
lable at ScienceDirect

Forensic Science International: Digital Investigation 45 (2023) 301567
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2023 USA - Proceedings of the Twenty Third Annual DFRWS Conference
Database memory forensics: Identifying cache patterns for log
verification

James Wagner a, *, Mahfuzul I. Nissan a, Alexander Rasin b

a University of New Orleans, New Orleans, LA, USA
b DePaul University, Chicago, IL, USA
a r t i c l e i n f o

Article history:

Keywords:
Memory forensics
Database forensics
Digital forensics
* Corresponding author.
E-mail addresses: jwagner4@uno.edu (J. W

(M.I. Nissan), arasin@depaul.edu (A. Rasin).

https://doi.org/10.1016/j.fsidi.2023.301567
2666-2817/© 2023 The Author(s). Published by Elsev
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

Cyberattacks continue to evolve and adapt to state-of-the-art security mechanisms. Therefore, it is
critical for security experts to routinely inspect audit logs to detect complex security breaches. However,
if a system was compromised during a cyberattack, the validity of the audit logs themselves cannot
necessarily be trusted. Specifically, for a database management system (DBMS), an attacker with elevated
privileges may temporarily disable the audit logs, bypassing logging altogether along with any tamper-
proof logging mechanisms. Thus, security experts need techniques to validate logs independent of a
potentially compromised system to detect security breaches.

This paper demonstrates that SQL query operations produce a repeatable set of patterns within DBMS
process memory. Operations such as full table scans, index accesses, or joins each produce their own set
of distinct forensic artifacts in memory. Given these known patterns, we propose that collecting forensic
artifacts from a trusted memory snapshot allows one to reverse-engineer query activity and validate
audit logs independent of the DBMS itself and outside the scope of a database administrator's privileges.
We rely on the fact the queries must ultimately be processed in memory regardless of any security
mechanisms they may have bypassed. This work is generalized to all relational DBMSes by using two
representative DBMSes, Oracle and MySQL.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS All rights reserved. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In a compromised environment, security experts can employ
forensic techniques to verify the integrity of data and files,
including the audit logs. Research has considered one-way hash
functions (Peha, 1999; Snodgrass et al., 2004; Pavlou and
Snodgrass, 2008), hash chains (Sinha et al., 2014; Crosby and
Wallach, 2009; Ahmad et al., 2018), and append-only files (e.g.
(Ahmad et al., 2022),) to verify an audit log and detect tampering.
However, none of these approaches consider activity that
completely bypasses the logs. For example, consider a privileged
user (or an attacker who gained access to such an account) who has
the legitimate ability to suspend logging. The audit logs could be
temporarily disabled while a malicious query is executed. Not
identifying this missing activity could significantly delay security
breach detection and response.
agner), minissan@uno.edu

ier Ltd on behalf of DFRWS All rig
In this paper, we analyze database management systems
(DBMS) memory contents and demonstrate that SQL query opera-
tions produce repeatable patterns in the buffer cache; we gener-
alize these patterns by evaluating query artifacts in two
representative DBMSes, Oracle and MySQL. We then present an
example use case that leverages these patterns to verify the
integrity of audit logs files and explore the lifetime of memory ar-
tifacts. A tool that is ready for deployment and considers a wide
variety of workload scenarios is beyond the scope of this paper. We
argue that our approach is a promising direction to address this
security gap because while queries can be omitted from logs, they
must ultimately be processed in memory. For example, some query
operations read data intomemory and other operationsmanipulate
this data in memory; all of these operations produce memory
artifacts.

In our adversary model (see Section 3), we assume a trusted
DBMS process snapshot as an input and use memory forensics to
carve (extract) data and metadata. We then use forensic artifacts to
identify patterns produced by query operations; we demonstrate
that query operations (e.g., index accesses, joins, sorting) produce
hts reserved. This is an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jwagner4@uno.edu
mailto:minissan@uno.edu
mailto:arasin@depaul.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301567&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301567
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2023.301567

J. Wagner, M.I. Nissan and A. Rasin Forensic Science International: Digital Investigation 45 (2023) 301567
repeatable patterns in memory. For log verification, if an operation
cannot be attributed to a known logged query, we flag it as suspi-
cious. The major paper contributions are:

1. We demonstrate that query operations produce repeatable
patterns in memory for two representative DBMSes, Oracle and
MySQL (Section 4).

2. We define atomic query operations (e.g., a table scan) and a
process to reverse-engineer memory patterns into individual
operations (Section 4).

3. Given a trusted memory snapshot, we present an approach to
identify missing log activity, specifically retrieval queries, i.e.,
SELECT (Section 5).

4. We explore the lifetime of query artifacts in various workload
sizes (Section 6).
Fig. 1. MySQL full table scans in RAM spectroscopy.
2. Related work

2.1. Database forensics

We achieve our unique approach in this paper by using database
forensics, specifically data carving. Traditional file carving directly
reconstructed files without relying on the file system as a “dead
analysis” on disk images (Garfinkel, 2007; Richard and Roussev,
2005). More recently, memory forensics has sought to perform a
“live analysis” (Case and Richard, 2017). One example includes
inspecting runtime code for malware (e.g. (Case and Richard,
2016),).

Since DBMSes manage their own internal storage separately
from a file system, they require their own carving approaches.
Database forensics was explored in (Stahlberg et al., 2007; Wagner
et al., 2015, 2016, 2017a). However, the work in database forensics
has only been concerned with carving data as part of a “dead
analysis”, where our goal in this paper works toward detecting
unusual DBMS access patterns as a “live analysis” similar to the
ideas of malware detection in memory. Nissan et al. extracted
values from database memory using string searches, and then used
support vector machines to determine the query operations that
cached the data (Nissan et al., 2023). Our approach extracts forensic
artifacts from memory snapshots using database page carving
(Wagner et al., 2017b). In this paper, we borrow from the idea of
page carving to extract metadata, which allows us to collect addi-
tional information beyond simple string searches.

Wagner et al. previously abstracted DBMS memory architecture
into four main areas based on DBMS documentation and database
textbooks (Wagner and Rasin, 2020). In this paper, we focus on
analysis of the I/O buffer and the sort area in memory. DBMS-
specific names for the I/O buffer include buffer pool (MySQL &
PostgreSQL), buffer cache (Oracle), and page cache (SQL Server);
specific sort area names include sort buffer (MySQL), work_mem
(PostgreSQL), SQL work areas (Oracle), and work table (SQL Server).
The I/O buffer caches table and index pages recently accessed from
disk, typically with the least recently used (LRU) algorithm. DBMSes
reserve the sort area for memory-intensive operations, e.g.,
DISTINCT, ORDER BY, merge joins, and hash joins. For example,
hash join constructs a key-based hash table in memory to perform
the join operation.

