
Forensic Science International: Digital Investigation 48 (2024) 301679

2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS EU 2024 - Selected Papers from the 11th Annual Digital Forensics Research Conference Europe

An abstract model for digital forensic analysis tools - A foundation for
systematic error mitigation analysis

Christopher Hargreaves a,*, Alex Nelson b, Eoghan Casey c

a Department of Computer Science, University of Oxford, United Kingdom
b US National Institute of Standards and Technology, United States
c University of Lausanne, Quartier Centre, 1015, Lausanne, Switzerland

A R T I C L E I N F O

Keywords:
Digital forensics tools
Digital forensics process
Abstraction layers
Validation
Error
Tool testing
CASE

A B S T R A C T

As automation within digital forensic tools becomes more advanced there is a need for a systematic approach to
ensure the validity, reliability, and standardization of digital forensic results. This paper argues for intermediate
output in a standardized format within digital forensic tools to allow a methodical approach to tool validation
that targets errors at each stage of processing. To achieve this, a detailed process model of digital forensic
analysis tools is created, extrapolating the details of the internal processes performed by monolithic forensic
tools. The research deconstructs the process flow within tools and presents an ‘abstract digital forensic tool’,
revisiting earlier abstraction layer ideas. This not only identifies the interconnected processes within tools but
allows discussion of the potential error that could be introduced at each stage, and how it could potentially
propagate within a tool. A demonstration, with a dataset, is also included, structurally annotated using Cyber-
investigation Analysis Standard Expression (CASE).

1. Introduction

Digital forensic science is still facing many of the problems posed in
Garfinkel (2010). There are also repeatedly quoted challenges of volume
(Quick and Choo, 2014) including: volume of cases themselves, devices
within cases, and data on individual devices. In order to make sense of
these large volumes of data, automation is necessary and always has
been in some form (NIST, 2003)1.

As the field has matured, digital forensic tools have developed
significantly in terms of features, enhanced with improved search,
different data views (e.g., galleries, timelines, geolocation options), and
more recently the integration of AI capabilities (Du et al., 2020).

As the field has matured, the need to validate tool results has also
become increasingly expected (Beckett and Slay, 2007). For example,
the United Kingdom (UK) Forensic Science Regulator has stated “the
courts have the expectation that the methods to produce the data that an
expert bases their opinion on are valid” (UK Forensic Science Regulator,
2020). Work on error in digital forensics has included discussions of
fundamental concepts (Casey, 2002) (Carrier et al., 2003) (Lyle, 2010), a
qualitative expression of error in event reconstruction (Hargreaves,

2009), and specific sources of error in digital investigations e.g.,
contamination (Gruber et al., 2023). Also ASTM E3016-18 ‘Standard
Guide for Establishing Confidence in Digital and Multimedia Evidence
Forensic Results by Error Mitigation Analysis’ (ASTM, 2018) includes a
discussion on the need for systematic and transparent treatment of er-
rors, including tool validation and supporting reports.

The intersection of these two trends of automation and validation
creates a challenge. Tools are offering more automated results, and there
is a very reasonable expectation for those results to be demonstrably
correct. However, the lack of systematic testing to expose errors in
digital forensic tools raises the risk that undetected errors exist in their
results for current and past cases. This paper proposes a future direction
to support the ongoing use of automation within digital forensics but
allowing easier validation. It achieves this by revisiting abstraction
layers in digital forensics, and proposing the use of a standard repre-
sentation of digital forensic artifacts at each of these layers. This paper
makes the following contributions:

• A model of the processes applied within a digital forensics tool.

* Corresponding author.
E-mail addresses: christopher.hargreaves@cs.ox.ac.uk (C. Hargreaves), alexander.nelson@nist.gov (A. Nelson), eoghan.casey@unil.ch (E. Casey).

1 Certain products may be identified in this document, but such identification does not imply recommendation by the US National Institute of Standards and
Technology or other agencies of the US Government, nor does it imply that the products identified are necessarily the best available for the purpose.

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2023.301679

astm:E3016
mailto:christopher.hargreaves@cs.ox.ac.uk
mailto:alexander.nelson@nist.gov
mailto:eoghan.casey@unil.ch
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301679
https://doi.org/10.1016/j.fsidi.2023.301679
https://doi.org/10.1016/j.fsidi.2023.301679
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301679&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 48 (2024) 301679

2

• A thorough discussion of error at each stage of processing and how
it could propagate.
• A proposal to expose the output of each abstraction layer, for
improved validation of results, and avoidance of error propagation.

The remainder of the paper is structured as follows: Section 2 pro-
vides background and related work. Section 3 describes the methodol-
ogy, and Section 4 provides the main body of work including the
deconstruction of forensic tool processes and examples of error. Section
5 discusses recommendations and Section 6 provides a demonstration.
Section 7 discusses limitations and further work, and Section 8 provides
conclusions.

2. Background and related work

2.1. Testing and validation

ASTM E3016-18 (ASTM, 2018) states that most digital forensic tool
errors are systematic in nature rather than statistical. Therefore, many
errors in digital forensic tools can be mitigated using a systematic
approach. It describes the primary types of errors found in digital
forensic tool implementations as incompleteness (INCOMP), misinterpre-
tation (MISINT), and inaccuracy (INAC). This last type subdivides into:
existence, i.e., do all artifacts reported as present actually exist? (INA-
C-EX), alteration, i.e., does a tool alter data in a way that changes its
meaning? (INAC-ALT), association, i.e., for every set of items identified
by a given tool, is each item truly part of that set? (INAC-AS), and cor-
ruption, i.e., does the forensic tool detect and compensate for missing
and corrupted data? (INAC-COR).2

If we consider current approaches for assessing the correctness of
results in digital forensics, there are several approaches. Manufacturers
of tools perform their own testing with datasets, likely adopting best
practices in software engineering (van Beek et al., 2020), such as test
driven development, and automated test suites. Also within the com-
munity, tools will be tested for specific results against known data sets
with ground truth data, e.g., Digital Corpora (Garfinkel, 2012), Com-
puter Forensic Reference DataSet (CFReDS) (NISTa), although the
“production of these disk images is a time consuming and, therefore, an
expensive process” (Du et al., 2021). However, because of the number of
processing steps required to translate from raw digital data to a
higher-level observable trace, and because many digital forensic tools
are closed source, some testing strategies necessarily adopt an approach
that just checks final results are as expected against that ground truth
(Wilsdon and Slay, 2006), or input-output-validation (Michelet et al.,
2023).

However, such tool output is the result of applying an opaque
sequence of many processes within a tool. Furthermore, the UK Forensic
Science Regulator has stated that there is an expectation to “select data
that will robustly test the method and tool” (UK Forensic Science
Regulator, 2020), and while some datasets are specifically designed to
identify errors within specific abstraction layers, e.g., the Digital Fo-
rensics Tool Testing Images project (Carrier, 2010) and (Duns and
Lawton, 2022), most datasets do not have an approach to address the full
extent of hidden problems in digital forensic tools.

Another approach often quoted is dual tool verification. Horsman
(2019) reports that in a survey “55 % of respondents can be classed as
‘regularly’ deploying multiple tools in order to try and protect against
tool issues.” However, this method has the problem that multiple tools
could be based on the same incorrect knowledge, assumptions or even
code libraries (Horsman, 2018). It also has the problem that it is often
very difficult to compare the output of different tools. Even if discrep-
ancies are identified, it is even more difficult to isolate the reasons for
differences (Glisson et al., 2013), again because the output being

compared is the result of a series of sequential, cumulative processes
applied to the raw data.

2.1.1. Abstraction revisited
In order to consider solutions to these problems it is necessary to

revisit abstraction in digital forensics. Many of the early important
concepts of abstraction in digital forensics are discussed in Carrier et al.
(2003), and an example model is presented that includes the layers:
physical media, media management, file system, application. Also discussed
is that error can be introduced any time abstraction is introduced, and
abstraction layers can be modelled as input, a rule set, followed by
output and a margin of error. Other digital forensic process models are
often a high-level abstraction of a digital investigation as a whole. These
process models have an ‘analysis’ stage, which is rarely broken down
further, and it is difficult to find an example where sufficient granularity
exists that allows consideration of errors between internal tool
abstraction layers.

