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A B S T R A C T   

Embedded Multimedia Cards (eMMCs) provide a protected memory area called the Replay Protected Memory 
Block (RPMB). eMMCs are commonly used as storage media in modern smartphones. In order to protect these 
devices from unauthorized access, important data is stored in the RPMB area in an authenticated manner. 
Modification of the RPMB data requires a pre-shared authentication key. An unauthorized user cannot change the 
stored data. 

On modern devices, this pre-shared key is generated and used exclusively within a Trusted Execution Envi-
ronment (TEE) preventing attackers from access. In this paper, we investigate how the authentication key for 
RPMB is programmed on the eMMC. We found that this key can be extracted directly from the target memory 
chip. Once obtained, the authentication key can be used to manipulate stored data. In addition, poor imple-
mentation of certain security features, aimed at preventing replay attacks using RPMB on the host system can be 
broken by an attacker. We show how the authentication key can be extracted and how it can be used to break the 
anti-rollback protection to enable data restoration even after a data wipe operation has been completed. 

Our findings show that non-secure RPMB implementations can enable forensic investigators to break security 
features implemented on modern smartphones.   

1. Introduction 

With the implementation of multiple types of security features on 
smartphones, extracting user data from them at a digital forensics lab is 
becoming more challenging day by day. The details of these features are 
not always disclosed, requiring digital forensic investigators to reverse 
engineer the device both on the software and hardware side. The data on 
modern smartphones is encrypted by default, preventing data carving 
through physical data acquisition. Additionally, unlocking the device 
requires knowledge of a user secret, such as a passcode or password. On 
top of those security features, data wiping routines are common on 
modern smartphones, which are triggered when a certain threshold of 
failed password attempts is reached. 

To keep track of the state of the device, smartphone manufacturers 
often make use of the Replay Protected Memory Block (RPMB) in an 
embedded Multimedia Card (eMMC). eMMC is a popular storage 
memory in smartphones. Writing to the RPMB partition requires 
authentication, therefore a pre-shared secret key is needed every time 
the host device wants to modify information. To prevent an attacker 
from rolling back system data to an older version, the smartphone 

System on Chip (SoC) stores information in the RPMB area where data 
integrity is guaranteed. The use of RPMB has been suggested to prevent 
replay attacks on Android-based devices (Android Open Source Project, 
2022; Reddy et al., 2015), and other Linux based systems (Giese and 
Noubir, 2021). The security of data stored in RPMB relies on the secure 
storage of the pre-shared secret key. 

While the use of RPMB for device protection against unauthorized 
access has been discussed in literature, the actual security of the RPMB 
implementation on memory devices has, to the best of authors’ knowl-
edge, not been widely researched. By using a real world example, 
whereby we accidently triggered the wipe routine, we show how to 
recover a wiped-state smartphone which implements RPMB anti- 
rollback protection. Through hardware reverse engineering, we identi-
fied that the RPMB authentication key is stored in flash memory in an 
accessible manner, making it possible for the key to be extracted. Once 
the key is extracted, the RPMB data becomes editable, thereby losing its 
integrity. We demonstrate how the RPMB authentication key can be 
extracted, and how we can rollback a device in a wiped state to a 
working state, by restoring a flash data backup and modifying data 
stored in the RPMB. 
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This paper mainly makes the following contributions:  

• We show the RPMB authentication key can be extracted from an 
eMMC 

• We provide a detailed description of a closed source TEE imple-
mentation that utilizes the RPMB area for full-disk encryption  

• We experimentally demonstrate that a smartphone, of which the 
wipe routine has been triggered, can be recovered by recovering the 
RPMB authentication key, and restoring a flash data backup 

The rest of the paper is organized as follows. In section 2, we provide 
the necessary background on the RPMB area and its use in smartphones. 
We then explain the implementation of the trusted execution environ-
ment in detail, focusing on the usage of the RPMB, in an actual target 
device in section 3. In section 4, we demonstrate the actual procedures 
to restore a wiped-state smartphone by exploiting the RPMB data. We 
discuss the impact of our attack in 5 followed by the related work in 
section 6, before concluding in section 7. 