To facilitate an understanding of our results, we visualize some
of our data collected frommemory using RAM spectroscopy graphs,
which were proposed byWagner et al. in (Wagner and Rasin, 2020).
RAM spectroscopy graphs measure the amount of data stored at a
given memory offset. Fig. 1 provides an example of a RAM spec-
troscopy graph for I/O buffer layout. The x-axis represents the byte
offset with the DBMS memory snapshot (normalized to a
2

percentage). For example, 50% represents 50 MB offset in a 100 MB
snapshot or 800 MB offset in a 1.6 GB snapshot.
2.2. Log tampering

Adedayo et al. (Adedayo and Olivier, 2012) reconstructed re-
cords using inverse relational algebra. Their algorithms assume not
only a trusted audit logs but also require other trusted logs to be
configured with special settings. While this algorithm is useful to
reconstruct user behavior to identify suspicious actions, it requires
particular log settings to be enabled and does not consider
compromised log files. In contrast, the goal of this paper is verify
the accuracy of log files based on the forensic artifacts in memory.

Query activity logs can be generated using triggers. While
DBMSes do not support triggers for SELECT statements, a SELECT

trigger was explored for the purpose of logging (Fabbri et al., 2013).
While this work can log all query activity, a privileged user can
disable triggers or even bypass a SELECT trigger by creating a
temporary view to access the data.

ManageEngine's EventLog Analyzer (Eventlog analyzer) pro-
vides audit log reports and alerts for Oracle and SQL Server for all
user activity. However, the Eventlog Analyzer creates these reports
based on the DBMS logs, and thus, is vulnerable to a privileged user
who can alter or disable logging.

The work in (Wagner et al., 2017b) presented an approach to
detect activity missing from DBMS logs if a privileged user disabled
logging. However, their work only accounted for query operations
thatmodify data (e.g., INSERT, DELETE, UPDATE) and thus, changes
were observed in persistent storage that could be compared to log
files. In this paper, we address a similar adversary, but consider
detecting missing retrieval queries (i.e., SELECT). Such queries
would only leave artifacts in memory as opposed to persistent
storage. The work in (Wagner et al., 2018) detected DBMS file
tampering via the file system without accessing the DBMS API.
However, we do not consider an adversary with system adminis-
trator privileges to be within the scope of this paper.

Network-based monitoring tools and methods provide a sepa-
ration of privileges by operating independent of the DBMS, and
thus, can be kept outside of the database administrator's control.
IBM Security Guardium Express Activity Monitor for Databases
(Ibm security guardium express activity, 2017) monitors incoming
packets for abnormal query activity. If abnormal activity is

J. Wagner, M.I. Nissan and A. Rasin Forensic Science International: Digital Investigation 45 (2023) 301567
suspected, this tool restricts access for a specific user. Liu et al. (Liu
and Huang, 2009) monitored logs network packets containing SQL
statements, which prevented their tool from being disabled by
database administrators. At the same time, monitoring only
network activity does not account for local DBMS connections and
does not address obfuscated queries designed to fool the system. By
monitoring memory activity in this paper, our approach accounts
for both local and network activity. Furthermore, if a query is
obfuscated, it must ultimately be processed in memory producing
artifacts from the accessed data. However, this paper does not
attribute activity to a specific user.
3. Threat model

We assume a secure environment with separate accounts for a
system administrator (SA) and a database administrator (DBA) as
two different roles within an organization. We further assume the
principle of least privilege for the two roles, which protects the
system from misuse of privileges, accidents, or a compromised
account.

This assumption is consistent with the motivation behind the
two-tiered key protocol for transparent data encryption (TDE) to
assign separate duties to SA's and DBA's. TDE is supported by
DBMSes such as SQL Server and Oracle (e.g. (Huey, 2017),). The
DBMS encrypts files so they cannot be accessed by anyone with just
server access. TDE stores a master key in a module that is external
from the DBMS; the DBA cannot access them, but the SA can access
them. The master key encrypts/decrypts the TDE table keys. The
table keys are stored in the DBMS where the DBA does have access
to these, but the SA does not.

The DBA can issue privileged SQL commands against the DBMS,
including disabling logs but cannot suspend any OS processes. The
DBA can misuse elevated privileges to bypass most of internal
DBMS security mechanisms, including the audit log. Specifically,
the DBA can either modify the DBMS audit logs or temporarily
disable logging altogether. Tamper-proof audit logs (e.g
[1, 2, 3, 4, 5, 6]) could be conceptually implemented to prevent
modifications of DBMS audit logs. We also discussed related work
(Wagner et al., 2017b), that addressed attack scenario when the
audit logs were disabled, detecting modifications (e.g., INSERT,
DELETE, or UPDATE) to data. The novel threat (not previously
addressed in related work) that we consider in this paper, is a DBA
that disables the audit logs and performs read-only operations (i.e.,
SELECT) against the database. Table 1 summarizes how the audit
logs can be disabled for several DBMSes. If the attacker gained both
SA and DBA privileges, it could be problematic if the attacker also
has the ability to suspend other processes and OS logging. If the
DBMS were running in a VM, trusted snapshots can be collected
from the host even if the attacker gained SA and DBA privileges to
the VM.

We also bring attention to DBA-level commands that flush the
DBMS I/O buffer. However, these commands do not prevent us from
Table 1
Commands to disable the audit log.

DBMS Command

Oracle NOAUDIT session

NOAUDIT SELECT ON [table]

Postgres set pgaudit.log¼’none’

MySQL set global

audit_log_connection_policy¼NONE

SQL Server ALTER SERVER AUDIT [file name]

WITH (STATE ¼ OFF)

DB2 db2audit stop

3

collecting forensic artifacts. These commands only free list the
DBMS buffers, and they do not explicitly overwrite or zero out the
buffers.

4. Database memory patterns

This section demonstrates that query operations produce
repeatable patterns in memory that we identify by analyzing
forensic artifacts. We represent all queries as one or more opera-
tions, which arewhat wematch to artifacts. For example, consider a
query: SELECT Name FROM Employee ORDER BY Salary. This
query consists of two operations. The first operation reads the
entire table (i.e., a full table scan) into the DBMS I/O buffer. The
second operation takes the data (now stored in memory) and sorts
it in the sort area, which is separate from the I/O buffer. From a
memory perspective, all query operations are either a data access or
a data manipulation.

