
Forensic Science International: Digital Investigation 48 (2024) 301678

2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS EU 2024 - Selected Papers from the 11th Annual Digital Forensics Research Conference Europe

Forensic implications of stacked file systems

Jan-Niclas Hilgert *, Martin Lambertz, Daniel Baier
Fraunhofer FKIE, Zanderstr. 5, 53177 Bonn, Germany

A R T I C L E I N F O

Keywords:
Storage forensics
File systems
Stacked file systems
Distributed file systems
moosefs
Glusterfs
Ecryptfs

A B S T R A C T

While file system analysis is a cornerstone of forensic investigations and has been extensively studied, certain file
system classes have not yet been thoroughly examined from a forensic perspective. Stacked file systems, which
use an underlying file system for data storage instead of a volume, are a prominent example. With the growth of
cloud infrastructure and big data, it is increasingly likely that investigators will encounter distributed stacked file
systems, such as MooseFS and the Hadoop File System, that employ this architecture. However, current standard
models and tools for file system analysis fall short of addressing the complexities of stacked file systems. This
paper highlights the forensic challenges and implications associated with stacked file systems, discussing their
unique characteristics in the context of forensic analyses. We provide insights through three analyses of different
stacked file systems, illustrating their operational details and emphasizing the necessity of understanding this file
system category during forensic investigations. For this purpose, we present general considerations that must be
made when dealing with the analysis of stacked file systems.

1. Introduction

File system analysis is undeniably an essential part during any digital
forensic investigation involving storage devices. Its goal is to identify
and extract files and their corresponding metadata including deleted
information. Brian Carrier already laid a profound foundation for this
research area almost 20 years ago covering various file systems, some of
which are still being used today such as FAT, NTFS and Ext (Carrier,
2005). According to his model for file system forensic analysis, tradi-
tional file systems store their data on a volume, e.g. a partition or a RAID.
Since these volumes are transparent to the file system itself, the un-
derlying implementation creating the volume is responsible for the final
transformation and distribution of the actual data. Analyzing these
volumes is completely detached from the actual file system at hand and
can thus be first addressed in the volume analysis phase, which is then
followed by the final file system analysis.

As pointed out by Hilgert et al., these two phases become inter-
twined, requiring an additional layer in the model when dealing with
pooled file systems (Hilgert et al., 2017). These file systems utilize mul-
tiple disks for redundancy or performance but do not require any extra
soft- or hardware for this purpose. In these cases, the file systems
themselves handle the distribution of the data across the underlying
layer, i.e. volume. Still, the file systems presented in their work stored

their data directly on the underlying volume layer.
This work takes a closer look at the forensic analysis of stacked file

systems. These file systems might also handle the distribution of their
data, but they are distinctively characterized by their method of data
storage: they do not store their data on a volume or disk but rather on
another file system creating new opportunities and challenges for
forensic analysis practitioners encountering these file systems. Given the
adoption of this concept in distributed file systems like MooseFS and the
Hadoop File System, equipping forensic analysts with the knowledge to
handle these systems during investigations proficiently is essential.

For this purpose, this paper discusses crucial aspects of the analysis
of stacked file systems. To accommodate this, we have revised the
standard workflow for file system forensic analysis, making it suitable
for the intricacies of stacked systems. We also describe a core set of
forensic implications for analyzing stacked file systems, complemented
by illustrative findings from three different file systems. The knowledge
gathered from our experiments emphasizes the necessity of under-
standing these implications and is a vital reference for forensic analysts.

2. Stacked file systems

Stacked or stackable file systems store their data on another file sys-
tem, including both data and metadata, which might be stored in a

* Corresponding author.
E-mail addresses: jan-niclas.hilgert@fkie.fraunhofer.de (J.-N. Hilgert), martin.lambertz@fkie.fraunhofer.de (M. Lambertz), daniel.baier@fkie.fraunhofer.de

(D. Baier).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2023.301678

mailto:jan-niclas.hilgert@fkie.fraunhofer.de
mailto:martin.lambertz@fkie.fraunhofer.de
mailto:daniel.baier@fkie.fraunhofer.de
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301678
https://doi.org/10.1016/j.fsidi.2023.301678
https://doi.org/10.1016/j.fsidi.2023.301678
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301678&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 48 (2024) 301678

2

specialized file format. We denote the stacked file system as the upper file
system and its files as the upper files, which are the files accessible when
the file system is mounted. The underlying file system it relies on is
termed the lower file system storing the lower files, as depicted in Fig. 1.

In instances where the upper and lower file systems operate on the
same machine, the stacked file system is termed as local. Nevertheless,
an upper file can encompass multiple lower files, potentially distributed
across various detached lower file systems. Given this, the concept of
stacked file systems is frequently employed within distributed stacked file
systems like the Hadoop Distributed File System or MooseFS, as they can
be constructed atop a pre-existing and reliable lower file system.
Furthermore, distributed stacked file systems can be categorized as
either managed or unmanaged. In a managed setup, a designated entity
like a main daemon can be used to orchestrate tasks such as data dis-
tribution and managing the metadata of the upper file system.
Conversely, in an unmanaged configuration, the systems housing the
lower file systems inherently possess all the requisite data to construct
the upper file system. Both of these types can be encountered during
forensic investigations due to the increasing usage of distributed storage
in cloud environments. Hence, comprehending the forensic implications
and nuances of stacked file system analysis is crucial.

2.1. Related work

A detailed concept of stacking file system layers was already pre-
sented in 1994 (Heidemann and Popek, 1994). However, this work fo-
cuses on file system development and describes stacking as a method to
leverage already existing file systems facilitating the development pro-
cess of new file systems and features. A few years later, Erez Zadok
utilized the concept of stacked file systems to implement a wrapper file
system called Wrapfs (Zadok, 1999). While it still stores its data on a
lower file system, Wrapfs can be used to create arbitrary upper file
systems, for example to provide encryption or prevent deletions of files.
In 2007, Zadok together with others discussed various issues of stacked
file systems within Linux, such as cache coherency between the upper
and lower file system (Sipek et al., 2007). Furthermore, file systems for
secure deletion and tracing of file interactions based on the concept of
stacked file systems have been proposed (Bhat and Quadri, 2012; Aranya
et al., 2004).

