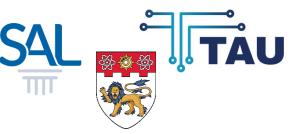


Large Language Models: Prompt Engineering and Retrieval Augmented Generation for Digital Forensics

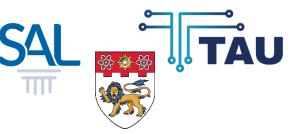
Hans Henseler (NFI, UoSL) Kwok-Yan Lam (NTU) Zee Kin Yeong (SAL) Victor C.W. Cheng (TauExpress)

DFRWS APAC Workshop, October 17, 2023, Singapore



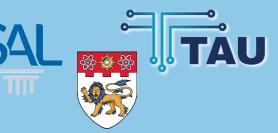
Agenda

Time	Title
13:00	Part I: Introduction Large Language Models
13:45	Part II: Hands-on prompt engineering for digital forensics
14:30	Part III: Hands-on with a LLM in a Google Colab notebook
15:00	Break
15:30	Part III continued
16:00	Part IV: Hands-on with Retrieval Augmented Generation
16:30	Panel discussion on LLMs in the legal domain
17:00	End



Agenda

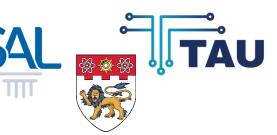
Time	Title
13:00	Part I: Introduction Large Language Models
13:45	Part II: Hands-on prompt engineering for digital forensics
14:30	Part III: Hands-on with a LLM in a Google Colab notebook
15:00	Break
15:30	Part III continued
16:00	Part IV: Hands-on with Retrieval Augmented Generation
16:30	Panel discussion on LLMs in the legal domain
17:00	End



Introduction Large Language Models

Part I: Hans Henseler

LLMs: Prompt Engineering and Retrieval Augmented Generation for Digital Forensics



Microsoft Copilot

- > 2021 GitHub Copilot
- > February 1: Bing Chat
- September 26 : Windows 11 Copilot
- November 1: Microsoft Office 365 Copilot:

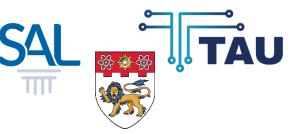
<u>Introducing Microsoft 365</u> <u>Copilot | Your Copilot for</u> <u>Work - YouTube</u>

LLMs: Prompt Engineering and Retrieval Augmented Generation for Digital Forensics

The rise of deep learning 2012-2022

- **2012**: AlexNet wins the ImageNet Large Scale Visual **Recognition Challenge**
- **2014**: Introduction of Generative Adversarial Networks (GAN's)
- **2015**: AlphaGo defeats world champion Go, Lee Sedol
- **2017**: Google introduces BERT improving ML translations
- 2018-2021: Introduction of GPT-2, DALL-E, CLIP, GPT-3, ...
- **2022**: DALL-E2, Midjourney, Stable Diffusion, ChatGPT, ...

Ministry of Justice and Security



What is ChatGPT?

ChatGPT is a large language model (LLM)

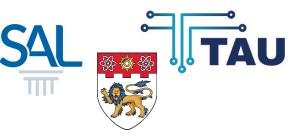
 Essentially a machine learning model that learns an algorithm to predict the next word based on many text examples

Based on GPT3.5/GPT4 (Generative Pre-trained Transformer)

- Improved version of GPT-3 that <u>"understands" text and program code</u>
- Different models for performance, chat, text and code completion
- GPT3.5 was trained on 570 GB data from the internet (articles, posts, web pages and books)

> Available as

- Free version
- ChatGPT-plus €23 per month
- OpenAI playground (API access):
 - GPT3.5-turbo API 0,002 dollar per 1.000 tokens, ~700 words
 - GPT4 API 0,03 dollar per 1.000 tokens, ~700 words



What can ChatGPT do?

Chat. Like a chatbot that...

- > Assists with writing and brainstorming
- > Tells riddles, jokes, stories
- > Plays games
- > Gives compliments and advise
- > Helps with filling in forms

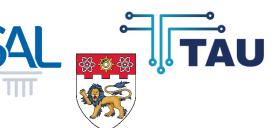
But it that can also:

- > Summarise
- > Translate
- Analyse and structure (unstructured) information
- Answer questions
 (but the answer may not be right)
- Assist with software writing and debugging
- Generate (anonymous) testdata

> ...?