Data access operations read data into the DBMS I/O buffer from
disk (or read cached data from the I/O buffer). Furthermore, all data
access operations are ultimately either a full table scan (i.e., read
the entire table) or an index access (e.g., a B-Tree index performs
direct access on specific pages). A query can consist of a series of
data access operations. For example, a join query accesses the two
tables using either a full table scan or an index access depending on
the type of join (i.e., nested loop join, hash join, or merge join).
Other operations process data loaded from disk. For example,
processing data based on the join condition requires a data
manipulation operation (e.g., building a hash table or sorting a
table).

Data manipulation operations process data in the dedicated
memory-intensive sort area other than the I/O buffer. Examples
include building additional data structures for sorting (e.g., ORDER
BY or a merge join) or a hash table for hash joins. While identifying
the patterns for data manipulation operations is useful for many
other applications (e.g., Section ?), we show that this information is
not necessary to detect query activity not captured by logs. How-
ever, if one wanted to completely reverse-engineer a query from a
memory snapshot alone, identifying data manipulation operations
in the sort area would provide more precise results. Experiments in
this section include a discussion of data found in the sort area for
Oracle, but not MySQL. This is because we observed that Oracle
reads large, memory intensive I/O operations directly into the sort
area.

Table 2 lists the unit operations evaluated in this section. We
describe these operations using an Oracle DBMS and a MySQL
DBMS. We will demonstrate these operations produce repeatable
patterns and discuss how they generalize to other DBMSes.

4.1. Experimental setup

Dataset. Experiments used Scale 10 of the Star Schema Bench-
mark (SSBM) (O'Neil et al., 2009); Table 3 summarizes the data
tables. SSBM represents a data warehouse environment. It com-
bines a realistic distribution of data with a synthetic data generator
that of creates datasets of different scales.

Configuration. We performed experiments on two representa-
tive DBMSes. A MySQL 8.0.28 instance was deployed on a Linux
Debian 10 server, and an Oracle 19c instance was deployed on a
Windows 10 server. We used the default page size for each DBMS:
16 KB for MySQL and 8 KB for Oracle. We configured the I/O buffer
to 400 MB (25,600 16-KB pages or 53,200 8-KB pages) for each
DBMS instance. We consider these two DBMSes to be representa-
tive of a variety of relational DBMSes for several reasons. First,
MySQL is one of the most popular open source DBMSes and Oracle
is the most widely used commercial DBMSes. Second, Oracle use

Table 2
Summary of query operations described in Section 4.

Operation Summary

Full Table Scan Read entire table to retrieve a record(s).
Index Access Retrieve a record(s) by traversing a B-Tree index to find a pointer(s) that directly references the record(s).
Nested Loop Join Join two tables using two nested for-loops.
Hash Join Join two tables w/a hash table built on the (smaller) table. Iterate over the (larger) table. Locate the (smaller) table records using the built hash table.

Table 3
SSBM scale 10 table sizes.

Table # Size Oracle MySQL

Records (MB) 8 KB Page 16 KB Page

DWDate 2556 0.4 32 24
Supplier 20K 2 242 134
Customer 300K 34 4067 2188
Part 800K 84 7342 5375
Lineorder 60M 5600 732K 361K

J. Wagner, M.I. Nissan and A. Rasin Forensic Science International: Digital Investigation 45 (2023) 301567
heap tables by default, and MySQL builds index organized tables
(IOT) on the primary key by default. Other major DBMSes choose
one of these two options. For example, Microsoft SQL Server and
SQLite use IOTs by default. PostgreSQL and IBM DB2 use heap tables
by default. As we will show, each of these approaches results in
distinct caching pattern behavior. Finally, we used both Windows
and Linux servers to demonstrate that our approach is not depen-
dent on the OS, but rather the DBMS.

Algorithm 1. MySQL Query Plan for Nested Loop Join

Algorithm 2. MySQL Query Plan for Hash Join

4.2. Workload to isolate operations

We designed a SQL workload to evaluate the individual opera-
tions summarized in Table 2. We verified all queries used the
desired operation by inspecting the query plan (a query plan de-
scribes the post-optimization query operations structure in a
DBMS, e.g., Algorithm 2).

Full Table Scan. We designed four queries for each of the five
SSBM tables in Table 3 (i.e., 20 queries in total). Each query used
different attributes in the SELECT clause and variations to the
WHERE to demonstrate that these different types of queries ulti-
mately perform a full table scan. The queries below show our
queries for the Supplier table. The DWDate, Customer, Part, and
Lineorder tables each had four equivalent queries of their own.

SELECT * FROM Supplier;

SELECT Name FROM Supplier;

SELECT Phone FROM Supplier WHERE Nation ¼’CANADA’;

SELECT Name FROM Supplier WHERE Region¼’No Match’;

Index Access. We designed two queries for each of the five SSBM
tables (i.e., 10 queries in total). One query used the B-Tree index
(constructed by default) on the primary key, and the other query
used a secondary B-Tree index we built on a column that we
selected based on the number of distinct values in a column. A
DBMS query optimizer will not use a B-Tree index if the expected
number of records selected by a query is high. In a columnwith few
distinct values, selected number of records will be high (e.g., with
10 distinct values, an equality predicate may select about 10% of the
table). The queries below illustrate our workload choices for the
4

Supplier table. The first query performs an index access on the
primary key index. The second query perform an index access on
the secondary indexwe created on the Phone column. The DWDate,
Customer, Part, and Lineorder tables each had two equivalent
queries of their own in the workload.

SELECT * FROM Supplier WHERE Suppkey ¼ 10000;

SELECT * FROM Supplier

WHERE Phone ¼ ’14-290-375-5897’;

Nested Loop Join. We designed a single query to demonstrate the
cache pattern for a nested loop join. Only one query was used
because a nested loop join ultimately uses a combination of full
table scans and index accesses, which were previously presented.
Algorithm 1 displays the MySQL query plan for our designed query
below. The query plan demonstrates that a nested loop join was
used, and that table Lineorder is accessed using a full table scan and
table Part is accessed using an index access. The Oracle query plan
was similar to Algorithm 1 except that table Part was accessed
using a full table scan. In Oracle, we also had to explicitly request a
nested loop join by adding the following optimizer hint to the
SELECT clause:/*þ ORDERED USE_NL(Part) */.

