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A B S T R A C T   

While file system analysis is a cornerstone of forensic investigations and has been extensively studied, certain file 
system classes have not yet been thoroughly examined from a forensic perspective. Stacked file systems, which 
use an underlying file system for data storage instead of a volume, are a prominent example. With the growth of 
cloud infrastructure and big data, it is increasingly likely that investigators will encounter distributed stacked file 
systems, such as MooseFS and the Hadoop File System, that employ this architecture. However, current standard 
models and tools for file system analysis fall short of addressing the complexities of stacked file systems. This 
paper highlights the forensic challenges and implications associated with stacked file systems, discussing their 
unique characteristics in the context of forensic analyses. We provide insights through three analyses of different 
stacked file systems, illustrating their operational details and emphasizing the necessity of understanding this file 
system category during forensic investigations. For this purpose, we present general considerations that must be 
made when dealing with the analysis of stacked file systems.   

1. Introduction 

File system analysis is undeniably an essential part during any digital 
forensic investigation involving storage devices. Its goal is to identify 
and extract files and their corresponding metadata including deleted 
information. Brian Carrier already laid a profound foundation for this 
research area almost 20 years ago covering various file systems, some of 
which are still being used today such as FAT, NTFS and Ext (Carrier, 
2005). According to his model for file system forensic analysis, tradi-
tional file systems store their data on a volume, e.g. a partition or a RAID. 
Since these volumes are transparent to the file system itself, the un-
derlying implementation creating the volume is responsible for the final 
transformation and distribution of the actual data. Analyzing these 
volumes is completely detached from the actual file system at hand and 
can thus be first addressed in the volume analysis phase, which is then 
followed by the final file system analysis. 

As pointed out by Hilgert et al., these two phases become inter-
twined, requiring an additional layer in the model when dealing with 
pooled file systems (Hilgert et al., 2017). These file systems utilize mul-
tiple disks for redundancy or performance but do not require any extra 
soft- or hardware for this purpose. In these cases, the file systems 
themselves handle the distribution of the data across the underlying 
layer, i.e. volume. Still, the file systems presented in their work stored 

their data directly on the underlying volume layer. 
This work takes a closer look at the forensic analysis of stacked file 

systems. These file systems might also handle the distribution of their 
data, but they are distinctively characterized by their method of data 
storage: they do not store their data on a volume or disk but rather on 
another file system creating new opportunities and challenges for 
forensic analysis practitioners encountering these file systems. Given the 
adoption of this concept in distributed file systems like MooseFS and the 
Hadoop File System, equipping forensic analysts with the knowledge to 
handle these systems during investigations proficiently is essential. 

For this purpose, this paper discusses crucial aspects of the analysis 
of stacked file systems. To accommodate this, we have revised the 
standard workflow for file system forensic analysis, making it suitable 
for the intricacies of stacked systems. We also describe a core set of 
forensic implications for analyzing stacked file systems, complemented 
by illustrative findings from three different file systems. The knowledge 
gathered from our experiments emphasizes the necessity of under-
standing these implications and is a vital reference for forensic analysts. 

2. Stacked file systems 

Stacked or stackable file systems store their data on another file sys-
tem, including both data and metadata, which might be stored in a 
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specialized file format. We denote the stacked file system as the upper file 
system and its files as the upper files, which are the files accessible when 
the file system is mounted. The underlying file system it relies on is 
termed the lower file system storing the lower files, as depicted in Fig. 1. 

In instances where the upper and lower file systems operate on the 
same machine, the stacked file system is termed as local. Nevertheless, 
an upper file can encompass multiple lower files, potentially distributed 
across various detached lower file systems. Given this, the concept of 
stacked file systems is frequently employed within distributed stacked file 
systems like the Hadoop Distributed File System or MooseFS, as they can 
be constructed atop a pre-existing and reliable lower file system. 
Furthermore, distributed stacked file systems can be categorized as 
either managed or unmanaged. In a managed setup, a designated entity 
like a main daemon can be used to orchestrate tasks such as data dis-
tribution and managing the metadata of the upper file system. 
Conversely, in an unmanaged configuration, the systems housing the 
lower file systems inherently possess all the requisite data to construct 
the upper file system. Both of these types can be encountered during 
forensic investigations due to the increasing usage of distributed storage 
in cloud environments. Hence, comprehending the forensic implications 
and nuances of stacked file system analysis is crucial. 

2.1. Related work 

A detailed concept of stacking file system layers was already pre-
sented in 1994 (Heidemann and Popek, 1994). However, this work fo-
cuses on file system development and describes stacking as a method to 
leverage already existing file systems facilitating the development pro-
cess of new file systems and features. A few years later, Erez Zadok 
utilized the concept of stacked file systems to implement a wrapper file 
system called Wrapfs (Zadok, 1999). While it still stores its data on a 
lower file system, Wrapfs can be used to create arbitrary upper file 
systems, for example to provide encryption or prevent deletions of files. 
In 2007, Zadok together with others discussed various issues of stacked 
file systems within Linux, such as cache coherency between the upper 
and lower file system (Sipek et al., 2007). Furthermore, file systems for 
secure deletion and tracing of file interactions based on the concept of 
stacked file systems have been proposed (Bhat and Quadri, 2012; Aranya 
et al., 2004). 

