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A B S T R A C T   

The automated comparison of visual content is a contemporary solution to scale the detection of illegal media 
and extremist material, both for detection on individual devices and in the cloud. However, the problem is 
difficult, and perceptual similarity algorithms often have weaknesses and anomalous edge cases that may not be 
clearly documented. Additionally, it is a complex task to perform an evaluation of such tools in order to best 
utilise them. To address this, we present PHASER, a still-image perceptual hashing framework enabling forensics 
specialists and scientists to conduct experiments on bespoke datasets for their individual deployment scenarios. 
The framework utilises a modular approach, allowing users to specify and define a perceptual hash/image 
transform/distance metric triplet, which can be explored to better understand their behaviour and interactions. 
PHASER is open-source and we demonstrate its utility via case studies which briefly explore setting an appro
priate dataset size and the potential to optimise the performance of existing algorithms by utilising learned 
weight vectors for comparing hashes.   

1. Introduction 

Much like other cyber security disciplines, the field of digital fo
rensics is faced with constant external pressure to adapt to new de
velopments, whether they are societal or technological. Despite this 
rapid change, digital artefacts need to adhere to solid scientific princi
ples in order to be robust enough to rely on in court, as this is the 
fundamental purpose of the discipline. To this end, there have been 
initiatives to perform robust testing of forensics tools (Lyle, 2007), 
open-sourcing standardised datasets to facilitate experimental testing 
and tool evaluation (Garfinkel et al., 2009), and more recently to 
formalise the process of forensic experimentation itself (OliveiraJr et al., 
2020). However, there still appears to be a disconnect between digital 
forensics as a practice and as a science (Casey, 2019), with a reliance on 
the output of tools without an accompanying robust understanding of 
their accuracy or stability (Horsman, 2019). 

To compound the problem, Law Enforcement Agency (LEA) case
loads and evidence volumes have been a problem for nearly two decades 
(Beebe et al., 2005), unavoidably placing further emphasis on automa
tion (Michelet et al., 2023). As such, evaluating and understanding 
tooling has never been more important, particularly as the field moves 
towards further use of Artificial Intelligence technologies, which require 

large datasets to properly evaluate (Du et al., 2020). 
One such use case for automation in digital forensics is that of 

identifying known files, which traditionally was served by cryptographic 
hashing for exact binary matching (Kornblum, 2006), but now also 
constitutes approximate, similarity-based, matching schemes (Brei
tinger et al., 2013a). The performance of such algorithms is important, 
particularly in use cases such as the detection of Child Sexual Abuse 
Material (CSAM), the scale of which has been increasing in recent years 
(Bursztein et al., 2019). Perceptual (similarity) Hashing has been 
deployed on the cloud, largely via Microsoft’s PhotoDNA (Krawetz), for 
some time, with LEA tools such as Magnet AXIOM offering plugin sup
port. At the same time, Facebook (Facebook) and Apple (2022) also have 
their solutions. However, despite much interest in the area, the field 
lacks a common evaluation framework for perceptual hashing, despite 
their being counterparts for binary-based approximate matching (Brei
tinger et al., 2013b; Göbel et al., 2022). 

To address this gap and to further facilitate a culture of scientific 
evaluation for automated forensics artefact processing, we introduce 
PHASER (Perceptual Hashing Algorithms Evaluation and Results), a 
perceptual hashing evaluation framework. Inspired by FRASHER (Göbel 
et al., 2022), an evaluation framework for binary similarity hashing, 
PHASER is built on modern scientific Python libraries (e.g. Pandas, 
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SciPy), with a modular approach to facilitate various evaluation 
conditions. 

In the remainder of this paper, we describe the background, related 
work and problem space in Section 2, followed by a description of 
PHASER and its use cases in Section 3. We then present short indicative 
experiments using the framework in Section 4, with conclusions in 
Section 5. 

2. Background and related work 

2.1. Content-Based Image Retrieval and forensic perceptual hashing 

The field of Content-Based Image Retrieval (CBIR) is the progenitor 
of perceptual hashing, tracing its extensive body of work back as early as 
the 1970s (Tyagi, 2017). The problem of retrieving similar images for a 
given query is a difficult one, and new methods are still being developed 
and benchmarked/evaluated in dedicated conferences, such as ACM’s 
ICMR. The field is mature, and there is a clear understanding of the 
pipeline for pre-processing, feature extraction, image representation, 
and similarity matching. Perceptual hashing, particularly in the digital 
forensics context, is less well understood (Hao et al., 2021), particularly 
as there are additional constraints on the process. 

The general task in CBIR is to retrieve a list of relevant images, such 
as images of trees for a query picture of a tree. Metrics used to evaluate 
the performance of these systems, such as Precision, Recall, and the F1- 
measure, reflect the retrieval of a group of relevant images for a query 
image, though this idea of relevance may be somewhat fluid and difficult 
to capture (Müller et al., 2001). Modern systems may also use multiple 
indices of features, as well as feedback loops, to refine results (Tyagi, 
2017). 

The retrieval task in a digital forensics context is quite different, 
however, and rather than a loose sense of topic or object relevance the 
scenario is largely the retrieval of duplicates, or near-duplicates, of an 
image (Breitinger et al., 2013a). This shifts the evaluation criteria from 
one based on relevance to a biometric style evaluation, where True/
False Positives/Negatives are assessed in a confusion matrix. Essentially, 
perceptual hashes are treated as a natural extension of traditional 
cryptographic good/bad lists, looking for ‘hits’, with the caveat that 
non-exact hash matching necessitates some similarity metric and cor
responding threshold to consider an observation a ‘hit’ or match. 

However, this decision threshold introduces a tension between the 
ability to discriminate between unrelated images and robustness to at
tacks or modified images (Breitinger et al., 2013a), as measured by inter- 
and intra-image analysis (Zauner, 2010), respectively. If the threshold 
for a ‘hit’ is set too loosely, images which are unrelated may be matched, 
creating additional false positives. Conversely, setting the threshold too 
restrictively will miss authentic matches, introducing false negatives. In 
a forensics use case, to avoid overwhelming a forensic practitioner at 
scale, prior work has suggested that a false positive rate of 1 % is 
excessive, but that it may be acceptable to have a false negative rate of 1 
% (Steinebach et al., 2012a). However, a lack of understanding of these 
trade-offs, or how to achieve them, is not ideal for practitioners when 
utilising tools (Horsman, 2022). 

While comparisons between feature vectors in CBIR can use a wide 
number of distance metrics (Tyagi, 2017), perceptual hashes are almost 
exclusively compared using the normalised Hamming distance between 
two hashes. As with traditional cryptographic hashing, and particularly 
important in the CSAM use case, perceptual hashes are intended to be 
irreversible and not leak information about the image content in the 
hash,1 such that more direct feature comparisons are eschewed in favour 
of these criteria. While this does limit the possibilities, there is arguably 
some room for innovation here, particularly as Hamming distance is 

essentially a global measure and does not capture the locality of bit 
differences, which may lose useful information. Similarly, algorithmic 
properties may mean that not all bits contribute equally when matching 
images, with bit weight optimisation being explored in prior work 
(Steinebach et al., 2012a, 2012b). 

2.2. Evaluating perceptual hashing 

Aside from the widespread use of a shared distance metric (Hamming 
distance), approaches to evaluating perceptual hashes are much more 
varied and inconsistent than those used in CBIR. Exploratory distance- 
based analyses have been used to understand the distributions of dis
tance scores (Breitinger et al., 2013a; Hamadouche et al., 2021; 
McKeown and Buchanan, 2023; Ferenčak et al., 2023). Threshold 
analysis can then be conducted to establish a distance cut-off, used to 
decide what constitutes a match, at which point CBIR evaluation metrics 
(Precision, Recall, F1, Precision@n) are often used (Hamadouche et al., 
2021; Steinebach et al., 2014; Gaillard and Egyed-Zsigmond, 2017; 
McKeown et al., 2019; Samanta and Jain, 2021). Other approaches make 
use of raw False Acceptance/Rejection rates and confusion matrices 
(Breitinger et al., 2013a; Zauner, 2010; Alkhowaiter et al., 2022), with 
Receiver Operating Characteristics (ROC) curves sometimes being used 
to visualise these trade-offs across the spectrum of possible thresholds 
(Zauner, 2010; Yang et al., 2006). There does not appear to be a 
consensus on dataset size or number of pairwise observations, with test 
datasets ranging from tens (Breitinger et al., 2013a; Zauner, 2010), to 
approximately one-thousand (Hamadouche et al., 2021; Drmic et al., 
2017), and tens of thousands or more (McKeown and Buchanan, 2023; 
Ferenčak et al., 2023; Gaillard and Egyed-Zsigmond, 2017; Samanta and 
Jain, 2021). 

There have been works that seek to create a uniform framework for 
assessing perceptual hashes. However, the most recent we could find is 
designed for reverse image search (Gaillard and Egyed-Zsigmond, 
2017), and Zauner’s original framework, Rihamark (2010) (Zauner, 
2010) did not appear completely functional when we tested it. As such, 
it seems prudent to provide the community with a modern toolkit to 
facilitate evaluation with a low barrier to entry. 

3. PHASER 

3.1. Design goals 

There were several main aims when designing PHASER: i) It should 
be open-source with modular components. In this case, the modular 
elements correspond to the Perceptual Hashing Algorithm, Image 
Transform (manipulation), and Distance Algorithm. ii) It should be plug- 
and-play with a provided dataset with minimal configuration, allowing 
experienced developers to build on it. iii) Generated hashes and distance 
scores should be portable, allowing for external analysis. 

We achieve i) by providing separate modules to define each element, 
making it straightforward to import additional algorithms or provide a 
function to implement a new approach. For ii), we provide a Jupyter 
notebook to facilitate processing a specified dataset and simplify the 
algorithm selection and analysis stages. For iii), we ensure that inter
mediate hashes and distance scores are saved to disk in CSV format 
while enabling transformed images to be saved to disk (with temporary 
memory-only storage by default). 

3.2. Overview and processing pipeline 

Here, we provide an overview of the layout and processing steps in 
PHASER. We choose to explicitly separate the analysis of inter-distances, 
which assume image content independence, and intra-distances, which 
are measured between original and transformed images, as with Zau
ner’s original framework (Zauner, 2010). PHASER is implemented in 
Python 3, and efforts have been made to leverage the power of modern 

1 Though this is not necessarily the case in practice (Athalye, 2021; Prokos 
et al., 2021; Jain et al., 2022). 
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data science libraries, such as NumPy, SciPy, and SciKit-Learn. PHASER 
is an open-source contribution and is available on GitHub.2 

3.2.1. Step 1 - Hashing and transformation 
The tree structure of the library is depicted in Fig. 1, with processing 

stages in Fig. 2. In Step 1 (2a) the specified folder of original images is 
ingested by ComputeHash, which wraps calls to Python’s Joblib to 
parallelise hashing and transformation. The process is roughly: i) Load 
each image into an object from the Python PIL library. ii) Generate hash 
digests for each specified algorithm, with definitions located in phaser. 
hashing. iii) Generate each image transform (with definitions in phaser. 
transformers), deriving hash digests in the same way as the original 
images. To conserve RAM and disk space, the DataFrame, which stores 
hashes, encodes filenames, algorithm names, and transforms names into 
integers (LabelEncoders.bzip2 in Fig. 2). Hashes can also be generated 
externally and imported into Stage 2 with an appropriately formatted 
CSV file. 

As noted previously, transforms are handled in-memory, but can 
optionally be written to persistent media. Additionally, transforms can 
be loaded from the disk if they already exist. This is particularly useful in 
cases where they cannot be constructed easily in the framework (for 
example, importing thumbnails generated by Operating System caches 
(McKeown et al., 2019)). For existing perceptual hashes, registering 
them in PHASER involves writing a wrapper class to format the hash 
digest as a string of bits, formatting which is facilitated by phaser.utils. 
Transforms also need to extend the base Transformer class and return a 
PIL object but can generate the image via any means. In both cases, 
classes must be exported outside the module by updating the corre

sponding module’s __init__.py file. 
We do not formally benchmark the computational performance of 

PHASER. However, anecdotally, a Ryzen 5900X test system, reading the 
Flickr 1 million (“MIRFLICKR Download) dataset from a SATA SSD, 
extracts hashes at ≈155 files per second (<2 h) for three hashes and five 
transforms. 

3.2.2. Step 2 - Pairwise distance calculations 
The labels and DataFrame/CSV of hashes from Step 1 are re-used or 

loaded from the disk, prior to calculating pairwise distances in Step 2 
(2b). Distance metrics can be defined in phaser.similarities, and expor
ted in a similar manner to transforms and hashing algorithms. The main 
difference here is that algorithms included in scipy.spatial.distance can 
be included by simply specifying the string associated with the algo
rithm, avoiding the need to pass a reference to the function directly. This 
is because inter- and intra-distances are calculated using SciPy’s pdist 
and cdist functions, respectively, which facilitates easy re-use of its built- 
in distance metrics. Built-in metrics also support a weights vector 
argument, which will be relevant to our discussion in Section 4.2. 

PHASER explicitly splits out inter- and intra-distance classes, which 
are marked in the DataFrame as class 0 and 1, respectively. Inter- 
distances correspond to the behaviour of an algorithm/transform/dis
tance metric triplet when considering unrelated images, while Intra- 
distances correspond to images that should match. These intra- 
distances are calculated on a 1:1 basis between the original image and 
the hash algorithm/transform/distance triplet, meaning that for a 
dataset of 1000 images, with two perceptual hash algorithms, five 
transforms, and two distance metrics, the overall number of intra- 
distance observations would be 1, 000 × 2 × 5 × 2 = 20, 000. 

As inter-distance pairwise comparisons scale with the square of the 
number of images, inter-score observations are sampled, such that each 
image is compared with n randomly selected images in the DataFrame 
for each triplet. n is automatically calculated to balance both classes, and 

Fig. 1. Tree structure of the PHASER library.  

Fig. 2. Stages of processing in the PHASER Library.  

2 DOI: https://zenodo.org/doi/10.5281/zenodo.10363150. GitHub: http 
s://GitHub.com/AabyWan/PHASER. 
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while this balancing is usually inexact it can be compensated for in the 
evaluation stage. This equity in scale allows for metrics and plots to be 
meaningfully compared on the same axes (otherwise, probability den
sity distributions become unbalanced, for example). The DataFrame for 
all pairwise observations is saved to a bz2 compressed csv, with metric 
label encodings being present in the existing encoding file, or added at 
this stage. 

It should be noted that while the underlying metrics are often 
measuring the distance between hashes, some evaluation approaches are 
preferable to be viewed in terms of similarity. As both values are nor
malised between 0 and 1, the point of view is inverted by simply 
calculating 1 − x, where x is either similarity or distance. 

3.2.3. Step 3 - Evaluation and Plotting 
As discussed in Section 2.2, there are several ways to evaluate the 

behaviour of perceptual hashing algorithms. We assume that the 
matching task in digital forensics is essentially a classification task for 
some decision threshold t, with an emphasis on associated metrics such 
as FP/FN assessment, which is in line with Rihamark (Zauner, 2010). 
PHASER facilitates three types of evaluation: i) Exploratory Analysis, ii) 
Classification Efficacy, and iii) Performance Optimisation. Each is dis
cussed in turn below. 

Exploratory Analysis: Gaining an initial understanding of the 
behaviour of a hashing algorithm/transform/distance triplet can be a 
useful beginning. For this reason, we provide features to calculate and 
plot distance/similarity histograms for inter- and intra-comparisons, as 
in prior work (Hamadouche et al., 2021; McKeown and Buchanan, 
2023). Kernel Density Estimation (KDE) plots can also be used to visu
alise the separation or overlap of these inter- and intra-distance be
haviours. We expand on this idea in Section 3.3. 

Classification Efficacy: KDE plots help understand the general 
trade-offs; however, actual classification performance can be viewed at 
the macro-level, across all thresholds, with a ROC (Receiver Operating 
Characteristic) curve and corresponding Area Under the Curve (AUC), or 
at the micro-level for individual thresholds with a Confusion Matrix. We 
also facilitate Equal Error Rate (EER) plots to visualise the trade-offs 
differently from the KDE plot. However, we don’t expect that the EER 
is particularly useful in and of itself in a forensics use case, as it is more 
likely that a false negative rate would be calculated for a target false 
positive rate. 

Performance Optimisation: When conducting the above evaluation 
steps, there is an option to do a bit-level analysis of hash vectors to 
understand if patterns are generated when measuring distance scores for 
a given algorithm and distance pair across transform types. This data can 
then be used to ‘learn’ weights for each bit in the hash corresponding to 
how effective it is across all transform classes, ideally optimising per
formance in a similar vein to Steinebach (2011). This requires that the 
distance metric accepts a weight vector parameter equal in length to the 
chosen hash length. In SciPy, the weights are passed in as the w 
parameter. This step is optional, and we experimentally explore its po
tential in Section 4.2. 

In terms of implementation, as depicted in Fig. 1, evaluation statis
tics/metrics are separated from the plotting aspect. The MetricMaker 
class generates the statistics described above for a given triplet, with the 
ComputeMetrics class acting as a wrapper class for doing this across all 
triplets. Adding new statistical derivations to the MetricMaker.fit func
tion would allow them to be easily processed and aggregated. The 
BitAnalyzer class can optionally generate the bit-analysis and optimi
sation weightings described above. The Plotting module provides 
wrappers to relevant Python libraries to easily visualise triplet infor
mation in a Histogram, KDE, EER, or ROC plot or as a Confusion Matrix. 

To verify that the results produced by PHASER were correct, we ran 
the same dataset as prior work (McKeown and Buchanan, 2023), using 
TransformFromDisk to load existing transforms, and compared statistics 
for perceptual hashes in Python’s ImageHash library. No code base was 
shared, however, results were identical. 

3.3. Visualising performance - An example 

To demonstrate typical performance classes and aid in interpreting 
the visualisations generated by PHASER, Fig. 3 depicts a collection of 
KDE and EER plots for ColorHash (Buchner), PDQ (Facebook), and 
pHash (Buchner). Plots were generated from a small test set for the 
Border transform (red border around image, width 30 pixels) as it neatly 
separates out behaviour types. 

In Fig. 3a, ColorHash does not separate the similarity distributions of 
unrelated images, the inter-class, from those that should match intra- 
class, when comparing originals to transforms. The overlap is consid
erable, such that any similarity threshold would result in many false 
positives, with the rate of this trade-off being visualised in the EER plot 
in Fig. 3b. In this case, setting a threshold of 0.9 to balance the False 
Positive Rate (FPR) and False Negative Rate (FNR) rate results in both 
being around 70 %, which is very poor. PDQ, on the other hand, neatly 
separates out both distributions, such that a suitable threshold can be 
found while minimising both FPR and FNR. For pHash, the distributions 
overlap somewhat, such that a trade-off must be made between a desired 
FPR and FNR rate for any threshold. While this example is specific, it is 
indicative of the three types of behaviour which may be present for a 
given algorithm/transform/distance metric triplet. 

3.4. Suggested avenues of exploration in perceptual hashing 

As PHASER facilitates the exploration of algorithm/transform/dis
tance triplets, it should now be much more straightforward to identify 
algorithmic weaknesses. Identifying such issues then allows for the 
development of approaches to making the hash more robust without 
fundamentally altering the underlying mechanisms. This could be ach
ieved in a variety of ways, such as by exploring pre-processing nor
malisation approaches (Steinebach, 2011). Similarly, as is more 
common in CBIR, multi-index approaches, with multiple hashes, may be 
used to compensate for the weaknesses of each algorithm or to form a 
pipeline, such as those used in spam detection (Liu et al., 2010). Building 
on this, a more nuanced understanding of global vs. local features, as in 
CBIR, would be beneficial. For example, in testing PHASER we noted 
that difficult transforms such as Rotate (Breitinger et al., 2013a; Stei
nebach, 2011) and Mirroring (Breitinger et al., 2013a; McKeown and 
Buchanan, 2023) had no detrimental effect on ColorHash, as its global 
colour histograms are unaffected by the structure of these pixels, while 
other algorithms struggle greatly with x-axis mirroring. 

The distance metric space also does not appear to have been 
adequately explored. CBIR neatly separates the ideas of representation 
(feature vectors, hash) and comparisons, while the comparison of fea
tures has considerably less attention paid to it in the perceptual hashing 
literature. Exploring different distance metrics, metric weightings, or 
combinations of distance metrics, perhaps together with multi-hash 
indices, may be beneficial. Indeed, we explore one aspect of this in the 
next section. Understanding structural aspects (Steinebach, 2023) of 
hashes generated by perceptual hashing algorithms may also be useful, 
as, beyond weightings, there may be recurring patterns or information 
leakage (Athalye, 2021). Such insights may also be of use when 
considering hash comparisons and global vs. local changes in the hash. 
For instance, Hamming distance is a global difference measure, but 
perhaps it would be worth exploring if local, clustered, changes in hash 
vectors should be weighted differently (to, say, downplay the impact of a 
copy-move object in a corner of the image). 

4. Experiments 

To demonstrate the utility of PHASER, we present two short exper
iments in this section, which explore open questions directly in the 
framework. The code used for these experiments serve as exemplars on 
the PHASER GitHub page. 
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4.1. How many images?: Convergence of measures at various dataset 
sizes 

It was noted in Section 2.2 that the dataset of original images used to 
evaluate Perceptual Hashes varies considerably. When considering the 
use case of PHASER, it became necessary to establish how large the 
dataset must be to obtain reliable results. This information was not 
readily available in the literature, so an experiment was conducted to 
understand sampling variability. 

The Flickr 1 Million dataset (“MIRFLICKR Download) was used due 
to its large scale, and all images were hashed using PDQ and Wavehash 
for the Flip_Horizontal (mirror on x-axis), Rescale (96 × 96px) and 
Watermark (40px min, target 10 % image height, bottom right-corner) 
transforms. Prior work (McKeown and Buchanan, 2023) has shown 
that the inter-image distributions for PDQ and Wavehash vary consid
erably (narrow and wide distributions, respectively), making them 
complementary choices. For similar reasons, the transforms were chosen 
to represent an easy case (Rescale), a slightly more difficult case 
(Watermark), and a very difficult case (Flip_Horizontal), again based on 
prior work (McKeown and Buchanan, 2023). For the sake of simplicity, 
we only considered Hamming distance here, as it is the most widely 
used. 

To simulate differing dataset scales, the DataFrame of all hashes was 
sampled for 1000; 10,000; 100,000; and 250,000 images before calcu
lating distance scores. Inter- and intra-distances and their corresponding 
evaluation metrics, were then calculated for each sample size, repeating 
the process 250 times for each. PHASER balances the number of inter- 
and intra-distance observations such that the number of observations for 
each inter- and intra-distance triplet is the same as the sample size. As 
this is a necessary step for some analysis approaches to be representa
tive, we expect these results to hold for experiments conducted outside 
of PHASER, too. 

To capture the variability of both inter- and intra-distance compar
isons, we plot the EER Decision Threshold, i.e. the similarity value 
where both the FPR and FNR are equal, as it captures the relationship 
between inter- and intra-score distributions. The assumption is made 
that all original images in the dataset are unrelated for the sake of FPR/ 
FNR calculation. The boxen-plots for each algorithm are depicted in 
Fig. 4. 

The EER threshold for PDQ-Rescale (4a) shows considerable change 
from the smallest sample size, 1000, to the next order of magnitude, 
with the range shrinking from 0.59–0.83 to 0.61–0.68. This suggests that 
there are cases where there is a clear benefit to samples on the larger side 
of the literature, even for the least-difficult transform. The more difficult 
Watermark case has very similar behaviour, however, the difficult Flip 
transform does not change the EER threshold much at all, largely 
because PDQ is very poor at handling this transform, producing dis
tances that correspond to unrelated images. Similar trends are found 
with Wavehash, though the absolute values vary considerably for the 
EER threshold, with a smaller maximum range. 

Overall, the variance between iterations drops substantially as the 
dataset increases from 1000 to 100,000 images. Table 1 depicts standard 
deviation values for the Rescale transform, as it seems to vary the most 
despite being a relatively trivial transformation. We note an order of 
magnitude difference between values at 1000 and 100,000 samples, and 
there is still improvement to be had at 250,000. We would suggest that 
larger datasets may produce more consistent results, though there could 
be diminishing returns beyond 100,000 on heterogeneous datasets. This 
point may occur much earlier for more constrained datasets, where 
images are relatively homogeneous. 

4.2. Optimising for weaknesses: Assigning hash bit-vector weights 

Perceptual hashing algorithms can be separated into heuristic ap
proaches and machine learning-based approaches, which derive features 
or their respective weights directly from image datasets. However, aside 

Fig. 3. Comparison KDE and EER plots for different algorithms on the Border 
transform for a small test set. 
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from Steinebach’s (Steinebach, 2011) weighting scheme for ForBild, 
data-driven optimisation of heuristic hashes does not appear to have 
been pursued. We explored this possibility by leveraging functionality in 
both PHASER and SciPy. 

250,000 images were sampled from the Flickr 1 Million dataset, 
processing them with PDQ, pHash and Wavehash for a range of trans
forms: Border (30px), Crop (5 % all sides), Flip (x-axis), Rescale(96x96), 
Rotate (anti-clockwise 5◦), and Watermark. All three transforms are 

heuristic approaches and derive features in the frequency domain. These 
have been tested previously in prior work (Breitinger et al., 2013a; 
McKeown and Buchanan, 2023; Drmic et al., 2017), with the x-axis 
mirroring proving to be the main point of difficulty. 

Distance scores were then calculated for all triplets, with bit-analysis 
enabled when computing metrics. Each bit in the hash vector (varying in 
length for each algorithm) was analysed for its relative contribution to 
rejecting and accepting an image match correctly at the EER threshold. 
Median values are then used to generate a bit-weight vector using 
aggregated information across all transforms, ideally improving overall 
performance. Cosine distance was included in this analysis to determine 
whether potential benefits extend beyond Hamming distance. 

An aggregated performance summary across all transforms, before 
and after applying optimised weights, is provided in Table 2. Generally, 
all algorithms improve for distance and evaluation metrics, though the 
change is limited for Wavehash, while both PDQ and pHash see a larger 
benefit. Cosine distance values track Hamming closely for these hash 
types. 

To determine if the aggregated benefit is derived from an overall 
improvement or, in difficult cases, the difference in AUC values between 
pre- and post-optimisation are plotted in Fig. 5. The uplift in PDQ and 
pHash performance can be attributed to improving the difficult Flip 
case, while Wavehash seems to benefit slightly from the Border trans
form instead. On the other hand, pHash loses ground slightly in the 
Border case, though it still benefits significantly in the aggregated 
metrics. 

To dive deeper, we plot the bit-analysis generated by PHASER for the 
pHash algorithm for the specific improvement case, Flip, and the 
aggregated rates across all transforms. Darker bars show when the bit 
more accurately matches the ideal outcome, but a 50/50 chance is ex
pected for inter-image comparisons. 

Interestingly, a piano-like pattern is found in Fig. 6a for the intra- 
image cases (TP/FN), where alternating bits switch between very high 
and very low degrees of accuracy. We suggest that this is an artefact of 
how these hashes derive the bits in their hash from the Discrete Cosine 
Transform (DCT) coefficient matrices. The upshot is that every second 
bit strongly matches the original and Flip transform. As such, re- 
balancing the weights to favour these, there is a large performance 
change for the Flip case. The part of the confusion matrix derived from 
inter-image comparisons is roughly as expected, though, at a rate of 
around 0.5. 

The overall bit-weight applied to pHash for all comparisons is 
visualised in Fig. 6b the piano-like pattern to compensate for Flip is 
visible but is softened somewhat when median values from all trans
forms and success/failure classes are applied. 

Fig. 4. Metric convergence for EER thresholds for three transforms. Note that 
the plots do not share the y-axis. 

Table 1 
Standard deviations of EER-thresholds for the Rescale transform across dataset 
sizes. 250 iterations at each sample size.  

Rescale(96, 96) EER Threshold STDEV 

Sample Size PDQ Wavehash 

1000 0.0634 0.0212 
10,000 0.0125 0.0134 
100,000 0.0023 0.0076 
250,000 0.0015 0.0047  

Table 2 
A comparison of classification performance across aggregated transforms for 
various hashes. Measuring Area Under the ROC Curve (AUC), and Equal Error 
Rate (EER).  

Before Bit-weighting (All Transforms) 

Algorithm Distance Metric AUC  EER  

mean std mean std 

PDQ Hamming 0.918 0.197 0.090 0.199 
Cosine 0.918 0.197 0.090 0.199 

pHash Hamming 0.905 0.203 0.112 0.203 
Cosine 0.905 0.203 0.112 0.203 

Wavehash Hamming 0.817 0.335 0.188 0.310 
Cosine 0.817 0.335 0.188 0.310 

After Bit-weighting (All Transforms) 
PDQ Hamming 0.969 0.072 0.047 0.096 

Cosine 0.969 0.071 0.047 0.094 
pHash Hamming 0.931 0.129 0.090 0.143 

Cosine 0.932 0.128 0.088 0.140 
Wavehash Hamming 0.820 0.329 0.185 0.306 

Cosine 0.820 0.330 0.185 0.307  
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This result was quite unexpected, though it clearly demonstrates that 
algorithmic nuances may have unexpected interactions with particular 
transform classes. These insights can then provide wider knowledge for 
improving the algorithms or, in this case, for mitigating some of their 
weaknesses. It is also worth noting that there was almost no detrimental 
impact on performance for any given transform using the bit-weights, 
though a wider set of hashes and transform classes should be tested. 

5. Conclusion and future work 

This work described PHASER, a new open-sourced perceptual 
hashing evaluation framework, primarily targeting the digital forensics 
and content-detection use case. We then applied the framework to the 
Flick1m dataset to answer two open questions that need to be covered 
directly in the literature. Firstly, we observe that large datasets with 
>100k original images may provide more accurate results, and sec
ondly, comparing perceptual hashes using learned weights may be 
useful. In particular, we discovered that the DCT-based transforms we 
tested have a peculiar behaviour on mirrored images, with half of the 
bits in the hash being strongly correlated with accurate classification 
and the other half strongly negatively correlated. 

By open-sourcing and releasing PHASER, we hope to facilitate other 
researchers with the discovery of such anomalies and mitigations for 
them, either by forensics practitioners or scientists. Visual similarity 
matching is a difficult task, but it is possible that existing elements of 
Content-Based Image Retrieval (CBIR) can be leveraged for this use case, 
for example, in multi-hash indices or via the development of more 
nuanced hash comparison techniques. Ultimately, there still appear to 
be multiple avenues to explore that may better scale detection in-line 
with demand. 

Data availability 

Data will be made available on request. 
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Göbel, T., Uhlig, F., Baier, H., Breitinger, F., 2022. “ FRASHER – a framework for 
automated evaluation of similarity hashing,”. Forensic Sci. Int.: Digit. Invest. 42, 
301407. 

Hamadouche, M., Zebbiche, K., Guerroumi, M., Tebbi, H., Zafoune, Y., 2021. “ A 
comparative study of perceptual hashing algorithms: Application on fingerprint 
images,”. In: 2nd International Conference on Computer Science’s Complex Systems 
and Their Application, Algeria, p. 12. 

Hao, Q., Luo, L., Jan, S.T., Wang, G., 2021. “ It’s not what it Looks like: manipulating 
perceptual hashing based applications,”. In: Proceedings of the 2021 ACM SIGSAC 
Conference on Computer and Communications Security. Plus 0.5em Minus 
0.4emVirtual Event Republic of Korea. ACM, pp. 69–85. 

Horsman, G., 2019. Tool testing and reliability issues in the field of digital forensics. 
Digit. Invest. 28, 163–175. 

Horsman, G., 2022. “ that tool is rubbish!...or is it?”.  Sci. Justice 62 (5), 515–519. 
Jain, S., Cretu, A.-M., de Montjoye, Y.-A., 2022. Adversarial Detection Avoidance 

Attacks: evaluating the robustness of perceptual hashing-based client-side scanning. 
In: 31st USENIX Security Symposium (USENIX Security 22), pp. 2317–2334. 

Kornblum, J., 2006. Identifying almost identical files using context triggered piecewise 
hashing. Digit. Invest. 3, 91–97. 

Krawetz, N.. Photodna and limitations. Not known [Online]. Available: https://www.hac 
kerfactor.com/blog/index.php?archives/931-PhotoDNA-and-Limitations.html. 

Fig. 5. Differences in the AUC metric before and after applying bit-weights for 
each algorithm/transform for the normalised Hamming distance. 

Fig. 6. Representations of the ‘success rate’ for each bit in the 64-bit pHash 
hash vector. A higher frequency means the bit matched more consistently with 
expectation, i.e., a difference for the inter-class and a match for the intra-class. 
The same patterns are present for PDQ, though it is easier to see with fewer bits. 

S. McKeown et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S2666-2817(23)00199-3/sref1
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref1
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref1
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref1
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://anishathalye.com/inverting-photodna/
https://anishathalye.com/inverting-photodna/
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref4
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref4
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref4
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref5
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref5
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref5
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref5
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref6
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref6
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref8
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref8
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref8
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref9
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref9
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref10
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref10
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref10
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref10
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref11
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref11
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref11
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref11
https://github.com/facebook/ThreatExchange/tree/main/pdq/python
https://github.com/facebook/ThreatExchange/tree/main/pdq/python
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref13
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref13
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref13
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref14
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref14
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref15
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref15
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref16
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref16
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref16
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref17
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref17
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref17
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref17
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref18
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref18
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref18
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref18
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref19
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref19
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref20
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref21
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref21
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref21
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref22
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref22
https://www.hackerfactor.com/blog/index.php?archives/931-PhotoDNA-and-Limitations.html
https://www.hackerfactor.com/blog/index.php?archives/931-PhotoDNA-and-Limitations.html


Forensic Science International: Digital Investigation 48 (2024) 301680

8

Liu, T.-J., Tsao, W.-L., Lee, C.-L., 2010. A high performance image-spam filtering system. 
In: 2010 Ninth International Symposium On Distributed Computing and Applications to 
Business, Engineering and Science. Plus 0.5em Minus 0.4emIEEE, pp. 445–449. 

Lyle, J., 2007. Computer Forensic Tool Testing at Nist, vol. 18. URL. http://www.cftt.nis 
t.gov/documents/Amalfi-04.ppt, 2003–30.  

McKeown, S., Buchanan, W.J., 2023. Hamming distributions of popular perceptual 
hashing techniques. Forensic Sci. Int.: Digit. Invest. 44, 301509. 

McKeown, S., Russell, G., Leimich, P., 2019. Fast forensic triage using Centralised 
thumbnail caches on windows operating systems. J. Dig.For. Secur. Law 14 (3). 

Michelet, G., Breitinger, F., Horsman, G., 2023. “ Automation for digital forensics: 
towards a definition for the community,”. Forensic Sci. Int. 349, 111769. 

Müller, H., Müller, W., Squire, D.M., Marchand-Maillet, S., Pun, T., 2001. Performance 
evaluation in content-based image retrieval: overview and proposals. Pattern 
Recogn. Lett. 22 (5), 593–601. 

OliveiraJr, E., Zorzo, A.F., Neu, C.V., 2020. Towards a conceptual model for promoting 
digital forensics experiments. Forensic Sci. Int.: Digit. Invest. 35, 301014. 

Prokos, J., Jois, T.M., Fendley, N., Schuster, R., Green, M., Tromer, E., Cao, Y., 2021. 
Squint Hard Enough: Evaluating Perceptual Hashing with Machine Learning,” 
Cryptology ePrint Archive, Paper 2021/1531 [Online]. Available: https://eprint. 
iacr.org/2021/1531. 

Samanta, P., Jain, S., 2021. “ analysis of perceptual hashing algorithms in image 
manipulation detection,”. Proc. Comput. Sci. 185, 203–212. 

Steinebach, M., 2011. Robust hashing for efficient forensic analysis of image sets. In: 
International Conference on Digital Forensics and Cyber Crime. Plus 0.5em Minus 0. 
4emSpringer, pp. 180–187. 

Steinebach, M., 2023. “ an analysis of PhotoDNA,”. In: Proceedings of the 18th 
International Conference on Availability, Reliability and Security. Plus 0.5em Minus 0. 
4emBenevento Italy: ACM, pp. 1–8. 

Steinebach, M., Liu, H., Yannikos, Y., 2012a. ForBild: efficient robust image hashing. 
Media Watermark. Secur. For. 8303, 83030O, 2012.  

Steinebach, M., Liu, H., Yannikos, Y., 2012b. Forbild: efficient robust image hashing. In: 
Media Watermarking, Security, and Forensics, vol. 8303. plus 0.5em minus 
0.4emSPIE, pp. 195–202, 2012.  

Steinebach, M., Liu, H., Yannikos, Y., 2014. Efficient cropping-resistant robust image 
hashing. In: 2014 Ninth International Conference on Availability, Reliability and 
Security. Plus 0.5em Minus 0.4emIEEE, pp. 579–585. 

Tyagi, V., 2017. Content-Based Image Retrieval. Plus 0.5em Minus 0.4emSingapore. 
Springer Singapore. 

Yang, B., Gu, F., Niu, X., 2006. Block mean value based image perceptual hashing. In: 
Intelligent Information Hiding and Multimedia Signal Processing, 2006. IIH-MSP’06. 
International Conference on. Plus 0.5em Minus 0.4emIEEE, pp. 167–172. 

Zauner, C., 2010. Implementation and Benchmarking of Perceptual Image Hash 
Functions. 

MIRFLICKR Download [Online]. Available: http://press.liacs.nl/mirflickr/mirdownload. 
html. 

S. McKeown et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S2666-2817(23)00199-3/sref24
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref24
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref24
http://www.cftt.nist.gov/documents/Amalfi-04.ppt
http://www.cftt.nist.gov/documents/Amalfi-04.ppt
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref26
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref26
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref27
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref27
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref28
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref28
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref29
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref29
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref29
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref30
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref30
https://eprint.iacr.org/2021/1531
https://eprint.iacr.org/2021/1531
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref32
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref32
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref33
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref33
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref33
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref34
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref34
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref34
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref35
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref35
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref36
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref36
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref36
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref37
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref37
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref37
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref38
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref38
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref39
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref39
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref39
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref40
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref40
http://press.liacs.nl/mirflickr/mirdownload.html
http://press.liacs.nl/mirflickr/mirdownload.html

	PHASER: Perceptual hashing algorithms evaluation and results - An open source forensic framework
	1 Introduction
	2 Background and related work
	2.1 Content-Based Image Retrieval and forensic perceptual hashing
	2.2 Evaluating perceptual hashing

	3 PHASER
	3.1 Design goals
	3.2 Overview and processing pipeline
	3.2.1 Step 1 - Hashing and transformation
	3.2.2 Step 2 - Pairwise distance calculations
	3.2.3 Step 3 - Evaluation and Plotting

	3.3 Visualising performance - An example
	3.4 Suggested avenues of exploration in perceptual hashing

	4 Experiments
	4.1 How many images?: Convergence of measures at various dataset sizes
	4.2 Optimising for weaknesses: Assigning hash bit-vector weights

	5 Conclusion and future work
	Data availability
	References