SELECT SUM(size) FROM Lineorder JOIN Part;

Hash Join. We designed a single query to demonstrate the cache
pattern for a hash join. Similar to nested loop joins, a hash join
ultimately uses a combination of full table scans and index accesses.
Algorithm 2 displays the MySQL query plan for our designed query
below. The query plan demonstrates that a hash join used a full
table scan to access both the Customer and Supplier tables. The
Oracle query plan was equivalent to Algorithm 2.

SELECT Count(S.City) FROM Supplier S, Customer C

WHERE C.Region ¼ S.Region;

4.3. Procedure

Experiments ran each of the four workloads on both DBMS in-
stances. Before each workload, we restarted each instance and
cleared the cache files. For each workload, we collected a series of
memory snapshots: a before and after the execution of a query to
verify the data cached. Procdump v9.0 (Russinovich and Richards,
2017) was used to collect DBMS process snapshots on Windows,
and the process snapshot data under/proc/$pid/mem was read on
Linux.

To analyze memory contents, we passed each snapshot to
DBCarver (Section 2.1). The most relevant information that
DBCarver returned that we reference were the Object ID, an in-
ternal object identifier maintained by the DBMS, and the Page ID,
an identifier stored in each page that is unique for each object ID.

J. Wagner, M.I. Nissan and A. Rasin Forensic Science International: Digital Investigation 45 (2023) 301567
For example, the Supplier table may have the Object ID 100 and a
series of Page IDs 1, 2,…, N. Similarly, the Customer table may have
the Object ID 101 and a series of Page IDs 1, 2, …, M. Thus, carving
the Object ID and Page ID from a page header allowed us to
uniquely identify each page in memory.

4.4. Results & discussion: full table scans

Oracle. Table 4 summarizes the full table scan results in Oracle.
For table DWDate, all 32 table pages were cached in the I/O buffer
for all four queries. Based on each page's Page ID, we observed that
the pages occurred in the same order. The 32 pages were spread
across a space of approximately 3 MB, and we observed four groups
of eight pages. This is explained by extents, a logical storage unit
used by Oracle. An extent for our instance was 64 KB (or eight
pages). Therefore, data was read in a unit of extents for the DWDate
full table scans. We also note that Oracle uses a another, larger
logical storage unit called a segment. For our instance, a segment
was 1 MB (or 128 pages). An extent is not completely filled with
data pages; some pages are used to store metadata describing the
extent.

For table Supplier, each query cached all 242 pages were cached
in the I/O buffer. The 242 pages were spread across 3 MB, and we
observed four groups of 61, 60, 60, and 61 pages. Each such group
corresponds to a chunk of 8 extents (8 extents � 8 pages ¼ 64
pages), with additional metadata in storage.

For table Customer, the first query cached 63 of the 4067 pages
in the sort area. Based on the PageIDs, these pages were the last 63
pages stored on disk for table Customer. This page count also cor-
responds to 8 extents in Oracle. Since this table is a medium size
(34 MB) relative to the I/O buffer size (400 MB), we conclude that
the DBMS used the sort area to efficiently read the query rather
than letting it occupy a significant portion of the I/O buffer. For the
remaining three queries in the same workload, all 4067 Customer
table pages were read into the I/O buffer. The second query cached
these pages, and the remaining two queries re-used the cached
pages. These results indicate two possible outcomes from a full
table scan: a) the entire table is read into the I/O buffer or b) the
table is read in chunks (8 extents) into the sort area. In the latter
case, the pages remaining in the sort area are those that correspond
to pages with the highest Page ID (or the pages with the highest file
address on disk) because the scan proceeds in chunks from
beginning to end.

For table Part, all four queries cached 125 of 7342 pages in the
sort area. Based on the Page IDs, these pages were the last 125
pages stored on disk for the Part table. Pages were spread across
approximately 4 MB in two groups of 63 and 62 pages. This result is
consistent with the observations for the first Customer table query;
since this table was large (84 MB) relative to the I/O buffer, the
DBMS processed this large I/O request directly in the sort area.

For table Lineorder, all four queries cached 188 of the 732K table
pages in the sort area. Based on the Page IDs, thesewere the last 188
pages stored in the table file on disk. Pages were spread across
approximately 7 MB in three groups of 63, 63, and 62 pages. Similar
to table Part, the large table ([I/O buffer size) was processed as
Table 4
Oracle full table scan results in # of Pages.

Table I/O Buffer Sort Area

DWDate 32 0
Supplier 242 0
Customer 4067 63
Part 0 125
Lineorder 0 188

5

chunks in the sort area with units of 8 extents.
MySQL. All queries in theMySQL instance cached the entire table

for tables Date (24 pages), Supplier (134 pages), Customer (2183
pages), and Part (5375 pages). This also included the IOT root and
intermediate nodes. Since table Lineorder was larger than the
400 MB I/O buffer, each query cached approximately 27K - 28K
pages (out of 361k). This number varied slightly within this range
across all query runs. All pageswere cached in the I/O buffer, and no
pages were in the sort area as for Oracle. There was also no evi-
dence of caching in larger logical units as with extents for Oracle.
This is best explained by the IOTs behavingmore similar to an index
access (index access patterns are presented next in this section).

Fig. 1 uses RAM Spectroscopy graphs to visualize an example
snapshot containing a full table scan for tables Part (:), Supplier (▪),
and Customer (�). Tables Supplier and Customer each had local-
ized data forming one peak. Two separate peaks were observed for
table Part in separate areas on the I/O buffer for a single query.

Summary. Oracle, our representative for heap tables, had two
flavors of forensic artifacts for full table scans: cache the smaller
tables (< �10% of I/O buffer size) in the I/O buffer or read larger
tables (> �10% of I/O buffer size) in chunks directly into the
memory intensive sort area. The chunks in the sort areawere a unit
of a larger storage (in the case of Oracle, multiple extents). The
pages remaining in the sort area corresponded to the pages with
the highest address in the file on disk, whichwe confirmedwith the
Page IDs (verifying the sequential scan).

MySQL, our representative for IOTs, had one flavor of forensic
artifacts for full table scans: cache the entire table (if smaller than
the I/O buffer). We reason for this difference from the heap tables in
Oracle is due to the behavior of IOTs. The leaf nodes containing the
table records are accessed by traversing the IOT B-Tree structure.
Therefore, each leaf node access is virtually an index access.

