
Forensic Science International: Digital Investigation 48 (2024) 301680

2666-2817/© 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS EU 2024 - Selected Papers from the 11th Annual Digital Forensics Research Conference Europe

PHASER: Perceptual hashing algorithms evaluation and results - An open
source forensic framework

Sean McKeown *, Peter Aaby, Andreas Steyven
School of Computing, Engineering, and the Built Environment, Edinburgh Napier University, Edinburgh, UK

A R T I C L E I N F O

Keywords:
Evaluation framework
Perceptual hashing
Hashing
Content matching
Image forensics

A B S T R A C T

The automated comparison of visual content is a contemporary solution to scale the detection of illegal media
and extremist material, both for detection on individual devices and in the cloud. However, the problem is
difficult, and perceptual similarity algorithms often have weaknesses and anomalous edge cases that may not be
clearly documented. Additionally, it is a complex task to perform an evaluation of such tools in order to best
utilise them. To address this, we present PHASER, a still-image perceptual hashing framework enabling forensics
specialists and scientists to conduct experiments on bespoke datasets for their individual deployment scenarios.
The framework utilises a modular approach, allowing users to specify and define a perceptual hash/image
transform/distance metric triplet, which can be explored to better understand their behaviour and interactions.
PHASER is open-source and we demonstrate its utility via case studies which briefly explore setting an appro-
priate dataset size and the potential to optimise the performance of existing algorithms by utilising learned
weight vectors for comparing hashes.

1. Introduction

Much like other cyber security disciplines, the field of digital fo-
rensics is faced with constant external pressure to adapt to new de-
velopments, whether they are societal or technological. Despite this
rapid change, digital artefacts need to adhere to solid scientific princi-
ples in order to be robust enough to rely on in court, as this is the
fundamental purpose of the discipline. To this end, there have been
initiatives to perform robust testing of forensics tools (Lyle, 2007),
open-sourcing standardised datasets to facilitate experimental testing
and tool evaluation (Garfinkel et al., 2009), and more recently to
formalise the process of forensic experimentation itself (OliveiraJr et al.,
2020). However, there still appears to be a disconnect between digital
forensics as a practice and as a science (Casey, 2019), with a reliance on
the output of tools without an accompanying robust understanding of
their accuracy or stability (Horsman, 2019).

To compound the problem, Law Enforcement Agency (LEA) case-
loads and evidence volumes have been a problem for nearly two decades
(Beebe et al., 2005), unavoidably placing further emphasis on automa-
tion (Michelet et al., 2023). As such, evaluating and understanding
tooling has never been more important, particularly as the field moves
towards further use of Artificial Intelligence technologies, which require

large datasets to properly evaluate (Du et al., 2020).
One such use case for automation in digital forensics is that of

identifying known files, which traditionally was served by cryptographic
hashing for exact binary matching (Kornblum, 2006), but now also
constitutes approximate, similarity-based, matching schemes (Brei-
tinger et al., 2013a). The performance of such algorithms is important,
particularly in use cases such as the detection of Child Sexual Abuse
Material (CSAM), the scale of which has been increasing in recent years
(Bursztein et al., 2019). Perceptual (similarity) Hashing has been
deployed on the cloud, largely via Microsoft’s PhotoDNA (Krawetz), for
some time, with LEA tools such as Magnet AXIOM offering plugin sup-
port. At the same time, Facebook (Facebook) and Apple (2022) also have
their solutions. However, despite much interest in the area, the field
lacks a common evaluation framework for perceptual hashing, despite
their being counterparts for binary-based approximate matching (Brei-
tinger et al., 2013b; Göbel et al., 2022).

To address this gap and to further facilitate a culture of scientific
evaluation for automated forensics artefact processing, we introduce
PHASER (Perceptual Hashing Algorithms Evaluation and Results), a
perceptual hashing evaluation framework. Inspired by FRASHER (Göbel
et al., 2022), an evaluation framework for binary similarity hashing,
PHASER is built on modern scientific Python libraries (e.g. Pandas,

* Corresponding author.
E-mail addresses: S.McKeown@napier.ac.uk (S. McKeown), P.Aaby@napier.ac.uk (P. Aaby), A.Steyven@napier.ac.uk (A. Steyven).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2023.301680
Received 24 July 2023; Received in revised form 30 September 2023; Accepted 1 December 2023

mailto:S.McKeown@napier.ac.uk
mailto:P.Aaby@napier.ac.uk
mailto:A.Steyven@napier.ac.uk
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301680
https://doi.org/10.1016/j.fsidi.2023.301680
https://doi.org/10.1016/j.fsidi.2023.301680
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301680&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 48 (2024) 301680

2

SciPy), with a modular approach to facilitate various evaluation
conditions.

In the remainder of this paper, we describe the background, related
work and problem space in Section 2, followed by a description of
PHASER and its use cases in Section 3. We then present short indicative
experiments using the framework in Section 4, with conclusions in
Section 5.

2. Background and related work

2.1. Content-Based Image Retrieval and forensic perceptual hashing

The field of Content-Based Image Retrieval (CBIR) is the progenitor
of perceptual hashing, tracing its extensive body of work back as early as
the 1970s (Tyagi, 2017). The problem of retrieving similar images for a
given query is a difficult one, and new methods are still being developed
and benchmarked/evaluated in dedicated conferences, such as ACM’s
ICMR. The field is mature, and there is a clear understanding of the
pipeline for pre-processing, feature extraction, image representation,
and similarity matching. Perceptual hashing, particularly in the digital
forensics context, is less well understood (Hao et al., 2021), particularly
as there are additional constraints on the process.