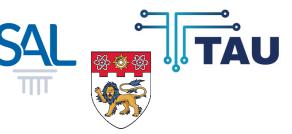
What can ChatGPT not do?

- > It hallucinates facts
- > It gives wrong answers
- Replies can be biased
- > Can not act spontaneously (needs to be prompted)
- > Is not good at making calculations (e.g. 4213x8242)
- > Is limited to generating text output
- > Can accidentally reveal sensitive training data



Netherlands Forensic Institute

Ministry of Justice and Security

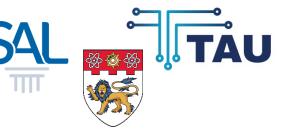


Thoughts on using AI for forensic purposes

- > Hansken is:
 - used for investigations, bit
 - designed for evidentiary use
- > Evidentiary use is more strict:
 - Accurate
 - Repeatable
 - Reproducible
- > So algorithms must be:
 - Explainable
 - Validated
 - Deterministic
 - Not depend on external data

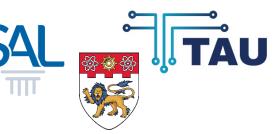
- > Artificial Intelligence:
 - Use external data: Training sets
 - Use external data: Cause bios
 - Lacks explainability
- > Use AI for investigative purposes, with
 - Disclaimer
 - Education
- > By the way:
 - Not all currently used algorithms are good
 - Data under investigation can results from AI itself

https://blog.ampedsoftware.com/2021/10/05/can-ai-be-usedfor-forensics-and-investigations DFRWS APAC Workshop, 17-10-2023



Hallucinations, data privacy and explainability

- > Preventing hallucinations:
 - Provide <u>clear prompts</u> to ChatGPT to base its response on digital traces
 - ChatGPT should not hallucinate but inform that there are <u>no relevant traces</u>
 - <u>Retrieval-Augmented-Generation</u> (RAG) comes to the rescue
 - Explicit <u>references to the source</u> on which a response is based
- > Maintaining data privacy:
 - Digital traces and case specific details can not be send to the public cloud (e.g., ChatGPT in the OpenAI cloud)
 - Powerfull Large Language Models can already be <u>deployed on premise</u> (e.g., Meta's Llama 2)
 - Assumption: Open source LLMs with RAG do not need the extensive factual knowledge as ChatGPT/GPT-4
- > Explaining responses:
 - <u>Identify the sources</u> that were retrieved as part of the RAG method to explain the response
 - <u>Reproducability</u> over creativity (experiment with "temperature" of the LLM)



Topics for future work

- > Can we do this off-line with the same quality?
- Build a co-pilot in Hansken leveraging Retrieval Augmented Generation (RAG)
- > Evaluate with (real) users
- > Advanced topics:
 - Multi-modal generative transformers (Visual ChatGPT)
 - Augmented language models
 - Planning an investigation

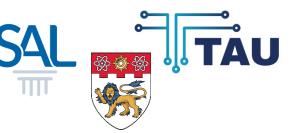
Midjourney prompt: Looking in a crystal ball seeing the future of artificial intelligence, ultra HD, super realistic, cinematic lighting. (fast)

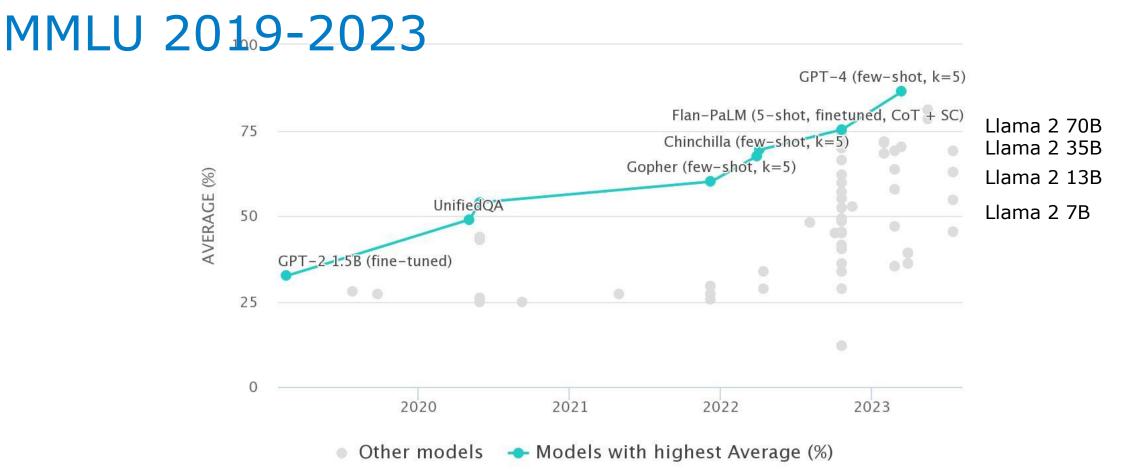


How smart are LLMs?

