anomaly detection with TLSH and ssdeep.

➤ Transformers perform better than Feed Forward Networks

➤ ssdeep is preferable for DLAM over TLSH. 

➤ False Negatives are more predictable for ssdeep.

➤ DLAM is more robust in face of repetitive content. 

20

A new look on fuzzy hashing
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Future Work

➤ Are fuzzy hashes with variable size usable?

➤ MRSH-v2 

➤ Can DLAM be adapted to make more complex predictions?

➤ Can section-level hashing improve DLAM?

➤ How well does DLAM perform in practice? 

➤ (Malware detection, data loss prevention) 

21

Future research
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Thank you.

is available via GitHub: 
https://github.com/warlmare/DLAM
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Compression Efficiency
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