2. Background 

2.1. Replay Protected Memory Block 

Replay Protected Memory Block (RPMB) is a memory block imple-
mented in JEDEC standards for modern storage devices, such as 
embedded Multi Media Card (eMMC) and Universal Flash Storage (UFS) 
(JEDEC Solid State Technology Association, 2015; JEDEC Solid State 
Technology Association, 2020). In this paper, since the target device has 
an eMMC-based non-volatile memory chip, we define the RPMB as a 
memory block in an eMMC, unless otherwise specified. The RPMB area 
is provided to store data in an ”authenticated and replay protected 
manner” (JEDEC Solid State Technology Association, 2020). Authenti-
cation is performed by utilizing an authentication key, which is the 
shared secret between the eMMC and the host system. At the time of 
manufacturing a smartphone, the authentication key is programmed to 
the device and to the eMMC in a secure environment before it is shipped 
from the factory. 

When the host system wants to write the RPMB, the host must 
calculate a SHA-256 hash based message authentication code (HMAC) 
over the message to be sent, using this authentication key. The message 
includes the data to write, and the write counter. The write counter of 
the RPMB represents the total number of successful authenticated write 
operations. This value is incremented by one every time an authenti-
cated data write operation is performed. The counter value is stored in 
the eMMC in an area inaccessible via the external interface to prevent it 
from being reset. The write counter provides protection against replay 
attacks. If it is not implemented, an attacker can monitor the commu-
nication between the host and the eMMC, and then reproduce the same 
communication at a later time, allowing modification of data stored in 
the eMMC. 

Once a message is received, the eMMC calculates the HMAC over the 
received message using its own stored authentication key to check if the 
message is from the authenticated host. Only when the calculated HMAC 
matches with the received one, and the provided counter matches the 
stored value, a data write operation to the RPMB is authorized. Since a 
RPMB data write operation requires the correct authentication key and 
write counter value, the stored data can be tamper-resistant and can be 
protected against replay attacks. 

2.2. RPMB use cases in digital devices 

Since the RPMB area is a tamper-resistant memory block, it is often 
used in modern digital devices to store information that can help prevent 
unauthorized access to the system (Reddy et al., 2015; Zilberstein and 
Klein, 2021; Wiklander, 2017; Yao and Zimmer, 2020). Common use 
cases include anti-rollback protection, unlock protection, and secure 

data storage. 

2.2.1. Anti-rollback protection 
Smartphone manufacturers are constantly upgrading software 

running on their products to patch reported vulnerabilities. Once soft-
ware is upgraded, the device is generally not allowed to downgrade to 
the previous version. This is to protect user data from unauthorized 
access by exploiting known vulnerabilities. To keep track of the latest 
software version, the RPMB area can be used to store the version-related 
data. When a user attempts to install a piece of software to the target 
device, the host system checks the current version of the software using 
the data stored in the RPMB. If the stored software version is higher than 
the one to be installed, the system rejects the software installation. 

2.2.2. Unauthorized device unlocking prevention 
Another use case of RPMB is unauthorized unlock prevention. To 

prevent unauthorized access, a user can lock the device with a unique 
passcode or password. The passcode/password is stored in the device at 
creation time. Once getting physical access to the device, an attacker 
might try all possible combinations to unlock it. This type of attack can 
be automated through the use of software. To prevent brute-forcing, 
RPMB can be used to store a counter that keeps track of the failed 
number of password attempts. If the counter exceeds a certain threshold, 
the system can initiate a security measure, such as wiping user data or 
enforcing an increasingly long wait time. Since data in RPMB cannot be 
overwritten without the authentication key, the attacker cannot reset or 
decrement the failed attempts counter. 

2.2.3. Secure data protection 
In modern smartphones, the integrity of all critical software com-

ponents is enforced by secure boot. Different variations exist, but the 
general approach is to store the hash of a certificate, containing a public 
key, in immutable memory. The stored hash serves as a root of trust, 
since it authenticates the public key that verifies the signature of the 
next component in the boot chain. 

RPMB can also be used as a root of trust, since it is considered 
authenticated storage. As an example, the Android Verified Boot (AVB) 
public key, which authenticates the bootloader, can be stored in RPMB 
by the Trusty Trusted Execution Environment (TEE) (Digi International 
Inc., 2023). 