Given the results from these two DBMSes, we expect similar
results for DBMSes that either use heap tables or IOTs. Of course,
DBMS architecture specifics need to be accounted for. For example,
PostgreSQL uses heap tables but not the same logical storage
structures, extents and segments, as Oracle. We also mention the
locality of the pages in memory. When entire tables were cached in
the I/O buffer for Oracle and MySQL, pages were mostly clustered
together. This may not hold for more extensive workloads since
most DBMSes employ some variation of the LRU page replacement
algorithm.

4.5. Results & discussion: index access

Both databases produced similar results in the I/O buffer. In
general, each time an index access was performed, the index pages
(including root nodes and intermediate nodes) and the corre-
sponding table page(s) were cached. However, we delve into some
technical differences between the heap tables in Oracle and IOTs in
MySQL.

Oracle. Oracle used a straight-forward B-Tree index structure
with value-pointer pairs for both the primary key indexes and the
secondary indexes. The Oracle index pointers consist of a File ID,
Page ID, and Row Position. While we did not use the File IDs for
memory analysis, they are available for applications that require
interpreting both a RAM snapshot and disk image. The Page ID is
stored in a table page's header. The Row Position refers to the row
position within the table page. Therefore, a Page ID and a Row ID
were used to match an index value to a table page.We note that the
table pages cached for an index access were individual pages and
not larger units, such as extents observed in full table scans.

MySQL. TheMySQL IOT was organized on the primary key index.
Therefore, a primary key index inMySQL simply read the root node,
any intermediate nodes, and the leaf node(s) containing the table

J. Wagner, M.I. Nissan and A. Rasin Forensic Science International: Digital Investigation 45 (2023) 301567
records into the I/O buffer. The MySQL secondary index was a
typical B-Tree structurewith value-pointer pairs. The pointers were
primary key values themselves, which allowed records to be
accessed using the IOT structure. Therefore, for a secondary index
access, not only were the secondary index pages and the IOT leaf
pages containing the records cached, but also the IOT root and in-
termediate nodes.

Summary. While a table page can be associated with a particular
index pointer using Page IDs, there is still the challenge of accu-
rately matching data in presence of multiple overlapping index
range scans. However, such accurate matching is primarily needed
for future tasks such as query reconstruction from RAM snapshots.
In order to validate the audit logs based on the memory artifacts,
memory artifacts need to be explained by any of the logged queries.
For example, Query 1 scans the cities in the range between ‘Austin’
and ‘Detroit’, and Query 2 scans the cities in the range between
‘Chicago’ and ‘Eugene’. The range ‘Chicago’ and ‘Detroit’ is
explained by either query, but it does not matter which query they
are matched to, as long as a value is explained by a logged
operation.
4.6. Results & discussion: nested loop join

Oracle. Table 5 summarizes the nested loop join results for
Oracle.125 Lineorder pageswere cached in two groups of 62 and 63
in the sort area. The Lineorder artifacts were consistent with our
previous full table scan results except that only two 8-extent
chunks were observed (rather than three). The entire Part table
(7342 pages) was cached in the I/O buffer. Since table Part was in
the inner for-loop of the join, the DBMS chose to cache the entire
table rather than repeatedly read it from disk. If table Lineorder is
read in 125-page chunks and compared to table Part (the inner for-
loop), that would require >5800 scans of table Part. Thus, the
DBMS wisely chose to cache it even though it was ~20% (i.e., a
significant fraction) of the I/O buffer.

MySQL. There were 4035 table Part pages and 27606 table
Lineorder pages in the I/O buffer. The entire Part table was not
cached because an index access was used, rather than a full table
scan, which was consistent with the primary key index accesses
previously discussed. The entire Lineorder table was not cached
even though a full table scan was used because the Lineorder table
is larger than the I/O buffer size. These results are consistent with
the full table scan results and index access we reported earlier in
this section.

Summary. The nested loop joins for both DBMSes were consis-
tent with the behavior we previously reported for full table scans
and index accesses. We conclude that other DBMSes besides Oracle
and MySQL will also have nested loop join behavior that is
consistent with their full table scan and index access patterns.
Table 5
Pages cached for joins in Oracle.

Nested Loop Join

Table IO Buff

Part 7342
Lineorder e

Hash Join
Table IO Buff

Supplier 242
Customer e

6

4.7. Results & discussion: hash join

Oracle. Table 5 summarizes the hash join results for Oracle. The
entire Supplier table was cached in the I/O buffer, and 63 Customer
pages were found in the sort area, which is consistent with the full
table scan results previously reported. Since a hash table was built
for table Supplier, table Customer only required one scan, which
explains why Oracle decided to read it into the sort area rather than
caching the entire table in the I/O buffer.

MySQL. Therewere 134 Supplier and 2183 Customer pages in the
I/O buffer. These results are consistent with the full table scan re-
sults reported earlier in this section.

Summary. The hash joins for both DBMSes were consistent with
the behavior previously reported. Similar to nested loop joins, we
conclude that other DBMSes besides Oracle and MySQL will
maintain hash join patterns that are consistent with full table scans
and index accesses.
5. Example application: log verification

Purpose. This experiment demonstrates how the cache patterns
described in Section 4 can be used to detect missing activity from
audit log files. This experiment uses a workload that overwrites the
hidden activity; this will be used to support our discussion in what
a formal log verification system would need to incorporate.

Setup & Workload. The dataset and DBMS configurations
described in Section 4 were used. We designed a workload to
simulate a scenario that makes obfuscated query activity difficult to
detect due to overlapping data accesses and a large memory usage,
reducing the lifetime of memory artifacts. The following provides
the individual steps in our workload. A DBMS process snapshot was
collected after each step.

T1 SSBM query #2.1 simulates typical user behavior:
er

er
SELECT sum(revenue), year, brand1.
FROM lineorder ⋈ dwdate ⋈ part ⋈ supplier.
WHERE category ¼ ’MFGR#12’AND region ¼ ’AMERICA’.
GROUP BY year, brand1 ORDER BY year, brand1.

T2 Simulate obfuscated data access with the following:
a. Disable audit log (Table 1 commands).
b. SELECT * FROM Part.
c. Re-enable audit log.

T3 SSBM query #4.2 simulates typical user behavior:
SELECT year, snation, category, sum(revenue).
FROM lineorder ⋈ dwdate ⋈ part ⋈ supp ⋈ cust.
WHERE cregion ¼ ’AMERICA’AND sregion ¼ ’AMERICA’.
AND year IN (1997,1998).
AND mfgr IN (’MFGR#1’,’MFGR#2’).
GROUP BY year, snation, category.
ORDER BY year, snation, category.
Sort Area

e

125

Sort Area

e

63

J. Wagner, M.I. Nissan and A. Rasin Forensic Science International: Digital Investigation 45 (2023) 301567
5.1. Oracle results

Table 6 summarizes the memory artifacts found after running
the workload against Oracle. The goal is to map the artifacts to a
pattern from Section 4 and determine if they are explained by any
query operations in the log.