While all of the aforementioned research does focus on stacked file
systems, it does not cover them from a forensic point of view. Still,
limited research on the forensic analysis of distributed stacked file sys-
tems has been published (Asim et al., 2019; Harshany et al., 2020). take
a closer look at the Hadoop Distributed File System. While their work
yields interesting results, such as analyzing various commands and

reconstructing distributed data, they do not address the underlying file
system used by HDFS. Another analysis of a distributed stacked file
system was performed in (Martini and Choo, 2014). During their anal-
ysis of XtreemFS, the authors also focused on the Object Storage Devices
storing the lower file systems including its identification. However, their
work falls short in providing a detailed discussion of general implica-
tions of the underlying concept of stacked file systems. Furthermore, the
additional value of an analysis of the underlying file system is not
examined.

2.2. Forensic analysis of stacked file systems

In addition to the research gap, it is important to note that this
deficiency extends to forensic tools as well. Current tools, like The Sleuth
Kit, are equipped to analyze various lower file system types but lack the
functionality to associate them with any existing upper file system. This
limitation underscores the need for an updated standard workflow for
file system forensic analysis, as depicted in Fig. 2, to effectively handle
the complexities of stacked file systems.

In the revised workflow, the initial steps shown in white remain, but
we introduce an additional phase, highlighted in purple, specifically
dedicated to the analysis of stacked file systems, building upon the re-
sults from the prior analysis of the lower file system. This emphasizes
that the detection and analysis of traditional file systems continue to be
the foundational elements of the process. However, these steps may now
yield multiple lower files or metadata files associated with stacked file
systems, requiring thorough examination in the newly added step to
ensure a comprehensive forensic analysis. Crucially, the results from the
stacked file system analysis must also be correlated with information
derived from the lower file system analysis and vice versa.

The remainder of this paper deals with the additional step of stacked
file system forensics and integration into forensic investigations. In
particular, we look at six specifics, we believe are essential for file sys-
tem analysis: 1) Identification of Stacked File Systems, 2) Correlation of
File Names, 3) Data Reconstruction, 4) Timestamps and their Update
Behavior, 5) Slack Space and 6) Possibilites for File Recovery.

2.3. Experimental setup

To derive the most comprehensive guidance possible, it is crucial to
include a diverse range of stacked file systems in the experiments.

Fig. 1. Overview of a stacked file system utilizing a traditional lower file sys-
tem for data storage.

Fig. 2. Extension of Brian Carrier’s model for the applicability of stacked
file systems.

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

3

Accordingly, three distinct stacked file systems, previously overlooked
in research, were selected as representative examples:

MooseFS released in 2008, is an open-source, managed, distributed
stacked file system designed for big data storage. Its architecture includes
Chunk Servers that store data, a Master Server managing metadata,
Metaloggers for metadata backup, and a client interface for mounting
the file system. In MooseFS, large files are split into smaller chunks
distributed across multiple servers.

GlusterFS is an unmanaged, distributed stacked file system thatdiffers
from MooseFS in that it lacks a dedicated master server. Instead, its
storage servers form a trusted pool by connecting directly to each other. It
supports any file system as a brick, the lower file system for storing data.
These bricks are combined to create a volume, which is subsequently
mounted by a client.

eCryptfs introduced in 2005 as a cryptographic file system to
operate on top of an existing file system (Halcrow and ecryptfs, 2005),
was integrated into the Linux kernel in version 2.6.19. Although su-
perseded by other mechanisms such as LUKS, eCryptfs remains a notable
early example of stacked file systems. It functions as a local stacked file
system, not used in a distributed manner, and is mounted by specifying a
source directory from the lower file system to store its data.

This variety ensures a thorough exploration of the potential scenarios
forensic experts may encounter. For our experiments, the stacked file
systems were setup, mounted and populated with arbitrary data. Spe-
cifics of each experiment are presented in the corresponding section. As
a lower file system during the experiments, we utilized Ext4 due to its
widespread use and to keep the results comparable. Drawing on these
findings, the following sections also outline practical key takeaways to
aid forensic investigators in their work with stacked file systems.

3. Identification of stacked file systems

As described in Section 2.3, it is crucial to identify a stacked file
system following the analysis of the lower file system. During these
experiments, the lower file systems were analyzed for any indicators
hinting at the usage of a stacked file system.

3.1. Findings

3.1.1. MooseFS
As soon as a file system is being used as part of a chunk server in

MooseFS, a distinct hierarchy of directories from 00 up to FF is created on
it. These directories are used to store the chunks, which in turn utilize a file
name pattern like
consisting of an identifier, the chunk ID, a corresponding and the

. Lower files in MooseFS can also be identified by their in-
ternal structure that can be inferred by taking a look at the open source code
of the file system. In the default MooseFS installation, i.e. not the light
version, each chunk begins with a 0x2000 bytes long header. It starts with
either a signature of MFSC 1.0 or MFSC 1.1, followed by eight and
respectively four bytes representing the chunk ID and version, both of
which can also found within the chunk’s file name.

3.1.2. GlusterFS
A similar behavior can be observed on servers of a GlusterFS pool,

when a volume is created and started. This includes a hidden.glus-
terfs directory storing directories named 00 up to ff. Each upper file
in GlusterFS is assigned a UUID referred to as the GlusterFS internal file
identifier (GFID). This GFID names each lower file inside the hidden
hierarchy. GlusterFS also mirrors the upper system’s structure in the
lower system using hard links as depicted in Fig. 4. While GlusterFS does
not make use of any specific internal structure within its lower files, it
uses extended attributes to store meta information about its files.