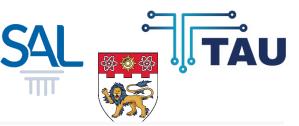
- Hugging Face open LLM leaderboard:
 - <u>https://huggingface.co/spaces/Hugging</u>
 <u>FaceH4/open_llm_leaderboard</u>
- > Score gebaseerd op:
 - ARC: Abstraction en Reasoning Challenge
 - HellaSwag: een benchmark die zich richt op gezond verstand redeneren
 - **MMLU**: Massive Multitask Language Understanding
 - **TruthfulQA**: een benchmark die beoordeelt of een taalmodel waarheidsgetrouwe antwoorden genereert

Model	Score
garage-bAInd/Platypus2-70B-instruct	73.13
upstage/Llama-2-70b-instruct-v2	72.95
fangloveskari/Platypus_QLoRA_LLaMA_70b	72.94
yeontaek/llama-2-70B-ensemble-v5	72.86
TheBloke/Genz-70b-GPTQ	72.82
TheBloke/Platypus2-70B-Instruct-GPTQ	72.81
psmathur/model_007	72.72
yeontaek/llama-2-70B-ensemble-v4	72.64
psmathur/orca_mini_v3_70b	72.64
ehartford/Samantha-1.11-70b	72.61
MayaPH/GodziLLa2-70B	72.59
psmathur/model_007_v2	72.49
chargoddard/MelangeA-70b	72.43
ehartford/Samantha-1.1-70b	72.42
psmathur/model_009	72.36





https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu



There is a growing amount of instruction-tuned text generators billing themselves as 'open source

RedPaiama.INC

MPT-78 Instruc MPT-30B Ins

ChatRWKV

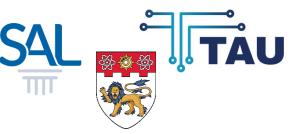
OpenChat V3 Cerebras-GPT

How open are LLMs?

- Researchers from Nijmegen University: >
 - Opening up ChatGPT: tracking "open source" LLM + RLF Vicuna 13B v 1 minChatGPT
 - https://opening-up-chatgpt.github.io/

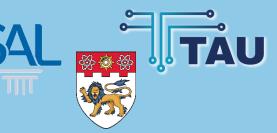
CarperAl	LLM base: LLaMA	RL base: OASST1 (h	uman), GPT4All (h								ş
tanford Alpaca	√ X	~ ~ ~	×	~	 ✓ 	X	X	X	X	X	X
anford University CRFM	LLM base: LLaMA	RL base: Self-Instruct	t (synthetic)								ş
(oala 13B	√	~ ~)				X	X	X	X	X	X
AIR	LLM base: LLaMA 13B	RL base: HC3, Share	GPT, alpaca (synt								5
LaMA2 Chat	X X	~ X ~	X	X	~	~	X	~	X	X	~
cebook Research	LLM base: LLaMA2	RL base: Meta, Stack	Exchange, Anthropic								ş
hatGPT	X X	x x x	x x	X	X	~	X	~	X	X	X
penAl	LLM base: GPT 3.5	RL base: Instruct-GP	Г								ş

for that judgement. At the end of a row, the g is a direct link to source data. The table is sorted by cumulative openness, where 🗸 is 1, ~ is 0.5 and 👗 is 0



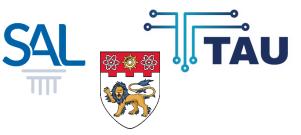
Agenda

Time	Title
13:00	Part I: Introduction Large Language Models
13:45	Part II: Hands-on prompt engineering for digital forensics
14:30	Part III: Hands-on with a LLM in a Google Colab notebook
15:00	Break
15:30	Part III continued
16:00	Part IV: Hands-on with Retrieval Augmented Generation
16:30	Panel discussion on LLMs in the legal domain
17:00	End