While all of the aforementioned research does focus on stacked file 
systems, it does not cover them from a forensic point of view. Still, 
limited research on the forensic analysis of distributed stacked file sys-
tems has been published (Asim et al., 2019; Harshany et al., 2020). take 
a closer look at the Hadoop Distributed File System. While their work 
yields interesting results, such as analyzing various commands and 

reconstructing distributed data, they do not address the underlying file 
system used by HDFS. Another analysis of a distributed stacked file 
system was performed in (Martini and Choo, 2014). During their anal-
ysis of XtreemFS, the authors also focused on the Object Storage Devices 
storing the lower file systems including its identification. However, their 
work falls short in providing a detailed discussion of general implica-
tions of the underlying concept of stacked file systems. Furthermore, the 
additional value of an analysis of the underlying file system is not 
examined. 

2.2. Forensic analysis of stacked file systems 

In addition to the research gap, it is important to note that this 
deficiency extends to forensic tools as well. Current tools, like The Sleuth 
Kit, are equipped to analyze various lower file system types but lack the 
functionality to associate them with any existing upper file system. This 
limitation underscores the need for an updated standard workflow for 
file system forensic analysis, as depicted in Fig. 2, to effectively handle 
the complexities of stacked file systems. 

In the revised workflow, the initial steps shown in white remain, but 
we introduce an additional phase, highlighted in purple, specifically 
dedicated to the analysis of stacked file systems, building upon the re-
sults from the prior analysis of the lower file system. This emphasizes 
that the detection and analysis of traditional file systems continue to be 
the foundational elements of the process. However, these steps may now 
yield multiple lower files or metadata files associated with stacked file 
systems, requiring thorough examination in the newly added step to 
ensure a comprehensive forensic analysis. Crucially, the results from the 
stacked file system analysis must also be correlated with information 
derived from the lower file system analysis and vice versa. 

The remainder of this paper deals with the additional step of stacked 
file system forensics and integration into forensic investigations. In 
particular, we look at six specifics, we believe are essential for file sys-
tem analysis: 1) Identification of Stacked File Systems, 2) Correlation of 
File Names, 3) Data Reconstruction, 4) Timestamps and their Update 
Behavior, 5) Slack Space and 6) Possibilites for File Recovery. 

2.3. Experimental setup 

To derive the most comprehensive guidance possible, it is crucial to 
include a diverse range of stacked file systems in the experiments. 

Fig. 1. Overview of a stacked file system utilizing a traditional lower file sys-
tem for data storage. 

Fig. 2. Extension of Brian Carrier’s model for the applicability of stacked 
file systems. 
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Accordingly, three distinct stacked file systems, previously overlooked 
in research, were selected as representative examples: 

MooseFS released in 2008, is an open-source, managed, distributed 
stacked file system designed for big data storage. Its architecture includes 
Chunk Servers that store data, a Master Server managing metadata, 
Metaloggers for metadata backup, and a client interface for mounting 
the file system. In MooseFS, large files are split into smaller chunks 
distributed across multiple servers. 

GlusterFS is an unmanaged, distributed stacked file system thatdiffers 
from MooseFS in that it lacks a dedicated master server. Instead, its 
storage servers form a trusted pool by connecting directly to each other. It 
supports any file system as a brick, the lower file system for storing data. 
These bricks are combined to create a volume, which is subsequently 
mounted by a client. 

eCryptfs introduced in 2005 as a cryptographic file system to 
operate on top of an existing file system (Halcrow and ecryptfs, 2005), 
was integrated into the Linux kernel in version 2.6.19. Although su-
perseded by other mechanisms such as LUKS, eCryptfs remains a notable 
early example of stacked file systems. It functions as a local stacked file 
system, not used in a distributed manner, and is mounted by specifying a 
source directory from the lower file system to store its data. 

This variety ensures a thorough exploration of the potential scenarios 
forensic experts may encounter. For our experiments, the stacked file 
systems were setup, mounted and populated with arbitrary data. Spe-
cifics of each experiment are presented in the corresponding section. As 
a lower file system during the experiments, we utilized Ext4 due to its 
widespread use and to keep the results comparable. Drawing on these 
findings, the following sections also outline practical key takeaways to 
aid forensic investigators in their work with stacked file systems. 

3. Identification of stacked file systems 

As described in Section 2.3, it is crucial to identify a stacked file 
system following the analysis of the lower file system. During these 
experiments, the lower file systems were analyzed for any indicators 
hinting at the usage of a stacked file system. 

3.1. Findings 

3.1.1. MooseFS 
As soon as a file system is being used as part of a chunk server in 

MooseFS, a distinct hierarchy of directories from 00 up to FF is created on 
it. These directories are used to store the chunks, which in turn utilize a file 
name pattern like 
consisting of an identifier, the chunk ID, a corresponding and the 

. Lower files in MooseFS can also be identified by their in-
ternal structure that can be inferred by taking a look at the open source code 
of the file system. In the default MooseFS installation, i.e. not the light 
version, each chunk begins with a 0x2000 bytes long header. It starts with 
either a signature of MFSC 1.0 or MFSC 1.1, followed by eight and 
respectively four bytes representing the chunk ID and version, both of 
which can also found within the chunk’s file name. 

3.1.2. GlusterFS 
A similar behavior can be observed on servers of a GlusterFS pool, 

when a volume is created and started. This includes a hidden.glus-
terfs directory storing directories named 00 up to ff. Each upper file 
in GlusterFS is assigned a UUID referred to as the GlusterFS internal file 
identifier (GFID). This GFID names each lower file inside the hidden 
hierarchy. GlusterFS also mirrors the upper system’s structure in the 
lower system using hard links as depicted in Fig. 4. While GlusterFS does 
not make use of any specific internal structure within its lower files, it 
uses extended attributes to store meta information about its files. 