2.3. Target device 

During our forensic analysis at the forensic lab, we accidently trig-
gered the wipe routine on a Blackphone 2 while developing a brute-force 
method. Restoring a backup of the flash data did not return the device to 
a working state, therefore extensive research on the implemented anti- 
rollback protection was needed. The Blackphone 2 is a smartphone 
focused on security and privacy, first produced in 2015. The device itself 
is built around the Qualcomm Snapdragon 615 (MSM8939) SoC and 
runs a modified version of the Android operating system called “Silent 
OS”. In 2016 Silent Circle released “Silent OS 3” based on Android 6.0.1 
(Marshmallow), which was the last version available for the Blackphone 
2. The user data of the Blackphone 2 is protected using full disk 
encryption (FDE). The FDE implementation on Android devices is 
vendor specific, but they commonly require the user password and a 
hardware bound key to derive the correct decryption key. On top of the 
encryption, the Blackphone 2 seemed to use an anti-rollback counter 
stored in the RPMB area to prevent an attacker from restoring a data 
backup after a device had been wiped. Because we needed to break this 
security feature, and had to restore the device to a working condition, 
we selected the Blackphone 2 as our target for researching RPMB 
authentication. 
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3. Dissecting the use of RPMB on the target device 

We applied various software and hardware reverse engineering 
techniques to determine the use of RPMB on the target device. The 
software reverse engineering effort focused on the RPMB implementa-
tion in the TEE and FDE key derivation scheme. We also analyzed the 
physical architecture of the eMMC chip to recover the RPMB pre-shared 
key to enable write access to the RPMB partition. 

3.1. Software 

The implemented FDE scheme on the target device, including the use 
of an anti-rollback counter in the RPMB partition, is vendor specific. We 
used static and dynamic analysis techniques to determine the key deri-
vation process and the role of the counter value. The key derivation 
process is implemented almost exclusively in the Qualcomm Secure 
Execution Environment (QSEE) for which, to our knowledge, no source 
code is currently publicly available. 

3.1.1. Qualcomm Secure Execution Environment (QSEE) 
Qualcomm TrustZone technology enables the separation of a non- 

secure operating system (e.g. Android) and a secure operating system 
such as QSEE on the same device. TrustZone technology is implemented 
according to the “Advanced Trusted Environment: OMTP TR1” (Omtp 
advanced trusted environment tr1, 2009) standard, and therefore has 
mitigations against software and hardware attacks. The non-secure 
operating system is said to be running in the Rich Execution Environ-
ment (REE) or “normal world”. The secure operating system runs in the 
Trusted Execution Environment (TEE) or “secure world”. This separa-
tion ensures that certain operations can be performed securely even 
when an attacker compromised the Android operating system. The 
secure operating system has full control over the device, while the 
normal operating system can only access non-secure memory assigned to 
it. This separation is not only enforced by the memory management unit 
(MMU) in the application processor (AP) but also on the data bus itself 
by the TrustZone Address Space Controller (TZASC) (Limited, 2014). 

Code executed on the AP runs at different privilege levels, defined by 
ARM as “exception levels”. Those levels are used both in the REE and the 
TEE as follows:  

• EL0: User space  
• EL1: Supervisor  
• EL2: Hypervisor  
• EL3: Secure channel monitor 

The secure channel monitor is used to relay messages between the 
REE and the TEE. Only the Linux kernel running at EL1 (or the hyper-
visor) is permitted to send messages to QSEE through the secure 
monitor. Therefore, normal applications can only communicate with 
QSEE through the Linux kernel. Fig. 1 shows the flow of message from 
the Linux kernel in the REE to QSEE in TEE. QSEE can also run trusted 
applications (TA’s), shared libraries and drivers (TD’s). We refrain from 
going into details of those features since it is outside the scope of this 
paper. 

The QSEE kernel implements a handler that executes a function ac-
cording to the secure monitor call (SMC) identifier sent by the Linux 
kernel. There is also a separate command handler for processing re-
quests originating from TA’s. On our target device all relevant func-
tionality, concerning key derivation and user authentication, is 
implemented within the QSEE kernel itself. 

3.1.2. Android volume daemon 
The Android Volume Daemon (vold) is responsible for mounting 

storage media, including the userdata partition. The operating system on 
the target device shared many similarities with CyanogenMod 13, of 
which multiple relevant code repositories are available on GitHub 

(LineageOS, 2012; LineageOS, 2014; LineageOS, 2015). 
By analyzing the available source code, we determined that the first 

thing vold does after the user entered their password is to check the 
encryption type stored in the footer partition. When set to aes-xts, the 
Qualcomm specific implementation is used exclusively, instead of 
including the Android Keymaster Hardware Abstraction Layer (HAL). 