Hands-on prompt engineering for digital forensics

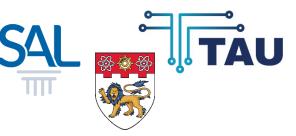
Part II: Hans Henseler



Github & Google CoLab

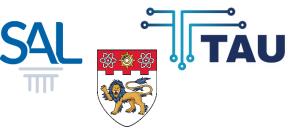
Link:

- <u>https://github.com/HansHenseler/DFRWS-APAC-LLM-Workshop</u> Notebooks:
- > Part II: Prompt engineering with ChatGPT for Digital Forensics
- Part III: Handson with Llama2
- Part IV: Retrieval Augmented Generation with Llama2 Requirements:
- Google CoLab is free but you need a Gmail account!
- Account for accessing free version of OpenAI ChatGPT
- Make sure to select a T4 GPU



Reductive operations

- Summarization Say the same thing with fewer words. Can use list, notes, executive summary.
- Distillation Purify the underlying principles or facts. Remove all the noise, extract axioms, foundations, etc.
- Extraction Retrieve specific kinds of information. Question answering, listing names, extracting dates, etc.
- Characterizing Describe the content of the text. Describe either the text as a whole, or within the subject.
- Analyzing Find patterns or evaluate against a framework. Structural analysis, rhetorical analysis, etc
- Evaluation Measuring, grading, or judging the content. Grading papers, evaluating against morals
- Critiquing Provide feedback within the context of the text. Provide recommendations for improvement

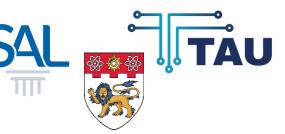


Transformative Operations

- > **Reformatting** Change the presentation only. Prose to screenplay, XML to JSON.
- Refactoring Achieve same results with more efficiency. Say the same exact thing, but differently.
- Language Change Translate between languages. English to Russian, C++ to Python.
- Restructuring Optimize structure for logical flow, etc. Change order, add or remove structure.
- Modification Rewrite copy to achieve different intention. Change tone, formality, diplomacy, style, etc.
- Clarification Make something more comprehensible. Embellish or more clearly articulate.

Generative (Expansion) Operations

- Drafting Generate a draft of some kind of document. Code, fiction, legal copy, KB, science, storytelling.
- Planning Given parameters, come up with plans. Actions, projects, objectives, missions, constraints, context.
- Brainstorming Use imagine to list out possibilities. Ideation, exploration of possibilities, problem solving, hypothesizing.
- Amplification Articulate and explicate something further. Expanding and expounding, riffing on stuff.



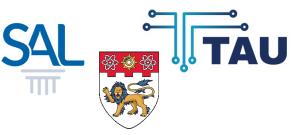
Prompt engineering with ChatGPT for DF

Our 4 case study experiments:

- 1. Writing search queries
- 2. Summarising chat conversations
- 3. Analysing search results
- 4. Reverse engineering

Part II Colab we will focusses on #1, #3 and #4

Midjourney prompt: photorealistic picture of a digital sleuth in the style of Sherlock Holmes as a robot investigating a crime scene with digital traces in smartphones and computers (fast)



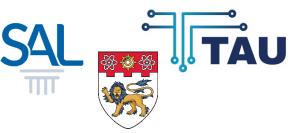
Github & OpenAI ChatGPT

Link:

- <u>https://github.com/HansHenseler/DFRWS-APAC-LLM-Workshop</u> Notebooks:
- > Part II: Prompt engineering with ChatGPT for Digital Forensics
- > Part III: Handson with Llama2
- > Part IV: Retrieval Augmented Generation with Llama2

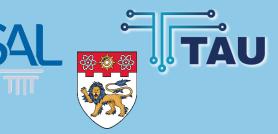
Requirements:

- > You need to have an account to chat with ChatGPT 3.5 (free)
- > You can open the notebook in Google CoLab for better navigation



More on prompt engineering

- > Videos and articles by David Shapiro:
 - <u>https://medium.com/@dave-shap/become-a-gpt-prompt-maestro-943986a93b81</u>
 - On YouTube: <u>https://www.youtube.com/watch?v=aq7fnqzeaPc</u>
 - About System Prompts: <u>https://www.youtube.com/watch?v=oILYjtbmLgc&t=760s</u>
- > Video and notebook by AssemblyAI:
 - Prompt Engineering 101
 - https://www.youtube.com/watch?v=aOm75o2Z5-o
 - Prompt_Engineering_101.ipynb
 - https://colab.research.google.com/drive/1lHd9b8C4ccAGpkK06dzcFB0asjXWGZi0