The general task in CBIR is to retrieve a list of relevant images, such
as images of trees for a query picture of a tree. Metrics used to evaluate
the performance of these systems, such as Precision, Recall, and the F1-
measure, reflect the retrieval of a group of relevant images for a query
image, though this idea of relevance may be somewhat fluid and difficult
to capture (Müller et al., 2001). Modern systems may also use multiple
indices of features, as well as feedback loops, to refine results (Tyagi,
2017).

The retrieval task in a digital forensics context is quite different,
however, and rather than a loose sense of topic or object relevance the
scenario is largely the retrieval of duplicates, or near-duplicates, of an
image (Breitinger et al., 2013a). This shifts the evaluation criteria from
one based on relevance to a biometric style evaluation, where True/-
False Positives/Negatives are assessed in a confusion matrix. Essentially,
perceptual hashes are treated as a natural extension of traditional
cryptographic good/bad lists, looking for ‘hits’, with the caveat that
non-exact hash matching necessitates some similarity metric and cor-
responding threshold to consider an observation a ‘hit’ or match.

However, this decision threshold introduces a tension between the
ability to discriminate between unrelated images and robustness to at-
tacks or modified images (Breitinger et al., 2013a), as measured by inter-
and intra-image analysis (Zauner, 2010), respectively. If the threshold
for a ‘hit’ is set too loosely, images which are unrelated may be matched,
creating additional false positives. Conversely, setting the threshold too
restrictively will miss authentic matches, introducing false negatives. In
a forensics use case, to avoid overwhelming a forensic practitioner at
scale, prior work has suggested that a false positive rate of 1 % is
excessive, but that it may be acceptable to have a false negative rate of 1
% (Steinebach et al., 2012a). However, a lack of understanding of these
trade-offs, or how to achieve them, is not ideal for practitioners when
utilising tools (Horsman, 2022).

While comparisons between feature vectors in CBIR can use a wide
number of distance metrics (Tyagi, 2017), perceptual hashes are almost
exclusively compared using the normalised Hamming distance between
two hashes. As with traditional cryptographic hashing, and particularly
important in the CSAM use case, perceptual hashes are intended to be
irreversible and not leak information about the image content in the
hash,1 such that more direct feature comparisons are eschewed in favour
of these criteria. While this does limit the possibilities, there is arguably
some room for innovation here, particularly as Hamming distance is

essentially a global measure and does not capture the locality of bit
differences, which may lose useful information. Similarly, algorithmic
properties may mean that not all bits contribute equally when matching
images, with bit weight optimisation being explored in prior work
(Steinebach et al., 2012a, 2012b).

2.2. Evaluating perceptual hashing

Aside from the widespread use of a shared distance metric (Hamming
distance), approaches to evaluating perceptual hashes are much more
varied and inconsistent than those used in CBIR. Exploratory distance-
based analyses have been used to understand the distributions of dis-
tance scores (Breitinger et al., 2013a; Hamadouche et al., 2021;
McKeown and Buchanan, 2023; Ferenčak et al., 2023). Threshold
analysis can then be conducted to establish a distance cut-off, used to
decide what constitutes a match, at which point CBIR evaluation metrics
(Precision, Recall, F1, Precision@n) are often used (Hamadouche et al.,
2021; Steinebach et al., 2014; Gaillard and Egyed-Zsigmond, 2017;
McKeown et al., 2019; Samanta and Jain, 2021). Other approaches make
use of raw False Acceptance/Rejection rates and confusion matrices
(Breitinger et al., 2013a; Zauner, 2010; Alkhowaiter et al., 2022), with
Receiver Operating Characteristics (ROC) curves sometimes being used
to visualise these trade-offs across the spectrum of possible thresholds
(Zauner, 2010; Yang et al., 2006). There does not appear to be a
consensus on dataset size or number of pairwise observations, with test
datasets ranging from tens (Breitinger et al., 2013a; Zauner, 2010), to
approximately one-thousand (Hamadouche et al., 2021; Drmic et al.,
2017), and tens of thousands or more (McKeown and Buchanan, 2023;
Ferenčak et al., 2023; Gaillard and Egyed-Zsigmond, 2017; Samanta and
Jain, 2021).

There have been works that seek to create a uniform framework for
assessing perceptual hashes. However, the most recent we could find is
designed for reverse image search (Gaillard and Egyed-Zsigmond,
2017), and Zauner’s original framework, Rihamark (2010) (Zauner,
2010) did not appear completely functional when we tested it. As such,
it seems prudent to provide the community with a modern toolkit to
facilitate evaluation with a low barrier to entry.

3. PHASER

3.1. Design goals

There were several main aims when designing PHASER: i) It should
be open-source with modular components. In this case, the modular
elements correspond to the Perceptual Hashing Algorithm, Image
Transform (manipulation), and Distance Algorithm. ii) It should be plug-
and-play with a provided dataset with minimal configuration, allowing
experienced developers to build on it. iii) Generated hashes and distance
scores should be portable, allowing for external analysis.

We achieve i) by providing separate modules to define each element,
making it straightforward to import additional algorithms or provide a
function to implement a new approach. For ii), we provide a Jupyter
notebook to facilitate processing a specified dataset and simplify the
algorithm selection and analysis stages. For iii), we ensure that inter-
mediate hashes and distance scores are saved to disk in CSV format
while enabling transformed images to be saved to disk (with temporary
memory-only storage by default).