Abstraction layers and loss are considered in Freiling et al. (2017),
which goes into more detail than just high-level process models. Spe-
cifically it introduces “active” and “deleted” mappings between upper
and lower layers of abstraction. Several examples are provided e.g., on
block storage. It provides an example of how data change over time, and
how the loss of data in a ‘lower’ layer means that the upper layer cannot
be reconstructed. While this certainly applies to digital forensics tools, it
is not extended to all processes within a digital forensic tool. Schneider
et al. (2020) also discusses abstraction layers and extends that work
considering block devices in more detail, again considering a specific
part of the digital forensic analysis process.

In terms of what detail should exist within a broader examination of
the analysis stage, one reference provides an ontology of techniques in
digital forensics (Ellison et al., 2019), covering at a high-level analysis:
interpretation, presentation, reporting, but also provides more granu-
larity for each of these, highlighting for example FileAnalysis under
DataNodeSearching, and Event Reconstruction and Reverse Engineering
under Analysis. While it provides an extensive overview and organiza-
tion of specific processes that could be applied to an investigation, it
does not explore individual techniques in detail and does not consider
those areas in the context of abstraction layers and error. Brady (2018)
explores an ontology and representation of digital forensic artifacts and
creates a detailed mapping of how they are related, and describes arti-
facts in detail, but does not cover tool processes explicitly or de-
pendencies. The US National Institute of Standards and Technology
(NIST) also has a Computer Forensic Tools and Techniques Catalog
(NIST, 2023), which provides a taxonomy of forensic tool functionalities
(e.g., disk imaging, email parsing, hash analysis, string search). This is
an extensive list, but there is little detail on how the categories interact.
There is, therefore, limited recent work that has attempted to consider
modern monolithic digital forensic tools in the context of abstraction
layers and how the layers are connected and to explore how error could
be introduced and propagate within them.

3. Methodology

This paper examines the extraction and analysis processes used in
digital forensic tools and reapplies the abstraction layer concept from
Carrier et al. (2003).

To this end, this paper will first deconstruct the digital forensic
process, not with a typical high-level view of an investigation, but at a
lower level, focusing on the extraction and analysis aspects within dig-
ital forensic tools. With that complete, it is then possible to consider
examples as to where error can be introduced, and how it might prop-
agate within such a system from one process to another.

In order to deconstruct the digital forensics analysis process at a
useful granularity, this paper looks to digital forensic tool features to
extrapolate the lower-level automated processes that are carried out.
However, many, but not all, digital forensic tools are closed source and 2 Abbreviations created for the purposes of this paper.

C. Hargreaves et al.

Forensic Science International: Digital Investigation 48 (2024) 301679

3

are also highly complex pieces of software with many interconnected
components. Therefore, the approach chosen here is to extrapolate
general features and capabilities from a set of digital forensic tools and
then consider for each process what input is required and what the
output would be. This allows not just a set of components to be identified
but also a set of dependencies to be derived between them. This results
in a vendor agnostic view of digital forensic tool processes: an abstract
model for digital forensic tools.

4. Analysis: deconstruction of digital forensic process

This section describes modeling an abstract digital forensic analysis
tool, capturing the processes involved and their dependencies. To do
this, the feature set of Autopsy, AXIOM, and X-Ways were considered
from their documentation, and a generalized set of processes extracted.

Furthermore, dependencies between processes were also considered.
This was performed by considering the tool features in the context of the
abstraction model in Carrier et al., (2003), i.e., that a process needs a
specific piece of data in order to function (input), will produce some

output, and, therefore, there is a dependency.
From these results, Fig. 1 was constructed. Each process is shown as a

block with arrows indicating the flow through the software, which are
labeled numerically, although the numbers themselves do not represent
a sequence. Section 4.2 onward, provides a description of the processes,
their input and output, argues the existence of a dependency, and finally
describes examples of the potential error that can be introduced by a
particular stage of processing.

Note that there are two entry points into the diagram: (1) a physical
storage acquisition, which is typical of computer based investigations
(and some mobile methods) and (2) a ‘set of files’ which may be the case
in some computer investigations, but is certainly common within other
mobile investigations, e.g., iPhone backup-based acquisition.

4.1. Overview

The subsections that follow describe the processes identified and
shown in Fig. 1. Many are standard digital forensic processes, but all are
described for completeness, and to highlight potential error and

Fig. 1. A representation of an abstract model for digital forensic tools indicating relationships between abstraction layers and visualizing dependencies.

C. Hargreaves et al.

Forensic Science International: Digital Investigation 48 (2024) 301679

4

precisely explain the relationships with other processes. Each error
described is tagged according to the ASTM E3016-18 error types dis-
cussed in Section 2. There are some topic omissions, for example case
management and bookmarking features are not discussed here since
they are considered more ‘administrative’ rather than core analysis
functionality for the purpose of error identification, although error could
occur within these areas, too, and should be addressed in further work.

4.2. Parse image format

Description: This applies when the input to the tool is an image of
physical storage media, which is a likely format for computer-based
investigations. This might be a transparent layer, where a dd image is
supplied, or it may require processing of the EWF (Metz, 2023) or AFF
(Cohen et al., 2009) formats.

Dependencies: Dependency d1: Only data captured by the earlier
acquisition stage can be processed. Therefore any errors introduced by
the acquisition tool, e.g., an incorrect read of a sector from the source
media, or an examiner failing to take into account disk HPAs, DCOs
(Gupta et al., 2006) or remapped sectors (Turner, 2023) etc. will result
in data being incorrect or missing within the examined image.

Potential Error Introduced at this Stage: Image format parsing
could fail to present all blocks from within a forensic container image in
their ‘flat’ (dd) representation (INCOMP), or present incorrect data
within sectors (INAC-ALT). Alternatively it could present incorrect
forensic image metadata (INAC-ALT). Some imaging tools include
“maps” to record when disk regions were not recovered, mitigating
INCOMP issues; but failure to incorporate such a map into downstream
analysis can lead to process and analysis errors from “preserving” the
original faults in the copy process (INAC-COR).

4.3. Validate disk image

Description: This is the process of checking that the sectors accessed
in the disk image are the same as recorded from original source material.
This process mitigates potential error in the previous stage since the
hash can be computed over the accessed data and compared and shown
to be the same as the hash recorded for the original source media.
However, image metadata (i.e., the details stored within the image
format such as examiner, case name, time of acquisition) are not vali-
dated by this specific process. Other processes may be in place to vali-
date the metadata, but it is a clearly separate process.

Dependencies: Dependency d2: if the image format is incorrectly
parsed, the hash computed over the data would not match that stored in
the image file, or in separate documentation. Fortunately in this case,
detection of this problem is the point of this stage.

Potential Error Introduced at this Stage:

• Failure to compute hash correctly: this could result in a message
indicating corrupt evidence, thus stopping or delaying further
investigation (INAC-AS).
• Failure to validate hash properly: this could allow errors from
earlier to propagate, either incorrect sectors (INAC-COR) or an
incomplete disk image (INCOMP).
• Failure to validate metadata: this could allow details such as
acquisition date to be changed (INAC-COR).
• Failure to validate against an externally stored hash: this could
create a vulnerability to tampering, where the image file content and
hash could be manipulated but would still self-validate (INAC-COR).

4.4. Identify partitions

Description: This should involve both parsing the partition scheme
in use, e.g., GPT or MBR-based (including all the Extended Partition
Tables (EPTs)), and should also include examination of the unparti-
tioned space and performing checks to determine if there are any deleted

but still recoverable partitions, e.g., from a deleted Volume Boot Record
(VBR).

Dependencies: Dependency d3: If data from the disk image are not
validated then sectors may be missing/corrupt and prevent this partition
reconstruction from being performed correctly.

Potential Error Introduced at this Stage:

• Incorrectly parsing partition table(s): if they are incorrectly pro-
cessed then it could result in an incomplete or incorrect partition list.
Making incorrect assumptions about sector size (e.g., 512 rather than
4096) or not parsing MBR/EPT pointers correctly could all result in
missing partitions (INCOMP) or identifying ones that are not present
(INAC-EX).
• Missing deleted but recoverable partitions: Even if the partition
table is correctly parsed, failing to correctly search unpartitioned
space for partitions that could be ‘carved’ out, usually from identi-
fying a VBR, could miss entire possible partitions (INCOMP).

4.5. Processing file systems and identifying files

Description: This describes the process whereby a partition is
inspected, a valid file system identified, and that file system parsed ac-
cording to a known (documented or reverse engineered) specification.
The process also usually includes use of knowledge of the file system
driver behavior to attempt to recover non-allocated files that still retain
references within the file system metadata, despite being marked for
reuse. This is a different process from file carving, which is discussed
later.

Dependencies: Dependency d4 means that earlier failure to
correctly identify partitions (either live, or from unpartitioned space)
would mean that file system processing does not occur for the content of
that partition. This is an extremely significant problem since failure to
identify files propagates into almost all the stages that follow, as shown
in Fig. 1.

Potential Error Introduced at this Stage: Many of the errors at this
stage are described in detail in Casey et al., (2019). In general, potential
errors could include:

• Failure to identify a known file system: Here either a trigger for
identifying a supported file system is missed, or the tool lacks support
for a file system that is known within digital forensic science. It is
perhaps controversial that lack of support for a file system would be
considered an error, but, in the context of trying to identify where
digital forensic traces could be missed, it needs to be highlighted
(INCOMP).
• Incorrect extraction of the live file set, or a subset: Here there is
some error either in processing or implementing the specification; or
there is a mistake or limitation in the file system specification on
which the implementation is based. This results in missing files
(INCOMP), additional files (INAC-EX), or inaccurate metadata or file
content (INAC-ALT).
• Failure to recover one or more non-allocated but recoverable files:
This means that there is file content in unallocated space that could
be recovered, but the tool either does not recover it (INCOMP), or
does not recover it correctly (INAC-AS). This is difficult to assess
since this process is usually outside the formal specification of the file
system, and different processes and tolerances for incomplete or
corrupt files may be implemented by different vendors. This is,
therefore, something of an abstraction error as the ‘correct’ value is
hard to define.
• Misallocation of metadata as part of the non-allocated file recovery
process: Again, since we are operating outside of the file system
specification, there are examples where deleted metadata could be
misallocated to recovered files (INAC-AS), or there is a presentation
problem within a tool (MISINT) (Casey et al., 2019).

C. Hargreaves et al.

astm:E3016

Forensic Science International: Digital Investigation 48 (2024) 301679

5

• Inaccurate metadata: filename, timestamp(s), permissions, etc.
(INAC-ALT).
• Failure to express uncertainty in the classification of file recovery
results, e.g., where content may be partly overwritten (MISINT).

4.6. Content carving

Description: In the case of no file system metadata structures, this
can mean that the file system cannot be reconstructed. Content carving
does not use the file system metadata and uses file structure information
((Pal and Memon, 2009), (Casey and Zoun, 2014)), e.g., header and
footer, to attempt to salvage and reassemble file content. Content
recovered in this way will not usually have metadata associated with it,
except an extension assigned based on content type, or data formats that
contain internal metadata.

Dependencies: There are three ways that content carving could be
initiated. In the first case (d5), either unpartitioned space, or a partition
containing an unsupported file system can have content carving applied.
In the second case (d5a), within a supported file system, after live files
are processed, and any non-allocated files with residual metadata
extracted, the remaining unallocated space can have the content carving
process applied. In the third case, the carving process is initiated after
file type identification (d5b) and may be used directly against file objects
such as the swap/pagefile. As a note, including this content carving
process by default within the broader process means that error propa-
gation may be partially mitigated for the problems: ‘Missing deleted but
recoverable partitions’ (Section 4.4), and ‘Failure to identify a known
file system’ within a partition (Section 4.5). This is because this should
result in unexpected content being identified by the tool in this
‘unpartitioned space’, which may cause an investigator to challenge the
automated results and look more closely at the raw data as to why a file
system was not reported.

Potential Error Introduced at this Stage:

• Failure to carve salvageable content: where there is sufficient data
to perform successful content carving, but a tool fails to do so. Like
non-allocated file recovery earlier, this is difficult to assess since
different processes and tolerances for incomplete/corrupt content
may be implemented by different tools and would produce different
results, but by design. This is again something of an abstraction error
as the ‘correct’ value is hard to define (INCOMP).
• Incorrect carving of a complete file: For example a file header
would be identified and content would be carved, but, due to either
fragmentation or over carving, a complete file is presented that, in
fact, never existed. This could be either merging the contents of
multiple files, which presents a file as evidence that actually never
existed, or prematurely cropping a file, which again presents an
incomplete file that never existed (INAC-EX/COR).
• Incorrect reassembly of a file: In this extended example of the
above case, where automated reassembly of fragments is attempted,
an error here would present a complete file, but one that was
assembled from fragments of separate files (INAC-EX). Either that or
important chunks of the file are missing, but this is not flagged in the
output (MISINT).
• Incorrect file system attribution: e.g., in Casey et al. (2019) when a
host file system contained a virtual machine disk image with guest
file system of the same type recovered content could be
mis-attributed to the host.

4.7. File type identification

Description: Later in the overall process, specific processes need to
be applied to different file types. Therefore, a process must be performed
that identifies the type of file. This could be via extension, although files
may have been renamed, and so this is unreliable, so other means such as
examining a file signature or other techniques are used (Dubettier et al.,

2023).
Dependencies: Dependencies vary since files can be either from

extracted from file system parsing (d6) or via carving (d8), or come from
a logical container (d12) or mobile phone extraction (d14). This means
that if files are not identified in any of these processes, fewer files can
have their type identified. As the diagram shows, this has significant
impact on the “file specific processing stage” (d19).

Potential Error Introduced at this Stage:

• Incorrect assignment of a file type: examining the header and
assigning an incorrect or insufficient type, for example assigning ZIP
to a DOCX file as a result of limited processing (INAC-AS). This may
also occur if a file header is used by multiple file types. In general,
capturing uncertainty is unusual in current forensic tools (MISINT).
• Missing assignment of a file type: reporting a file as unknown when
it has a known type within the digital forensic science body of
knowledge (INCOMP, INAC-AS).
• Missing recognition of multiple file types: reporting a file as a
limited set of types, or a single type, when it can be interpreted as
having more than one (INCOMP), such as a GIF and Java Jar
(Magazinius et al., 2013).

4.8. File hashing

Description: Here cryptographic hashing can be applied to files,
results stored, and used later as part of a matching process.

Dependencies: Since we need the files’ content in order to read and
hash the data within them, there are dependencies here from d7 (parsing
the file system) or d9 (performing file carving). Also if data came from a
logical container or mobile phone extraction there may be dependencies
there (d13, d15). If any of this is not done correctly then it could
introduce error to this stage i.e. an incorrect hash. For example if:

• carving extracted only part of a file due to a footer occurring within
the file contents.
• a carved file was originally fragmented with even just a single block
in the middle belonging to a different file.
• the file system processing extracted incorrect data for a file, e.g.,
failing to take into account fix up arrays in NTFS resident data at-
tributes (Carrier, 2005).
• the file system processing extracted too much data for a file e.g.,
including file slack as part of a file.
• the file system processing did not recover enough data e.g., failed to
follow FAT chains correctly.

Potential Error Introduced at this Stage:

• Computing the incorrect hash: the error actually introduced at this
stage would be an implementation error in the hashing algorithm
(INAC-AS/ALT).

4.9. Hash matching

Description: Hashed files are then often compared with entries in a
predefined known hash database, either known to be associated with
software, such as NSRL, or known bad, such as malware or known child
abuse media.

Dependencies: The dependency here is on the file hashing process
(d17) and, of course, everything before that.

Potential Error Introduced at this Stage:

• Failing to match a file because of a comparison error (INCOMP,
INAC-AS).
• Failing to match a file because of an incomplete or inaccurate
hashset (INCOMP).

C. Hargreaves et al.

Forensic Science International: Digital Investigation 48 (2024) 301679

6

• Incorrectly matching a file as innocuous because of an inaccurate
hashset (INAC-AS).
• Error could also be introduced from a design perspective, if an
insecure hashing algorithm is used (INAC-AS/ALT).

4.10. File specific processing

Description: File formats used as part of operating systems and
applications contain open and proprietary data structures and
embedded metadata, including: Registry hives, Event logs, SQLite and
WAL files, email databases, compressed archives, encrypted containers,
PDF and DOCX documents, scanned text (e.g., TIFF), binary plists, and
EXIF headers, and many more. Each file format requires specialized
processing to parse data structures and extract metadata.

Dependencies: There is a dependency here on identifying file type in
order to trigger file specific processing (d19).

Potential Error Introduced at this Stage: Since there are such a
broad range of processes included in this stage, specific errors are hard
to include in this paper; SQLite alone could be discussed at length. Due
to space constraints only a selection of examples are provided, illus-
trating each of the generalized error types:

• Failing to recover SQLite records from the non-allocated space
within a database, or failing to render aspects of a particularly
obscure PDF component (INCOMP).
• Information being misunderstood or misrepresented, e.g., pre-
senting event log data with the local time zone settings of the in-
vestigator’s machine, rather than UTC or time zone of the system
being examined (INAC-ALT), or more specifically, failing to present
the translations that are being performed (MISINT).
• Extracting an incorrect target path from Windows Shortcut files
(INAC-ALT/AS).

4.11. Keyword indexing & searching

Description: This is the process of attempting to identify relevant
content using keywords. This is shown in the diagram in two stages:
keyword indexing, and keyword searching. This may not always be the
case and some tools (e.g., X-Ways) do allow keyword searching directly
on the data without first building an index, but due to increasing data
storage and complexity, most tools provide an indexing capability that
first processes all files and extracted data and adds text to an index that
enables near instant search results to be obtained.

Dependencies: In order for comprehensive text indexing to occur,
since various file formats do not necessarily have directly accessible
content (e.g., due to compression or formatting tags), files need to
processed before data can be accessed for full indexing. This creates
dependency d24. Some tools may also directly index text from unpar-
titioned or unallocated space, but this is not shown in the diagram for
clarity.

Potential Error Introduced at this Stage: Within the keyword
indexing process, since we assume content has been made accessible at
the ‘file specific processing’ stage, the error here is associated only with
building the index from the available text. There are, however, many
considerations that affect whether text would be indexed, for example,
use of text encodings, whether you facilitate substring searching, what
you consider as word separators, how case sensitivity is handled, etc
(Guo et al., 2009), which could all result in data not being indexed
(INCOMP). Another error that could be introduced would be incorrect
mapping to source location (INAC-AS). Within the keyword searching
process, error would be associated with retrieval of results from the
index or parsing a supplied regular expression (INCOMP).

4.12. Timeline generation

Description: Basic timeline generation involves extracting

timestamps from the file system, but more comprehensive methods (e.g.,
Plaso) would also apply file specific processing and extract timestamps
from files such as the Windows Registry, log files, SQLite databases that
contain timestamps, etc.

Dependencies: For the file times, correct processing of the file sys-
tem is required (d16), but all the other timestamps require the files to be
correctly processed and timestamps extracted from within them (d20).

Potential Error Introduced at this Stage: For initial timeline gen-
eration the most likely errors are:

• Failing to extract timestamps from a file type that contains
extractable low-level events (INCOMP)
• Incorrectly processing a file such that incorrect timestamps are
extracted (INAC-ALT).

In addition, usually normalization is applied to the timestamps,
which can introduce further sources of error:

• Incorrect timestamp conversion (either incorrect interval, epoch, or
incorrectly parsing text strings containing timestamps) (INAC-ALT).
• Incorrectly applying a time zone (INAC-AS/ALT).
• Applying an interpretation to a timestamp that is incorrect (INAC-
ALT/AS/), or overly simplified e.g., timestamp resolution (MISINT).
• Failing to consider an inaccurate clock in the timestamp’s gener-
ation (INAC) or report its possibility (MISINT).

4.13. Timeline analysis

Description: With a set of timestamps extracted, timeline analysis
involves applying some interpretation to those timestamps (Hargreaves
and Patterson, 2012); for example, a USB connection causes multiple
low-level events on a system, which during event reconstruction all
contribute some aspect to the high-level event reconstruction of ‘USB
stick connected’.

Dependencies: For this analysis to be performed correctly, the
correct timestamps need to have been extracted (dependency d21).

Potential Error Introduced at this Stage: Since this involves
applying a set of rules or other interpretation process to the extracted
timestamps, if the rules are not correct then this could result in an
incorrect interpretation. Therefore potential error introduced at this
stage are:

• Missing events that should be identified e.g., a rule set is exces-
sively restrictive for an event that should be reconstructed, or
incorrect (INCOMP)
• Identifying an event that did not occur e.g., a rule is incorrect and
matches excessively (INAC-EX)
• Identifying an event at the wrong time (INAC-AS)3

• Assigning incorrect ancillary details to an interpreted event e.g., a
USB stick was connected but presenting the serial number incorrectly
(INAC-AS).

4.14. Geolocation extraction and analysis

Description: This type of analysis involves the correlation and,
typically, visualization of data points that contain some geographic data,
e.g., latitude/longitude or a postal addresses. This is shown in the dia-
gram in two stages: geolocation extraction and geolocation analysis.

Dependencies: Extraction of location data can be performed either
from the entire disk image without file system context, which is not
shown in the diagram, or after extraction of data from specific files, e.g.,
EXIF extraction, SQLite database processing, or location information

3 Technically, this is a combination of missing an event and identifying one
that did not occur, but presented separately for simplicity.

C. Hargreaves et al.

Forensic Science International: Digital Investigation 48 (2024) 301679

7

taken from some other log file, which all came from the ‘file specific
processing stage’. This is shown as dependency d22. The separate
‘location extraction’ stage shown would correlate and normalize all the
location information. If those operations were not carried out correctly
or data were missed, then that error propagates into the Geolocation
Analysis.

Potential Error Introduced at this Stage: Some example errors that
could be introduced at this stage:

• Rendering the location incorrectly on a map (INAC-AS).
• Interpreting a location stored for other reasons as one that was
physically visited (INAC-AS, MISINT).
• Failing to express uncertainty of precise location in a visualization
(MISINT).
• Failure in location lookup: e.g., an IP address being assigned a
different location at the time of the investigation versus time of
recording in the data (INAC-AS, MISINT).

4.15. Other entity extraction

Description: This process describes the extraction of other entities
that do not fit into the categories of locations or timestamps. This could
include details such credit card numbers or phone numbers (Garfinkel,
2013). In some tools e.g., Autopsy, this is expressed just as a specific
keyword search using regular expressions, but is separated here for ease
of discussion.

Dependencies: Due to the similarity with keyword searching, the
dependencies are similar. The need to examine file content, which may
be encoded in specific ways, makes this dependent on the file specific
processing (d26), although entities could be extracted directly from the
keyword index. It is also possible to apply entity extraction over the raw
data from the disk image, but that is not shown in the diagram partly for
readability, but also because such an approach is likely to return a
limited subset of results without file specific processing.

Potential Error Introduced at this Stage: Within entity extraction
all types of error can occur:

• Missing an entity that should be identified (INCOMP).
• Classifying an entity as another entity class (INAC-AS).
• Identifying an entity that was not present (INAC-EX).
• Misattributing an extracted entity to the wrong file or artifact
(INAC-AS)

4.16. Automated result interpretation

Description: In order to make important information readily
accessible to investigators, many tools apply automated processing to
files or other artifacts, often databases, and present extracted results
within the tool. This includes data such as ‘messages sent’, ‘Google
searches conducted’, or ‘contacts’.

Dependencies: In order to perform this process, the files containing
the information must be made accessible (either processing the file
system, or content carving), and processed according to their type (for
example non-allocated records may be recovered from SQLite data-
bases) under ‘file specific processing’, which creates dependency d28.

Potential Error Introduced at this Stage: Since this is the appli-
cation of rules to files or artifacts to extract content such as ‘calls made’,
‘contacts’ or ‘web search’, any incorrect rules coded in the tool could
introduce error, as does incorrect or out of date knowledge on which the
rules are based (INAC-EX/AS, MISINT). Therefore, failing to identify and
consider the version of the application being automatically parsed could
miss entries (INCOMP), create spurious ones (INAC-EX), or extract en-
tries with incorrect details (INAC-ALT).

4.17. Image processing (images and videos)

Description: This stage summarizes the use of any image processing
techniques to images or video. Some examples include: Skin tone
detection in X-Ways Forensics, Find similar pictures in AXIOM, Video
Triage plugin for Autopsy, or AI object recognition.

Dependencies: Since these processes need to be applied to images
and videos, correct identification of those types of file leads to de-
pendency d31. However, there may also be images or videos embedded
in other formats, and, thus, the ‘file specific processing’ stage, where an
image may be extracted from a zip file or Office document, is also a
dependency (d30).

Potential Error Introduced at this Stage: Error at this stage de-
pends on the specific image processing that occurs. However, most apply
some sort of categorisation or identification, and should have some level
of confidence or uncertainty attached to the output. Failure to express
this could result in error (MISINT). Error can also occur if thresholding is
too lenient (INAC-EX/AS) or too strict (INCOMP). Failure to take into
account image rotation or other manipulations may also result in missed
images (INCOMP).

4.18. Mismatched signature detection

Description: This stage allows detection of files that have an
extension that does not match the actual content of the file.

Dependencies: This relies on the file type identification to have
occurred (dependency d18) so this can be compared with the file
extension extracted earlier on in the processing flow.

Potential Error Introduced at this Stage: Error here would be
misclassifying a file as having an incorrect extension when it does not
(INAC-AS), or missing a file that has an incorrect extension (INCOMP).
This could be the result of an implementation error, but also from in-
accuracy in the database on which the file type identification was based.

4.19. Content flagging using AI

Description: This newer type of processing is usually to assist in-
vestigators locate text content (at present) of a particular kind within a
large set of messages, e.g., grooming language. However, this is a fast-
moving area and needs substantial more discussion than space allows.

Dependencies: Dependency d29 shows that for text chat to be pro-
cessed by an AI model the text must first be extracted, which requires file
specific processing, mostly likely of a chat message database.

Potential Error Introduced at this Stage: This is similar to that
described in the image processing section where any flagged content
should have some level of confidence or uncertainty attached to the
output. Failure to express this could result in error (MISINT), and again,
error can also occur if thresholding is too lenient, resulting in content
being flagged incorrectly as suspicious (INAC-EX/AS) or too strict and
missing content (INCOMP).

5. Recommendations

From the previous section it is now possible to clearly see that there
are multiple distinct stages to processing a digital evidence source. It is
also possible to see that there are dependencies between these stages,
and specific errors associated with each of those processes.

As a result of this analysis, in order to improve the digital forensic
process, it is proposed that it is possible within a tool to output the re-
sults of each stage of processing in a standard representation. The
deconstruction above in Section 4 provides a suggested starting point for
where output would be valuable if was implemented. Due to space
constraints the specific output cannot be discussed in detail in this paper,
but Table 2 in the appendix contains starting suggestions for what each
stage of processing could output. This approach would provide benefits
in the following areas within digital forensics:

C. Hargreaves et al.

Forensic Science International: Digital Investigation 48 (2024) 301679

8

Improvements to tool testing and validation process: If tools
were able to output the results of each of these layers of abstraction then
it would be easier to construct tests on particular aspects of tool use. At
the moment, testing higher levels e.g., keyword searching, is difficult
because lower levels could cause differences in results. If the lower levels
were exported and were in a standardized format then the ground truth
data at each stage could be compared and the source of any discrepancy
much more easily identified. For example, it may be that an automati-
cally extracted contact is missed because of a problem with the auto-
mated result interpretation part of the process (a database query error or
limitation for example), or it may be that a non-allocated file that con-
tains that information was not recovered correctly earlier on in the
process, which would be at dependency point d6, or that a file type was
not identified correctly, at dependency d19.

Also if we wanted to answer questions of reliability of keyword
search results e.g., are they ‘complete’, the factors affecting that
completeness are now more easily visible, e.g., are all the files extracted?
Are file types correctly identified? Is correct file specific processing
applied for all files e.g., pdf/docx? Only then can we start to think about
if the particular subtleties of the keyword indexing are correctly
implemented e.g., character encoding, storage, text indexing, and
keyword matching within that index. Representing the results of each
stage of processing in a standard form would also facilitate automated
tool testing.

Error-focused test datasets: Linked to validation and tool testing,
increasing visibility and understanding of errors at each abstraction
layer can assist in creating test datasets that focus on specific errors at
each abstraction layer that are otherwise hidden within digital forensic
tools and are less likely to be exposed by more general test datasets. This
is more efficient since creating many small datasets that each target
specific errors is modular and scalable, and is extensible to encompass
future features that implement AI-based methods. This would also help
developers identify which abstraction layer has a problem rather than
simply knowing that a monolithic tool is not producing the correct
result, and therefore find and fix the problem. Error-focused test datasets
can be made modular to support tool validation testing as part of the
continuous integration and continuous delivery process.

Dual tool verification during a case: Similar to the above exam-
ples, if a dual tool approach is used during an investigation, it can be
challenging to identify and explain differences in tool output. Compar-
ison of structured output at each of these layers would make it more
feasible to determine why tools disagree, and which is the correct result,
and could also be performed automatically. Also, if practitioners must
use a tool that has an identified error, knowing the specific abstraction
layer helps them avoid the error and develop work-around solutions.

Historic case re-evaluation: In laboratories using ISO17025 or
similar quality control processes, and as documented in Hildebrandt
et al. (2011), it should be documented exactly what version of a tool was
used in a case. If a problem is subsequently identified in an older tool
version, and it is possible to identify which subprocess the issue affects,
potential issues can be tracked not just to the particular cases that used
that version of the tool, but it would be possible to understand which
results that error affects, rather than the whole case.

Improved artifact provenance: Given the large number of pro-
cesses that the raw digital evidence goes through before a useful digital
forensic artifact is accessible, this shows the importance, and provides a
basis for tracking the full provenance of a result through all these
abstraction layers, along with their error, back to the raw data from
which they were derived (Casey et al., 2017; Hargreaves and Patterson,
2012). Provenance is an integral part of CASE, using the Inves-
tigativeAction and ProvenanceRecord representations to keep track of
when, where and who used which tools to perform investigative actions
on data sources, and the result. When a tool is used, the version and

configuration parameters can be included in provenance documentation
as demonstrated in the CASE example for this paper. Furthermore, CASE
has been projected into the PROV-O space,4 re-interpreting CASE con-
cepts through a semantic framework focused on provenance. The
CASE–PROV-O implementation (CASE Ontology, 2023) enables auto-
matic consistency checking of CASE data with unit tests to ensure that it
conforms to PROV-CONSTRAINTS (Nies et al., 2013), including
detecting broken chain of evidence.

Education: With these distinct processes clearly identified, discus-
sing with students the nature of those processes, their limitations and
challenges should be easier to structure and to set in the context of the
broader overall investigation.

Research: With these processes isolated, research areas for tool
capability improvements are more clearly defined, and it should also be
clearer which other processes supply data to a specific process of in-
terest, and what processes may depend on the output. This latter part is
particularly important when new processes developed have some level
of uncertainty, e.g., non-allocated file recovery, or file fragment iden-
tification and reassembly, as that uncertainty should to be conveyed to
any subsequent processes that may depend on that data.

6. Demonstration

To demonstrate the proposed approach and its value, an error-
focused test dataset was fabricated with three active partitions and a
fourth partition that was deleted to leave a “lost” partition containing a
file named “missedme.txt” and a non-allocated file named “first.txt” that
was overwritten by a file named “second.txt” (dataset available online5).

A CASE representation of the ground truth dataset was constructed
and is available here.6 Table 1 shows the results for two forensic and one
data recovery tool examining the same disk image. This was created
from manual review of the tool results, checked against the ground
truth. The tools mentioned are real tools, but are presented here anon-
ymously as Tool 1 at version 1.2.3, Tool 2 at version 2.4.6, Tool 3 at
version 3.5.8, and (in the appendix) Tool 4 at version 13.0.

Considering the second part of the table only, i.e. a high-level test for
correct file recovery, it shows that Tool 1 attributes all recovered files

Table 1
A summary of tool results for processing a test dataset. Illustrates that output at
different stages of processing helps identify the source of error.

Ground Truth Tests Tool 2 Tool 3 Tool 1

IDENTIFY PARTITIONS
P1 FAT32 identified y y y
P1 start/end ok y y y
P1 status = live y y y
…
P4 FAT32 identified INCOMP y y
P4 start/end ok INCOMP y y
P4 status = del INCOMP y y

IDENTIFY FILE SYSTEM AND PROCESS FILES
P4/missedme.txt exists INCOMP y y
P4/missedme.txt content ok INCOMP y y
P4/first.txt exists INCOMP y y
P4/first.txt content flagged NA INCOMP INAC-AS y
P4/first.txt uncertainty presented INCOMP MISINT y
P4/second.txt exists INCOMP y y
P4/second.txt content ok INCOMP y y

4 https://www.w3.org/TR/prov-o/.
5 https://github.com/chrishargreaves/digital-forensic-tool-abstractions.
6 See https://github.com/casework/CASE-Examples/tree/master/examples

/illustrations/partitions#partitions-examples.

C. Hargreaves et al.

https://www.w3.org/TR/prov-o/
https://github.com/chrishargreaves/digital-forensic-tool-abstractions
https://github.com/casework/CASE-Examples/tree/master/examples/illustrations/partitions#partitions-examples
https://github.com/casework/CASE-Examples/tree/master/examples/illustrations/partitions#partitions-examples

Forensic Science International: Digital Investigation 48 (2024) 301679

9

correctly and highlights the ambiguity of file content for first.txt; Tool 2
does not locate the files at all; and the data recovery tool Tool 3 identifies
the files, but incorrectly associates content from second.txt to first.txt.
From these file results alone it is not possible to understand the nature of
the error in Tool 2. However, if output was available in standard rep-
resentation for the earlier dependency (identify partitions), and if we
therefore consider the whole table, which includes that previous stage,
problems can be seen earlier in the dependency chain, and the work
needed to correct the error for Tool 2 is actually in partition recovery
rather than file recovery.

Manual representations of the results for each of these tools are
provided in the repository, along with an automated comparison with
the ground truth, which shows how comparison against ground truth
and other tools would be more efficient if this output was exported
programmatically by tools in a standard format. This demonstrates that
with this abstraction layer model, and standardised output at each stage
of processing, tool differences are more easily identifiable, and errors
when compared with documented ground truth are made transparent.

7. Limitations and further work

In terms of limitations, an ‘outside in’ approach was used to look at
forensic tools, no reverse engineering of forensic tools was performed,
nor were forensic tool providers interviewed. It is likely there are other
‘digital forensic analysis tool components’ that exist, however they can
be simply added to the existing dependency diagram. It is also likely that
some tool vendors do not have the exact same extrapolated de-
pendencies, although most can be logically argued that they must be
performed for subsequent stages to take place. If there are significant
differences, we would encourage tool providers to provide a similar
specific diagram indicating the precise data flow between high level
components of their software.

The process of modeling inherently has the limitation of simplifica-
tion. Like digital forensic process models, many of which present a
slightly different perspective or level of granularity, this model too could
be extended, have more detail added, breaking down one process into
many. Processing of specific file types could also have internal process
dependencies extrapolated. However, for the purposes of this paper, the
appropriate level of abstraction and granularity was chosen to introduce
this concept, provide sufficient detail for discussion, show how errors
can propagate, and present an option for vendors to help monitor these
potential errors. Future work could certainly expand some of these
stages, or add in additional processes based on tools that were not
reviewed as part of this research.

Another limitation is that it is unlikely that this paper has captured
all the errors that are possible for each of the processes discussed. A
comprehensive discussion of all errors cannot be guaranteed, however,
as there was no documentation found that examines the overall tool
process even at the level of abstraction achieved in this paper, it is
considered helpful to increase understanding of error propagation in
digital forensic tools.

While examples of the output that would be useful to export at each
stage are provided in the appendix, it has not been formally defined in an
interchange format such as CASE. Not all of the points discussed are
currently modeled in CASE and due to space limitations this was not
possible to cover in this paper.

While this paper has deliberately focused on exposing and mitigating
error within the extraction and analysis performed by digital forensic
tools, a broader examination of error across all stages of the digital
forensic process could also be conducted. The other future work that this
facilitates, is that while in this paper the dependencies were used to
highlight propagation of error, this may also provide a suitable basis for
consideration of the propagation of uncertainty. Hargreaves, (2009)
discusses that often error in digital investigations ”cannot be expressed
as a definite value, e.g., x ± y, but can be expressed as uncertainty
(possible error) in inferred events, i.e. alternative possible hypothesised
events that explain the current state of the examined digital evidence.”
When a tool reports, for example, that a specific file was recovered, this
is actually a hypothesis that some tools test more than others. In Casey
et al., (2019) a standard approach is provided for hypothesis testing and
treating uncertainty in the results of file recovery operations. This
treatment of uncertainty can be extended to tool results in general,
including AI-based results (Casey and Bollé, 2023). When a result from a
tool is presented, and we consider the hypothesis of ‘the tool result is
correct’, if all the abstraction layers through which the data has passed
are defined, and all the possible errors that could occur at each of those
layers are listed, the compiled list of all those potential errors are
actually a list of alternative hypotheses to ‘the tool result is correct’. This
is a starting point for systematic reasoning about uncertainty in tool
results, and a foundation for improved quality in digital forensic science.

8. Conclusions

Since digital forensic tools are necessary given the volume and
complexity of digital evidence in modern digital investigations, it is
important that results produced are accurate, complete, and do not
cause misinterpretation. It is already challenging within tools to
constantly and consistently differentiate fact from inference and to
identify potential error and uncertainty in tool results. Tool vendors
have an opportunity to do more than extract and present results; they
could document abstraction layers and output intermediate data that
follow ASTM E3016-18 guidance for error mitigation analysis, and make
errors within tools more obvious to examiners so that misinterpretations
are minimized. This paper has shown that to achieve this, the full de-
pendencies and history of abstraction layer translations need to be
exposed. To improve transparency and facilitate comparison, it has also
argued for the potential value of exporting the output of the abstraction
layers as digital evidence moves through the internal processes of digital
forensic tools. This paper has, therefore, provided a contribution to-
wards further understanding error in digital forensic tools, identifying it
when it occurs, and mitigating it.

Appendix

Tool Testing Details

This section provides the specific results from testing tools against the error-focused dataset in Section 6. Results are summarized in Table 3.
Using this error-focused test dataset, Tool 1 lists three active partitions, has a feature that finds the lost partition. It, therefore, finds the files within

and classifies “first.txt” as “prev. existing, 1st cluster not available” and shows that the cluster is allocated to “second.txt”. It also displays a specific
popup message that warns file contents the tool ascribes are not necessarily the original file contents. Tool 1 does not automatically display the
extended partition in the MBR partition table, a sign that another partition previously existed.

Tool 2 lists the three active partitions but does not automatically recover the lost partition and, therefore, misses the files it contains. Another tool
can be used to extract the lost partition, which can be loaded into Tool 2 for examination; but Tool 2 does not correctly classify “first.txt” as over-
written, causing potential MISINT because the displayed content is actually from “second.txt”.

C. Hargreaves et al.

astm:E3016

Forensic Science International: Digital Investigation 48 (2024) 301679

10

In Table 3, “Type” is omitted for the Disk Management step because Disk Management’s interface makes no distinction between the partition’s type
code and the requested file system. Index 4 under Disk Management is the Extended Partition Table partition, which Tool 4 also presents; but Tool 1
does not present this, instead presenting the recovered partition containing the FAT file system.

Table 2
Suggested Output for Each Stage of Processing. These are starting suggestions for useful output at each stage of processing, but are not exhaustive.

Stage Suggested Output

Parse Image Format Hash(es) of the raw data contained within the image.
Validate Disk Image The hash of the data compared and a log of what they were compared with to perform the validation (internal hash, externally supplied

information).
Identify Partitions List of partitions with start and end sectors, including any deleted partitions recovered.
Process File System List of files recovered from a file system, including any non-allocated but recoverable files, capturing any uncertainty associated with the recovery.
Identify Content (Carving) List of any files recovered, their locations on the disk or within a file, the process used for identification/reassembly, e.g., headers/footers.
File Type Identification Type associated with each file and the means by which that was derived.
File-Specific Processing Dependent on the specific file processing, and one of the most challenging to determine what to export and how to represent it; but, as examples: for

SQLite deleted record recovery, the offset of the identified record and cells and cell types identified; for documents, a listing of the objects (text,
images, etc.) contained within; or for EXIF data, the extracted fields.

File Hashing A list of all files and their hashes.
Hash Matching A list of all files matched to a hash set, the hashes, and the origin of the hashset used.
Mismatched Signature

Detection
The file, extension, file signature and reason for mismatch.

Timestamp Extraction List of all timestamps extracted, how they were extracted (file time, SQLite database row, offset within a file, log entry number, etc.), and any time
offsets applied.

Timeline Analysis A list of interpreted events, the low-level events on which they were based, or references to them, and the rules or processes used to infer this event.
Geolocation Extraction List of all locations extracted, how they were extracted (e.g., SQLite database row, offset within a file), any potential uncertainty associated with the

location.
Geolocation Analysis The results of any analysis applied to the raw locations, along with any algorithms used to infer movement, etc., and their uncertainty.
Keyword Indexing Exporting a representation of all the keywords and where they were identified would be substantial. However, at a more basic level, the parameters

used to generate the index, e.g., character encodings used or not used, and other indexing settings could be expressed.
Keyword Searching The keyword that was used for the search and the corresponding results.
Other Entity Extraction The extracted entity, its provenance, and method used to identify it.
File Browsing and Filtering If a filtered listing is exported, the details of the filter should be exported along with the listing.
Automated Result

Interpretation
The automated result, the process used for extraction, e.g., the source file and the SQLite query used for extraction.

Image Processing Depends on the specifics, but, for example, the bounding box of an identified face within an image.
AI-Based Content Flagging The identified content along with any assigned labels from the AI process, along with confidences.

Table 3
A comparison of partitions known to be generated for an experimental USB storage device, with the last partition deleted before processing the image with forensic
tools. “Disk Management” represents the data generation process using the built-in Windows Graphical User Interface (GUI) tool and, thus, the list an ideal forensic tool
would recover. “Index” is the position number in the list of partitions recovered by the forensic process (or generated by Disk Management). “UUID” is the beginning of
the graph-individual’s universally unique identifier (UUID). “Type” is the partition type code drawn from the partition table. Offset is in bytes.

Index Disk Management Tool 1 Tool 4

UUID Type Offset UUID Type Offset UUID Type Offset

1 1ef219fe- … d34878c1- … 0c 65536 18ddcc3a- … 0c 65536
2 251032a2- … 7868ea24- … 07 104923136 27073ab0- … 07 104923136
3 32f65e72- … 7aad22df- … 07 230752256 374fdbc6- … 07 230752256
4 4f68c4c7- … 5715fe11- … e8be10dc- … 05 377552896
5 5000a2e8- …

References

ASTM, 2018. ASTM E3016-18 standard guide for establishing confidence in digital and
multimedia evidence forensic results by error mitigation analysis. URL: https
://www.astm.org/e3016-18.html.

Beckett, J., Slay, J., 2007. Digital forensics: validation and verification in a dynamic
work environment. In: 2007 40th Annual Hawaii International Conference on
System Sciences (HICSS’07). IEEE, 266a–266a.

Brady, O., 2018. Exploiting Digital Evidence Artefacts: Finding and Joining Digital Dots.
Ph.D. thesis. King’s College London.

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional.
Carrier, Brian, 2010. Digital Forensics Tool Testing Images. URL: https://dftt.sourceforge

.net.
Carrier, B., et al., 2003. Defining digital forensic examination and analysis tools using

abstraction layers. Int.J. Dig. Evid. 1 (4), 1–12.
CASE Ontology, 2023. Case-implementation-prov-o. URL: https://github.com/casewo

rk/CASE-Implementation-PROV-O.
Casey, E., 2002. Error, uncertainty and loss in digital evidence. Int. J.Dig. Evid. 1 (2).

Casey, E., Bollé, T., 2023. Formalising representation and interpretation of digital
evidence to reinforce reasoning and automated analysis. Artif.Intellig. (AI) in For.
Sci. 74.

Casey, E., Zoun, R., 2014. Design tradeoffs for developing fragmented video carving
tools. Digit. Invest. 11, S30–S39.

Casey, E., Barnum, S., Griffith, R., Snyder, J., van Beek, H., Nelson, A., 2017. Advancing
coordinated cyber-investigations and tool interoperability using a community
developed specification language. Digit. Invest. 22, 14–45.

Casey, E., Nelson, A., Hyde, J., 2019. Standardization of file recovery classification and
authentication. Digit. Invest. 31, 100873.

Cohen, M., Garfinkel, S., Schatz, B., 2009. Extending the advanced forensic format to
accommodate multiple data sources, logical evidence, arbitrary information and
forensic workflow. Digit. Invest. 6, S57–S68.

Du, X., Hargreaves, C., Sheppard, J., Anda, F., Sayakkara, A., Le-Khac, N.A., Scanlon, M.
Sok, 2020. Exploring the state of the art and the future potential of artificial
intelligence in digital forensic investigation. In: Proceedings of the 15th
International Conference on Availability, Reliability and Security, pp. 1–10.

Du, X., Hargreaves, C., Sheppard, J., Scanlon, M., 2021. Tracegen: user activity
emulation for digital forensic test image generation. Forensic Sci. Int.: Digit. Invest.
38, 301133.

C. Hargreaves et al.

https://www.astm.org/e3016-18.html
https://www.astm.org/e3016-18.html
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref2
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref2
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref2
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref3
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref3
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref4
https://dftt.sourceforge.net
https://dftt.sourceforge.net
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref6
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref6
https://github.com/casework/CASE-Implementation-PROV-O
https://github.com/casework/CASE-Implementation-PROV-O
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref8
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref9
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref9
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref9
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref10
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref10
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref11
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref11
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref11
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref12
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref12
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref13
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref13
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref13
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref14
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref14
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref14
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref14
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref15
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref15
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref15

Forensic Science International: Digital Investigation 48 (2024) 301679

11

Dubettier, A., Gernot, T., Giguet, E., Rosenberger, C., 2023. File type identification tools
for digital investigations. Forensic Sci. Int.: Digit. Invest. 46, 301574.

Duns, H., Lawton, D., 2022. Ground Truth Datasets for Data Recovery Techniques in
Digital Forensics dstl/doc136843. https://cfreds.nist.gov/all/HollyDunsingDo
cuments. (Accessed 10 September 2023).

Ellison, D., Ikuesan, R.A., Venter, H.S., 2019. Ontology for reactive techniques in digital
forensics. In: 2019 IEEE Conference on Application, Information and Network
Security (AINS). IEEE, pp. 83–88.

Freiling, F., Glanzmann, T., Reiser, H.P., 2017. Characterizing loss of digital evidence
due to abstraction layers. Digit. Invest. 20, S107–S115.

Garfinkel, S.L., 2010. Digital forensics research: the next 10 years. Digit. Invest. 7,
S64–S73.

Garfinkel, S., 2012. Lessons learned writing digital forensics tools and managing a 30TB
digital evidence corpus. Digit. Invest. 9, S80–S89.

Garfinkel, S.L., 2013. Digital media triage with bulk data analysis and bulk_extractor.
Comput. Secur. 32, 56–72.

Glisson, W.B., Storer, T., Buchanan-Wollaston, J., 2013. An empirical comparison of data
recovered from mobile forensic toolkits. Digit. Invest. 10 (1), 44–55.

Gruber, J., Hargreaves, C.J., Freiling, F.C., 2023. Contamination of digital evidence:
understanding an underexposed risk. Forensic Sci. Int.: Digit. Invest. 44, 301501.

Guo, Y., Slay, J., Beckett, J., 2009. Validation and verification of computer forensic
software tools—searching function. Digit. Invest. 6, S12–S22.

Gupta, M.R., Hoeschele, M.D., Rogers, M.K., 2006. Hidden disk areas: HPA and DCO. Int.
J.Dig. Evid. 5 (1), 1–8.

Hargreaves, C., 2009. Assessing the Reliability of Digital Evidence from Live
Investigations Involving Encryption. Ph.D. thesis. Cranfield University, UK.

Hargreaves, C., Patterson, J., 2012. An automated timeline reconstruction approach for
digital forensic investigations. Digit. Invest. 9, S69–S79.

Hildebrandt, M., Kiltz, S., Dittmann, J., 2011. A common scheme for evaluation of
forensic software. In: 2011 Sixth International Conference on IT Security Incident
Management and IT Forensics, pp. 92–106. https://doi.org/10.1109/IMF.2011.11.

Horsman, G., 2018. “I couldn’t find it your honour, it mustn’t be there!”–tool errors, tool
limitations and user error in digital forensics. Sci. Justice 58 (6), 433–440.

Horsman, G., 2019. Tool testing and reliability issues in the field of digital forensics.
Digit. Invest. 28, 163–175.

Lyle, J.R., 2010. If error rate is such a simple concept, why don’t I have one for my
forensic tool yet? Digit. Invest. 7, S135–S139.

Magazinius, J., Rios, B.K., Sabelfeld, A., 2013. Polyglots: crossing origins by crossing
formats. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &

Communications Security, pp. 753–764. https://doi.org/10.1145/
2508859.2516685.

Metz, J., 2023. Ewf Specification from Libewf Project. URL: https://github.com/libyal/
libewf/blob/main/documentation/Expert%20Witne%ss%20Compression%
20Format%20(EWF).asciidoc#.

Michelet, G., Breitinger, F., Horsman, G., 2023. Automation for digital forensics: towards
a definition for the community. Forensic Sci. Int. 349, 111769 https://doi.org/
10.1016/j.forsciint.2023.111769. URL: https://www.sciencedirect.com/science/
article/pii/S0379073823002190.

Nies, T.D., Cheney, J., Missier, P., Moreau, L., 2013. Constraints of the Prov Data Model.
Recommendation; W3C. URL: https://www.w3.org/TR/prov-constraints/.

NIST. Computer forensic reference dataset portal (cfreds). undated. URL: https://cfreds.
nist.gov.

NIST. Computer forensics tools & techniques catalog. URL: https://toolcatalog.nist.gov/
taxonomy/index.php;. (Accessed 10 September 2023).

Pal, A., Memon, N., 2009. The evolution of file carving. IEEE Signal Process. Mag. 26 (2),
59–71.

Quick, D., Choo, K.K.R., 2014. Impacts of increasing volume of digital forensic data: a
survey and future research challenges. Digit. Invest. 11 (4), 273–294.

Schneider, J., Deifel, H.P., Milius, S., Freiling, F., 2020. Unifying metadata-based storage
reconstruction and carving with layr. Forensic Sci. Int.: Digit. Invest. 33, 301006.

Test Environment and Procedures for Testing SafeBack 2.18. Tech. Rep.; NIST, 2003. In:
https://www.nist.gov/system/files/documents/2017/05/09/SafeBack-2-18-Proce
dures.pdf.

Turner, P.. The remapped/reallocated sector conundrum from a digital forensic
investigation and data sanitisation perspective. presented at DFRWS USA 2023.
2023. URL: https://dfrws.org/presentation/the-remapped-reallocated-sector-co
nundrum-why-are-remapped-sectors-important/.

UK Forensic Science Regulator, 2020. Forensic Science Regulator Guidance: Method
Validation in Digital Forensics fsr-g-2018 issue 2. https://assets.publishing.service.
gov.uk/government/uploads/system/uploads/attachment_data/file/921392/
218_Method_Validation_in_Digital_Forensics_Issue_2_New_Base_Final.pdf. (Accessed
10 September 2023).

van Beek, H., van den Bos, J., Boztas, A., van Eijk, E., Schramp, R., Ugen, M., 2020.
Digital forensics as a service: stepping up the game. Forensic Sci. Int.: Digit. Invest.
35, 301021 https://doi.org/10.1016/j.fsidi.2020.301021. URL: https://www.scienc
edirect.com/science/article/pii/S2666281720300706.

Wilsdon, T., Slay, J., 2006. Validation of forensic computing software utilizing black box
testing techniques. In: 4th Australian Digital Forensics Conference. https://doi.org/
10.4225/75/57b13e59c705b.

C. Hargreaves et al.

http://refhub.elsevier.com/S2666-2817(23)00198-1/sref16
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref16
https://cfreds.nist.gov/all/HollyDunsingDocuments
https://cfreds.nist.gov/all/HollyDunsingDocuments
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref18
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref18
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref18
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref19
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref19
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref20
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref20
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref21
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref21
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref22
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref22
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref23
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref23
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref24
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref24
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref25
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref25
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref26
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref26
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref27
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref27
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref28
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref28
https://doi.org/10.1109/IMF.2011.11
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref30
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref30
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref31
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref31
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref32
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref32
https://doi.org/10.1145/2508859.2516685
https://doi.org/10.1145/2508859.2516685
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref34
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref34
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref34
https://doi.org/10.1016/j.forsciint.2023.111769
https://doi.org/10.1016/j.forsciint.2023.111769
https://www.sciencedirect.com/science/article/pii/S0379073823002190
https://www.sciencedirect.com/science/article/pii/S0379073823002190
https://www.w3.org/TR/prov-constraints/
https://cfreds.nist.gov
https://cfreds.nist.gov
https://toolcatalog.nist.gov/taxonomy/index.php
https://toolcatalog.nist.gov/taxonomy/index.php
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref39
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref39
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref41
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref41
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref42
http://refhub.elsevier.com/S2666-2817(23)00198-1/sref42
https://www.nist.gov/system/files/documents/2017/05/09/SafeBack-2-18-Procedures.pdf
https://www.nist.gov/system/files/documents/2017/05/09/SafeBack-2-18-Procedures.pdf
https://dfrws.org/presentation/the-remapped-reallocated-sector-conundrum-why-are-remapped-sectors-important/
https://dfrws.org/presentation/the-remapped-reallocated-sector-conundrum-why-are-remapped-sectors-important/
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/921392/218_Method_Validation_in_Digital_Forensics_Issue_2_New_Base_Final.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/921392/218_Method_Validation_in_Digital_Forensics_Issue_2_New_Base_Final.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/921392/218_Method_Validation_in_Digital_Forensics_Issue_2_New_Base_Final.pdf
https://doi.org/10.1016/j.fsidi.2020.301021
https://www.sciencedirect.com/science/article/pii/S2666281720300706
https://www.sciencedirect.com/science/article/pii/S2666281720300706
https://doi.org/10.4225/75/57b13e59c705b
https://doi.org/10.4225/75/57b13e59c705b

	An abstract model for digital forensic analysis tools - A foundation for systematic error mitigation analysis
	1 Introduction
	2 Background and related work
	2.1 Testing and validation
	2.1.1 Abstraction revisited

	3 Methodology
	4 Analysis: deconstruction of digital forensic process
	4.1 Overview
	4.2 Parse image format
	4.3 Validate disk image
	4.4 Identify partitions
	4.5 Processing file systems and identifying files
	4.6 Content carving
	4.7 File type identification
	4.8 File hashing
	4.9 Hash matching
	4.10 File specific processing
	4.11 Keyword indexing & searching
	4.12 Timeline generation
	4.13 Timeline analysis
	4.14 Geolocation extraction and analysis
	4.15 Other entity extraction
	4.16 Automated result interpretation
	4.17 Image processing (images and videos)
	4.18 Mismatched signature detection
	4.19 Content flagging using AI

	5 Recommendations
	6 Demonstration
	7 Limitations and further work
	8 Conclusions
	Appendix 8 Conclusions
	Tool Testing Details

	References