T1. The full table scan patterns for DWDate (32 pages) and
Supplier (242 pages) in the I/O buffer and the full table scan pattern
for Lineorder (125 pages) in the sort area are explained by the query
in the log at T1 (SSBM #2.1). This query performed full table scans
on DWDate, Supplier, Part, and Lineorder. No evidence of the Part
full table scan at T1 is not a problem because we are searching for
activity that cannot be explained by the audit log.

T2. The full table scan patterns for DWDate and Supplier are still
explained by the audit log entry at T1. However, there is a full table
scan pattern for Part (125 pages), but do not a full table scan on
Lineorder. While the Part full table scan pattern could be explained
by the audit log entry at T1, this result is inconsistent with query
engine operations. For a hash join, the larger table (Lineorder)
should be in the outer table in the hash join, and thus, the last table
that is scanned. Therefore, these artifacts are flagged as potentially
missing log activity.

T3. There are full table scan patterns for DWDate (32 pages) and
Supplier (242 pages) in the I/O buffer and the full table scan pattern
for Lineorder (125 pages) in the sort area. These patterns are
explained by the audit log entry at T3 (SSBM #4.2). We note that
these operations are also explained by the entry at T1. We do not
consider this to be problematic since the goal is find activity that
cannot be explained by any recent log activity. Additionally, we
notice at T3 that evidence of the malicious query at T2 was over-
written, and the traces of the full table scan on Part are erased. The
discussion section for this experiment uses this result to present
future challenges.
5.2. MySQL results

Fig. 2 summarizes the memory artifacts found after running the
same workload against MySQL. At T1, the index access pattern for
Part (4035 pages), discussed in Section 4.2, Algorithm 1, and the full
table scan patterns on DWDate (20 pages), Lineorder (~27K pages),
and Supplier (134 pages) are explained by the log at T1.

T2. The full table scans for DWDate (20 pages), Supplier (134),
and Lineorder (~26k pages) are still attributed to operations at T1 in
the audit log. However, the full table scan pattern for Part is
inconsistent with the index access pattern used by SSBM query
#2.1. Therefore, this is flagged as potentially missing log activity.

T3. The index access pattern for Part (4035 pages) and the full
table scan patterns for DWDate (20 pages), Supplier (134 pages),
Customer (2188 pages), and Lineorder (~25k pages) are explained
by the query operations at the T3 SQL entry (SSBM query #4.2) in
the audit log. We note that most of these operations can also be
matched to the entry at T1. We do not consider this to be prob-
lematic since the goal is find activity that cannot be explained by
Table 6
IO buffer/sort area memory artifacts (pages).

Table T1 T2 T3

DWDate 32/0 32/0 32/0
Supplier 242/0 242/0 242/0
Customer 0/0 0/0 0/0
Part 0/0 0/125 0/0
Lineorder 0/125 0/0 0/125

Total 274/125 274/125 274/125

7

any recent log activity. Additionally, the evidence of the malicious
query was overwritten, and all traces were erased. Again, the dis-
cussion section for this experiment uses this result to present
future challenges.

5.3. Discussion

One obvious limitation of this application is memory volatility;
we explore this in Section 6. For both Oracle and MySQL, all
memory artifacts were explained at T3 and all traces of the hidden
query at T2 were overwritten. When determining the frequency in
which to collect snapshots, the size of the DBMSmemory areas and
the query workload should be considered. Intuitively, system ac-
tivity is more accurately described if snapshots are taken more
frequently than the time it takes to overwrite the entire I/O buffer
and (for a DBMS like Oracle) the sort area.

Another challenge is detecting a hidden query that produces a
repeated pattern similar to a logged query. For example, a logged
query performs a full table scan on Supplier and then an unlogged
query also performs a full table scan on Supplier. The second
unlogged query would re-use the cached pages and not create new
memory artifacts in the I/O buffer. Distinguishing forensic artifacts
in such cases would require identifying additional artifacts in
memory. However, for log validation use cases that are only con-
cerned about detecting unusual activity, we argue this would pose a
lesser challenge. For example, if users issue a standard set of queries
through a web interface, the log validation system would be
focused on detecting unlogged activity that deviates from the ex-
pected workload.

6. Log verification with a larger workload

Purpose. This experiment explores the lifetime of query artifacts,
building on Section 5 by considering larger workloads. Specifically,
we look for activity that deviates from an expected workload (i.e., a
hidden operation does not overlap with expected workload query
features).

Setup & Workload. The dataset and DBMS configurations
described in Section 4 were used. To represent an expected query
workload, we used the SSBM query flight #4, where each query
accesses all five tables. We generated sets of 10, 100, and 1000
queries.

We also created a query, QueryM, that deviates from this work-
load to simulate malicious activity. Artifacts that are explained by
the current workload are not considered evidence of malicious
activity. QueryM used an index access on the primary key, whereas
the expected workload queries perform full table scans on the Part
table. We performed the following steps for each DBMS:

T1 Execute QueryM:

SELECT * FROM Part WHERE PartKey ¼ 10000.

T2 Run the expected workload of 10, 100, or 1000 queries from
SSBM query flight #4.
T3 Capture memory snapshot
6.1. Oracle results

This experiment began by running QueryM to verify the data it
cached. We observed that a single data page from the Part table and
the corresponding index leaf and root page were cached in the I/O
buffer. Our experiments will test how long these artifacts remain in
memory.

The runtimes for our workloads of 10, 100, and 1000 queries
were 2.3 min (or 14.0 s/query), 22.7 min (or 13.6 s/query), and 3 h

Fig. 2. Ram spectroscopy graph for the MySQL experiments.