3.2. Overview and processing pipeline

Here, we provide an overview of the layout and processing steps in
PHASER. We choose to explicitly separate the analysis of inter-distances,
which assume image content independence, and intra-distances, which
are measured between original and transformed images, as with Zau-
ner’s original framework (Zauner, 2010). PHASER is implemented in
Python 3, and efforts have been made to leverage the power of modern

1 Though this is not necessarily the case in practice (Athalye, 2021; Prokos
et al., 2021; Jain et al., 2022).

S. McKeown et al.

Forensic Science International: Digital Investigation 48 (2024) 301680

3

data science libraries, such as NumPy, SciPy, and SciKit-Learn. PHASER
is an open-source contribution and is available on GitHub.2

3.2.1. Step 1 - Hashing and transformation
The tree structure of the library is depicted in Fig. 1, with processing

stages in Fig. 2. In Step 1 (2a) the specified folder of original images is
ingested by ComputeHash, which wraps calls to Python’s Joblib to
parallelise hashing and transformation. The process is roughly: i) Load
each image into an object from the Python PIL library. ii) Generate hash
digests for each specified algorithm, with definitions located in phaser.
hashing. iii) Generate each image transform (with definitions in phaser.
transformers), deriving hash digests in the same way as the original
images. To conserve RAM and disk space, the DataFrame, which stores
hashes, encodes filenames, algorithm names, and transforms names into
integers (LabelEncoders.bzip2 in Fig. 2). Hashes can also be generated
externally and imported into Stage 2 with an appropriately formatted
CSV file.

As noted previously, transforms are handled in-memory, but can
optionally be written to persistent media. Additionally, transforms can
be loaded from the disk if they already exist. This is particularly useful in
cases where they cannot be constructed easily in the framework (for
example, importing thumbnails generated by Operating System caches
(McKeown et al., 2019)). For existing perceptual hashes, registering
them in PHASER involves writing a wrapper class to format the hash
digest as a string of bits, formatting which is facilitated by phaser.utils.
Transforms also need to extend the base Transformer class and return a
PIL object but can generate the image via any means. In both cases,
classes must be exported outside the module by updating the corre-

sponding module’s __init__.py file.
We do not formally benchmark the computational performance of

PHASER. However, anecdotally, a Ryzen 5900X test system, reading the
Flickr 1 million (“MIRFLICKR Download) dataset from a SATA SSD,
extracts hashes at ≈155 files per second (<2 h) for three hashes and five
transforms.

3.2.2. Step 2 - Pairwise distance calculations
The labels and DataFrame/CSV of hashes from Step 1 are re-used or

loaded from the disk, prior to calculating pairwise distances in Step 2
(2b). Distance metrics can be defined in phaser.similarities, and expor-
ted in a similar manner to transforms and hashing algorithms. The main
difference here is that algorithms included in scipy.spatial.distance can
be included by simply specifying the string associated with the algo-
rithm, avoiding the need to pass a reference to the function directly. This
is because inter- and intra-distances are calculated using SciPy’s pdist
and cdist functions, respectively, which facilitates easy re-use of its built-
in distance metrics. Built-in metrics also support a weights vector
argument, which will be relevant to our discussion in Section 4.2.

PHASER explicitly splits out inter- and intra-distance classes, which
are marked in the DataFrame as class 0 and 1, respectively. Inter-
distances correspond to the behaviour of an algorithm/transform/dis-
tance metric triplet when considering unrelated images, while Intra-
distances correspond to images that should match. These intra-
distances are calculated on a 1:1 basis between the original image and
the hash algorithm/transform/distance triplet, meaning that for a
dataset of 1000 images, with two perceptual hash algorithms, five
transforms, and two distance metrics, the overall number of intra-
distance observations would be 1, 000 × 2 × 5 × 2 = 20, 000.

As inter-distance pairwise comparisons scale with the square of the
number of images, inter-score observations are sampled, such that each
image is compared with n randomly selected images in the DataFrame
for each triplet. n is automatically calculated to balance both classes, and

Fig. 1. Tree structure of the PHASER library.

Fig. 2. Stages of processing in the PHASER Library.

2 DOI: https://zenodo.org/doi/10.5281/zenodo.10363150. GitHub: http
s://GitHub.com/AabyWan/PHASER.

S. McKeown et al.

https://zenodo.org/doi/10.5281/zenodo.10363150
https://GitHub.com/AabyWan/PHASER
https://GitHub.com/AabyWan/PHASER

Forensic Science International: Digital Investigation 48 (2024) 301680

4

while this balancing is usually inexact it can be compensated for in the
evaluation stage. This equity in scale allows for metrics and plots to be
meaningfully compared on the same axes (otherwise, probability den-
sity distributions become unbalanced, for example). The DataFrame for
all pairwise observations is saved to a bz2 compressed csv, with metric
label encodings being present in the existing encoding file, or added at
this stage.

It should be noted that while the underlying metrics are often
measuring the distance between hashes, some evaluation approaches are
preferable to be viewed in terms of similarity. As both values are nor-
malised between 0 and 1, the point of view is inverted by simply
calculating 1 − x, where x is either similarity or distance.

3.2.3. Step 3 - Evaluation and Plotting
As discussed in Section 2.2, there are several ways to evaluate the

behaviour of perceptual hashing algorithms. We assume that the
matching task in digital forensics is essentially a classification task for
some decision threshold t, with an emphasis on associated metrics such
as FP/FN assessment, which is in line with Rihamark (Zauner, 2010).
PHASER facilitates three types of evaluation: i) Exploratory Analysis, ii)
Classification Efficacy, and iii) Performance Optimisation. Each is dis-
cussed in turn below.