The vold process is linked to the libQSEEComAPI.so shared library 
which provides communication with QSEE through the Linux kernel. It 
uses the/dev/qseecom special device which is exposed by the Linux 
kernel for communication with QSEE. Once communication between the 
vold process and QSEE is established through/dev/qseecom, the QSEE-
COM_IOCTL_CREATE_KEY_REQ ioctl() call is executed with the disk 
encryption type and user password as the arguments, as shown in Fig. 2. 
The kernel function handling this request forwards it to QSEE by 
executing an SMC. As shown in Section 3.1.1, the secure channel 
monitor, which runs at the highest possible privilege level (EL3), han-
dles this communication between the Linux kernel and QSEE. Once the 

Fig. 1. A simplified overview of the TZ architecture. Left: REE (Green) Right: 
TEE (Red). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 

Fig. 2. A simplified overview of the vold function.  
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request is received by QSEE, one of the values shown in Table 1 is 
returned through ioctl() depending on the password attempt status. 

When the correct password has been entered, the decryption key is 
set in the crypto engine (CE) of the SoC. This ensures the AP can never 
read the key used in the decryption process. Communication with the CE 
happens exclusively within QSEE. The dm-crypt device mapper can only 
decrypt the userdata partition after the correct key is set in the CE. 

3.1.3. RPMB usage in user authentication and key derivation 
QSEE uses a data structure called the keystore for securely storing 

security sensitive information, including the FDE key and the number of 
failed password attempts. Fig. 3 shows the communication flow between 
the Android and QSEE during user authentication procedures. The 
keystore itself is saved in the partition named ssd on flash. This is a 
proprietary partition specified by Qualcomm. The partition data is 
encrypted using a key derived from a hardware bound key (HBK). The 
tz_ks_ns_generate_key function residing in QSEE is responsible for adding 
the FDE encryption key to the keystore if it does not already exist. If the 
keystore has not yet been loaded in memory, it is read from flash storage 
first. QSEE uses a combination of listeners and shared memory buffers to 
transfer data from flash memory and the RPMB partition by communi-
cating with the qseecomd user space process. The encrypted keystore 
consists of one or more entries, starting with a header including an 
HMAC used to authenticate the encrypted data. The HMAC is calculated 
over the encrypted data and also includes the anti-rollback counter 
stored in the RPMB partition of the target eMMC. Authentication will fail 
if the anti-rollback counter cannot be read from the eMMC, or if the read 
counter value is incorrect. Once authentication succeeds, the encrypted 
entry data is decrypted using a key derived from the HBK. 

When the keystore entries are authenticated and decrypted, the 
kernel tries to load the FDE key into the CE by calling the tz_ce_pipe_-
key_select_ns function in QSEE. This function calls tz_ks_dy_get_key, which 
performs the actual key derivation. If the user enters thirty wrong 
passwords, the FDE key is removed from the keystore. The keystore is 
then re-encrypted and written back to flash. The anti-rollback counter is 
also incremented and written back to the RPMB partition. This prevents 
an attacker from writing back an earlier version of the keystore since the 
entries it holds can no longer be authenticated. 

When QSEE is loaded, it checks if the RPMB authentication key is 
programmed in the eMMC. If this it not the case, it starts a provisioning 
routine, which first checks an eFuse value to determine if an authenti-
cation key has been programmed before. If the authentication key has 
never been programmed on the eMMC, the SoC executes the key pro-
gramming procedure. This procedure is performed only once in the 
device’s lifetime. 

The reason for this behavior is most likely because the authentication 
key is derived from a number of static values, encrypted by the CE using 
the AES algorithm with a hardware bound key. This means that the 
authentication key is always the same. The authentication key is 
dynamically generated when needed and never stored. If the key were to 
be programmed multiple times, an attacker might be able to extract the 
authentication key by replacing the eMMC whose RPMB partition has 
never been programmed, and monitor the key programming procedure. 

The QSEE initialization routine also reads the current write counter 
value directly from the eMMC, and stores it in volatile memory. The 
counter value does not appear to be stored in any type of non-volatile 
memory for later use. If an RPMB write request executed by QSEE 
fails, the write counter is read again from the eMMC and updated in 

memory accordingly. We did not find any evidence that the write 
counter is ever checked against a stored value to detect tampering with 
RPMB data. 