J. Wagner, M.I. Nissan and A. Rasin Forensic Science International: Digital Investigation 45 (2023) 301567
and 43.3min (or 13.4 s/query), respectively. Table 7 summarizes the
results of artifacts found in the I/O buffer and the sort area. All three
workloads produced similar results with the exception of a portion
of the Lineorder table in the I/O buffer for the 1000 query workload.
We found the DBMS used the pages cached in I/O buffer for the
DWDate, Supplier, and Customer tables for all queries in each
workload. The result of the full table scan on the Part table was 30
pages in the sort area for all workloads.
8

After running each workload, we also observed a single page
from table Part remained in the I/O buffer along with a leaf index
page and the root index page belonging to the primary key index of
table Part. All three pages corresponded to the pages accessed by
QueryM. Therefore, we conclude the lifetime of QueryM is dependent
onwhen the I/O buffer is overwritten (based on the LRU algorithm).
The expected query workload performed similar table access pat-
terns for all queries, which resulted in the I/O buffer not being

Table 7
Oracle results. IO buffer/sort area artifacts (pages).

Table 10 queries 100 queries 1000 queries

DWDate 32/0 32/0 32/0
Supplier 242/0 242/0 242/0
Customer 4067/0 4067/0 4067/0
Part 1/30 1/30 1/30
Lineorder 0/0 0/0 27214/0

Total 4342/30 4342/30 31556/30

J. Wagner, M.I. Nissan and A. Rasin Forensic Science International: Digital Investigation 45 (2023) 301567
overwritten, and thus, a longer lifetime for the QueryM. Given these
results, we anticipate that artifacts from QueryM could reside in
memory much longer than what our experiments explored. Again,
this is dependent on the type of data access operations the work-
load performs and the size of the I/O buffer.
6.2. MySQL results

Similar to the Oracle experiment, QueryM was first ran to verify
the data it cached. We observed a single table Part (IOT) data page
and the corresponding IOT root and intermediate node pages all at
consecutive addresses.

The runtimes for our workloads of 10, 100, and 1000 queries
were 13.1 min (or 1.3 min/query), 2.4 h (or 1.5 min/query), and 25 h
(or 1.5 min/query), respectively. Table 8 summarizes the artifacts
found in the I/O buffer. All three workloads produced similar re-
sults. As expected from the experiments in Section 5, the entire
tables for DWDate, Supplier, and Customer were found in memory,
along with a portion of the Part table (4035 pages) and the Line-
order table (~25K pages).

The data page and two index pages that corresponded to the
QueryM artifacts were cached. However, we cannot attribute those
artifacts to QueryM for two reasons. First, the index pages and the
data page were no longer consecutive as we previously observed
when running QueryM alone. Second, we found a total of 4035 Part
table pages, which included the QueryM artifacts. All of these pages
together indicate a different operation (a full table scan) than the
secondary index access performed by QueryM. As these pages can
be explained by query operations in the workload, we consider
QueryM to be overwritten.
6.3. Discussion

The query runtimes were about 5e6 times longer inMySQL than
in Oracle. This is explained by the different usage of the I/O buffer
for the query operations. MySQL cycled through the I/O buffer to
process each query, while Oracle chose to only cache the small -
medium sized tables in the I/O buffer and process the large table
scans in the sort area. This observation is consistent with how the
full table scans are processed for the MySQL IOTs and the Oracle
heap tables in Section 4. Therefore, the runtimes correspond with
how the I/O buffer was used and thus, provide an indication of the
Table 8
MySQL results. IO buffer memory artifacts (pages).

Table 10 queries 100 queries 1000 queries

DWDate 20 20 20
Supplier 134 134 134
Customer 2188 2188 2188
Part 4035 4035 4035
Lineorder 25K 25K 25K

Total 31230 31231 31230

9

lifetime of the artifacts.
Regardless of the workload size, the results were the same for

both DBMSes; the artifacts from QueryM were identified in the
Oracle experiments, but they could not be identified in the MySQL
experiments. Therefore, the lifetime of the artifacts is dependent on
both the query operations in the workload and the DBMS storage
management, rather than the number of queries or a global time. In
both DBMSes, the queries primarily used full table scans to process
the queries, but the difference in storage management (heap table
vs. IOTs) resulted in different outcomes. However, wewould expect
similar results for both DBMSes if the workload primarily used
index accesses because in Section 4, index accesses produced the
same artifacts: the data page itself along with the B-Tree index
pages. Therefore, each query will cache similar artifacts for each
DBMS. The lifetime would then be dependent on how these pages
are re-used and new pages are brought into the I/O buffer based on
the LRU algorithm.

The malicious queries in our experiments were designed to
access tables that were also accessed by the expected workload to
further test the limitations of our methods. We anticipate that a
malicious query accessing a table not included in the expected
workload will produce artifacts with a longer lifetime. For example,
if the malicious query in Section 5 had accessed a different table for
the Oracle experiments, its artifacts will have a longer lifetime
consistent with the results in this section.

7. Conclusion & future work

This paper demonstrated that query operations (in two repre-
sentative DBMSes, MySQL and Oracle) produce repeatable patterns
in memory. When a query accesses data, either a full table scan or
an index access is performed. In both MySQL and Oracle, an index
access caches the relevant index pages (along with any interme-
diate and root nodes) and the corresponding data pages. Since
MySQL use IOTs, a full table scan forces an entire table intomemory
at once (if it is smaller than the buffer cache size). Alternatively, in
Oracle, a memory intensive sort area was used to perform a full
table scan on the large heap tables.

We then demonstrated how these patterns can verify log
integrity and explored artifact lifetime. Artifact lifetime is depen-
dent on the query operations, not necessarily the number of queries
or a global time. While someone with DBA privileges can bypass
security or logging mechanisms, their malicious query operations
must still be processed in memory. Therefore, we propose the work
in this paper can be used to build more formal tools andmethods to
verfiy the integrity of DBMS audit logs.

The log verification approach demonstrated in Sections 5 & 6, is
a first step towards developing a formal log verification tool. Be-
sides log verification, we envision several other applications that
are supported by the contributions in this paper. One notable
application that is of interest to the digital forensics and cyberse-
curity communities is the ability to describe data exfiltration.

Acknowledgments

This work was partially funded by the Louisiana Board of Re-
gents Grant LEQSF (2022-25)-RD-A-30 and by US National Science
Foundation Grant IIP-2016548.

References

Adedayo, O.M., Olivier, M.S., 2012. On the completeness of reconstructed data for
database forensics. In: International Conference on Digital Forensics and Cyber
Crime. Springer, pp. 220e238.

Ahmad, A., Saad, M., Bassiouni, M., Mohaisen, A., 2018. Towards blockchain-driven,
secure and transparent audit logs. In: Proceedings of the 15th EAI International

http://refhub.elsevier.com/S2666-2817(23)00076-8/sref1
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref1
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref1
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref1
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref2
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref2

J. Wagner, M.I. Nissan and A. Rasin Forensic Science International: Digital Investigation 45 (2023) 301567
Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services, pp. 443e448.