Exploratory Analysis: Gaining an initial understanding of the
behaviour of a hashing algorithm/transform/distance triplet can be a
useful beginning. For this reason, we provide features to calculate and
plot distance/similarity histograms for inter- and intra-comparisons, as
in prior work (Hamadouche et al., 2021; McKeown and Buchanan,
2023). Kernel Density Estimation (KDE) plots can also be used to visu-
alise the separation or overlap of these inter- and intra-distance be-
haviours. We expand on this idea in Section 3.3.

Classification Efficacy: KDE plots help understand the general
trade-offs; however, actual classification performance can be viewed at
the macro-level, across all thresholds, with a ROC (Receiver Operating
Characteristic) curve and corresponding Area Under the Curve (AUC), or
at the micro-level for individual thresholds with a Confusion Matrix. We
also facilitate Equal Error Rate (EER) plots to visualise the trade-offs
differently from the KDE plot. However, we don’t expect that the EER
is particularly useful in and of itself in a forensics use case, as it is more
likely that a false negative rate would be calculated for a target false
positive rate.

Performance Optimisation: When conducting the above evaluation
steps, there is an option to do a bit-level analysis of hash vectors to
understand if patterns are generated when measuring distance scores for
a given algorithm and distance pair across transform types. This data can
then be used to ‘learn’ weights for each bit in the hash corresponding to
how effective it is across all transform classes, ideally optimising per-
formance in a similar vein to Steinebach (2011). This requires that the
distance metric accepts a weight vector parameter equal in length to the
chosen hash length. In SciPy, the weights are passed in as the w
parameter. This step is optional, and we experimentally explore its po-
tential in Section 4.2.

In terms of implementation, as depicted in Fig. 1, evaluation statis-
tics/metrics are separated from the plotting aspect. The MetricMaker
class generates the statistics described above for a given triplet, with the
ComputeMetrics class acting as a wrapper class for doing this across all
triplets. Adding new statistical derivations to the MetricMaker.fit func-
tion would allow them to be easily processed and aggregated. The
BitAnalyzer class can optionally generate the bit-analysis and optimi-
sation weightings described above. The Plotting module provides
wrappers to relevant Python libraries to easily visualise triplet infor-
mation in a Histogram, KDE, EER, or ROC plot or as a Confusion Matrix.

To verify that the results produced by PHASER were correct, we ran
the same dataset as prior work (McKeown and Buchanan, 2023), using
TransformFromDisk to load existing transforms, and compared statistics
for perceptual hashes in Python’s ImageHash library. No code base was
shared, however, results were identical.

3.3. Visualising performance - An example

To demonstrate typical performance classes and aid in interpreting
the visualisations generated by PHASER, Fig. 3 depicts a collection of
KDE and EER plots for ColorHash (Buchner), PDQ (Facebook), and
pHash (Buchner). Plots were generated from a small test set for the
Border transform (red border around image, width 30 pixels) as it neatly
separates out behaviour types.

In Fig. 3a, ColorHash does not separate the similarity distributions of
unrelated images, the inter-class, from those that should match intra-
class, when comparing originals to transforms. The overlap is consid-
erable, such that any similarity threshold would result in many false
positives, with the rate of this trade-off being visualised in the EER plot
in Fig. 3b. In this case, setting a threshold of 0.9 to balance the False
Positive Rate (FPR) and False Negative Rate (FNR) rate results in both
being around 70 %, which is very poor. PDQ, on the other hand, neatly
separates out both distributions, such that a suitable threshold can be
found while minimising both FPR and FNR. For pHash, the distributions
overlap somewhat, such that a trade-off must be made between a desired
FPR and FNR rate for any threshold. While this example is specific, it is
indicative of the three types of behaviour which may be present for a
given algorithm/transform/distance metric triplet.

3.4. Suggested avenues of exploration in perceptual hashing

As PHASER facilitates the exploration of algorithm/transform/dis-
tance triplets, it should now be much more straightforward to identify
algorithmic weaknesses. Identifying such issues then allows for the
development of approaches to making the hash more robust without
fundamentally altering the underlying mechanisms. This could be ach-
ieved in a variety of ways, such as by exploring pre-processing nor-
malisation approaches (Steinebach, 2011). Similarly, as is more
common in CBIR, multi-index approaches, with multiple hashes, may be
used to compensate for the weaknesses of each algorithm or to form a
pipeline, such as those used in spam detection (Liu et al., 2010). Building
on this, a more nuanced understanding of global vs. local features, as in
CBIR, would be beneficial. For example, in testing PHASER we noted
that difficult transforms such as Rotate (Breitinger et al., 2013a; Stei-
nebach, 2011) and Mirroring (Breitinger et al., 2013a; McKeown and
Buchanan, 2023) had no detrimental effect on ColorHash, as its global
colour histograms are unaffected by the structure of these pixels, while
other algorithms struggle greatly with x-axis mirroring.

The distance metric space also does not appear to have been
adequately explored. CBIR neatly separates the ideas of representation
(feature vectors, hash) and comparisons, while the comparison of fea-
tures has considerably less attention paid to it in the perceptual hashing
literature. Exploring different distance metrics, metric weightings, or
combinations of distance metrics, perhaps together with multi-hash
indices, may be beneficial. Indeed, we explore one aspect of this in the
next section. Understanding structural aspects (Steinebach, 2023) of
hashes generated by perceptual hashing algorithms may also be useful,
as, beyond weightings, there may be recurring patterns or information
leakage (Athalye, 2021). Such insights may also be of use when
considering hash comparisons and global vs. local changes in the hash.
For instance, Hamming distance is a global difference measure, but
perhaps it would be worth exploring if local, clustered, changes in hash
vectors should be weighted differently (to, say, downplay the impact of a
copy-move object in a corner of the image).