Hands-on with a local LLM in a Google Colab notebook

Part III: Victor C.W. Cheng and Hans Henseler

LLMs: Prompt Engineering and Retrieval Augmented Generation for Digital Forensics

Part III: Hands-on with a LLM in a Google Colab notebook

October 2023

How to get LLMs

Subscribe to OpenAI GPT4, Google PaLM

- Models are generally more powerful (Higher scores in various assessments)
- No need to setup and maintain the models and hardware
- Need to pay
- Privacy problems

Setup a local in-house LLM

- Many models are free
- No privacy issue
- Mid range hardware required
- Self maintenance (very limited support from publishers)

Local LLMs

What Hardware is required? What Models to be used? ີເ

Background Info for Model Selection

Background Info for Model Selection

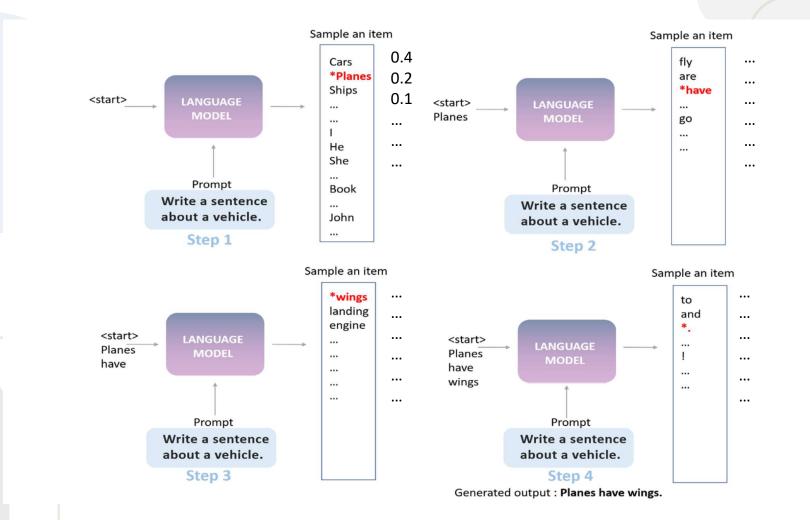
What do LLMs perform?

Generate coherent text (semantically related text) which can delivery meaningful contents.

$$P(w_n|w_{n-1}, w_{n-2}, \dots, prompt)$$

Words are **probabilistically generated** one by one: depending on the previous generated words and the user given "prompt". Different LLMs have different probability distribution functions!!!

An example illustrating how LLMs generate words using the prompt: "*Write a sentence about a vehicle.*"



ڗ

Important Parameters for Local LLMs

Top_k	Only consider the top k words		
Тор_р	Only consider the top words having total probabilities ≤ <i>Top_p</i>		
Temperature	Higher value \rightarrow more diverse and creative content, but content may not be coherent or even irrelevant		
n_ctx, max_length	Max. context length		
Max_new_tokens	Max. number of tokens to be generated		
Repeat_penalty	Discourage repetitive or redundant output		

ີເ

Local LLM Selection

Features of local LLMs to be considered:

Size of the models (num. of parameters/weights)	 7B, 13B, 30B, etc. Larger size models usually give better performance but require better hardware and slower
Nature of the models	Use instruct model or chat models for Q&A and Retrieval Augmented Generation (RAG)
Weight Quantization	Usually map floating point values (16bits/32bits) to integer values (int8, int4, etc)
Model Data Format/Structure	Hugging Face, GGUF, GGML (now replaced by GGUF), GPTQ, AWQ
Context length (tokens)	 2K, 4K, 8K, 32K ChatGPT : 8K, GPT4: 32K Number of context words ~ (0.6 or 0.7) * number of tokens

Parameter Quantization

Models are too big!

High VRAM GPU cards are **too expensive**! Almost no competitor !!! Limited supply of high VRAM GPUs Model computation is slow!

How to make models smaller, while preserving the number of parameters/weights, or minimizing the degradation of performance?