3.2. Hardware 

The target device uses a Hynix embedded Multichip Package (eMCP) 
H9TQ26ADFTMCUR as its storage memory. The eMCP chip has the 
eMMC and DRAM in one package. In this section, we describe how we 
identified the hardware structure of the chip and identified how the 
RPMB authentication key is stored in flash memory. 

3.2.1. eMMC structure 
The eMMC embedded in an eMCP consists of managed NAND flash 

memory. The dedicated flash memory controller is embedded in the chip 
together with flash memory and provides an external interface following 
the JEDEC eMMC standard (JEDEC Solid State Technology Association, 
2015). Therefore the SoC can access the storage memory by using JEDEC 
standardized commands. Since the internal flash controller manages 
wear leveling, error correction, and other operations required for 
interfacing with flash memory, the SoC does not need to implement flash 
memory vendor specific commands. Instead it can use the JEDEC 
interface as a hardware abstraction layer to flash memory. 

We started observing the internal structure of the chip through 
radiographic inspection. We obtained a few eMCPs which have the same 
part number as the target device, and worked on those reference chips to 
perform reverse engineering. Fig. 4b shows the X-ray image of the target 
chip. The location of each silicon die is annotated. By tracing the elec-
trical paths of each die, one can find that the flash memory controller 
and DRAM are connected to the standard interface. The standard 
interface is established through the silver pads shown in Fig. 4a. On the 
other hand, flash memory dies are not exposed to those pins. Instead 
they are traced to the technical pins (Giese and Noubir, 2021). The pinout 
of the technical pins was identified as shown in Fig. 4c. 

To monitor the controller behavior while the RPMB authentication 
key is being programmed, we connect the technical pins to a logic 
analyzer. This setup is shown in Fig. 5. The communication between the 
flash memory controller and flash memory, while programming the 
authentication key, was captured using this method. Using the mmc-util 
package with the rpmb write-key option (Altman and Hansson, 2023), we 
programmed the key “12345678901234567890123456789ABC” (in 
ASCII) to a reference eMCP chip. Meanwhile, the logic analyzer is 
configured to capture the communication once the Command Latch 
Enable (CLE) pin of the flash memory is enabled. 

The captured result is shown in Fig. 6a. Multiple communications are 
captured between the controller and flash memory. During the first half 
of the monitored communications, multiple read commands are issued 
from the controller to various addresses in flash memory. We assume 
that the controller is checking the current status of the RPMB during this 
phase. After reading the values from flash memory, the controller starts 
writing values to flash memory. For example, if we zoom in the red 
square shown in Fig. 6a, we find the command shown in Fig. 6b. Com-
mand 0x80 is issued followed by the address data while the Address 
Latch Enable (ALE) pin is pulled high. According to the ONFI standard 
(ONFI, 2021), command code 0x80 is defined as a page program oper-
ation, as shown in Fig. 6c. In the captured communication, the page 
program operation is issued to the flash memory page address 0x0E00. 

3.2.2. Physical memory dump and authentication key extraction 
Now with the purpose of identifying what data is written to the flash 

memory while programming the authentication key, we connect the 
technical pins to a flash memory reader. The read operation was per-
formed using single-level-cell (SLC) mode provided by Rusolut Visual 
NAND Reconstructor (ruSolut). Given the reliability issues with 
multi-level-cell (MLC) flash memory, which stores more than 2 bits of 
data per flash memory cell, flash memory manufacturers offer SLC mode 

Table 1 
Returned values from ioctl() after password attempt.  

Return value Decimal Meaning 

0xFFFFFFF6 − 10 Max. password attempts reached 
0xFFFFFFF9 − 7 Invalid password attempt 
0 0 Correct password  
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in MLC flash memory. When set to SLC mode, the flash memory cell is 
forced to store only 1 bit per cell at the specified address. This way, the 
host can store important data, such as system data, to the SLC area in a 
reliable manner. The SLC mode data read/write operation is imple-
mented as a proprietary command, therefore the implementation details 
differ per manufacturer. 