4. Experiments

To demonstrate the utility of PHASER, we present two short exper-
iments in this section, which explore open questions directly in the
framework. The code used for these experiments serve as exemplars on
the PHASER GitHub page.

S. McKeown et al.

Forensic Science International: Digital Investigation 48 (2024) 301680

5

4.1. How many images?: Convergence of measures at various dataset
sizes

It was noted in Section 2.2 that the dataset of original images used to
evaluate Perceptual Hashes varies considerably. When considering the
use case of PHASER, it became necessary to establish how large the
dataset must be to obtain reliable results. This information was not
readily available in the literature, so an experiment was conducted to
understand sampling variability.

The Flickr 1 Million dataset (“MIRFLICKR Download) was used due
to its large scale, and all images were hashed using PDQ and Wavehash
for the Flip_Horizontal (mirror on x-axis), Rescale (96 × 96px) and
Watermark (40px min, target 10 % image height, bottom right-corner)
transforms. Prior work (McKeown and Buchanan, 2023) has shown
that the inter-image distributions for PDQ and Wavehash vary consid-
erably (narrow and wide distributions, respectively), making them
complementary choices. For similar reasons, the transforms were chosen
to represent an easy case (Rescale), a slightly more difficult case
(Watermark), and a very difficult case (Flip_Horizontal), again based on
prior work (McKeown and Buchanan, 2023). For the sake of simplicity,
we only considered Hamming distance here, as it is the most widely
used.

To simulate differing dataset scales, the DataFrame of all hashes was
sampled for 1000; 10,000; 100,000; and 250,000 images before calcu-
lating distance scores. Inter- and intra-distances and their corresponding
evaluation metrics, were then calculated for each sample size, repeating
the process 250 times for each. PHASER balances the number of inter-
and intra-distance observations such that the number of observations for
each inter- and intra-distance triplet is the same as the sample size. As
this is a necessary step for some analysis approaches to be representa-
tive, we expect these results to hold for experiments conducted outside
of PHASER, too.

To capture the variability of both inter- and intra-distance compar-
isons, we plot the EER Decision Threshold, i.e. the similarity value
where both the FPR and FNR are equal, as it captures the relationship
between inter- and intra-score distributions. The assumption is made
that all original images in the dataset are unrelated for the sake of FPR/
FNR calculation. The boxen-plots for each algorithm are depicted in
Fig. 4.

The EER threshold for PDQ-Rescale (4a) shows considerable change
from the smallest sample size, 1000, to the next order of magnitude,
with the range shrinking from 0.59–0.83 to 0.61–0.68. This suggests that
there are cases where there is a clear benefit to samples on the larger side
of the literature, even for the least-difficult transform. The more difficult
Watermark case has very similar behaviour, however, the difficult Flip
transform does not change the EER threshold much at all, largely
because PDQ is very poor at handling this transform, producing dis-
tances that correspond to unrelated images. Similar trends are found
with Wavehash, though the absolute values vary considerably for the
EER threshold, with a smaller maximum range.

Overall, the variance between iterations drops substantially as the
dataset increases from 1000 to 100,000 images. Table 1 depicts standard
deviation values for the Rescale transform, as it seems to vary the most
despite being a relatively trivial transformation. We note an order of
magnitude difference between values at 1000 and 100,000 samples, and
there is still improvement to be had at 250,000. We would suggest that
larger datasets may produce more consistent results, though there could
be diminishing returns beyond 100,000 on heterogeneous datasets. This
point may occur much earlier for more constrained datasets, where
images are relatively homogeneous.

4.2. Optimising for weaknesses: Assigning hash bit-vector weights

Perceptual hashing algorithms can be separated into heuristic ap-
proaches and machine learning-based approaches, which derive features
or their respective weights directly from image datasets. However, aside

Fig. 3. Comparison KDE and EER plots for different algorithms on the Border
transform for a small test set.

S. McKeown et al.

Forensic Science International: Digital Investigation 48 (2024) 301680

6

from Steinebach’s (Steinebach, 2011) weighting scheme for ForBild,
data-driven optimisation of heuristic hashes does not appear to have
been pursued. We explored this possibility by leveraging functionality in
both PHASER and SciPy.

250,000 images were sampled from the Flickr 1 Million dataset,
processing them with PDQ, pHash and Wavehash for a range of trans-
forms: Border (30px), Crop (5 % all sides), Flip (x-axis), Rescale(96x96),
Rotate (anti-clockwise 5◦), and Watermark. All three transforms are

heuristic approaches and derive features in the frequency domain. These
have been tested previously in prior work (Breitinger et al., 2013a;
McKeown and Buchanan, 2023; Drmic et al., 2017), with the x-axis
mirroring proving to be the main point of difficulty.

Distance scores were then calculated for all triplets, with bit-analysis
enabled when computing metrics. Each bit in the hash vector (varying in
length for each algorithm) was analysed for its relative contribution to
rejecting and accepting an image match correctly at the EER threshold.
Median values are then used to generate a bit-weight vector using
aggregated information across all transforms, ideally improving overall
performance. Cosine distance was included in this analysis to determine
whether potential benefits extend beyond Hamming distance.

An aggregated performance summary across all transforms, before
and after applying optimised weights, is provided in Table 2. Generally,
all algorithms improve for distance and evaluation metrics, though the
change is limited for Wavehash, while both PDQ and pHash see a larger
benefit. Cosine distance values track Hamming closely for these hash
types.