Use **smaller number of bits** to store the parameters/weights Float32, float16 ---→ int8 (8-bit integer), int4, ...

Faster computation

Frameworks

Publisher/model-name model-size model-type framework context-size

meta-llama/Llama-2-7b-chat-hf
 Fort Generation • Updated Aug 9 • ± 1.09M • ♡ 1.32k

∞ meta-llama/Llama-2-7b
 ▷ Text Generation • Updated Jul 20 • ♡ 2.65k

meta-llama/Llama-2-70b-chat-hf
 For the Generation + Updated Aug 9 + ± 141k + ♡ 1.39k

∞ meta-llama/Llama-2-7b-hf
 ☞ Text Generation • Updated Aug 9 • ± 563k • ♡ 627

∞ meta-llama/Llama-2-13b-chat-hf
 ▷ Text Generation • Updated Aug 9 • ± 240k • ♡ 585

Generation → Updated 6 days ago → ± 7.04k → ♡ 570

Hugging Face: Traditional framework

GGUF/GGML: Optimized for CPU and (CPU + GPU)

F Z

.

GPTQ: Optimized for GPU and (GPU + CPU)

AWQ: Recent efficient quantization method (size, speed)

35

For example:

Llama 2 7B chat model

No. of parameters: 7B (float 16) Memory required: ~ 14GB

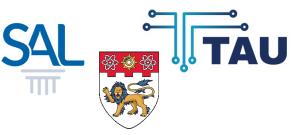
Q4_0: 4bit quantization 7B parameters ~ 3.5GB

Q5_0: 5bit quantization 7B parameters ~ 4.4GB

Q6_K_S: 6bit K-quantization 7B parameters ~ 5.3GB

Q8_0: 8bit quantization 7B parameters~ 7.0GB

🗋 llama-2-7b-chat.ggmlv3.q4_0.bin 💿	3.79 GB 🧳 LFS 🔽
🗋 llama-2-7b-chat.ggmlv3.q4_1.bin 💿	4.21 GB 🧳 LFS 👱
🗋 llama-2-7b-chat.ggmlv3.q4_K_M.bin 💿	4.08 GB 🗳 LFS 👱
🗋 llama-2-7b-chat.ggmlv3.q4_K_S.bin 💿	3.83 GB 🧳 LFS 👱
🗋 llama-2-7b-chat.ggmlv3.q5_0.bin 💿	4.63 GB 🧳 LFS 👱
🗋 llama-2-7b-chat.ggmlv3.q5_1.bin 💿	5.06 GB 🧳 LFS 🔽
🗋 llama-2-7b-chat.ggmlv3.q5_K_M.bin 💿	4.78 GB 🗳 LFS 👱
🗋 llama-2-7b-chat.ggmlv3.q5_K_S.bin 💿	4.65 GB 🗳 LFS 👱
🗋 llama-2-7b-chat.ggmlv3.q6_K.bin 💿	5.53 GB 🧳 LFS
🗋 llama-2-7b-chat.ggmlv3.q8_0.bin 💿	7.16 GB 🧳 LFS 👱



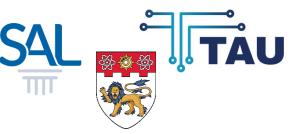
Github & Google CoLab

Link:

- <u>https://github.com/HansHenseler/DFRWS-APAC-LLM-Workshop</u> Notebooks:
- > Part II: Prompt engineering with ChatGPT for Digital Forensics
- Part III: Handson with Llama2
- > Part IV: Retrieval Augmented Generation with Llama2

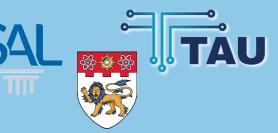
Requirements:

- Google CoLab is free but you need a Gmail account!
- > Make sure to select a T4 GPU



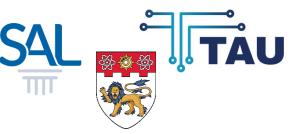
Agenda

Time	Title	
13:00	Part I: Introduction Large Language Models	
13:45	Part II: Hands-on prompt engineering for digital forensics	
14:30	Part III: Hands-on with a LLM in a Google Colab notebook	
15:00	Break	
15:30	Part III continued	
16:00	Part IV: Hands-on with Retrieval Augmented Generation	
16:30	Panel discussion on LLMs in the legal domain	
17:00	End	