The extracted raw flash memory data is XORed with a scrambling 
pattern. The scrambling pattern is extracted from the reference device, 
where all plain-text data is 0x00. Reverse-engineering of the scrambling 
pattern can also be performed (Fukami et al., 2022; van Zandwijk, 
2015), however for our experiment, identifying one page of the pattern 
was enough to extract the required key information. Using the scram-
bling pattern from the empty sectors, the plain text data was successfully 
extracted. By analyzing the de-scrambled data, we found that the 
authentication key data is stored in plain text after the flag [PASS] as 
shown in Fig. 7. 

4. Restoring the wiped-state smartphone by exploiting the 
RPMB 

Based on the results we obtained through reverse engineering, it is 
clear that the RPMB data is used to store the anti-rollback counter. Once 
the investigator extracts the RPMB authentication key from the eMMC, it 
allows the investigator to modify the RPMB content, which makes the 
anti-rollback protection compromised. In order to evaluate our findings 
and apply them to the case devices, we executed an arbitrary data-wipe 
operation and experimentally performed a data restore operation on a 
Blackphone 2. To reproduce our accidental data wipe incident, we 
performed wrong password attempts in an automated manner until the 
data wiping operation was initiated, while monitoring how the data was 
modified on the target device. 

Fig. 3. Communication between Android and QSEE for user authentication.  
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4.1. Device setup 

4.1.1. Hardware modification 
To perform the required eMMC read and write operations, some 

hardware modifications were required on the target device. First, the 
eMCP chip was detached from the PCB by using a heat gun and melting 
the underlying solder between the eMCP chip and the circuit board of 
the target device. The eMCP was then connected to a Linux based 
computer through an eMCP-SD adapter in order to check its contents. 
The result of the dmesg command showed that the target eMMC is 
recognized as mmc0, and it contained the following four physical 
partitions:  

• mmcblk0 The main partition, and had a size of 29 GB with Android 
related data, which is partitioned into 32 partitions.  

• mmcblk0boot0 4 KB in size, all bytes were 0x00.  
• mmcblk0boot1 4 KB in size, all bytes were 0x00.  
• mmcblk0rpmb RPMB partition, 4 KB in size. 

Running mmc-utils with the rpmb read-counter option sho-wed that 
the RPMB had been written 155 times. Following the NIST guideline 
(Karen Kent et al., 2006), we performed image acquisition from all 
partitions, and saved the images as our baseline data. 

The flash memory interface (technical pins) of the target chip was 
then connected to a flash memory reader to extract the RPMB authen-
tication key. The key is stored at the same address as the reference eMCP 
as discussed in Section 3.2.2. In order to keep track of data modification 
on the RPMB while triggering the wipe routine, header pins for In Sys-
tem Programming (ISP) were installed at the same time as re-mounting 
the eMCP onto the PCB. Specifically, the CLK, CMD, and D0 lines of the 
eMMC were extended using thin wires. With this setup, the eMMC data 
can be accessed directly without detaching the chip from the PCB. This 
way we can read and write the RPMB partition directly. 

Fig. 4. Hynix H9TQ26ADFTMCUR visual observation.  

Fig. 5. Hardware setup to monitor communications between flash memory and 
the flash memory controller. 

Fig. 6. Captured communication between the flash memory controller and 
flash memory. 
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4.1.2. Software 
As discussed in Section 3.1.1, root privileges are required to enable 

communication with QSEE through the secure channel monitor. 
Therefore, we first need to find a way to run unsigned code. On our 
target, including other old Android devices, part of the device configu-
ration is stored in the devinfo partition, including the unlock state of the 
bootloader. As reported by Hay (2018), by modifying the values at 
offsets 0x10 and 0x18 in this partition to 0x01, the bootloader is 
considered unlocked. Through this modification, an attacker can run 
arbitrary code on the target device with EL0 or EL1 privileges. 

Qualcomm devices can boot into “Emergency Download Mode” 
(EDL) either by holding a specific button combination or automatically 
when the initialization of certain hardware components fail. This mode 
is used for diagnostic purposes by uploading a signed secondary boot 
stage, also called a “programmer” or “loader” enabling custom code 
execution. We used a leaked programmer (Kerler, 2021) to read/write to 
eMMC memory and replace the devinfo partition with our modified 
version. This operation can also be performed physically since the 
eMMC is connected to ISP pins. 