To determine if the aggregated benefit is derived from an overall
improvement or, in difficult cases, the difference in AUC values between
pre- and post-optimisation are plotted in Fig. 5. The uplift in PDQ and
pHash performance can be attributed to improving the difficult Flip
case, while Wavehash seems to benefit slightly from the Border trans-
form instead. On the other hand, pHash loses ground slightly in the
Border case, though it still benefits significantly in the aggregated
metrics.

To dive deeper, we plot the bit-analysis generated by PHASER for the
pHash algorithm for the specific improvement case, Flip, and the
aggregated rates across all transforms. Darker bars show when the bit
more accurately matches the ideal outcome, but a 50/50 chance is ex-
pected for inter-image comparisons.

Interestingly, a piano-like pattern is found in Fig. 6a for the intra-
image cases (TP/FN), where alternating bits switch between very high
and very low degrees of accuracy. We suggest that this is an artefact of
how these hashes derive the bits in their hash from the Discrete Cosine
Transform (DCT) coefficient matrices. The upshot is that every second
bit strongly matches the original and Flip transform. As such, re-
balancing the weights to favour these, there is a large performance
change for the Flip case. The part of the confusion matrix derived from
inter-image comparisons is roughly as expected, though, at a rate of
around 0.5.

The overall bit-weight applied to pHash for all comparisons is
visualised in Fig. 6b the piano-like pattern to compensate for Flip is
visible but is softened somewhat when median values from all trans-
forms and success/failure classes are applied.

Fig. 4. Metric convergence for EER thresholds for three transforms. Note that
the plots do not share the y-axis.

Table 1
Standard deviations of EER-thresholds for the Rescale transform across dataset
sizes. 250 iterations at each sample size.

Rescale(96, 96) EER Threshold STDEV

Sample Size PDQ Wavehash

1000 0.0634 0.0212
10,000 0.0125 0.0134
100,000 0.0023 0.0076
250,000 0.0015 0.0047

Table 2
A comparison of classification performance across aggregated transforms for
various hashes. Measuring Area Under the ROC Curve (AUC), and Equal Error
Rate (EER).

Before Bit-weighting (All Transforms)

Algorithm Distance Metric AUC EER

mean std mean std

PDQ Hamming 0.918 0.197 0.090 0.199
Cosine 0.918 0.197 0.090 0.199

pHash Hamming 0.905 0.203 0.112 0.203
Cosine 0.905 0.203 0.112 0.203

Wavehash Hamming 0.817 0.335 0.188 0.310
Cosine 0.817 0.335 0.188 0.310

After Bit-weighting (All Transforms)
PDQ Hamming 0.969 0.072 0.047 0.096

Cosine 0.969 0.071 0.047 0.094
pHash Hamming 0.931 0.129 0.090 0.143

Cosine 0.932 0.128 0.088 0.140
Wavehash Hamming 0.820 0.329 0.185 0.306

Cosine 0.820 0.330 0.185 0.307

S. McKeown et al.

Forensic Science International: Digital Investigation 48 (2024) 301680

7

This result was quite unexpected, though it clearly demonstrates that
algorithmic nuances may have unexpected interactions with particular
transform classes. These insights can then provide wider knowledge for
improving the algorithms or, in this case, for mitigating some of their
weaknesses. It is also worth noting that there was almost no detrimental
impact on performance for any given transform using the bit-weights,
though a wider set of hashes and transform classes should be tested.

5. Conclusion and future work

This work described PHASER, a new open-sourced perceptual
hashing evaluation framework, primarily targeting the digital forensics
and content-detection use case. We then applied the framework to the
Flick1m dataset to answer two open questions that need to be covered
directly in the literature. Firstly, we observe that large datasets with
>100k original images may provide more accurate results, and sec-
ondly, comparing perceptual hashes using learned weights may be
useful. In particular, we discovered that the DCT-based transforms we
tested have a peculiar behaviour on mirrored images, with half of the
bits in the hash being strongly correlated with accurate classification
and the other half strongly negatively correlated.

By open-sourcing and releasing PHASER, we hope to facilitate other
researchers with the discovery of such anomalies and mitigations for
them, either by forensics practitioners or scientists. Visual similarity
matching is a difficult task, but it is possible that existing elements of
Content-Based Image Retrieval (CBIR) can be leveraged for this use case,
for example, in multi-hash indices or via the development of more
nuanced hash comparison techniques. Ultimately, there still appear to
be multiple avenues to explore that may better scale detection in-line
with demand.

Data availability

Data will be made available on request.

References

Alkhowaiter, M., Almubarak, K., Zou, C., 2022. Evaluating perceptual hashing
algorithms in detecting image manipulation over social media platforms. In: 2022
IEEE International Conference on Cyber Security and Resilience (CSR). Plus 0.5em
Minus 0.4emIEEE, pp. 149–156.

Apple, 2022. Csam Detection Technical Summary. https://www.apple.com/child-safe
ty/pdf/CSAM_Detection_Technical_Summary.pdf. (Accessed 2 February 2022)
[Online.

Athalye, A., 2021. “ inverting PhotoDNA,” [Online]. Available: https://anishathalye.
com/inverting-photodna/.

Beebe, N., Clark, J., 2005. Dealing with terabyte data sets in digital investigations. In:
Pollitt, M., Shenoi, S. (Eds.), Advances in Digital Forensics, Plus 0.5em Minus 0.
Springer US, 4emBoston, MA, pp. 3–16.

Breitinger, F., Liu, H., Winter, C., Baier, H., Rybalchenko, A., Steinebach, M., 2013a.
Towards a process model for hash functions in digital forensics. In: International
Conference on Digital Forensics and Cyber Crime. Plus 0.5em Minus 0. 4emSpringer,
pp. 170–186.