Ahmad, A., Lee, S., Peinado, M., 2022. Hardlog: practical tamper-proof system
auditing using a novel audit device. In: 2022 IEEE Symposium on Security and
Privacy (SP), IEEE Computer Society, 1554e1554.

Case, A., Richard III, G.G., 2016. Detecting objective-c malware through memory
forensics. Digit. Invest. 18. S3eS10.

Case, A., Richard III, G.G., 2017. Memory forensics: the path forward. Digit. Invest.
20, 23e33.

Crosby, S.A., Wallach, D.S., 2009. Efficient data structures for tamper-evident log-
ging. In: USENIX Security Symposium, pp. 317e334.

Eventlog analyzer. https://www.manageengine.com/products/eventlog/.
Fabbri, D., Ramamurthy, R., Kaushik, R., 2013. Select triggers for data auditing. In:

2013 IEEE 29th International Conference on Data Engineering (ICDE), IEEE,
pp. 1141e1152.

Garfinkel, S.L., 2007. Carving contiguous and fragmented files with fast object
validation. Digit. Invest. 4, 2e12.

Huey, P., 2017. Introduction to transparent data encryption. https://docs.oracle.com/
database/121/ASOAG/introduction-to-transparent-data-encryption.
htm#ASOAG10117.

Ibm security guardium express activity monitor for databases. http://www-03.ibm.
com/software/products/en/ibm-security-guardium-express-activity-monitor-
for-databases, 2017.

Liu, L., Huang, Q., 2009. A framework for database auditing. In: Computer Sciences
and Convergence Information Technology, 2009. ICCIT’09. Fourth International
Conference on, IEEE, pp. 982e986.

Nissan, M.I., Wagner, J., Aktar, S., 2023. Database memory forensics: a machine
learning approach to reverse-engineer query activity. Forensic Sci. Int.: Digit.
Invest. 44, 301503.

O’Neil, P., O’Neil, E., Chen, X., Revilak, S., 2009. The star schema benchmark and
augmented fact table indexing. In: Technology Conference on Performance
Evaluation and Benchmarking. Springer, pp. 237e252.
10
Pavlou, K.E., Snodgrass, R.T., 2008. Forensic analysis of database tampering. ACM
Trans. Database Syst. 33 (4), 30.

Peha, J.M., 1999. Electronic commerce with verifiable audit trails. In: Proceedings of
ISOC.

Richard III, G.G., Roussev, V., 2005. Scalpel: a frugal, high performance file carver. In:
DFRWS, Citeseer.

Russinovich, M., Richards, A., 2017. Procdump v9.0. In: https://docs.microsoft.com/
en-us/sysinternals/downloads/procdump.

Sinha, A., Jia, L., England, P., Lorch, J.R., 2014. Continuous tamper-proof logging using
tpm 2.0. In: International Conference on Trust and Trustworthy Computing.
Springer, pp. 19e36.

Snodgrass, R.T., Yao, S.S., Collberg, C., 2004. Tamper detection in audit logs. In:
Proceedings of the Thirtieth International Conference on Very Large Data Bases-
Volume 30. VLDB Endowment, pp. 504e515.

Stahlberg, P., Miklau, G., Levine, B.N., 2007. Threats to privacy in the forensic
analysis of database systems. In: Proceedings of the 2007 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 91e102.

Wagner, J., Rasin, A., 2020. A framework to reverse engineer database memory by
abstracting memory areas. In: International Conference on Database and Expert
Systems Applications. Springer, pp. 304e319.

Wagner, J., Rasin, A., Grier, J., 2015. Database forensic analysis through internal
structure carving. Digit. Invest. 14, S106eS115.

Wagner, J., Rasin, A., Grier, J., 2016. Database image content explorer: carving data
that does not officially exist. Digit. Invest. 18, S97eS107.

Wagner, J., et al., 2017a. Database forensic analysis with dbcarver. In: Conference on
Innovative Data Systems Research.

Wagner, J., et al., 2017b. Carving database storage to detect and trace security
breaches. Digit. Invest. 22, S127eS136.

Wagner, J., Rasin, A., Heart, K., Malik, T., Furst, J., Grier, J., 2018. Detecting database
file tampering through page carving. In: 21st International Conference on
Extending Database Technology.

http://refhub.elsevier.com/S2666-2817(23)00076-8/sref2
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref2
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref2
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref3
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref3
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref3
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref3
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref4
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref4
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref4
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref5
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref5
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref5
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref6
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref6
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref6
https://www.manageengine.com/products/eventlog/
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref8
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref8
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref8
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref8
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref9
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref9
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref9
https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm#ASOAG10117
https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm#ASOAG10117
https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm#ASOAG10117
http://www-03.ibm.com/software/products/en/ibm-security-guardium-express-activity-monitor-for-databases
http://www-03.ibm.com/software/products/en/ibm-security-guardium-express-activity-monitor-for-databases
http://www-03.ibm.com/software/products/en/ibm-security-guardium-express-activity-monitor-for-databases
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref12
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref12
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref12
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref12
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref13
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref13
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref13
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref14
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref14
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref14
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref14
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref15
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref15
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref16
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref16
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref17
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref17
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref19
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref19
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref19
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref19
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref20
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref20
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref20
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref20
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref21
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref21
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref21
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref21
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref22
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref22
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref22
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref22
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref23
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref23
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref23
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref24
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref24
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref24
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref25
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref25
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref26
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref26
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref26
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref27
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref27
http://refhub.elsevier.com/S2666-2817(23)00076-8/sref27

	Database memory forensics: Identifying cache patterns for log verification
	1. Introduction
	2. Related work
	2.1. Database forensics
	2.2. Log tampering

	3. Threat model
	4. Database memory patterns
	4.1. Experimental setup
	4.2. Workload to isolate operations
	4.3. Procedure
	4.4. Results & discussion: full table scans
	4.5. Results & discussion: index access
	4.6. Results & discussion: nested loop join
	4.7. Results & discussion: hash join

	5. Example application: log verification
	5.1. Oracle results
	5.2. MySQL results
	5.3. Discussion

	6. Log verification with a larger workload
	6.1. Oracle results
	6.2. MySQL results
	6.3. Discussion

	7. Conclusion & future work
	Acknowledgments
	References