3.1.3. eCryptfs
eCryptfs on the other hand does not create a unique hierarchy on the

lower file system. Instead, the hierarchy of the files and directories of the
upper file system are stored in an identical way on the lower file system.
If file name encryption is enabled, the distinct prefix ECRYPTFS_FNE-
K_ENCRYPTED defined in the Linux kernel source is used for each lower
file. Lower files in eCryptfs contain magic markers stored in a special
header. These markers can be detected by performing an XOR operation
on bytes 9–12 of the file at hand using the magic 0x3c81b7f5. The
resulting 8 bytes should match bytes 13–16 in case of an eCryptfs lower
file.

3.2. Key takeaways

Depending on the stacked file system at hand various types of in-
dicators resulting from the analysis of the lower file system can be used
for its identification. This includes distinct hierarchies, file structures as
well as certain extended attributes. Furthermore, the internal structure
of lower files can be used to identify them directly, for example in cases
in which they are included in a backup outside of the lower file system.

Once identified, investigators can mount the stacked file system
using its native software or conduct an in-depth forensic examination.
However the current shortfall in forensic tools specifically designed for
stacked file system analysis necessitates manual reconstruction of the
system under investigation at the moment.

4. Correlation of file names

For a more comprehensive analysis and deeper understanding, it is
essential to establish the relation between the names of upper files and
the corresponding lower files that represent them. During this experi-
ment, we analyzed if and how this connection could be determined.
Furthermore, we examined how the entire hierarchical structure of the
upper file system is reflected within the lower file system.

4.1. Findings

4.1.1. MooseFS
In MooseFS, neither the header, the file name or any other metadata

of a lower file contain any reference to the original upper file. In order to
obtain this relation and thus also the file name, it is necessary to analyze
information stored on the Master Server. By default, chunk servers use
the DNS name mfsmaster to connect to the Master Server. However,
this can be configured within the chunk server’s configuration stored
in/etc/mfs/mfschunkserver.cfg. The Master Server stores its
metadata files within the directory/var/lib/mfs, including meta-
data.mfs.back. This metadata file can be extracted and subsequently
inspected or analyzed using the mfsmetadump tool. During our exper-
iments, recent MooseFS updates were not instantly reflected in the
metadata file, requiring a Master Server restart to save these changes.

Fig. 3 illustrates the mfsmetadump utility output. In MooseFS, file
names are stored as EDGEs in the filesystem tree, found in the EDGE
section. Each line represents a file, detailing the parent inode, child
inode, and file’s name. The child inode number can be used to link an

Fig. 3. Excerpt of the mfsmetadump tool displaying metadata of a MooseFS
file system.

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

4

entry to a corresponding NODE section entry, which represents an upper
file.

4.1.2. GlusterFS
Fig. 4, the lower files 1847be7c-7a84-4c41-932b-

5e0740c5e809 and data.txt share the same inode number. Addi-
tionally, GlusterFS also utilizes extended attributes and soft links, which
can be analyzed to infer the hierarchy. The extended attributes of the
lower file contain a reference including the original file’s name as well as
the GFID of the directory, in which it was stored. The lower file
belonging to this directory is again a soft link pointing to its own parent
directory and so on.

4.1.3. eCryptfs
If the eCryptfs file system is mounted files within the upper file

system can be matched to the files in the lower file system by comparing
the corresponding inode numbers. This is already implemented in the
ecryptfs-find utility. By default, the file names of the lower files are
identical to the file names of the corresponding upper files. In case of file
name encryption, eCryptfs utilizes a file name encryption key (FNEK),
which is required to reveal the original file name of the lower file at
hand. However, eCryptfs stores a hex signature of the utilized FNEK
within all of the encrypted files names. For this reason, it is still possible
to infer, which lower files were encrypted using the same FNEK and thus
probably belonged to the same mounted file system. The signature of the
FNEK is encoded within the FNEK-encrypted file name, also referred to
as a Tag 70 packet and follows the packet type 0x46 and the length of
the packet. By decoding the file name it is possible to extract the
signature of the FNEK used, which can be used for further analyses.

4.2. Key takeaways

Our experiments indicate that in local or unmanaged distributed
stacked file systems, it is generally possible to deduce the original file
names and file system hierarchy. This is to be expected as for these
kinds, the corresponding metadata can be found within the lower file
system. In contrast, with stacked file systems that incorporate a man-
agement component, e.g. a dedicated server, it becomes vital to identify
and extract the metadata that holds this information. Our findings
demonstrate how this analysis can be executed for stacked file systems
like MooseFS, enabling the determination of the relationship between
upper and lower files. However, this task varies significantly depending
on the specifics of the stacked file system, necessitating customized
implementations within forensic tools.

5. Data reconstruction

For the reconstruction of upper files from their corresponding lower
files, analysts need to tackle common problems such as fragmentation
and data transformation.

5.1. Fragmentation

In most cases, the content of a file does not fit into a single data unit,
which is why file systems allocate multiple data units. While different
allocation strategies may be used, it often results in file fragmentation.
Thus, traditional file systems need to keep track of the exact data units
used by a file as well as the order in which they belong. This fragmen-
tation not only complicates forensic efforts but has also been a long-
standing focal point of research (Garfinkel, 2007; van der Meer et al.,
2021). Yet, the topic of fragmentation in stacked file systems has not
been explored. To address this, we have created multiple large-sized
upper files, aiming to analyze and understand the fragmentation pat-
terns in the stacked file systems under study.

5.1.1. Findings

5.1.1.1. MooseFS. Our experiments demonstrated that MooseFS splits
files larger than 64 MiB into multiple lower files, irrespective of the
number of chunk servers. Although mountable with a single chunk
server, MooseFS ideally operates with multiple, and it is advised to use
at least three, as done in our experiments. By default, each chunk is
replicated onto two of the three available chunk servers. Consequently,
large files, fragmented into multiple chunks, may be distributed across
all chunk servers within the MooseFS file system. Since information
within the chunks themselves did not suffice to reassemble an upper file,
it is necessary to consult the Master Server metadata to efficiently
assemble fragmented upper files. As depicted in Fig. 3, the NODE section
stores a list of chunks composing the upper file, each identified by a
unique ID, which is also reflected in the chunk name on the lower file
systems. Since it is unique to each chunk, it can also be used to identify
replicas of chunks across multiple chunk servers.

5.1.1.2. GlusterFS. Depending on the type of volume used, fragmenta-
tion as well as replicas of lower files can be encountered. The most
important volume types are:

• Distributed: In this default mode, upper files are not fragmented,
but stored randomly across all available bricks, i.e. all available
lower file systems.

• Replica: This mode is used to ensure redundancy by storing
unfragmented upper files across multiple bricks similar to RAID
mirrors. The corresponding lower files stored across multiple lower
file systems can be correlated by their GFID file name.

• Dispersed: A dispersed volume can be compared to a RAID5-like
volume. Data is split and stored across multiple lower file systems
along with parity information. Again, fragments belonging together
can be matched by their GFID. When creating a dispersed volume, it
is possible to configure the number of bricks used for redundancy, i.e.
how many bricks can be lost without causing any data loss.

The first two modes do not cause any fragmentation of upper files.
However, the replicated mode causes multiple copies of the same files to
be stored on multiple lower file systems, i.e. storage servers. To identify
these lower file systems for further analysis, the configuration of the
GlusterFS at hand can be utilized. A directory for each volume of a
storage server can be found in its/var/lib/glusterd/vols/direc-
tory. It stores the volume configuration in an info file and consists of a
bricks subdirectory that offers configurations for each associated
brick. These files appear across all storage servers in the GlusterFS pool Fig. 4. Example of a hierarchy on a lower file system in GlusterFS.

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

5

that created the volume, detailing the server’s hostname and brick path.
Notably, the values listen-port and brick-fsid only seem to exist
in the brick configuration of the respective server. This also allows for
pinpointing the exact GlusterFS server at hand.

When dealing with dispersed volumes, upper files become frag-
mented within GlusterFS. An efficient way to identify a lower file of a
dispersed volume is to analyze its extended attributes. Each chunk
belonging to a dispersed file utilizes extended attributes in the trus-
ted.ec name space, e.g. trusted.ec.size which stores the real size
of the corresponding file. However, they do not contain any information
about the order in which they should be reassembled. Furthermore,
GlusterFS uses Erasure coding for dispersed volumes, which requires an
additional step to obtain the original version of the file described in the
next section.

5.1.1.3. eCryptfs. In eCryptfs upper files are not split into multiple
lower files and thus no fragmentation occurs.

5.1.2. Key takeaways
Though our findings illustrated that fragmentation may not be as

complex as with traditional file systems, it still has to be considered
especially when dealing with distributed stacked file systems spanning
across multiple lower file systems. In these cases, it is crucial to identify,
which other servers were part of the stacked file system at hand in order
to adequately extend the acquisition process.

Furthermore, our experiments showed that the upper file system’s
metadata plays a crucial role for an efficient reassembly of fragmented
files highlighting the importance of dedicated approaches for stacked
file system analysis. In absence of this information, correlating lower
files via their timestamps is an alternative though less reliable due to
discrepancies as discussed in Section 6.

5.2. Transformation

Unlike early file systems, more advanced ones like APFS or ZFS
started to implement features such as encryption or compression. This
resulted in some kind of transformation between a file’s original content
and the content stored on disk. A similar concept may also be employed
by stacked file systems for various purposes like encryption or the uti-
lization of erasure coding, when data is distributed. For this analysis, we
compared the content of lower files to the original content stored within
the upper files of the stacked file system.

5.2.1. Findings

5.2.1.1. MooseFS. Besides the inclusion of an extra 0x2000 byte chunk
header, the open-source MooseFS leaves the original data unaltered.

5.2.1.2. GlusterFS. In distributed and replicated volumes, GlusterFS
leaves the original content in lower files unchanged as well. However,
for dispersed volumes, it employs a Reed-Solomon based Erasure coding.
For an efficient recovery of dispersed files, we recreated the relevant
GlusterFS setup to tackle the fragmentation as well as transformation
hurdle. After the original GlusterFS configuration is identified as
described in the previous section, it is possible to recreate a new Glus-
terFS volume using identical parameters. Afterwards, the obtained lower
file systems can be copied to the freshly created GlusterFS bricks. It is
essential to preserve extended attributes; failure to do so will lead
GlusterFS to misidentify dispersed files. Additionally, the sequence of
declaring bricks is crucial, i.e. the original first lower file system’s data
should populate the first brick in the new volume and so on. Any
inconsistency led to reconstruction failure in GlusterFS in our tests.

5.2.1.3. eCryptfs. Since eCryptfs’s main feature is encryption, file con-
tents found on the lower file system are naturally encrypted.

Additionally, the cryptographic context for each file is stored in a header
preceding the encrypted data. The minimum size for this header is
defined as 8192 bytes, resulting in slightly larger files on the lower file
system compared to the original stacked file system. Though 8192 bytes
is only the minimum size, we did not encounter any larger header sizes
in our experiments including files up to 1 GB. The size of the original file
is not encrypted and can be found in bytes 0–7 of the header, which
starts directly at offset 0 of the lower file. Further information within the
header includes the version as well as the encrypted session key used for
the encryption of the file’s content.

5.2.2. Key takeaways
Depending on the stacked file system at hand, practitioners can

benefit from the absence of a transformation layer during their analysis.
This enables them to analyze a the files of a lower file system without the
need to perform an analysis of the upper stacked file system. However, in
certain cases, when encryption or error encoding is utilized, it is
required to retranslate the content of lower files to obtain the original
file content. We have illustrated various considerations that have to be
made when using native software to perform this task for GlusterFS. Yet
again, this strongly depends on the features of the stacked file system at
hand.

6. Timestamps and their update behavior

In traditional file systems, timestamps are stored along the metadata
of the files and include information about the last Access, Modification,
Change and in some cases Birth time of a file. The intricacies and
challenges of interpreting timestamps are well-recognized within the
digital forensic community (Raghavan, 2013).

Naturally, these timestamps retain their critical importance in the
context of stacked file systems. However, we encounter an additional
layer of timestamp sources:

• Upper file system: Timestamps of the upper file system refer to the
upper files and consist of one set of timestamps per upper file. The
way this meta information is stored is completely specific to the
upper file system itself.

• Lower file system: Employing an additional file system to store file
content introduces an extra layer of timestamps stored along the
lower files in the lower file systems.

Moreover, it is equally important to grasp the timestamp update
behavior within both the upper and lower file systems as well as how
they affect each other. In our experiments, we conducted fundamental
file operations like creating and modifying files to examine how the
stacked file systems in question update timestamps. This investigation
encompassed both the lower and upper file systems, with a particular
focus on understanding how timestamps in the latter could be accurately
retrieved. We kept a multi-server configuration for the distributed file
systems to observer the timestamp update behavior across multiple
lower file systems.

6.1. Findings

The initial part of this section details the findings on timestamp
sources, while the subsequent sections explore the timestamp update
behavior of the corresponding file system.

6.1.1. Timestamp sources
MooseFS keeps track of the timestamps for all of its upper files within

the metadata that can be found on the Master Server or Metaloggers.
This information can be extracted by using the mfsmetadump utility as
shown previously in Fig. 3. In GlusterFS, this information is not stored in
an external file, but directly within the extended trusted.glus-
terfs.mdata attribute of the corresponding lower files across all

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

6

bricks. Any change to the upper file’s timestamps inevitably results in an
update of the metadata of the lower files. The actual timestamps can be
extracted from the decoded Base64 string stored within the extended
attribute. It holds 8 byte timestamps in seconds followed by the time-
stamp for nanoseconds following the big-endian format as shown in
Fig. 5 eCryptfs relies solely on the timestamps already present in the
lower file system, without storing any additional timestamp
information.

6.1.2. Update behavior for MooseFS
When a file smaller than the maximum chunk size is created, two

identical chunk copies are made on two out of three chunk servers.
Although MooseFS sets the Modification and Change timestamps of the
upper file identically, the Access timestamp appeared slightly earlier in
our tests. This pattern was also seen in timestamps of the corresponding
chunk servers. Notably, the birth timestamp from the lower file system is
not reflected in MooseFS. Furthermore, it was observed that different
chunk servers displayed varying timestamps for the same chunk.

When an upper file is modified, its Modification and Change time-
stamps are updated to the same value. The same holds true for the
corresponding chunks stored within the lower file systems. However,
timestamps might again vary across chunk servers. If the upper file’s
timestamps are changed without data alteration, e.g. by utilizing the
touch command in Linux, the chunk timestamps remain unaffected.

The update of File Access timestamps is rather complex and depends
on multiple of factors:

• MooseFS Configuration: The ATIME_MODE in the Master Server
config determines the Access time update policy for upper files.
Default is always, with options like ”always for files” or ”never”
(similar to Linux’s noatime).

• Client Caching: When mounting MooseFS, it is possible to set a data
cache mode. Options include DIRECT (no caching) and YES (always
use cache). Default is AUTO, which behaved like YES in our tests.

• Chunk Pre-Fetch: For performance, MooseFS uses pre-fetch and
read-ahead algorithms on chunk servers to pre-load expected chunks
into the OS memory. This is hardcoded and cannot be changed.

• Lower File System Configuration: The lower file system on the
chunk server has its own Access timestamp policy. In Linux, the
default is relatime, which doesn’t update Access times with every
access.

In MooseFS, the file access timestamps for upper files are influenced
by its configuration and client caching. It was observed that when client
caching is disabled, every file access updates the Access timestamps on
the client, which the Master Server adopts in the default configuration. If
client caching is enabled however, the Access timestamp stamp of a file is
only updated on its first access or when it gets reloaded into cache. If
MooseFS is however configured to never Modification the Access time-
stamps, client-side updates aren’t stored on the Master Server and are
lost almost instantaneously. In our tests, Access timestamps for lower
files were updated upon the chunk server daemon’s initial start, pro-
vided its access time mode was set accordingly, e.g. using the stric-
tatime option. With 10,000 files (and corresponding lower files),
Access timestamps changed post-daemon start without client read re-
quests. This is likely due to MooseFS’s pre-fetch algorithms reading data
in memory for some time, though no clear order was discernible.

Reading all files from the client (with caching off and default
MooseFS settings) resulted in the updating of all 10,000 Access time-
stamps in the lower file system. Yet, in setups with fewer upper files,
Access timestamps of chunks only updated during daemon startup, not
during later client requests. The cause for this disparity is still unclear
and requires further research. Given these complexities, interpreting
Access timestamps on MooseFS’s lower file systems demands caution.

On the other hand, Modification timestamps were consistently ac-
curate and updated as anticipated, which is especially relevant for large
upper files generating multiple chunks.

Large files: In MooseFS, files exceeding the maximum chunk size are
divided into multiple chunks. When such a large file is created, the
timestamps in MooseFS and the underlying file system are set in the
manner previously detailed. Thus, a 200 MB upper file results in eight
(four distinct but replicated) lower files, each with unique timestamps,
spread across three chunk servers.

In our experiment, we modified the first bytes of the 200 MB file.
While MooseFS only holds a singular set of timestamps for the upper file,
the Modification and Change timestamps are updated the same way
regardless of the position, in which the file is modified. On the lower file
systems however, only the Modification and Change timestamps of the
impacted chunk, the first of four, were updated across the two chunk
servers hosting that chunk. A similar pattern was observed when other
sections of the file were altered: only the relevant chunk’s timestamps
changed. This level of granularity provides a more intricate view into file
modifications on the upper file system.

In our MooseFS experiments, we observed an unexpected behavior
where chunks sometimes moved between chunk servers after file
modification or idling periods. While MooseFS naturally rebalances
chunks across servers, the reasons for these specific movements were
unclear. Crucially, this behavior has implications for timestamps. When
a chunk is relocated to a new server, it behaves as if it’s newly created,
thus resetting all its timestamps to the time of the relocation.

6.1.3. Update behavior for GlusterFS
When a file is created in GlusterFS, the Modification and Change

timestamps of the upper file are set to the same value, while the Access
timestamp was always set to a value a little earlier. For lower file sys-
tems, the behavior of the initial timestamps depended on the volume
mode. For a replicated volume, all timestamps were set to same value,
while a dispersed volume resulted in different Change and Modified
timestamps. Furthermore and as expected, the timestamps across the
lower file systems stored on multiple servers varied. Additionally, the
Birth timestamp was utilized by the lower file system, but also not
populated to the upper file system.

After the modification of a file, the Modification and Change time-
stamps of the upper file were updated to the same values. Furthermore,
the Modification, Change and Access of the lower files were updated.

Since the Access timestamp of an upper file has to be propagated to
each lower file, GlusterFS doesn’t by default keep track of Access times
preventing any performance drops. It was however observed, that access
to an upper file could update the Access timestamp of a corresponding
lower file depending naturally on the atime configuration of the lower
file systems. In a setup with three replicated bricks, the specific accessed
lower file alternated for each access. Furthermore, the timestamp was
not updated for each access, most likely due to again some kind of
caching performed within the client. Caching within the GlusterFS
servers itself was not observed.

6.1.4. Update behavior for eCryptfs
When a file is created, the Access, Modification and Change time-

stamps in eCryptfs are all set to the same value, which is the moment the
file was written and thus created. The exact same timestamps can be
found on the corresponding lower file system. Though it is populated,
eCryptfs as well does not utilize or return the Birth timestamp stored in
the lower file system.

Fig. 5. Structure of the trusted.glusterfs.mdata extended attribute
containing timestamps in GlusterFS.

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

7

After the modification of a file, the Modification and Change time-
stamps were updated and contained the same values within eCryptfs as
well as the lower file system. The same holds true for a file access and
metadata modification, updating the corresponding Access and Modi-
fication timestamps respectively. Consequently, all of the timestamp
modifications performed directly on the lower file system were also
mirrored to the stacked file system.

6.2. Key takeaways

For stacked file system analysis, we advise practitioners to harness
both potential sources of timestamps within the upper and lower file
system. Extracting timestamps from the upper file system is crucial, as
outlined in our previous section for MooseFS and GlusterFS. In addition,
timestamps of the lower files should also be extracted and analytical
methods need to be able to correlate both timestamp sources. This
approach is particularly beneficial in distributed stacked file systems,
where data fragmentation leads to a more detailed level of timestamp
granularity for each file.

Furthermore, in situations where the upper file system depends
solely on the lower file system’s timestamps, two aspects should be
considered: First, analyzing the lower file system can already provide
valuable temporal insights. Second, as our eCryptfs example shows,
these timestamps may be more susceptible to manipulation.

Moreover, akin to conventional file system forensics, understanding
the behavior of timestamp updates in both the upper and lower file
systems is essential.

7. Slack

In traditional file systems, whenever a file’s size does not align with
the end of a data unit, some unused space between the file’s end and the
data unit is created. This file slack, if not overwritten properly, can
contain artefacts of previously stored data within this data unit or can
simply be used to intentionally hide data. The exploration of slack space,
including its possibilities, detection, and analysis, has already been
conducted across various file systems, including NTFS (Huebner et al.,
2006), BTRFS (Wani et al., 2020) or APFS (Göbel et al., 2019).

Yet, this scrutiny has not been extended to stacked file systems,
which uniquely store a file’s content in other files rather than in tradi-
tional data units. These lower files may be aligned with a certain extent
size, e.g. always being a multiple of 4 KiB, resulting in slack space similar
to the previously described file slack in traditional file systems. We refer
to this slack space as lower file slack since it occurs between the actual
end of the file and the end of the lower file. Additionally and unlike in
traditional file systems, data can be directly appended to a certain lower
file directly, since it is represented as a file itself. This way it may be
possible to hide data, which is not considered by the upper file system.
We define this type of slack as extra lower file slack. Fig. 6 illustrates these
different types of slack. It is important to understand, if these types of

slack exist within a stacked file system and how they can be detected and
extracted. During the following experiments, we have evaluated the
feasibility of slack space within stacked file systems by utilizing it to hide
data.

7.1. Findings

This section is divided into two parts: the first presents the findings
related to the lower file slack space, while the second focuses on the
extra lower slack space resulting from expanding the size of a lower file.

7.1.1. Lower file slack

7.1.1.1. MooseFS. Chunks start with a 0x2000 byte header, followed
by the upper file’s content in 0x10000 byte blocks. The final 0x1000
bytes of the chunk header store CRC checksums: four bytes for each
block, accommodating up to 1024 blocks. This results in the maximum
chunk size of 64 MiB, plus the header size. Given the large block size,
MooseFS’s lower file slack can be used to hide up to 64 KiB of data
without altering the chunk size. Data hidden here doesn’t affect the
upper file’s accessibility or its displayed size. However, inserting data
causes a mismatch of the CRC checksums, which led to the chunk
marked as INVALID upon server restarts during our experiments. For
effective concealment, it’s crucial to update these checksums. Further-
more, modifying the upper file doesn’t affect the data hidden in the
lower file slack. However, if the file expands, reducing the chunk’s slack,
the concealed data is overwritten.

7.1.1.2. GlusterFS. In distributed and replicated mode, GlusterFS does
not utilize any padding and thus the stored lower files are of the exact
same size as the corresponding upper files. For this reason, there is no
available slack space that can be exploited for data hiding. In dispersed
mode, it was observed that the size of a resulting lower file is always a
multiple of 512 bytes, theoretically creating slack space that could be
used to hide data. However, due to the implemented Erasure coding
algorithm, the position and amount of the padding that can be used to
reliably hide data varies. Hiding data in the wrong part could lead to
modified data within the upper file sometimes even displaying the
hidden data in our experiments.

7.1.1.3. eCryptfs. For eCryptfs, the minimum file size of a file stored on
the lower file system was always 12 KiB, which includes the 8 KiB
header. Its size is then increased in steps of 4 KiB, as this is the default
extent size used by eCryptfs. The actual extent size can also be found
within the header at the start of the lower file. If the data size is not a
multiple of the extent size, padding is used and also encrypted. When
adding data to this lower file slack, it is still possible to mount eCryptfs
and access the file without any problems. For the default extent size, this
results in roughly 4 KiB of lower slack space that can be used to hide
data. However, as soon as the upper file is modified, the whole contents
of the padding is rewritten and the hidden data is lost.

7.1.2. Extra lower file slack

7.1.2.1. MooseFS. With stacked file systems, data can also be hidden in
the extra lower file slack by appending it to an existing lower file. Since
MooseFS utilizes a maximum size for its lower files, it is also ensured
that storing data past this offset is protected from being overwritten due
to any modifications of the upper file. In our experiments, we filled the
space up to the maximum size with zeros and placed data in the suc-
ceeding space. Subsequent modifications to the upper file did not
overwrite the hidden data in the extra lower file slack. However, as soon
as a chunk was transferred to another chunk server, the hidden data did
not persist and was lost.

Fig. 6. Overview of possibilities for slack within stacked file systems.

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

8

7.1.2.2. GlusterFS. For GlusterFS, hiding data in extra lower file slack
proved impractical across all modes. In distributed and replicated
modes, data added to the lower file also appears when reading the
corresponding upper file, though the upper file size remains unchanged.
For replicated volumes with only one replica containing hidden slack
data, the upper file consistently reveals this data. When multiple replicas
have extra slack data, the upper file reads from the largest lower file. To
hide data, one might place it in any replica, but ensure another copy has
more benign data, like null bytes. In dispersed mode, data concealed in
the slack of one file in a three-brick setup vanished upon reading the
upper file, while adding data to two lower files caused an I/O error.

7.1.2.3. eCryptfs. In eCryptfs, an upper file remained accessible with its
file size unchanged when the data was stored in the corresponding extra
lower file slack. Notably, this appended hidden data persisted when the
upper file was modified or when new data was added, provided it did not
surpass the padding limit. If the file grew beyond the available padding,
the appended data was overwritten. To avoid this, one can add ample
padding before the hidden data, ensuring that any growth of the original
file only replaces this ’dummy’ padding, thereby preserving the hidden
data.

7.2. Key takeaways

Stacked file systems differ from traditional ones in that slack space
does not contain remnants of previous files, primarily because new
lower files are created for each new upper file. However, our findings
suggest that exploiting slack space in lower files, or even in additional
lower file slack, could be a viable tactic in certain stacked file system
implementations. Consequently, forensic practitioners should not only
focus on the upper file system but also thoroughly examine the lower file
system during their analyses.

Detecting file slack requires a detailed comparison between the file
sizes recorded in the upper file system and those of the corresponding
lower files. Additionally, cross-referencing replicas of lower files across
various lower file systems is critical to identify any discrepancies that
may indicate tampering or manipulation.

8. Possibilities for file recovery

Besides operating system or application specific concepts such as
trash bins, file deletion is completely file system specific. Some file
systems such as older versions of Ext may keep references to the actual
data blocks, while others may wipe these entirely. In these experiments,
we circumvented the operating system’s Trash bin by directly deleting
files from the stacked file system using the rm command. This approach
allowed us to examine the file deletion processes of the stacked file
systems in question, thereby identifying the potential methods available
for file recovery.

8.1. Findings

8.1.1. MooseFS
MooseFS’s own trash mechanism holds deleted files for 24 h by

default. When an upper file is deleted, it becomes inaccessible, but its
chunks in the lower system persist. These deleted files are labeled as
trash files in the NODE metadata section on the Master Server. Further-
more, the Change timestamp of these deleted upper files stored in the
metadata can be used to infer the time of deletion. Notably, even with a
trash duration set to zero, chunks stayed active for a couple of minutes.
During this time the upper files got tagged as sustained files in the met-
adata indicating they were deleted but still open. The Change timestamp
of these files can hint at their deletion time. Once a file was fully deleted,
its chunks were too.

8.1.2. GlusterFS
In its default configuration, GlusterFS does not utilize its Trash

translator feature. Thus, as soon as an upper file is deleted, the corre-
sponding files in the lower file system are removed as well and the
possibilities of recovery depend on the lower file system. Enabling this
feature results in the creation of a.trashcan directory on each of the
bricks, which is used to hold deleted upper files and is also mounted
within the upper file system. After the deletion, the GFID-named lower
file remains intact, while the hard link in the original hierarchy is
removed from the lower file system. Instead, a new hard link within the.
trashcan directory is created, whose name consists of the original
upper file’s name and the actual time of deletion. Furthermore, the
original path hierarchy of the deleted file is also recreated within the
trash directory.

8.1.3. eCryptfs
Following a file deletion within eCryptfs, the corresponding lower

file was also deleted instantaneously in our experiments.

8.2. Key takeaways

Our research reveals that stacked file systems can offer an extra
opportunity for file recovery through their own trash features. Under-
standing the specific structure and metadata of the stacked file system is
key, and the data from these trash bin mechanisms should be factored
into the analysis process.

Investigators should consider the new opportunities presented by the
presence of an additional lower file system. Even if content is deleted
from the upper file system, the original data might still exist as lower
files within the lower file system. While file recovery becomes wholly
dependent on the lower file system following a complete file deletion,
the inherent structure of these lower files can be utilized for advanced
recovery techniques, such as file carving. In summary, these findings
imply that acquiring the lower file system, either physically or logically,
is more advantageous than merely performing a simple logical acquisi-
tion of the upper file system.

9. Conclusion

Contrary to traditional file systems, the concept of stacked file sys-
tems utilizes an additional file system for data storage. Given its inte-
gration into various modern distributed file systems, encountering
stacked file systems is inevitable in present and future forensic in-
vestigations. In this paper, we focused on the forensic analysis of stacked
file systems and presented an updated model that is capable of handling
this class of file systems. Complementing this, we presented various
forensic implications based on traditional analysis techniques and
explored them using three representative stacked file systems as
examples.

Our findings reveal that understanding the architecture, mecha-
nisms, and features of stacked file systems is crucial for effective anal-
ysis. We demonstrated basic procedures like identification and metadata
extraction in our findings, noting that further research is essential for a
more comprehensive understanding of these systems. The significance of
the underlying file system was also emphasized, particularly its potential
to enhance investigations with finer details, such as more precise
timestamps. Notably, even when access to the upper file system itself is
hindered, for example by encryption or incomplete distributed struc-
tures, valuable data can still be retrieved from the lower file system.

To fully leverage these insights, it is imperative for current forensic
methodologies and tools to adapt. Our research lays a solid groundwork
for future exploration in this area and aims to increase awareness among
forensic investigators regarding the complexities and opportunities
presented by stacked file systems.

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

9

Acknowledgement

We thank our shepherd and our anonymous reviewers for their
invaluable feedback on this paper.

References

Aranya, A., Wright, C.P., Zadok, E., 2004. Tracefs: a file system to trace them all. FAST
129–145.

Asim, M., McKinnel, D.R., Dehghantanha, A., Parizi, R.M., Hammoudeh, M.,
Epiphaniou, G., 2019. Big data forensics: Hadoop distributed file systems as a case
study. Handbook of Big Data and IoT Security 179–210.

Bhat, W., Quadri, S., 2012. Restfs: secure data deletion using reliable & efficient
stackable file system. In: 2012 IEEE 10th International Symposium on Applied
Machine Intelligence and Informatics (Sami). IEEE, pp. 457–462.

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional.
Garfinkel, S.L., 2007. Carving contiguous and fragmented files with fast object

validation. Digit. Invest. 4, 2–12.
Göbel, T., Türr, J., Baier, H., 2019. Revisiting data hiding techniques for apple file

system. In: Proceedings of the 14th International Conference on Availability,
Reliability and Security, vols. 1–10.

Halcrow, M.A., ecryptfs, 2005. An enterprise-class encrypted filesystem for linux.
Proceedings of the 2005 Linux Symposium 1, 201–218.

Harshany, E., Benton, R., Bourrie, D., Glisson, W., 2020. Big data forensics: Hadoop 3.2.
0 reconstruction. Forensic Sci. Int.: Digit. Invest. 32, 300909.

Heidemann, J.S., Popek, G.J., 1994. File-system development with stackable layers. ACM
Trans. Comput. Syst. 12 (1), 58–89.

Hilgert, J.N., Lambertz, M., Plohmann, D., 2017. Extending the sleuth kit and its
underlying model for pooled storage file system forensic analysis. Digit. Invest. 22,
S76–S85.

Huebner, E., Bem, D., Wee, C.K., 2006. Data hiding in the ntfs file system. Digit. Invest. 3
(4), 211–226.

Martini, B., Choo, K.K.R., 2014. Distributed filesystem forensics: Xtreemfs as a case
study. Digit. Invest. 11 (4), 295–313.

Raghavan, S., 2013. Digital forensic research: current state of the art. Csi Transactions on
ICT 1, 91–114.

Sipek, J., Pericleous, Y., Zadok, E., 2007. Kernel support for stackable file systems. In:
Proc. Of the 2007 Ottawa Linux Symposium, vol. 2. Citeseer, pp. 223–227.

van der Meer, V., Jonker, H., van den Bos, J., 2021. A contemporary investigation of
NTFS file fragmentation. Forensic Sci. Int.: Digit. Invest. 38, 301125.

Wani, M.A., Bhat, W.A., Dehghantanha, A., 2020. An analysis of anti-forensic capabilities
of b-tree file system (btrfs). Aust. J. Forensic Sci. 52 (4), 371–386.

Zadok, E., 1999. Stackable File Systems as a Security Tool. Tech. Rep.; Citeseer.

J.-N. Hilgert et al.

http://refhub.elsevier.com/S2666-2817(23)00197-X/sref1
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref1
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref2
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref2
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref2
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref3
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref3
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref3
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref4
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref5
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref5
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref6
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref6
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref6
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref7
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref7
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref8
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref8
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref9
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref9
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref10
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref10
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref10
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref11
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref11
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref12
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref12
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref13
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref13
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref14
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref14
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref15
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref15
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref16
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref16
http://refhub.elsevier.com/S2666-2817(23)00197-X/sref17

	Forensic implications of stacked file systems
	1 Introduction
	2 Stacked file systems
	2.1 Related work
	2.2 Forensic analysis of stacked file systems
	2.3 Experimental setup

	3 Identification of stacked file systems
	3.1 Findings
	3.1.1 MooseFS
	3.1.2 GlusterFS
	3.1.3 eCryptfs

	3.2 Key takeaways

	4 Correlation of file names
	4.1 Findings
	4.1.1 MooseFS
	4.1.2 GlusterFS
	4.1.3 eCryptfs

	4.2 Key takeaways

	5 Data reconstruction
	5.1 Fragmentation
	5.1.1 Findings
	5.1.1.1 MooseFS
	5.1.1.2 GlusterFS
	5.1.1.3 eCryptfs

	5.1.2 Key takeaways

	5.2 Transformation
	5.2.1 Findings
	5.2.1.1 MooseFS
	5.2.1.2 GlusterFS
	5.2.1.3 eCryptfs

	5.2.2 Key takeaways

	6 Timestamps and their update behavior
	6.1 Findings
	6.1.1 Timestamp sources
	6.1.2 Update behavior for MooseFS
	6.1.3 Update behavior for GlusterFS
	6.1.4 Update behavior for eCryptfs

	6.2 Key takeaways

	7 Slack
	7.1 Findings
	7.1.1 Lower file slack
	7.1.1.1 MooseFS
	7.1.1.2 GlusterFS
	7.1.1.3 eCryptfs

	7.1.2 Extra lower file slack
	7.1.2.1 MooseFS
	7.1.2.2 GlusterFS
	7.1.2.3 eCryptfs

	7.2 Key takeaways

	8 Possibilities for file recovery
	8.1 Findings
	8.1.1 MooseFS
	8.1.2 GlusterFS
	8.1.3 eCryptfs

	8.2 Key takeaways

	9 Conclusion
	Acknowledgement
	References