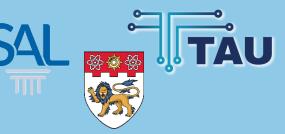
Hands-on with a LLM in a Google Colab notebook

Part III continued



Agenda

Time	Title
13:00	Part I: Introduction Large Language Models
13:45	Part II: Hands-on prompt engineering for digital forensics
14:30	Part III: Hands-on with a LLM in a Google Colab notebook
15:00	Break
15:30	Part III continued
16:00	Part IV: Hands-on with Retrieval Augmented Generation
16:30	Panel discussion on LLMs in the legal domain
17:00	End



Hands-on with Retrieval Augmented Generation

Part IV: Victor C.W. Cheng and Hans Henseler

LLMs: Prompt Engineering and Retrieval Augmented Generation for Digital Forensics

No GPU • GGML/GGUF models a good CPU & 16GB RAM • optimized for CPU exec		
	he model weights/layers to GPU he word generation speed, compared to no off	
(e.g. 16GB VRAM) execution	der GPTQ models which are optimized for GPU and usually have slightly smaller sizes compared with GUF models.	
Huge GPU	Using original models (no quantization) say 13B (26GB) or 30B (60GB) models, or Larger size models* (with quantization) say 70B models (36GB with 4bit quantization).	
	* Option 2 usually gives better performance.	

Background

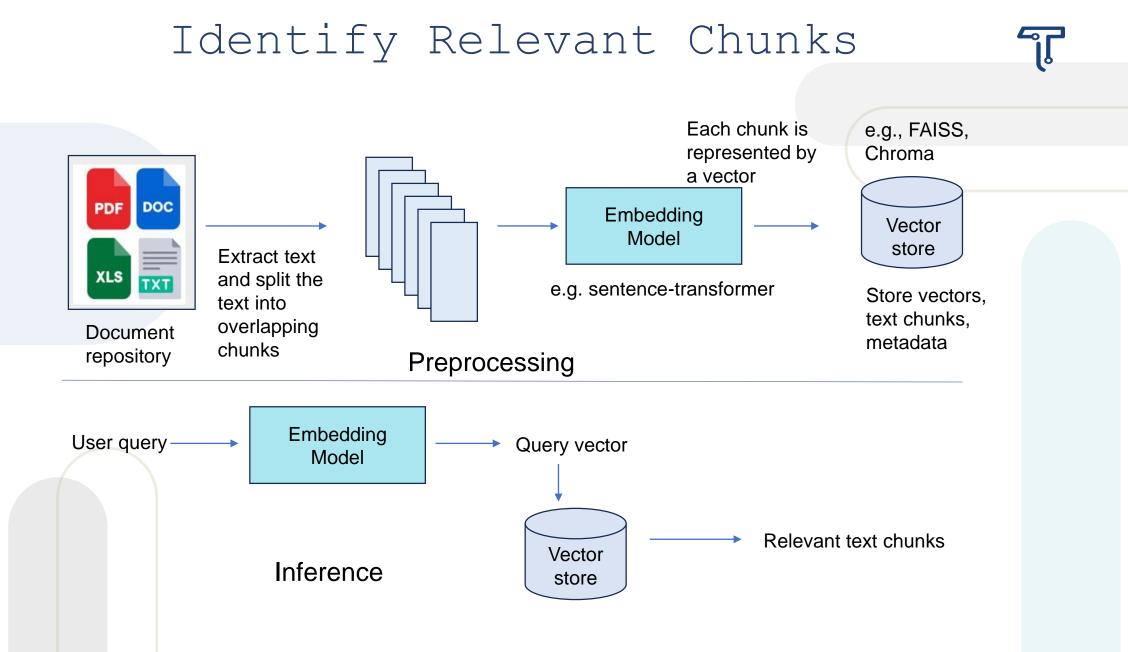
- LLMs are pretrained with public domain information.
- Public information may not be up-to-date and less accurate.
- Embedding new/unseen information after pretraining is difficult.
- "Hallucination" may happen and hard to detect
- Resolution:
 - 1. Fine tuning with new information or new tasks
 - 2. Embed the new information to the LLM input prompts (known as context) and instruct LLMs to respond based on the context, known as retrieval augmented generation (RAG).
- Can be regarded as open book Q&A