Next, we created a modified boot image using Magisk, which starts 
an Android Debug Bridge (ADB) shell with root privileges without 
booting the Android operating system. The fastboot mode provided by 
the Android bootloader enables the user to run a custom boot image. 
Using this method, we acquired root privileges on the device and could 
communicate with QSEE from user space through ioctl() calls. 

4.2. Initiating data wipe 

After establishing a baseline for our target device, we then unlocked 
the bootloader and started a custom boot image using the method 
described in Section 4.1.2. By connecting to the device using the ADB, 
we were able to perform multiple password attempts using the com-
mand vdc cryptfs checkpw <password>. After 30 failed attempts, 
the wipe routine in QSEE was executed, the device rebooted and started 
erasing data. 

After the target device completed the wipe routine, we made another 
physical image of the eMMC including the RPMB partition through the 
use of ISP. Fig. 8 shows the difference in data stored in the RPMB 
partition before and after the data wiping routine. The value stored at 
offset 0x20C has been incremented by 1 from 0x10 to 0x11 after the 
device was wiped. 

After observing this data modification triggered by the data wipe 
routine, we restored the whole contents of the eMMC main partition, 
which was 29 GB in size, as mentioned in Section 4.1.1. This hardware 

partition contains the entire filesystem including the ssd partition, 
containing the encrypted keystore. The device booted normally. How-
ever, after entering the correct password, the device showed a notifi-
cation that the password was correct, but the data could not be 
decrypted, as shown Fig. 9. 

This behaviour validates our reverse engineering findings, since we 
cannot boot the device even after restoring the original keystore data. At 
this point, only the incremented anti-rollback counter stored in the 
RPMB partition differed from the original eMMC data. 

4.3. Data restore 

To recover the target device, we again restored the whole eMMC 
contents to its original state. This time, we also restored the RPMB 
partition data to the one acquired in section 4.1.1. In case of the RPMB 
data, only the anti-rollback counter at offset 0x20C was effectively 
changed to 0x10. It is worth mentioning that the value at offset 0x20C 
was incremented again by 1 to 0x12 by booting the device with the 
restored eMMC data and the wrong RPMB partition data, as explained in 
Section 4.2. By rewriting the RPMB partition data with the RPMB 
authentication key extracted from the eMMC, the write counter value 
stored in the eMMC was also incremented. Nevertheless, our tampering 
remained undetected by the SoC, enabling us restore the target device to 
the state it was before the wipe routine was performed. The target device 
booted successfully, with its original data intact. 

5. Discussion 

5.1. RPMB authentication key storage in the eMMC 

As shown in section 3.2.2, the RPMB authentication key can be 
extracted by reading the internal flash memory of the target eMMC. 
Since the key is stored in plain text with no obfuscation or read pro-
tection, the key data is essentially accessible by attackers. While the 
flash memory interface is not exposed on eMMCs, it is still accessible 
through chip-off analysis, which has been popularly performed in digital 
forensic analysis (Fukami et al., 2022; Giese and Noubir, 2021). The 
authentication key to the target device was stored at the same location as 
the reference device. We also found that the key data is duplicated at 
multiple locations. Using a similar technique, the authors have 

Fig. 8. RPMB data comparison.  

Fig. 9. Decryption unsuccessful.  

Fig. 7. RPMB key stored plain-text in flash memory.  
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successfully extracted RPMB authentication keys from a Samsung 
KLMAG2GE4A-A001 and Sandisk SDIN8DE4-16G, which were used in 
other smartphones. Each model uses different address to store the 
authentication key information. Therefore sniffing the flash write 
operation during the key programming is necessary. In an example 
where the RPMB is used to prevent a software downgrade, an attacker 
can edit the version information stored in the RPMB to a lower value, 
following our procedure. Then an attacker can downgrade the running 
software with the purpose of exploiting a known vulnerability. Once 
exploited, the target device is no longer secured against unauthorized 
access. The attack itself requires de-soldering of the eMMC chip with hot 
air, and microsoldering with thin wires, which can be done by a skilled 
engineer. Therefore the attack is feasible on other digital devices con-
taining eMMCs with an RPMB. 

In JEDEC Standard (JEDEC Solid State Technology Association, 
2015), it is defined that the authentication key should be stored in a “one 
time programmable” authentication key register, which cannot be 
overwritten, erased or read. Nevertheless, there exists commercially 
available products where the RPMB key can be deleted and the write 
counter can be cleared. Therefore the hardware implementation of the 
RPMB in eMMCs is not always secure. 

5.2. Use of the RPMB write counter 

As discussed in Section 2, authentication of RPMB write is performed 
by computing the HMAC over the message which includes the RPMB 
write counter. The RPMB write counter is implemented as one of the 
security features to prevent attackers from performing a replay attack. 
Therefore, even if the RPMB authentication key is leaked, once the write 
counter value does not match, we would expect the authentication to 
fail. After we edited the RPMB partition, the RPMB write counter of the 
eMMC was incremented, as mentioned in Section 4.3. Therefore we 
expected that the QSEE would detect tampering of the RPMB partition 
data. However, it turned out that QSEE always uses the write counter 
provided by the eMMC, and even re-requests it from the eMMC when an 
RPMB write fails. In the end, the RPMB write counter is not used as part 
of the authentication scheme, allowing us to arbitrarily edit the RPMB 
data. This design decision might be made because it would not lock out 
the user when a non-malicious mismatch occurs, for example because of 
data corruption. Further research is required to determine if this is a 
valid concern. 

5.3. RPMB authentication key Generation 

The way the RPMB authentication key is currently generated on the 
target device, does not prevent an attacker from swapping the eMMC 
chip. Since the authentication key is hardware bound, only written once, 
and assumed to be inaccessible, it is supposed to be tied to a single 
eMMC. Meaning that if the eMMC fails, it cannot be replaced. However, 
even if the SoC stores the write counter value and detected our 
tampering with the RPMB data, it would be possible to reprogram 
another chip with the correct authentication key, and increment its 
write counter to the desired value. This would work since currently the 
SoC cannot distinguish different eMMC chips. One way to make the 
device more resilient against the proposed attack might be to derive the 
RPMB authentication key from the eMMC device-specific information 
such as Card Identification (CID) register, which is an unique identifi-
cation number assigned to each eMMC chip. The SoC may also keep 
track of eMMCs that it programmed before, to prevent leaking the key. 
Ultimately, however, the authentication key should be stored in 
immutable non-volatile memory (such as eFuses) within the controller to 
prevent it from being read directly. Without this measure, all other 
mitigations only add an additional level of complexity but with only a 
trivial increase in security. 

5.4. Responsible disclosure 

The authors have reached out to Silent Circle and SK Hynix in June 
2023 and July 2023, respectively, to report our findings and to share the 
possible vulnerabilities. 

6. Related work 

Western Digital published a white paper on vulnerabilities in the 
eMMC RPMB (Western Digital, 2020) in 2020, and suggested that by 
performing a “man-in-the-middle” attack, one can trick the host system 
to make it behave as the intended data has never been written to the 
RPMB area. This attack would only work to prevent the anti-rollback 
counter from being updated. It is not feasible in our scenario since the 
device is already in a wiped state. 

Skorobogatov showed that password brute-forcing on a smartphone 
is possible by mirroring the whole content of the storage memory and 
restoring its state to reset the number of failed password attempts 
(Skorobogatov, 2016). Theoretically, the same attack works on our 
target. However, since our target was in a wiped-state protected with 
RPMB anti-rollback authentication, an additional RPMB exploit is 
required to restore the device to a working state to enable the reported 
brute-force attack. 

Multiple use cases of RPMB in smartphones are suggested through 
literature (Raj et al., 2015; Giese and Noubir, 2021; Reddy et al., 2015). 
However, none of them have looked at the actual hardware imple-
mentation of the RPMB key storage on the eMMC side. 

7. Conclusion 

We show that the current RPMB implementation on a smartphone 
can be exploited due to a non-secure implementation of the RPMB on the 
hardware and its use in software. We successfully extracted the RPMB 
authentication key from the target device. By writing back the original 
data and modifying the RPMB data, we were able to restore the wiped- 
state smartphone back to a working state. Our proposed attack can be 
expanded to other smartphones using the RPMB for anti-rollback pro-
tection. Given that the anti-rollback protection is a generic imple-
mentation used by the SoC manufacturers, we expect that our method is 
applicable on a wider range of smartphones. We have observed that 
other manufacturers make use of the RPMB partition on newer devices 
(e.g. Google/Samsung/Xiaomi), which can be the subject of further 
research. 
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