Breitinger, F., Stivaktakis, G., Baier, H., 2013b. “ FRASH: a framework to test algorithms
of similarity hashing,”. Digit. Invest. 10, S50–S58.

J. Buchner. Image hash. [Online]. Available: {https://github.com/JohannesBuchner/
imagehash}.

Bursztein, E., Clarke, E., DeLaune, M., Elifff, D.M., Hsu, N., Olson, L., Shehan, J.,
Thakur, M., Thomas, K., Bright, T., 2019. Rethinking the detection of child sexual
abuse imagery on the internet. In: The World Wide Web Conference, pp. 2601–2607.

Casey, E., 2019. The chequered past and risky future of digital forensics. Aust. J. Forensic
Sci. 51 (6), 649–664.

Drmic, A., Silic, M., Delac, G., Vladimir, K., Kurdija, A.S., 2017. “ Evaluating robustness
of perceptual image hashing algorithms,”. In: 2017 40th International Convention on
Information and Communication Technology, Electronics and Microelectronics (MIPRO).
Plus 0.5em Minus 0.4emOpatija, Croatia. IEEE, pp. 995–1000.

Du, X., Hargreaves, C., Sheppard, J., Anda, F., Sayakkara, A., Le-Khac, N.-A., Scanlon, M.,
2020. Sok: exploring the state of the art and the future potential of artificial
intelligence in digital forensic investigation. In: Proceedings of the 15th
International Conference on Availability. Reliability and Security, pp. 1–10.

Facebook. Pdq [Online]. Available: https://github.com/facebook/ThreatExchange/t
ree/main/pdq/python.

Ferenčak, M., Grd, P., Tomičić, I., 2023. “ the impact of image processing on perceptual
hash values,”. In: 2023 46th MIPRO ICT and Electronics Convention (MIPRO). Plus
0.5em Minus 0.4emOpatija, Croatia. IEEE, pp. 1070–1075.

Gaillard, M., Egyed-Zsigmond, E., 2017. Large Scale Reverse Image Search. XXXVème
Congrès INFORSID, p. 127.

Garfinkel, S., Farrell, P., Roussev, V., Dinolt, G., 2009. Bringing science to digital
forensics with standardized forensic corpora. Digit. Invest. 6, S2–S11.

Göbel, T., Uhlig, F., Baier, H., Breitinger, F., 2022. “ FRASHER – a framework for
automated evaluation of similarity hashing,”. Forensic Sci. Int.: Digit. Invest. 42,
301407.

Hamadouche, M., Zebbiche, K., Guerroumi, M., Tebbi, H., Zafoune, Y., 2021. “ A
comparative study of perceptual hashing algorithms: Application on fingerprint
images,”. In: 2nd International Conference on Computer Science’s Complex Systems
and Their Application, Algeria, p. 12.

Hao, Q., Luo, L., Jan, S.T., Wang, G., 2021. “ It’s not what it Looks like: manipulating
perceptual hashing based applications,”. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. Plus 0.5em Minus
0.4emVirtual Event Republic of Korea. ACM, pp. 69–85.

Horsman, G., 2019. Tool testing and reliability issues in the field of digital forensics.
Digit. Invest. 28, 163–175.

Horsman, G., 2022. “ that tool is rubbish!...or is it?”. Sci. Justice 62 (5), 515–519.
Jain, S., Cretu, A.-M., de Montjoye, Y.-A., 2022. Adversarial Detection Avoidance

Attacks: evaluating the robustness of perceptual hashing-based client-side scanning.
In: 31st USENIX Security Symposium (USENIX Security 22), pp. 2317–2334.

Kornblum, J., 2006. Identifying almost identical files using context triggered piecewise
hashing. Digit. Invest. 3, 91–97.

Krawetz, N.. Photodna and limitations. Not known [Online]. Available: https://www.hac
kerfactor.com/blog/index.php?archives/931-PhotoDNA-and-Limitations.html.

Fig. 5. Differences in the AUC metric before and after applying bit-weights for
each algorithm/transform for the normalised Hamming distance.

Fig. 6. Representations of the ‘success rate’ for each bit in the 64-bit pHash
hash vector. A higher frequency means the bit matched more consistently with
expectation, i.e., a difference for the inter-class and a match for the intra-class.
The same patterns are present for PDQ, though it is easier to see with fewer bits.

S. McKeown et al.

http://refhub.elsevier.com/S2666-2817(23)00199-3/sref1
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref1
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref1
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref1
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://anishathalye.com/inverting-photodna/
https://anishathalye.com/inverting-photodna/
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref4
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref4
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref4
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref5
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref5
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref5
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref5
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref6
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref6
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref8
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref8
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref8
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref9
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref9
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref10
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref10
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref10
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref10
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref11
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref11
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref11
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref11
https://github.com/facebook/ThreatExchange/tree/main/pdq/python
https://github.com/facebook/ThreatExchange/tree/main/pdq/python
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref13
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref13
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref13
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref14
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref14
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref15
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref15
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref16
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref16
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref16
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref17
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref17
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref17
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref17
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref18
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref18
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref18
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref18
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref19
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref19
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref20
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref21
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref21
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref21
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref22
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref22
https://www.hackerfactor.com/blog/index.php?archives/931-PhotoDNA-and-Limitations.html
https://www.hackerfactor.com/blog/index.php?archives/931-PhotoDNA-and-Limitations.html

Forensic Science International: Digital Investigation 48 (2024) 301680

8

Liu, T.-J., Tsao, W.-L., Lee, C.-L., 2010. A high performance image-spam filtering system.
In: 2010 Ninth International Symposium On Distributed Computing and Applications to
Business, Engineering and Science. Plus 0.5em Minus 0.4emIEEE, pp. 445–449.