Background

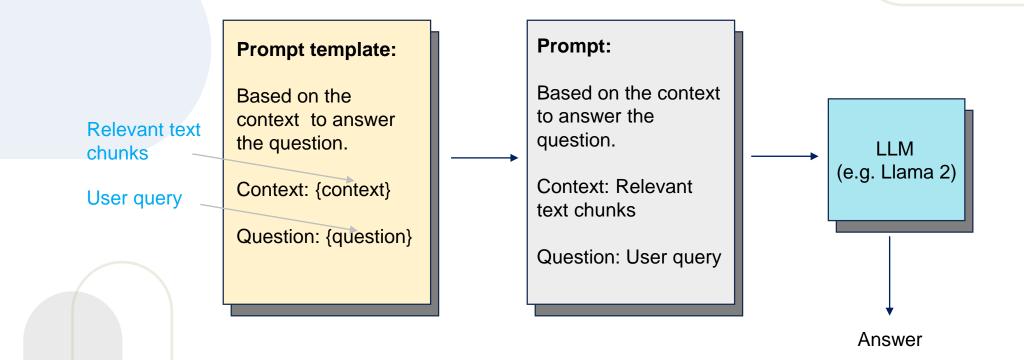
- RAG enable up-to-date and private information to be analyzed or processed by LLMs
- Hallucination is less probable (still be possible)
- Source of information can be identified and hence LLM's responses can be checked (but still need manual efforts), hence verifiable.
- No training or fine-tuning, thus low cost and time saving.
- RAG has 2 stages:
 - 1. Retrieval stage: search for relevant information
 - 2. Generation stage: Generate answers to the user questions

Large information sources

- Cannot pass huge size passages/documents to LLMs, due to limited context length they can handle, e.g. GPT4: 32K tokens, Llama 2: 4K tokens.
- Most LLMs only accept text format information.
- If too many documents or the document is too large, split them into individual overlapping chunks of text.
- Hence,
 - Step 1: Identify relevant chunks of text.
 - Step 2: Create a prompt to include the relevant chunks together with the user query and send to the LLM.



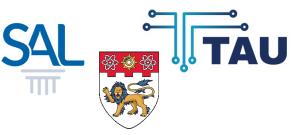
Create prompt and get responses



Challenges

ີເ

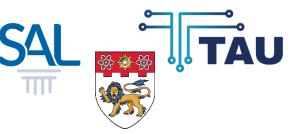
- Selection of correct chunks is extremely important → incorrect chunks will result in inaccurate answers or no answer at all.
- If queries involve information spanning several chunks, selecting the correct chunks becomes very difficult.
- Tables, especially those extracted from PDFs, can be challenging for LLMs to comprehend.
- Most local LLMs currently lack support for images.



Github & Google CoLab

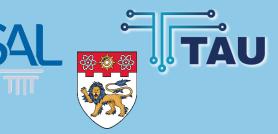
Link:

- <u>https://github.com/HansHenseler/DFRWS-APAC-LLM-Workshop</u> Notebooks:
- > Part II: Prompt engineering with ChatGPT for Digital Forensics
- > Part III: Handson with Llama2
- Part IV: Retrieval Augmented Generation with Llama2 Requirements:
- Google CoLab is free but you need a Gmail account!
- > Make sure to select a T4 GPU



Agenda

Time	Title
13:00	Part I: Introduction Large Language Models
13:45	Part II: Hands-on prompt engineering for digital forensics
14:30	Part III: Hands-on with a LLM in a Google Colab notebook
15:00	Break
15:30	Part III continued
16:00	Part IV: Hands-on with Retrieval Augmented Generation
16:30	Panel discussion on LLMs in the legal domain
17:00	End



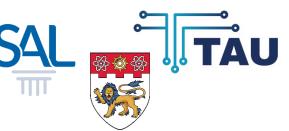
Panel Discussion on LLMs in digital forensics and legal applications

Panel: Kwok Yan Lam and Victor C.W. Cheng Moderator: Hans Henseler

LLMs: Prompt Engineering and Retrieval Augmented Generation for Digital Forensics

Thank you!

Netherlands Forensic Institute Ministry of Justice and Security



Hans Henseler h.henseler@nfi.nl Kwok-Yan Lam kwokyan.lam@ntu.edu.sg Zee Kin Yeong Yeong_zee_kin@sal.org.sg Victor C.W. Cheng victor.cheng@tauexpress.com

Published papers and articles:

