
Forensic Science International: Digital Investigation 48 (2024) 301682

2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS EU 2024 - Selected Papers from the 11th Annual Digital Forensics Research Conference Europe

Exploiting RPMB authentication in a closed source TEE implementation

Aya Fukami a,b,*, Richard Buurke a, Zeno Geradts a,b

a Netherlands Forensic Institute, Laan van Ypenburg 6, The Hague, 2497 GB, the Netherlands
b University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands

A R T I C L E I N F O

Keywords:
RPMB
Replay attack protection
TEE
Mobile forensics

A B S T R A C T

Embedded Multimedia Cards (eMMCs) provide a protected memory area called the Replay Protected Memory
Block (RPMB). eMMCs are commonly used as storage media in modern smartphones. In order to protect these
devices from unauthorized access, important data is stored in the RPMB area in an authenticated manner.
Modification of the RPMB data requires a pre-shared authentication key. An unauthorized user cannot change the
stored data.

On modern devices, this pre-shared key is generated and used exclusively within a Trusted Execution Envi-
ronment (TEE) preventing attackers from access. In this paper, we investigate how the authentication key for
RPMB is programmed on the eMMC. We found that this key can be extracted directly from the target memory
chip. Once obtained, the authentication key can be used to manipulate stored data. In addition, poor imple-
mentation of certain security features, aimed at preventing replay attacks using RPMB on the host system can be
broken by an attacker. We show how the authentication key can be extracted and how it can be used to break the
anti-rollback protection to enable data restoration even after a data wipe operation has been completed.

Our findings show that non-secure RPMB implementations can enable forensic investigators to break security
features implemented on modern smartphones.

1. Introduction

With the implementation of multiple types of security features on
smartphones, extracting user data from them at a digital forensics lab is
becoming more challenging day by day. The details of these features are
not always disclosed, requiring digital forensic investigators to reverse
engineer the device both on the software and hardware side. The data on
modern smartphones is encrypted by default, preventing data carving
through physical data acquisition. Additionally, unlocking the device
requires knowledge of a user secret, such as a passcode or password. On
top of those security features, data wiping routines are common on
modern smartphones, which are triggered when a certain threshold of
failed password attempts is reached.

To keep track of the state of the device, smartphone manufacturers
often make use of the Replay Protected Memory Block (RPMB) in an
embedded Multimedia Card (eMMC). eMMC is a popular storage
memory in smartphones. Writing to the RPMB partition requires
authentication, therefore a pre-shared secret key is needed every time
the host device wants to modify information. To prevent an attacker
from rolling back system data to an older version, the smartphone

System on Chip (SoC) stores information in the RPMB area where data
integrity is guaranteed. The use of RPMB has been suggested to prevent
replay attacks on Android-based devices (Android Open Source Project,
2022; Reddy et al., 2015), and other Linux based systems (Giese and
Noubir, 2021). The security of data stored in RPMB relies on the secure
storage of the pre-shared secret key.

While the use of RPMB for device protection against unauthorized
access has been discussed in literature, the actual security of the RPMB
implementation on memory devices has, to the best of authors’ knowl-
edge, not been widely researched. By using a real world example,
whereby we accidently triggered the wipe routine, we show how to
recover a wiped-state smartphone which implements RPMB anti-
rollback protection. Through hardware reverse engineering, we identi-
fied that the RPMB authentication key is stored in flash memory in an
accessible manner, making it possible for the key to be extracted. Once
the key is extracted, the RPMB data becomes editable, thereby losing its
integrity. We demonstrate how the RPMB authentication key can be
extracted, and how we can rollback a device in a wiped state to a
working state, by restoring a flash data backup and modifying data
stored in the RPMB.

* Corresponding author. Netherlands Forensic Institute, Laan van Ypenburg 6, The Hague, 2497 GB, the Netherlands.
E-mail address: a.fukami@uva.nl (A. Fukami).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2023.301682

mailto:a.fukami@uva.nl
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301682
https://doi.org/10.1016/j.fsidi.2023.301682
https://doi.org/10.1016/j.fsidi.2023.301682
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301682&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 48 (2024) 301682

2

This paper mainly makes the following contributions:

• We show the RPMB authentication key can be extracted from an
eMMC

• We provide a detailed description of a closed source TEE imple-
mentation that utilizes the RPMB area for full-disk encryption

• We experimentally demonstrate that a smartphone, of which the
wipe routine has been triggered, can be recovered by recovering the
RPMB authentication key, and restoring a flash data backup

The rest of the paper is organized as follows. In section 2, we provide
the necessary background on the RPMB area and its use in smartphones.
We then explain the implementation of the trusted execution environ-
ment in detail, focusing on the usage of the RPMB, in an actual target
device in section 3. In section 4, we demonstrate the actual procedures
to restore a wiped-state smartphone by exploiting the RPMB data. We
discuss the impact of our attack in 5 followed by the related work in
section 6, before concluding in section 7.

2. Background

2.1. Replay Protected Memory Block

Replay Protected Memory Block (RPMB) is a memory block imple-
mented in JEDEC standards for modern storage devices, such as
embedded Multi Media Card (eMMC) and Universal Flash Storage (UFS)
(JEDEC Solid State Technology Association, 2015; JEDEC Solid State
Technology Association, 2020). In this paper, since the target device has
an eMMC-based non-volatile memory chip, we define the RPMB as a
memory block in an eMMC, unless otherwise specified. The RPMB area
is provided to store data in an ”authenticated and replay protected
manner” (JEDEC Solid State Technology Association, 2020). Authenti-
cation is performed by utilizing an authentication key, which is the
shared secret between the eMMC and the host system. At the time of
manufacturing a smartphone, the authentication key is programmed to
the device and to the eMMC in a secure environment before it is shipped
from the factory.

When the host system wants to write the RPMB, the host must
calculate a SHA-256 hash based message authentication code (HMAC)
over the message to be sent, using this authentication key. The message
includes the data to write, and the write counter. The write counter of
the RPMB represents the total number of successful authenticated write
operations. This value is incremented by one every time an authenti-
cated data write operation is performed. The counter value is stored in
the eMMC in an area inaccessible via the external interface to prevent it
from being reset. The write counter provides protection against replay
attacks. If it is not implemented, an attacker can monitor the commu-
nication between the host and the eMMC, and then reproduce the same
communication at a later time, allowing modification of data stored in
the eMMC.

Once a message is received, the eMMC calculates the HMAC over the
received message using its own stored authentication key to check if the
message is from the authenticated host. Only when the calculated HMAC
matches with the received one, and the provided counter matches the
stored value, a data write operation to the RPMB is authorized. Since a
RPMB data write operation requires the correct authentication key and
write counter value, the stored data can be tamper-resistant and can be
protected against replay attacks.

2.2. RPMB use cases in digital devices

Since the RPMB area is a tamper-resistant memory block, it is often
used in modern digital devices to store information that can help prevent
unauthorized access to the system (Reddy et al., 2015; Zilberstein and
Klein, 2021; Wiklander, 2017; Yao and Zimmer, 2020). Common use
cases include anti-rollback protection, unlock protection, and secure

data storage.

2.2.1. Anti-rollback protection
Smartphone manufacturers are constantly upgrading software

running on their products to patch reported vulnerabilities. Once soft-
ware is upgraded, the device is generally not allowed to downgrade to
the previous version. This is to protect user data from unauthorized
access by exploiting known vulnerabilities. To keep track of the latest
software version, the RPMB area can be used to store the version-related
data. When a user attempts to install a piece of software to the target
device, the host system checks the current version of the software using
the data stored in the RPMB. If the stored software version is higher than
the one to be installed, the system rejects the software installation.

2.2.2. Unauthorized device unlocking prevention
Another use case of RPMB is unauthorized unlock prevention. To

prevent unauthorized access, a user can lock the device with a unique
passcode or password. The passcode/password is stored in the device at
creation time. Once getting physical access to the device, an attacker
might try all possible combinations to unlock it. This type of attack can
be automated through the use of software. To prevent brute-forcing,
RPMB can be used to store a counter that keeps track of the failed
number of password attempts. If the counter exceeds a certain threshold,
the system can initiate a security measure, such as wiping user data or
enforcing an increasingly long wait time. Since data in RPMB cannot be
overwritten without the authentication key, the attacker cannot reset or
decrement the failed attempts counter.

2.2.3. Secure data protection
In modern smartphones, the integrity of all critical software com-

ponents is enforced by secure boot. Different variations exist, but the
general approach is to store the hash of a certificate, containing a public
key, in immutable memory. The stored hash serves as a root of trust,
since it authenticates the public key that verifies the signature of the
next component in the boot chain.

RPMB can also be used as a root of trust, since it is considered
authenticated storage. As an example, the Android Verified Boot (AVB)
public key, which authenticates the bootloader, can be stored in RPMB
by the Trusty Trusted Execution Environment (TEE) (Digi International
Inc., 2023).

2.3. Target device

During our forensic analysis at the forensic lab, we accidently trig-
gered the wipe routine on a Blackphone 2 while developing a brute-force
method. Restoring a backup of the flash data did not return the device to
a working state, therefore extensive research on the implemented anti-
rollback protection was needed. The Blackphone 2 is a smartphone
focused on security and privacy, first produced in 2015. The device itself
is built around the Qualcomm Snapdragon 615 (MSM8939) SoC and
runs a modified version of the Android operating system called “Silent
OS”. In 2016 Silent Circle released “Silent OS 3” based on Android 6.0.1
(Marshmallow), which was the last version available for the Blackphone
2. The user data of the Blackphone 2 is protected using full disk
encryption (FDE). The FDE implementation on Android devices is
vendor specific, but they commonly require the user password and a
hardware bound key to derive the correct decryption key. On top of the
encryption, the Blackphone 2 seemed to use an anti-rollback counter
stored in the RPMB area to prevent an attacker from restoring a data
backup after a device had been wiped. Because we needed to break this
security feature, and had to restore the device to a working condition,
we selected the Blackphone 2 as our target for researching RPMB
authentication.

A. Fukami et al.

Forensic Science International: Digital Investigation 48 (2024) 301682

3

3. Dissecting the use of RPMB on the target device

We applied various software and hardware reverse engineering
techniques to determine the use of RPMB on the target device. The
software reverse engineering effort focused on the RPMB implementa-
tion in the TEE and FDE key derivation scheme. We also analyzed the
physical architecture of the eMMC chip to recover the RPMB pre-shared
key to enable write access to the RPMB partition.

3.1. Software

The implemented FDE scheme on the target device, including the use
of an anti-rollback counter in the RPMB partition, is vendor specific. We
used static and dynamic analysis techniques to determine the key deri-
vation process and the role of the counter value. The key derivation
process is implemented almost exclusively in the Qualcomm Secure
Execution Environment (QSEE) for which, to our knowledge, no source
code is currently publicly available.

3.1.1. Qualcomm Secure Execution Environment (QSEE)
Qualcomm TrustZone technology enables the separation of a non-

secure operating system (e.g. Android) and a secure operating system
such as QSEE on the same device. TrustZone technology is implemented
according to the “Advanced Trusted Environment: OMTP TR1” (Omtp
advanced trusted environment tr1, 2009) standard, and therefore has
mitigations against software and hardware attacks. The non-secure
operating system is said to be running in the Rich Execution Environ-
ment (REE) or “normal world”. The secure operating system runs in the
Trusted Execution Environment (TEE) or “secure world”. This separa-
tion ensures that certain operations can be performed securely even
when an attacker compromised the Android operating system. The
secure operating system has full control over the device, while the
normal operating system can only access non-secure memory assigned to
it. This separation is not only enforced by the memory management unit
(MMU) in the application processor (AP) but also on the data bus itself
by the TrustZone Address Space Controller (TZASC) (Limited, 2014).

Code executed on the AP runs at different privilege levels, defined by
ARM as “exception levels”. Those levels are used both in the REE and the
TEE as follows:

• EL0: User space
• EL1: Supervisor
• EL2: Hypervisor
• EL3: Secure channel monitor

The secure channel monitor is used to relay messages between the
REE and the TEE. Only the Linux kernel running at EL1 (or the hyper-
visor) is permitted to send messages to QSEE through the secure
monitor. Therefore, normal applications can only communicate with
QSEE through the Linux kernel. Fig. 1 shows the flow of message from
the Linux kernel in the REE to QSEE in TEE. QSEE can also run trusted
applications (TA’s), shared libraries and drivers (TD’s). We refrain from
going into details of those features since it is outside the scope of this
paper.

The QSEE kernel implements a handler that executes a function ac-
cording to the secure monitor call (SMC) identifier sent by the Linux
kernel. There is also a separate command handler for processing re-
quests originating from TA’s. On our target device all relevant func-
tionality, concerning key derivation and user authentication, is
implemented within the QSEE kernel itself.

3.1.2. Android volume daemon
The Android Volume Daemon (vold) is responsible for mounting

storage media, including the userdata partition. The operating system on
the target device shared many similarities with CyanogenMod 13, of
which multiple relevant code repositories are available on GitHub

(LineageOS, 2012; LineageOS, 2014; LineageOS, 2015).
By analyzing the available source code, we determined that the first

thing vold does after the user entered their password is to check the
encryption type stored in the footer partition. When set to aes-xts, the
Qualcomm specific implementation is used exclusively, instead of
including the Android Keymaster Hardware Abstraction Layer (HAL).

The vold process is linked to the libQSEEComAPI.so shared library
which provides communication with QSEE through the Linux kernel. It
uses the/dev/qseecom special device which is exposed by the Linux
kernel for communication with QSEE. Once communication between the
vold process and QSEE is established through/dev/qseecom, the QSEE-
COM_IOCTL_CREATE_KEY_REQ ioctl() call is executed with the disk
encryption type and user password as the arguments, as shown in Fig. 2.
The kernel function handling this request forwards it to QSEE by
executing an SMC. As shown in Section 3.1.1, the secure channel
monitor, which runs at the highest possible privilege level (EL3), han-
dles this communication between the Linux kernel and QSEE. Once the

Fig. 1. A simplified overview of the TZ architecture. Left: REE (Green) Right:
TEE (Red). (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)

Fig. 2. A simplified overview of the vold function.

A. Fukami et al.

Forensic Science International: Digital Investigation 48 (2024) 301682

4

request is received by QSEE, one of the values shown in Table 1 is
returned through ioctl() depending on the password attempt status.

When the correct password has been entered, the decryption key is
set in the crypto engine (CE) of the SoC. This ensures the AP can never
read the key used in the decryption process. Communication with the CE
happens exclusively within QSEE. The dm-crypt device mapper can only
decrypt the userdata partition after the correct key is set in the CE.

3.1.3. RPMB usage in user authentication and key derivation
QSEE uses a data structure called the keystore for securely storing

security sensitive information, including the FDE key and the number of
failed password attempts. Fig. 3 shows the communication flow between
the Android and QSEE during user authentication procedures. The
keystore itself is saved in the partition named ssd on flash. This is a
proprietary partition specified by Qualcomm. The partition data is
encrypted using a key derived from a hardware bound key (HBK). The
tz_ks_ns_generate_key function residing in QSEE is responsible for adding
the FDE encryption key to the keystore if it does not already exist. If the
keystore has not yet been loaded in memory, it is read from flash storage
first. QSEE uses a combination of listeners and shared memory buffers to
transfer data from flash memory and the RPMB partition by communi-
cating with the qseecomd user space process. The encrypted keystore
consists of one or more entries, starting with a header including an
HMAC used to authenticate the encrypted data. The HMAC is calculated
over the encrypted data and also includes the anti-rollback counter
stored in the RPMB partition of the target eMMC. Authentication will fail
if the anti-rollback counter cannot be read from the eMMC, or if the read
counter value is incorrect. Once authentication succeeds, the encrypted
entry data is decrypted using a key derived from the HBK.

When the keystore entries are authenticated and decrypted, the
kernel tries to load the FDE key into the CE by calling the tz_ce_pipe_-
key_select_ns function in QSEE. This function calls tz_ks_dy_get_key, which
performs the actual key derivation. If the user enters thirty wrong
passwords, the FDE key is removed from the keystore. The keystore is
then re-encrypted and written back to flash. The anti-rollback counter is
also incremented and written back to the RPMB partition. This prevents
an attacker from writing back an earlier version of the keystore since the
entries it holds can no longer be authenticated.

When QSEE is loaded, it checks if the RPMB authentication key is
programmed in the eMMC. If this it not the case, it starts a provisioning
routine, which first checks an eFuse value to determine if an authenti-
cation key has been programmed before. If the authentication key has
never been programmed on the eMMC, the SoC executes the key pro-
gramming procedure. This procedure is performed only once in the
device’s lifetime.

The reason for this behavior is most likely because the authentication
key is derived from a number of static values, encrypted by the CE using
the AES algorithm with a hardware bound key. This means that the
authentication key is always the same. The authentication key is
dynamically generated when needed and never stored. If the key were to
be programmed multiple times, an attacker might be able to extract the
authentication key by replacing the eMMC whose RPMB partition has
never been programmed, and monitor the key programming procedure.

The QSEE initialization routine also reads the current write counter
value directly from the eMMC, and stores it in volatile memory. The
counter value does not appear to be stored in any type of non-volatile
memory for later use. If an RPMB write request executed by QSEE
fails, the write counter is read again from the eMMC and updated in

memory accordingly. We did not find any evidence that the write
counter is ever checked against a stored value to detect tampering with
RPMB data.

3.2. Hardware

The target device uses a Hynix embedded Multichip Package (eMCP)
H9TQ26ADFTMCUR as its storage memory. The eMCP chip has the
eMMC and DRAM in one package. In this section, we describe how we
identified the hardware structure of the chip and identified how the
RPMB authentication key is stored in flash memory.

3.2.1. eMMC structure
The eMMC embedded in an eMCP consists of managed NAND flash

memory. The dedicated flash memory controller is embedded in the chip
together with flash memory and provides an external interface following
the JEDEC eMMC standard (JEDEC Solid State Technology Association,
2015). Therefore the SoC can access the storage memory by using JEDEC
standardized commands. Since the internal flash controller manages
wear leveling, error correction, and other operations required for
interfacing with flash memory, the SoC does not need to implement flash
memory vendor specific commands. Instead it can use the JEDEC
interface as a hardware abstraction layer to flash memory.

We started observing the internal structure of the chip through
radiographic inspection. We obtained a few eMCPs which have the same
part number as the target device, and worked on those reference chips to
perform reverse engineering. Fig. 4b shows the X-ray image of the target
chip. The location of each silicon die is annotated. By tracing the elec-
trical paths of each die, one can find that the flash memory controller
and DRAM are connected to the standard interface. The standard
interface is established through the silver pads shown in Fig. 4a. On the
other hand, flash memory dies are not exposed to those pins. Instead
they are traced to the technical pins (Giese and Noubir, 2021). The pinout
of the technical pins was identified as shown in Fig. 4c.

To monitor the controller behavior while the RPMB authentication
key is being programmed, we connect the technical pins to a logic
analyzer. This setup is shown in Fig. 5. The communication between the
flash memory controller and flash memory, while programming the
authentication key, was captured using this method. Using the mmc-util
package with the rpmb write-key option (Altman and Hansson, 2023), we
programmed the key “12345678901234567890123456789ABC” (in
ASCII) to a reference eMCP chip. Meanwhile, the logic analyzer is
configured to capture the communication once the Command Latch
Enable (CLE) pin of the flash memory is enabled.

The captured result is shown in Fig. 6a. Multiple communications are
captured between the controller and flash memory. During the first half
of the monitored communications, multiple read commands are issued
from the controller to various addresses in flash memory. We assume
that the controller is checking the current status of the RPMB during this
phase. After reading the values from flash memory, the controller starts
writing values to flash memory. For example, if we zoom in the red
square shown in Fig. 6a, we find the command shown in Fig. 6b. Com-
mand 0x80 is issued followed by the address data while the Address
Latch Enable (ALE) pin is pulled high. According to the ONFI standard
(ONFI, 2021), command code 0x80 is defined as a page program oper-
ation, as shown in Fig. 6c. In the captured communication, the page
program operation is issued to the flash memory page address 0x0E00.

3.2.2. Physical memory dump and authentication key extraction
Now with the purpose of identifying what data is written to the flash

memory while programming the authentication key, we connect the
technical pins to a flash memory reader. The read operation was per-
formed using single-level-cell (SLC) mode provided by Rusolut Visual
NAND Reconstructor (ruSolut). Given the reliability issues with
multi-level-cell (MLC) flash memory, which stores more than 2 bits of
data per flash memory cell, flash memory manufacturers offer SLC mode

Table 1
Returned values from ioctl() after password attempt.

Return value Decimal Meaning

0xFFFFFFF6 − 10 Max. password attempts reached
0xFFFFFFF9 − 7 Invalid password attempt
0 0 Correct password

A. Fukami et al.

Forensic Science International: Digital Investigation 48 (2024) 301682

5

in MLC flash memory. When set to SLC mode, the flash memory cell is
forced to store only 1 bit per cell at the specified address. This way, the
host can store important data, such as system data, to the SLC area in a
reliable manner. The SLC mode data read/write operation is imple-
mented as a proprietary command, therefore the implementation details
differ per manufacturer.

The extracted raw flash memory data is XORed with a scrambling
pattern. The scrambling pattern is extracted from the reference device,
where all plain-text data is 0x00. Reverse-engineering of the scrambling
pattern can also be performed (Fukami et al., 2022; van Zandwijk,
2015), however for our experiment, identifying one page of the pattern
was enough to extract the required key information. Using the scram-
bling pattern from the empty sectors, the plain text data was successfully
extracted. By analyzing the de-scrambled data, we found that the
authentication key data is stored in plain text after the flag [PASS] as
shown in Fig. 7.

4. Restoring the wiped-state smartphone by exploiting the
RPMB

Based on the results we obtained through reverse engineering, it is
clear that the RPMB data is used to store the anti-rollback counter. Once
the investigator extracts the RPMB authentication key from the eMMC, it
allows the investigator to modify the RPMB content, which makes the
anti-rollback protection compromised. In order to evaluate our findings
and apply them to the case devices, we executed an arbitrary data-wipe
operation and experimentally performed a data restore operation on a
Blackphone 2. To reproduce our accidental data wipe incident, we
performed wrong password attempts in an automated manner until the
data wiping operation was initiated, while monitoring how the data was
modified on the target device.

Fig. 3. Communication between Android and QSEE for user authentication.

A. Fukami et al.

Forensic Science International: Digital Investigation 48 (2024) 301682

6

4.1. Device setup

4.1.1. Hardware modification
To perform the required eMMC read and write operations, some

hardware modifications were required on the target device. First, the
eMCP chip was detached from the PCB by using a heat gun and melting
the underlying solder between the eMCP chip and the circuit board of
the target device. The eMCP was then connected to a Linux based
computer through an eMCP-SD adapter in order to check its contents.
The result of the dmesg command showed that the target eMMC is
recognized as mmc0, and it contained the following four physical
partitions:

• mmcblk0 The main partition, and had a size of 29 GB with Android
related data, which is partitioned into 32 partitions.

• mmcblk0boot0 4 KB in size, all bytes were 0x00.
• mmcblk0boot1 4 KB in size, all bytes were 0x00.
• mmcblk0rpmb RPMB partition, 4 KB in size.

Running mmc-utils with the rpmb read-counter option sho-wed that
the RPMB had been written 155 times. Following the NIST guideline
(Karen Kent et al., 2006), we performed image acquisition from all
partitions, and saved the images as our baseline data.

The flash memory interface (technical pins) of the target chip was
then connected to a flash memory reader to extract the RPMB authen-
tication key. The key is stored at the same address as the reference eMCP
as discussed in Section 3.2.2. In order to keep track of data modification
on the RPMB while triggering the wipe routine, header pins for In Sys-
tem Programming (ISP) were installed at the same time as re-mounting
the eMCP onto the PCB. Specifically, the CLK, CMD, and D0 lines of the
eMMC were extended using thin wires. With this setup, the eMMC data
can be accessed directly without detaching the chip from the PCB. This
way we can read and write the RPMB partition directly.

Fig. 4. Hynix H9TQ26ADFTMCUR visual observation.

Fig. 5. Hardware setup to monitor communications between flash memory and
the flash memory controller.

Fig. 6. Captured communication between the flash memory controller and
flash memory.

A. Fukami et al.

Forensic Science International: Digital Investigation 48 (2024) 301682

7

4.1.2. Software
As discussed in Section 3.1.1, root privileges are required to enable

communication with QSEE through the secure channel monitor.
Therefore, we first need to find a way to run unsigned code. On our
target, including other old Android devices, part of the device configu-
ration is stored in the devinfo partition, including the unlock state of the
bootloader. As reported by Hay (2018), by modifying the values at
offsets 0x10 and 0x18 in this partition to 0x01, the bootloader is
considered unlocked. Through this modification, an attacker can run
arbitrary code on the target device with EL0 or EL1 privileges.

Qualcomm devices can boot into “Emergency Download Mode”
(EDL) either by holding a specific button combination or automatically
when the initialization of certain hardware components fail. This mode
is used for diagnostic purposes by uploading a signed secondary boot
stage, also called a “programmer” or “loader” enabling custom code
execution. We used a leaked programmer (Kerler, 2021) to read/write to
eMMC memory and replace the devinfo partition with our modified
version. This operation can also be performed physically since the
eMMC is connected to ISP pins.

Next, we created a modified boot image using Magisk, which starts
an Android Debug Bridge (ADB) shell with root privileges without
booting the Android operating system. The fastboot mode provided by
the Android bootloader enables the user to run a custom boot image.
Using this method, we acquired root privileges on the device and could
communicate with QSEE from user space through ioctl() calls.

4.2. Initiating data wipe

After establishing a baseline for our target device, we then unlocked
the bootloader and started a custom boot image using the method
described in Section 4.1.2. By connecting to the device using the ADB,
we were able to perform multiple password attempts using the com-
mand vdc cryptfs checkpw <password>. After 30 failed attempts,
the wipe routine in QSEE was executed, the device rebooted and started
erasing data.

After the target device completed the wipe routine, we made another
physical image of the eMMC including the RPMB partition through the
use of ISP. Fig. 8 shows the difference in data stored in the RPMB
partition before and after the data wiping routine. The value stored at
offset 0x20C has been incremented by 1 from 0x10 to 0x11 after the
device was wiped.

After observing this data modification triggered by the data wipe
routine, we restored the whole contents of the eMMC main partition,
which was 29 GB in size, as mentioned in Section 4.1.1. This hardware

partition contains the entire filesystem including the ssd partition,
containing the encrypted keystore. The device booted normally. How-
ever, after entering the correct password, the device showed a notifi-
cation that the password was correct, but the data could not be
decrypted, as shown Fig. 9.

This behaviour validates our reverse engineering findings, since we
cannot boot the device even after restoring the original keystore data. At
this point, only the incremented anti-rollback counter stored in the
RPMB partition differed from the original eMMC data.

4.3. Data restore

To recover the target device, we again restored the whole eMMC
contents to its original state. This time, we also restored the RPMB
partition data to the one acquired in section 4.1.1. In case of the RPMB
data, only the anti-rollback counter at offset 0x20C was effectively
changed to 0x10. It is worth mentioning that the value at offset 0x20C
was incremented again by 1 to 0x12 by booting the device with the
restored eMMC data and the wrong RPMB partition data, as explained in
Section 4.2. By rewriting the RPMB partition data with the RPMB
authentication key extracted from the eMMC, the write counter value
stored in the eMMC was also incremented. Nevertheless, our tampering
remained undetected by the SoC, enabling us restore the target device to
the state it was before the wipe routine was performed. The target device
booted successfully, with its original data intact.

5. Discussion

5.1. RPMB authentication key storage in the eMMC

As shown in section 3.2.2, the RPMB authentication key can be
extracted by reading the internal flash memory of the target eMMC.
Since the key is stored in plain text with no obfuscation or read pro-
tection, the key data is essentially accessible by attackers. While the
flash memory interface is not exposed on eMMCs, it is still accessible
through chip-off analysis, which has been popularly performed in digital
forensic analysis (Fukami et al., 2022; Giese and Noubir, 2021). The
authentication key to the target device was stored at the same location as
the reference device. We also found that the key data is duplicated at
multiple locations. Using a similar technique, the authors have

Fig. 8. RPMB data comparison.

Fig. 9. Decryption unsuccessful.

Fig. 7. RPMB key stored plain-text in flash memory.

A. Fukami et al.

Forensic Science International: Digital Investigation 48 (2024) 301682

8

successfully extracted RPMB authentication keys from a Samsung
KLMAG2GE4A-A001 and Sandisk SDIN8DE4-16G, which were used in
other smartphones. Each model uses different address to store the
authentication key information. Therefore sniffing the flash write
operation during the key programming is necessary. In an example
where the RPMB is used to prevent a software downgrade, an attacker
can edit the version information stored in the RPMB to a lower value,
following our procedure. Then an attacker can downgrade the running
software with the purpose of exploiting a known vulnerability. Once
exploited, the target device is no longer secured against unauthorized
access. The attack itself requires de-soldering of the eMMC chip with hot
air, and microsoldering with thin wires, which can be done by a skilled
engineer. Therefore the attack is feasible on other digital devices con-
taining eMMCs with an RPMB.

In JEDEC Standard (JEDEC Solid State Technology Association,
2015), it is defined that the authentication key should be stored in a “one
time programmable” authentication key register, which cannot be
overwritten, erased or read. Nevertheless, there exists commercially
available products where the RPMB key can be deleted and the write
counter can be cleared. Therefore the hardware implementation of the
RPMB in eMMCs is not always secure.

5.2. Use of the RPMB write counter

As discussed in Section 2, authentication of RPMB write is performed
by computing the HMAC over the message which includes the RPMB
write counter. The RPMB write counter is implemented as one of the
security features to prevent attackers from performing a replay attack.
Therefore, even if the RPMB authentication key is leaked, once the write
counter value does not match, we would expect the authentication to
fail. After we edited the RPMB partition, the RPMB write counter of the
eMMC was incremented, as mentioned in Section 4.3. Therefore we
expected that the QSEE would detect tampering of the RPMB partition
data. However, it turned out that QSEE always uses the write counter
provided by the eMMC, and even re-requests it from the eMMC when an
RPMB write fails. In the end, the RPMB write counter is not used as part
of the authentication scheme, allowing us to arbitrarily edit the RPMB
data. This design decision might be made because it would not lock out
the user when a non-malicious mismatch occurs, for example because of
data corruption. Further research is required to determine if this is a
valid concern.

5.3. RPMB authentication key Generation

The way the RPMB authentication key is currently generated on the
target device, does not prevent an attacker from swapping the eMMC
chip. Since the authentication key is hardware bound, only written once,
and assumed to be inaccessible, it is supposed to be tied to a single
eMMC. Meaning that if the eMMC fails, it cannot be replaced. However,
even if the SoC stores the write counter value and detected our
tampering with the RPMB data, it would be possible to reprogram
another chip with the correct authentication key, and increment its
write counter to the desired value. This would work since currently the
SoC cannot distinguish different eMMC chips. One way to make the
device more resilient against the proposed attack might be to derive the
RPMB authentication key from the eMMC device-specific information
such as Card Identification (CID) register, which is an unique identifi-
cation number assigned to each eMMC chip. The SoC may also keep
track of eMMCs that it programmed before, to prevent leaking the key.
Ultimately, however, the authentication key should be stored in
immutable non-volatile memory (such as eFuses) within the controller to
prevent it from being read directly. Without this measure, all other
mitigations only add an additional level of complexity but with only a
trivial increase in security.

5.4. Responsible disclosure

The authors have reached out to Silent Circle and SK Hynix in June
2023 and July 2023, respectively, to report our findings and to share the
possible vulnerabilities.

6. Related work

Western Digital published a white paper on vulnerabilities in the
eMMC RPMB (Western Digital, 2020) in 2020, and suggested that by
performing a “man-in-the-middle” attack, one can trick the host system
to make it behave as the intended data has never been written to the
RPMB area. This attack would only work to prevent the anti-rollback
counter from being updated. It is not feasible in our scenario since the
device is already in a wiped state.

Skorobogatov showed that password brute-forcing on a smartphone
is possible by mirroring the whole content of the storage memory and
restoring its state to reset the number of failed password attempts
(Skorobogatov, 2016). Theoretically, the same attack works on our
target. However, since our target was in a wiped-state protected with
RPMB anti-rollback authentication, an additional RPMB exploit is
required to restore the device to a working state to enable the reported
brute-force attack.

Multiple use cases of RPMB in smartphones are suggested through
literature (Raj et al., 2015; Giese and Noubir, 2021; Reddy et al., 2015).
However, none of them have looked at the actual hardware imple-
mentation of the RPMB key storage on the eMMC side.

7. Conclusion

We show that the current RPMB implementation on a smartphone
can be exploited due to a non-secure implementation of the RPMB on the
hardware and its use in software. We successfully extracted the RPMB
authentication key from the target device. By writing back the original
data and modifying the RPMB data, we were able to restore the wiped-
state smartphone back to a working state. Our proposed attack can be
expanded to other smartphones using the RPMB for anti-rollback pro-
tection. Given that the anti-rollback protection is a generic imple-
mentation used by the SoC manufacturers, we expect that our method is
applicable on a wider range of smartphones. We have observed that
other manufacturers make use of the RPMB partition on newer devices
(e.g. Google/Samsung/Xiaomi), which can be the subject of further
research.

References

Altman, A., Hansson, U., 2023. Mmc Tools (Mmc-utils). URL. https://git.kernel.org/pu
b/scm/utils/mmc/mmc-utils.git.

Android Open Source Project, 2022. Keymaster functions. URL. https://source.android.
com/docs/security/features/keystore/implementer-ref.

Digi International Inc., 2023. Connectcore 8x Documentation Portal. URL. https://www.
digi.com/resources/documentation/digidocs/embedded/android/dea11/cc8x/and
roid-trustfence_c_key-summary.html#avb-keys.

Fukami, A., Sheremetov, S., Regazzoni, F., Geradts, Z., De Laat, C., 2022. Experimental
evaluation of e.mmc data recovery. IEEE Trans. Inf. Forensics Secur. 17, 2074–2083.
https://doi.org/10.1109/TIFS.2022.3176187.

Giese, D., Noubir, G., 2021. Amazon Echo Dot or the Reverberating Secrets of Iot
Devices, WiSec ’21. Association for Computing Machinery, New York, NY, USA,
pp. 13–24. https://doi.org/10.1145/3448300.3467820.

Hay, R., 2018. Exploiting Qualcomm Edl Programmers (2): Storage-Based Attacks &
Rooting. URL. https://alephsecurity.com/2018/01/22/qualcomm-edl-2/.

JEDEC Solid State Technology Association, 2015. Embedded multi-media card (e⋅MMC)
electrical standard (5.1), JEDEC Standard JESD84-B51. URL. https://www.jedec.
org/system/files/docs/JESD84-B51.pdf.

JEDEC Solid State Technology Association, 2020. Universal Flash Storage (Ufs) Version
2.2, JEDEC Standard JESD220C-2.2. URL. https://www.jedec.org/system/files/doc
s/JESD220C-2_2.pdf.

Karen Kent, T.G., Chevalier, Suzanne, Dang, H., 2006. Guide to Integrating Forensic
Techniques into Incident Response. URL. https://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-86.pdf.

Kerler, B., 2021 [link]. URL. https://github.com/bkerler/Loaders/tree/a59f9f765ee1
d3fae83eea814a917d4b8d8d8cd9/blackphone.

A. Fukami et al.

https://git.kernel.org/pub/scm/utils/mmc/mmc-utils.git
https://git.kernel.org/pub/scm/utils/mmc/mmc-utils.git
https://source.android.com/docs/security/features/keystore/implementer-ref
https://source.android.com/docs/security/features/keystore/implementer-ref
https://www.digi.com/resources/documentation/digidocs/embedded/android/dea11/cc8x/android-trustfence_c_key-summary.html#avb-keys
https://www.digi.com/resources/documentation/digidocs/embedded/android/dea11/cc8x/android-trustfence_c_key-summary.html#avb-keys
https://www.digi.com/resources/documentation/digidocs/embedded/android/dea11/cc8x/android-trustfence_c_key-summary.html#avb-keys
https://doi.org/10.1109/TIFS.2022.3176187
https://doi.org/10.1145/3448300.3467820
https://alephsecurity.com/2018/01/22/qualcomm-edl-2/
https://www.jedec.org/system/files/docs/JESD84-B51.pdf
https://www.jedec.org/system/files/docs/JESD84-B51.pdf
https://www.jedec.org/system/files/docs/JESD220C-2_2.pdf
https://www.jedec.org/system/files/docs/JESD220C-2_2.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-86.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-86.pdf
https://github.com/bkerler/Loaders/tree/a59f9f765ee1d3fae83eea814a917d4b8d8d8cd9/blackphone
https://github.com/bkerler/Loaders/tree/a59f9f765ee1d3fae83eea814a917d4b8d8d8cd9/blackphone

Forensic Science International: Digital Investigation 48 (2024) 301682

9

Limited, A., 2014. Arm Corelink Tzc-400 Trustzone Address Space Controller Technical
Reference Manual. URL. https://developer.arm.com/documentation/ddi0504/c/?
lang=en.

LineageOS, 2012 [link]. URL. https://github.com/LineageOS/android_kernel_oppo_msm
8939/tree/cm-13.0.

LineageOS, 2014 [link]. URL. https://github.com/LineageOS/android_vendor_qcom_ope
nsource_cryptfs_hw/tree/cm-13.0.

LineageOS, 2015 [link]. URL. https://github.com/LineageOS/android_system_vold/tree
/cm-13.0.

Omtp Advanced Trusted Environment Tr1 v1.1, 2009.
ONFI, 2021. Open nand flash interface specification. Tech. rep. URL http://www.onfi.

org/.
Raj, H., Saroiu, S., Wolman, A., Aigner, R., Cox, J., England, P., Fenner, C.,

Kinshumann, K., Loeser, J., Mattoon, D., et al., 2015. Ftpm: A Firmware-Based Tpm
2.0 Implementation. Microsoft Research, 0–23.

Reddy, A.K., Paramasivam, P., Vemula, P.B., 2015. Mobile secure data protection using
emmc rpmb partition. In: 2015 International Conference on Computing and Network
Communications (CoCoNet). IEEE, pp. 946–950.

ruSolut, VNR software. URL https://rusolut.com/visual-nand-reconstructor/vnr-softwar
e/ .

Skorobogatov, S., 2016. The Bumpy Road towards Iphone 5c Nand Mirroring arXiv:
1609.04327.

van Zandwijk, J.P., 2015. A Mathematical Approach to NAND Flash-Memory
Descrambling and Decoding, Digital Investigation.

Western Digital, 2020. Replay Protected Memory Block (Rpmb) - Protocol
Vulnerabilities. White paper.

Wiklander, J., 2017. Secure Storage in Op-Tee, Linaro Connect. URL. https://static.linaro
.org/connect/sfo17/Presentations/SFO17-309%20Secure%20storage%20updates.
pdf.

Yao, J., Zimmer, V., 2020. Configuration. In: Building Secure Firmware: Armoring the
Foundation of the Platform. Apress, Berkeley, CA, pp. 383–431. https://doi.org/
10.1007/978-1-4842-6106-4_11.

Zilberstein, Einav, Klein, Adi, 2021. e.mmc security methods. White paper.

A. Fukami et al.

https://developer.arm.com/documentation/ddi0504/c/?lang=en
https://developer.arm.com/documentation/ddi0504/c/?lang=en
https://github.com/LineageOS/android_kernel_oppo_msm8939/tree/cm-13.0
https://github.com/LineageOS/android_kernel_oppo_msm8939/tree/cm-13.0
https://github.com/LineageOS/android_vendor_qcom_opensource_cryptfs_hw/tree/cm-13.0
https://github.com/LineageOS/android_vendor_qcom_opensource_cryptfs_hw/tree/cm-13.0
https://github.com/LineageOS/android_system_vold/tree/cm-13.0
https://github.com/LineageOS/android_system_vold/tree/cm-13.0
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref15
http://www.onfi.org/
http://www.onfi.org/
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref17
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref17
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref17
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref18
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref18
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref18
https://rusolut.com/visual-nand-reconstructor/vnr-software/
https://rusolut.com/visual-nand-reconstructor/vnr-software/
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref20
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref20
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref21
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref21
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref22
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref22
https://static.linaro.org/connect/sfo17/Presentations/SFO17-309%20Secure%20storage%20updates.pdf
https://static.linaro.org/connect/sfo17/Presentations/SFO17-309%20Secure%20storage%20updates.pdf
https://static.linaro.org/connect/sfo17/Presentations/SFO17-309%20Secure%20storage%20updates.pdf
https://doi.org/10.1007/978-1-4842-6106-4_11
https://doi.org/10.1007/978-1-4842-6106-4_11
http://refhub.elsevier.com/S2666-2817(23)00201-9/sref25

	Exploiting RPMB authentication in a closed source TEE implementation
	1 Introduction
	2 Background
	2.1 Replay Protected Memory Block
	2.2 RPMB use cases in digital devices
	2.2.1 Anti-rollback protection
	2.2.2 Unauthorized device unlocking prevention
	2.2.3 Secure data protection

	2.3 Target device

	3 Dissecting the use of RPMB on the target device
	3.1 Software
	3.1.1 Qualcomm Secure Execution Environment (QSEE)
	3.1.2 Android volume daemon
	3.1.3 RPMB usage in user authentication and key derivation

	3.2 Hardware
	3.2.1 eMMC structure
	3.2.2 Physical memory dump and authentication key extraction

	4 Restoring the wiped-state smartphone by exploiting the RPMB
	4.1 Device setup
	4.1.1 Hardware modification
	4.1.2 Software

	4.2 Initiating data wipe
	4.3 Data restore

	5 Discussion
	5.1 RPMB authentication key storage in the eMMC
	5.2 Use of the RPMB write counter
	5.3 RPMB authentication key Generation
	5.4 Responsible disclosure

	6 Related work
	7 Conclusion
	References