Lyle, J., 2007. Computer Forensic Tool Testing at Nist, vol. 18. URL. http://www.cftt.nis
t.gov/documents/Amalfi-04.ppt, 2003–30.

McKeown, S., Buchanan, W.J., 2023. Hamming distributions of popular perceptual
hashing techniques. Forensic Sci. Int.: Digit. Invest. 44, 301509.

McKeown, S., Russell, G., Leimich, P., 2019. Fast forensic triage using Centralised
thumbnail caches on windows operating systems. J. Dig.For. Secur. Law 14 (3).

Michelet, G., Breitinger, F., Horsman, G., 2023. “ Automation for digital forensics:
towards a definition for the community,”. Forensic Sci. Int. 349, 111769.

Müller, H., Müller, W., Squire, D.M., Marchand-Maillet, S., Pun, T., 2001. Performance
evaluation in content-based image retrieval: overview and proposals. Pattern
Recogn. Lett. 22 (5), 593–601.

OliveiraJr, E., Zorzo, A.F., Neu, C.V., 2020. Towards a conceptual model for promoting
digital forensics experiments. Forensic Sci. Int.: Digit. Invest. 35, 301014.

Prokos, J., Jois, T.M., Fendley, N., Schuster, R., Green, M., Tromer, E., Cao, Y., 2021.
Squint Hard Enough: Evaluating Perceptual Hashing with Machine Learning,”
Cryptology ePrint Archive, Paper 2021/1531 [Online]. Available: https://eprint.
iacr.org/2021/1531.

Samanta, P., Jain, S., 2021. “ analysis of perceptual hashing algorithms in image
manipulation detection,”. Proc. Comput. Sci. 185, 203–212.

Steinebach, M., 2011. Robust hashing for efficient forensic analysis of image sets. In:
International Conference on Digital Forensics and Cyber Crime. Plus 0.5em Minus 0.
4emSpringer, pp. 180–187.

Steinebach, M., 2023. “ an analysis of PhotoDNA,”. In: Proceedings of the 18th
International Conference on Availability, Reliability and Security. Plus 0.5em Minus 0.
4emBenevento Italy: ACM, pp. 1–8.

Steinebach, M., Liu, H., Yannikos, Y., 2012a. ForBild: efficient robust image hashing.
Media Watermark. Secur. For. 8303, 83030O, 2012.

Steinebach, M., Liu, H., Yannikos, Y., 2012b. Forbild: efficient robust image hashing. In:
Media Watermarking, Security, and Forensics, vol. 8303. plus 0.5em minus
0.4emSPIE, pp. 195–202, 2012.

Steinebach, M., Liu, H., Yannikos, Y., 2014. Efficient cropping-resistant robust image
hashing. In: 2014 Ninth International Conference on Availability, Reliability and
Security. Plus 0.5em Minus 0.4emIEEE, pp. 579–585.

Tyagi, V., 2017. Content-Based Image Retrieval. Plus 0.5em Minus 0.4emSingapore.
Springer Singapore.

Yang, B., Gu, F., Niu, X., 2006. Block mean value based image perceptual hashing. In:
Intelligent Information Hiding and Multimedia Signal Processing, 2006. IIH-MSP’06.
International Conference on. Plus 0.5em Minus 0.4emIEEE, pp. 167–172.

Zauner, C., 2010. Implementation and Benchmarking of Perceptual Image Hash
Functions.

MIRFLICKR Download [Online]. Available: http://press.liacs.nl/mirflickr/mirdownload.
html.

S. McKeown et al.

http://refhub.elsevier.com/S2666-2817(23)00199-3/sref24
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref24
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref24
http://www.cftt.nist.gov/documents/Amalfi-04.ppt
http://www.cftt.nist.gov/documents/Amalfi-04.ppt
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref26
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref26
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref27
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref27
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref28
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref28
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref29
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref29
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref29
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref30
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref30
https://eprint.iacr.org/2021/1531
https://eprint.iacr.org/2021/1531
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref32
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref32
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref33
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref33
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref33
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref34
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref34
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref34
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref35
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref35
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref36
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref36
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref36
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref37
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref37
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref37
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref38
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref38
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref39
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref39
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref39
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref40
http://refhub.elsevier.com/S2666-2817(23)00199-3/sref40
http://press.liacs.nl/mirflickr/mirdownload.html
http://press.liacs.nl/mirflickr/mirdownload.html

	PHASER: Perceptual hashing algorithms evaluation and results - An open source forensic framework
	1 Introduction
	2 Background and related work
	2.1 Content-Based Image Retrieval and forensic perceptual hashing
	2.2 Evaluating perceptual hashing

	3 PHASER
	3.1 Design goals
	3.2 Overview and processing pipeline
	3.2.1 Step 1 - Hashing and transformation
	3.2.2 Step 2 - Pairwise distance calculations
	3.2.3 Step 3 - Evaluation and Plotting

	3.3 Visualising performance - An example
	3.4 Suggested avenues of exploration in perceptual hashing

	4 Experiments
	4.1 How many images?: Convergence of measures at various dataset sizes
	4.2 Optimising for weaknesses: Assigning hash bit-vector weights

	5 Conclusion and future work
	Data availability
	References