3.1.3. eCryptfs 
eCryptfs on the other hand does not create a unique hierarchy on the 

lower file system. Instead, the hierarchy of the files and directories of the 
upper file system are stored in an identical way on the lower file system. 
If file name encryption is enabled, the distinct prefix ECRYPTFS_FNE-
K_ENCRYPTED defined in the Linux kernel source is used for each lower 
file. Lower files in eCryptfs contain magic markers stored in a special 
header. These markers can be detected by performing an XOR operation 
on bytes 9–12 of the file at hand using the magic 0x3c81b7f5. The 
resulting 8 bytes should match bytes 13–16 in case of an eCryptfs lower 
file. 

3.2. Key takeaways 

Depending on the stacked file system at hand various types of in-
dicators resulting from the analysis of the lower file system can be used 
for its identification. This includes distinct hierarchies, file structures as 
well as certain extended attributes. Furthermore, the internal structure 
of lower files can be used to identify them directly, for example in cases 
in which they are included in a backup outside of the lower file system. 

Once identified, investigators can mount the stacked file system 
using its native software or conduct an in-depth forensic examination. 
However the current shortfall in forensic tools specifically designed for 
stacked file system analysis necessitates manual reconstruction of the 
system under investigation at the moment. 

4. Correlation of file names 

For a more comprehensive analysis and deeper understanding, it is 
essential to establish the relation between the names of upper files and 
the corresponding lower files that represent them. During this experi-
ment, we analyzed if and how this connection could be determined. 
Furthermore, we examined how the entire hierarchical structure of the 
upper file system is reflected within the lower file system. 

4.1. Findings 

4.1.1. MooseFS 
In MooseFS, neither the header, the file name or any other metadata 

of a lower file contain any reference to the original upper file. In order to 
obtain this relation and thus also the file name, it is necessary to analyze 
information stored on the Master Server. By default, chunk servers use 
the DNS name mfsmaster to connect to the Master Server. However, 
this can be configured within the chunk server’s configuration stored 
in/etc/mfs/mfschunkserver.cfg. The Master Server stores its 
metadata files within the directory/var/lib/mfs, including meta-
data.mfs.back. This metadata file can be extracted and subsequently 
inspected or analyzed using the mfsmetadump tool. During our exper-
iments, recent MooseFS updates were not instantly reflected in the 
metadata file, requiring a Master Server restart to save these changes. 

Fig. 3 illustrates the mfsmetadump utility output. In MooseFS, file 
names are stored as EDGEs in the filesystem tree, found in the EDGE 
section. Each line represents a file, detailing the parent inode, child 
inode, and file’s name. The child inode number can be used to link an 

Fig. 3. Excerpt of the mfsmetadump tool displaying metadata of a MooseFS 
file system. 
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entry to a corresponding NODE section entry, which represents an upper 
file. 

4.1.2. GlusterFS 
Fig. 4, the lower files 1847be7c-7a84-4c41-932b- 

5e0740c5e809 and data.txt share the same inode number. Addi-
tionally, GlusterFS also utilizes extended attributes and soft links, which 
can be analyzed to infer the hierarchy. The extended attributes of the 
lower file contain a reference including the original file’s name as well as 
the GFID of the directory, in which it was stored. The lower file 
belonging to this directory is again a soft link pointing to its own parent 
directory and so on. 

4.1.3. eCryptfs 
If the eCryptfs file system is mounted files within the upper file 

system can be matched to the files in the lower file system by comparing 
the corresponding inode numbers. This is already implemented in the 
ecryptfs-find utility. By default, the file names of the lower files are 
identical to the file names of the corresponding upper files. In case of file 
name encryption, eCryptfs utilizes a file name encryption key (FNEK), 
which is required to reveal the original file name of the lower file at 
hand. However, eCryptfs stores a hex signature of the utilized FNEK 
within all of the encrypted files names. For this reason, it is still possible 
to infer, which lower files were encrypted using the same FNEK and thus 
probably belonged to the same mounted file system. The signature of the 
FNEK is encoded within the FNEK-encrypted file name, also referred to 
as a Tag 70 packet and follows the packet type 0x46 and the length of 
the packet. By decoding the file name it is possible to extract the 
signature of the FNEK used, which can be used for further analyses. 

4.2. Key takeaways 

Our experiments indicate that in local or unmanaged distributed 
stacked file systems, it is generally possible to deduce the original file 
names and file system hierarchy. This is to be expected as for these 
kinds, the corresponding metadata can be found within the lower file 
system. In contrast, with stacked file systems that incorporate a man-
agement component, e.g. a dedicated server, it becomes vital to identify 
and extract the metadata that holds this information. Our findings 
demonstrate how this analysis can be executed for stacked file systems 
like MooseFS, enabling the determination of the relationship between 
upper and lower files. However, this task varies significantly depending 
on the specifics of the stacked file system, necessitating customized 
implementations within forensic tools. 

5. Data reconstruction 

For the reconstruction of upper files from their corresponding lower 
files, analysts need to tackle common problems such as fragmentation 
and data transformation. 

5.1. Fragmentation 

In most cases, the content of a file does not fit into a single data unit, 
which is why file systems allocate multiple data units. While different 
allocation strategies may be used, it often results in file fragmentation. 
Thus, traditional file systems need to keep track of the exact data units 
used by a file as well as the order in which they belong. This fragmen-
tation not only complicates forensic efforts but has also been a long- 
standing focal point of research (Garfinkel, 2007; van der Meer et al., 
2021). Yet, the topic of fragmentation in stacked file systems has not 
been explored. To address this, we have created multiple large-sized 
upper files, aiming to analyze and understand the fragmentation pat-
terns in the stacked file systems under study. 

5.1.1. Findings 

5.1.1.1. MooseFS. Our experiments demonstrated that MooseFS splits 
files larger than 64 MiB into multiple lower files, irrespective of the 
number of chunk servers. Although mountable with a single chunk 
server, MooseFS ideally operates with multiple, and it is advised to use 
at least three, as done in our experiments. By default, each chunk is 
replicated onto two of the three available chunk servers. Consequently, 
large files, fragmented into multiple chunks, may be distributed across 
all chunk servers within the MooseFS file system. Since information 
within the chunks themselves did not suffice to reassemble an upper file, 
it is necessary to consult the Master Server metadata to efficiently 
assemble fragmented upper files. As depicted in Fig. 3, the NODE section 
stores a list of chunks composing the upper file, each identified by a 
unique ID, which is also reflected in the chunk name on the lower file 
systems. Since it is unique to each chunk, it can also be used to identify 
replicas of chunks across multiple chunk servers. 

5.1.1.2. GlusterFS. Depending on the type of volume used, fragmenta-
tion as well as replicas of lower files can be encountered. The most 
important volume types are:  

• Distributed: In this default mode, upper files are not fragmented, 
but stored randomly across all available bricks, i.e. all available 
lower file systems.  

• Replica: This mode is used to ensure redundancy by storing 
unfragmented upper files across multiple bricks similar to RAID 
mirrors. The corresponding lower files stored across multiple lower 
file systems can be correlated by their GFID file name.  

• Dispersed: A dispersed volume can be compared to a RAID5-like 
volume. Data is split and stored across multiple lower file systems 
along with parity information. Again, fragments belonging together 
can be matched by their GFID. When creating a dispersed volume, it 
is possible to configure the number of bricks used for redundancy, i.e. 
how many bricks can be lost without causing any data loss. 

The first two modes do not cause any fragmentation of upper files. 
However, the replicated mode causes multiple copies of the same files to 
be stored on multiple lower file systems, i.e. storage servers. To identify 
these lower file systems for further analysis, the configuration of the 
GlusterFS at hand can be utilized. A directory for each volume of a 
storage server can be found in its/var/lib/glusterd/vols/direc-
tory. It stores the volume configuration in an info file and consists of a 
bricks subdirectory that offers configurations for each associated 
brick. These files appear across all storage servers in the GlusterFS pool Fig. 4. Example of a hierarchy on a lower file system in GlusterFS.  
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that created the volume, detailing the server’s hostname and brick path. 
Notably, the values listen-port and brick-fsid only seem to exist 
in the brick configuration of the respective server. This also allows for 
pinpointing the exact GlusterFS server at hand. 

When dealing with dispersed volumes, upper files become frag-
mented within GlusterFS. An efficient way to identify a lower file of a 
dispersed volume is to analyze its extended attributes. Each chunk 
belonging to a dispersed file utilizes extended attributes in the trus-
ted.ec name space, e.g. trusted.ec.size which stores the real size 
of the corresponding file. However, they do not contain any information 
about the order in which they should be reassembled. Furthermore, 
GlusterFS uses Erasure coding for dispersed volumes, which requires an 
additional step to obtain the original version of the file described in the 
next section. 

5.1.1.3. eCryptfs. In eCryptfs upper files are not split into multiple 
lower files and thus no fragmentation occurs. 

5.1.2. Key takeaways 
Though our findings illustrated that fragmentation may not be as 

complex as with traditional file systems, it still has to be considered 
especially when dealing with distributed stacked file systems spanning 
across multiple lower file systems. In these cases, it is crucial to identify, 
which other servers were part of the stacked file system at hand in order 
to adequately extend the acquisition process. 

Furthermore, our experiments showed that the upper file system’s 
metadata plays a crucial role for an efficient reassembly of fragmented 
files highlighting the importance of dedicated approaches for stacked 
file system analysis. In absence of this information, correlating lower 
files via their timestamps is an alternative though less reliable due to 
discrepancies as discussed in Section 6. 

5.2. Transformation 

Unlike early file systems, more advanced ones like APFS or ZFS 
started to implement features such as encryption or compression. This 
resulted in some kind of transformation between a file’s original content 
and the content stored on disk. A similar concept may also be employed 
by stacked file systems for various purposes like encryption or the uti-
lization of erasure coding, when data is distributed. For this analysis, we 
compared the content of lower files to the original content stored within 
the upper files of the stacked file system. 

5.2.1. Findings 

5.2.1.1. MooseFS. Besides the inclusion of an extra 0x2000 byte chunk 
header, the open-source MooseFS leaves the original data unaltered. 

5.2.1.2. GlusterFS. In distributed and replicated volumes, GlusterFS 
leaves the original content in lower files unchanged as well. However, 
for dispersed volumes, it employs a Reed-Solomon based Erasure coding. 
For an efficient recovery of dispersed files, we recreated the relevant 
GlusterFS setup to tackle the fragmentation as well as transformation 
hurdle. After the original GlusterFS configuration is identified as 
described in the previous section, it is possible to recreate a new Glus-
terFS volume using identical parameters. Afterwards, the obtained lower 
file systems can be copied to the freshly created GlusterFS bricks. It is 
essential to preserve extended attributes; failure to do so will lead 
GlusterFS to misidentify dispersed files. Additionally, the sequence of 
declaring bricks is crucial, i.e. the original first lower file system’s data 
should populate the first brick in the new volume and so on. Any 
inconsistency led to reconstruction failure in GlusterFS in our tests. 

5.2.1.3. eCryptfs. Since eCryptfs’s main feature is encryption, file con-
tents found on the lower file system are naturally encrypted. 

Additionally, the cryptographic context for each file is stored in a header 
preceding the encrypted data. The minimum size for this header is 
defined as 8192 bytes, resulting in slightly larger files on the lower file 
system compared to the original stacked file system. Though 8192 bytes 
is only the minimum size, we did not encounter any larger header sizes 
in our experiments including files up to 1 GB. The size of the original file 
is not encrypted and can be found in bytes 0–7 of the header, which 
starts directly at offset 0 of the lower file. Further information within the 
header includes the version as well as the encrypted session key used for 
the encryption of the file’s content. 

5.2.2. Key takeaways 
Depending on the stacked file system at hand, practitioners can 

benefit from the absence of a transformation layer during their analysis. 
This enables them to analyze a the files of a lower file system without the 
need to perform an analysis of the upper stacked file system. However, in 
certain cases, when encryption or error encoding is utilized, it is 
required to retranslate the content of lower files to obtain the original 
file content. We have illustrated various considerations that have to be 
made when using native software to perform this task for GlusterFS. Yet 
again, this strongly depends on the features of the stacked file system at 
hand. 

6. Timestamps and their update behavior 

In traditional file systems, timestamps are stored along the metadata 
of the files and include information about the last Access, Modification, 
Change and in some cases Birth time of a file. The intricacies and 
challenges of interpreting timestamps are well-recognized within the 
digital forensic community (Raghavan, 2013). 

Naturally, these timestamps retain their critical importance in the 
context of stacked file systems. However, we encounter an additional 
layer of timestamp sources:  

• Upper file system: Timestamps of the upper file system refer to the 
upper files and consist of one set of timestamps per upper file. The 
way this meta information is stored is completely specific to the 
upper file system itself.  

• Lower file system: Employing an additional file system to store file 
content introduces an extra layer of timestamps stored along the 
lower files in the lower file systems. 

Moreover, it is equally important to grasp the timestamp update 
behavior within both the upper and lower file systems as well as how 
they affect each other. In our experiments, we conducted fundamental 
file operations like creating and modifying files to examine how the 
stacked file systems in question update timestamps. This investigation 
encompassed both the lower and upper file systems, with a particular 
focus on understanding how timestamps in the latter could be accurately 
retrieved. We kept a multi-server configuration for the distributed file 
systems to observer the timestamp update behavior across multiple 
lower file systems. 

6.1. Findings 

The initial part of this section details the findings on timestamp 
sources, while the subsequent sections explore the timestamp update 
behavior of the corresponding file system. 

6.1.1. Timestamp sources 
MooseFS keeps track of the timestamps for all of its upper files within 

the metadata that can be found on the Master Server or Metaloggers. 
This information can be extracted by using the mfsmetadump utility as 
shown previously in Fig. 3. In GlusterFS, this information is not stored in 
an external file, but directly within the extended trusted.glus-
terfs.mdata attribute of the corresponding lower files across all 

J.-N. Hilgert et al.                                                                                                                                                                                                                               



Forensic Science International: Digital Investigation 48 (2024) 301678

6

bricks. Any change to the upper file’s timestamps inevitably results in an 
update of the metadata of the lower files. The actual timestamps can be 
extracted from the decoded Base64 string stored within the extended 
attribute. It holds 8 byte timestamps in seconds followed by the time-
stamp for nanoseconds following the big-endian format as shown in 
Fig. 5 eCryptfs relies solely on the timestamps already present in the 
lower file system, without storing any additional timestamp 
information. 

6.1.2. Update behavior for MooseFS 
When a file smaller than the maximum chunk size is created, two 

identical chunk copies are made on two out of three chunk servers. 
Although MooseFS sets the Modification and Change timestamps of the 
upper file identically, the Access timestamp appeared slightly earlier in 
our tests. This pattern was also seen in timestamps of the corresponding 
chunk servers. Notably, the birth timestamp from the lower file system is 
not reflected in MooseFS. Furthermore, it was observed that different 
chunk servers displayed varying timestamps for the same chunk. 

When an upper file is modified, its Modification and Change time-
stamps are updated to the same value. The same holds true for the 
corresponding chunks stored within the lower file systems. However, 
timestamps might again vary across chunk servers. If the upper file’s 
timestamps are changed without data alteration, e.g. by utilizing the 
touch command in Linux, the chunk timestamps remain unaffected. 

The update of File Access timestamps is rather complex and depends 
on multiple of factors:  

• MooseFS Configuration: The ATIME_MODE in the Master Server 
config determines the Access time update policy for upper files. 
Default is always, with options like ”always for files” or ”never” 
(similar to Linux’s noatime).  

• Client Caching: When mounting MooseFS, it is possible to set a data 
cache mode. Options include DIRECT (no caching) and YES (always 
use cache). Default is AUTO, which behaved like YES in our tests.  

• Chunk Pre-Fetch: For performance, MooseFS uses pre-fetch and 
read-ahead algorithms on chunk servers to pre-load expected chunks 
into the OS memory. This is hardcoded and cannot be changed.  

• Lower File System Configuration: The lower file system on the 
chunk server has its own Access timestamp policy. In Linux, the 
default is relatime, which doesn’t update Access times with every 
access. 

In MooseFS, the file access timestamps for upper files are influenced 
by its configuration and client caching. It was observed that when client 
caching is disabled, every file access updates the Access timestamps on 
the client, which the Master Server adopts in the default configuration. If 
client caching is enabled however, the Access timestamp stamp of a file is 
only updated on its first access or when it gets reloaded into cache. If 
MooseFS is however configured to never Modification the Access time-
stamps, client-side updates aren’t stored on the Master Server and are 
lost almost instantaneously. In our tests, Access timestamps for lower 
files were updated upon the chunk server daemon’s initial start, pro-
vided its access time mode was set accordingly, e.g. using the stric-
tatime option. With 10,000 files (and corresponding lower files), 
Access timestamps changed post-daemon start without client read re-
quests. This is likely due to MooseFS’s pre-fetch algorithms reading data 
in memory for some time, though no clear order was discernible. 

Reading all files from the client (with caching off and default 
MooseFS settings) resulted in the updating of all 10,000 Access time-
stamps in the lower file system. Yet, in setups with fewer upper files, 
Access timestamps of chunks only updated during daemon startup, not 
during later client requests. The cause for this disparity is still unclear 
and requires further research. Given these complexities, interpreting 
Access timestamps on MooseFS’s lower file systems demands caution. 

On the other hand, Modification timestamps were consistently ac-
curate and updated as anticipated, which is especially relevant for large 
upper files generating multiple chunks. 

Large files: In MooseFS, files exceeding the maximum chunk size are 
divided into multiple chunks. When such a large file is created, the 
timestamps in MooseFS and the underlying file system are set in the 
manner previously detailed. Thus, a 200 MB upper file results in eight 
(four distinct but replicated) lower files, each with unique timestamps, 
spread across three chunk servers. 

In our experiment, we modified the first bytes of the 200 MB file. 
While MooseFS only holds a singular set of timestamps for the upper file, 
the Modification and Change timestamps are updated the same way 
regardless of the position, in which the file is modified. On the lower file 
systems however, only the Modification and Change timestamps of the 
impacted chunk, the first of four, were updated across the two chunk 
servers hosting that chunk. A similar pattern was observed when other 
sections of the file were altered: only the relevant chunk’s timestamps 
changed. This level of granularity provides a more intricate view into file 
modifications on the upper file system. 

In our MooseFS experiments, we observed an unexpected behavior 
where chunks sometimes moved between chunk servers after file 
modification or idling periods. While MooseFS naturally rebalances 
chunks across servers, the reasons for these specific movements were 
unclear. Crucially, this behavior has implications for timestamps. When 
a chunk is relocated to a new server, it behaves as if it’s newly created, 
thus resetting all its timestamps to the time of the relocation. 

6.1.3. Update behavior for GlusterFS 
When a file is created in GlusterFS, the Modification and Change 

timestamps of the upper file are set to the same value, while the Access 
timestamp was always set to a value a little earlier. For lower file sys-
tems, the behavior of the initial timestamps depended on the volume 
mode. For a replicated volume, all timestamps were set to same value, 
while a dispersed volume resulted in different Change and Modified 
timestamps. Furthermore and as expected, the timestamps across the 
lower file systems stored on multiple servers varied. Additionally, the 
Birth timestamp was utilized by the lower file system, but also not 
populated to the upper file system. 

After the modification of a file, the Modification and Change time-
stamps of the upper file were updated to the same values. Furthermore, 
the Modification, Change and Access of the lower files were updated. 

Since the Access timestamp of an upper file has to be propagated to 
each lower file, GlusterFS doesn’t by default keep track of Access times 
preventing any performance drops. It was however observed, that access 
to an upper file could update the Access timestamp of a corresponding 
lower file depending naturally on the atime configuration of the lower 
file systems. In a setup with three replicated bricks, the specific accessed 
lower file alternated for each access. Furthermore, the timestamp was 
not updated for each access, most likely due to again some kind of 
caching performed within the client. Caching within the GlusterFS 
servers itself was not observed. 

6.1.4. Update behavior for eCryptfs 
When a file is created, the Access, Modification and Change time-

stamps in eCryptfs are all set to the same value, which is the moment the 
file was written and thus created. The exact same timestamps can be 
found on the corresponding lower file system. Though it is populated, 
eCryptfs as well does not utilize or return the Birth timestamp stored in 
the lower file system. 

Fig. 5. Structure of the trusted.glusterfs.mdata extended attribute 
containing timestamps in GlusterFS. 
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After the modification of a file, the Modification and Change time-
stamps were updated and contained the same values within eCryptfs as 
well as the lower file system. The same holds true for a file access and 
metadata modification, updating the corresponding Access and Modi-
fication timestamps respectively. Consequently, all of the timestamp 
modifications performed directly on the lower file system were also 
mirrored to the stacked file system. 

6.2. Key takeaways 

For stacked file system analysis, we advise practitioners to harness 
both potential sources of timestamps within the upper and lower file 
system. Extracting timestamps from the upper file system is crucial, as 
outlined in our previous section for MooseFS and GlusterFS. In addition, 
timestamps of the lower files should also be extracted and analytical 
methods need to be able to correlate both timestamp sources. This 
approach is particularly beneficial in distributed stacked file systems, 
where data fragmentation leads to a more detailed level of timestamp 
granularity for each file. 

Furthermore, in situations where the upper file system depends 
solely on the lower file system’s timestamps, two aspects should be 
considered: First, analyzing the lower file system can already provide 
valuable temporal insights. Second, as our eCryptfs example shows, 
these timestamps may be more susceptible to manipulation. 

Moreover, akin to conventional file system forensics, understanding 
the behavior of timestamp updates in both the upper and lower file 
systems is essential. 

7. Slack 

In traditional file systems, whenever a file’s size does not align with 
the end of a data unit, some unused space between the file’s end and the 
data unit is created. This file slack, if not overwritten properly, can 
contain artefacts of previously stored data within this data unit or can 
simply be used to intentionally hide data. The exploration of slack space, 
including its possibilities, detection, and analysis, has already been 
conducted across various file systems, including NTFS (Huebner et al., 
2006), BTRFS (Wani et al., 2020) or APFS (Göbel et al., 2019). 

Yet, this scrutiny has not been extended to stacked file systems, 
which uniquely store a file’s content in other files rather than in tradi-
tional data units. These lower files may be aligned with a certain extent 
size, e.g. always being a multiple of 4 KiB, resulting in slack space similar 
to the previously described file slack in traditional file systems. We refer 
to this slack space as lower file slack since it occurs between the actual 
end of the file and the end of the lower file. Additionally and unlike in 
traditional file systems, data can be directly appended to a certain lower 
file directly, since it is represented as a file itself. This way it may be 
possible to hide data, which is not considered by the upper file system. 
We define this type of slack as extra lower file slack. Fig. 6 illustrates these 
different types of slack. It is important to understand, if these types of 

slack exist within a stacked file system and how they can be detected and 
extracted. During the following experiments, we have evaluated the 
feasibility of slack space within stacked file systems by utilizing it to hide 
data. 

7.1. Findings 

This section is divided into two parts: the first presents the findings 
related to the lower file slack space, while the second focuses on the 
extra lower slack space resulting from expanding the size of a lower file. 

7.1.1. Lower file slack 

7.1.1.1. MooseFS. Chunks start with a 0x2000 byte header, followed 
by the upper file’s content in 0x10000 byte blocks. The final 0x1000 
bytes of the chunk header store CRC checksums: four bytes for each 
block, accommodating up to 1024 blocks. This results in the maximum 
chunk size of 64 MiB, plus the header size. Given the large block size, 
MooseFS’s lower file slack can be used to hide up to 64 KiB of data 
without altering the chunk size. Data hidden here doesn’t affect the 
upper file’s accessibility or its displayed size. However, inserting data 
causes a mismatch of the CRC checksums, which led to the chunk 
marked as INVALID upon server restarts during our experiments. For 
effective concealment, it’s crucial to update these checksums. Further-
more, modifying the upper file doesn’t affect the data hidden in the 
lower file slack. However, if the file expands, reducing the chunk’s slack, 
the concealed data is overwritten. 

7.1.1.2. GlusterFS. In distributed and replicated mode, GlusterFS does 
not utilize any padding and thus the stored lower files are of the exact 
same size as the corresponding upper files. For this reason, there is no 
available slack space that can be exploited for data hiding. In dispersed 
mode, it was observed that the size of a resulting lower file is always a 
multiple of 512 bytes, theoretically creating slack space that could be 
used to hide data. However, due to the implemented Erasure coding 
algorithm, the position and amount of the padding that can be used to 
reliably hide data varies. Hiding data in the wrong part could lead to 
modified data within the upper file sometimes even displaying the 
hidden data in our experiments. 

7.1.1.3. eCryptfs. For eCryptfs, the minimum file size of a file stored on 
the lower file system was always 12 KiB, which includes the 8 KiB 
header. Its size is then increased in steps of 4 KiB, as this is the default 
extent size used by eCryptfs. The actual extent size can also be found 
within the header at the start of the lower file. If the data size is not a 
multiple of the extent size, padding is used and also encrypted. When 
adding data to this lower file slack, it is still possible to mount eCryptfs 
and access the file without any problems. For the default extent size, this 
results in roughly 4 KiB of lower slack space that can be used to hide 
data. However, as soon as the upper file is modified, the whole contents 
of the padding is rewritten and the hidden data is lost. 

7.1.2. Extra lower file slack 

7.1.2.1. MooseFS. With stacked file systems, data can also be hidden in 
the extra lower file slack by appending it to an existing lower file. Since 
MooseFS utilizes a maximum size for its lower files, it is also ensured 
that storing data past this offset is protected from being overwritten due 
to any modifications of the upper file. In our experiments, we filled the 
space up to the maximum size with zeros and placed data in the suc-
ceeding space. Subsequent modifications to the upper file did not 
overwrite the hidden data in the extra lower file slack. However, as soon 
as a chunk was transferred to another chunk server, the hidden data did 
not persist and was lost. 

Fig. 6. Overview of possibilities for slack within stacked file systems.  
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7.1.2.2. GlusterFS. For GlusterFS, hiding data in extra lower file slack 
proved impractical across all modes. In distributed and replicated 
modes, data added to the lower file also appears when reading the 
corresponding upper file, though the upper file size remains unchanged. 
For replicated volumes with only one replica containing hidden slack 
data, the upper file consistently reveals this data. When multiple replicas 
have extra slack data, the upper file reads from the largest lower file. To 
hide data, one might place it in any replica, but ensure another copy has 
more benign data, like null bytes. In dispersed mode, data concealed in 
the slack of one file in a three-brick setup vanished upon reading the 
upper file, while adding data to two lower files caused an I/O error. 

7.1.2.3. eCryptfs. In eCryptfs, an upper file remained accessible with its 
file size unchanged when the data was stored in the corresponding extra 
lower file slack. Notably, this appended hidden data persisted when the 
upper file was modified or when new data was added, provided it did not 
surpass the padding limit. If the file grew beyond the available padding, 
the appended data was overwritten. To avoid this, one can add ample 
padding before the hidden data, ensuring that any growth of the original 
file only replaces this ’dummy’ padding, thereby preserving the hidden 
data. 

7.2. Key takeaways 

Stacked file systems differ from traditional ones in that slack space 
does not contain remnants of previous files, primarily because new 
lower files are created for each new upper file. However, our findings 
suggest that exploiting slack space in lower files, or even in additional 
lower file slack, could be a viable tactic in certain stacked file system 
implementations. Consequently, forensic practitioners should not only 
focus on the upper file system but also thoroughly examine the lower file 
system during their analyses. 

Detecting file slack requires a detailed comparison between the file 
sizes recorded in the upper file system and those of the corresponding 
lower files. Additionally, cross-referencing replicas of lower files across 
various lower file systems is critical to identify any discrepancies that 
may indicate tampering or manipulation. 

8. Possibilities for file recovery 

Besides operating system or application specific concepts such as 
trash bins, file deletion is completely file system specific. Some file 
systems such as older versions of Ext may keep references to the actual 
data blocks, while others may wipe these entirely. In these experiments, 
we circumvented the operating system’s Trash bin by directly deleting 
files from the stacked file system using the rm command. This approach 
allowed us to examine the file deletion processes of the stacked file 
systems in question, thereby identifying the potential methods available 
for file recovery. 

8.1. Findings 

8.1.1. MooseFS 
MooseFS’s own trash mechanism holds deleted files for 24 h by 

default. When an upper file is deleted, it becomes inaccessible, but its 
chunks in the lower system persist. These deleted files are labeled as 
trash files in the NODE metadata section on the Master Server. Further-
more, the Change timestamp of these deleted upper files stored in the 
metadata can be used to infer the time of deletion. Notably, even with a 
trash duration set to zero, chunks stayed active for a couple of minutes. 
During this time the upper files got tagged as sustained files in the met-
adata indicating they were deleted but still open. The Change timestamp 
of these files can hint at their deletion time. Once a file was fully deleted, 
its chunks were too. 

8.1.2. GlusterFS 
In its default configuration, GlusterFS does not utilize its Trash 

translator feature. Thus, as soon as an upper file is deleted, the corre-
sponding files in the lower file system are removed as well and the 
possibilities of recovery depend on the lower file system. Enabling this 
feature results in the creation of a.trashcan directory on each of the 
bricks, which is used to hold deleted upper files and is also mounted 
within the upper file system. After the deletion, the GFID-named lower 
file remains intact, while the hard link in the original hierarchy is 
removed from the lower file system. Instead, a new hard link within the. 
trashcan directory is created, whose name consists of the original 
upper file’s name and the actual time of deletion. Furthermore, the 
original path hierarchy of the deleted file is also recreated within the 
trash directory. 

8.1.3. eCryptfs 
Following a file deletion within eCryptfs, the corresponding lower 

file was also deleted instantaneously in our experiments. 

8.2. Key takeaways 

Our research reveals that stacked file systems can offer an extra 
opportunity for file recovery through their own trash features. Under-
standing the specific structure and metadata of the stacked file system is 
key, and the data from these trash bin mechanisms should be factored 
into the analysis process. 

Investigators should consider the new opportunities presented by the 
presence of an additional lower file system. Even if content is deleted 
from the upper file system, the original data might still exist as lower 
files within the lower file system. While file recovery becomes wholly 
dependent on the lower file system following a complete file deletion, 
the inherent structure of these lower files can be utilized for advanced 
recovery techniques, such as file carving. In summary, these findings 
imply that acquiring the lower file system, either physically or logically, 
is more advantageous than merely performing a simple logical acquisi-
tion of the upper file system. 

9. Conclusion 

Contrary to traditional file systems, the concept of stacked file sys-
tems utilizes an additional file system for data storage. Given its inte-
gration into various modern distributed file systems, encountering 
stacked file systems is inevitable in present and future forensic in-
vestigations. In this paper, we focused on the forensic analysis of stacked 
file systems and presented an updated model that is capable of handling 
this class of file systems. Complementing this, we presented various 
forensic implications based on traditional analysis techniques and 
explored them using three representative stacked file systems as 
examples. 

Our findings reveal that understanding the architecture, mecha-
nisms, and features of stacked file systems is crucial for effective anal-
ysis. We demonstrated basic procedures like identification and metadata 
extraction in our findings, noting that further research is essential for a 
more comprehensive understanding of these systems. The significance of 
the underlying file system was also emphasized, particularly its potential 
to enhance investigations with finer details, such as more precise 
timestamps. Notably, even when access to the upper file system itself is 
hindered, for example by encryption or incomplete distributed struc-
tures, valuable data can still be retrieved from the lower file system. 

To fully leverage these insights, it is imperative for current forensic 
methodologies and tools to adapt. Our research lays a solid groundwork 
for future exploration in this area and aims to increase awareness among 
forensic investigators regarding the complexities and opportunities 
presented by stacked file systems. 
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