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A B S T R A C T   

The advent of the smart home has been made possible by Internet of Things (IoT) devices that continually collect 
and transmit private user data. In this paper, we explore how data from these devices can be accessed and applied 
for forensic investigations. Our research focuses on the iRobot Roomba autonomous vacuum cleaner. Through 
detailed analysis of Roomba’s cloud infrastructure, we discovered undocumented Application Program Interfaces 
(APIs). Leveraging these APIs, we developed PyRoomba – an open-source Python application that acquires a 
Roomba’s complete mission history and navigational data. From this information, PyRoomba generates detailed 
mission logs and maps of navigated spaces, informing the user about mission duration, detected objects, degree 
of coverage, and encrypted image captures. We compared the outcomes of PyRoomba with Roomba’s mobile 
application across six navigation runs in two environments of different sizes. We found that PyRoomba provides 
more detailed environmental information. A simulated crime scene case study demonstrated PyRoomba’s ability 
to detect environmental changes, such as bodies and knives, which were identified as hazards or obstacles. 
PyRoomba offers a more forensically sound approach to cloud acquisition compared to Roomba’s standard 
mobile application, minimizing the risk of inadvertently triggering the device during a crime scene investigation.   

1. Introduction 

The world’s first autonomous robot vacuum, the Electrolux Trilobite, 
was developed in 1996. Since then, the technology surrounding these 
devices has rapidly and continually evolved1. Autonomous vacuums can 
now wirelessly connect to the internet, detect obstacles within centi
meters, and—as we argue in this paper—help solve crimes. 

As IoT devices become more ubiquitous and integrated into our daily 
lives, the data that they collect has raised several privacy concerns 
(Arabo et al., 2012; Buil-Gil et al., 2023; Chen et al., 2021). For example, 
the Amazon iRobot Roomba collects data to create a 3D home layout 
(Bugeja et al., 2021; Bettini et al., 2018) including furniture location and 
obstacles. An inadvertent leak of this data could reveal private aspects of 
the user’s lifestyle and habits (Bettini et al., 2018) or enable behavioral 
profiling and object identification by law enforcement (McAmis and 
Kohno 2023). 

As of 2022, iRobot’s Roomba vacuum cleaners dominated the U.S. 
robotic vacuum market with a staggering 78 % market share. Their 
revenue in Q4 2022 showed a significant shift, with mid-tier and 

premium robots constituting 84 % of total sales, a rise from 81 % the 
previous year (Bedford 2023). Despite a minor dip, iRobot continued its 
global leadership, boasting a 46 % market share in 2020 (Department, 
2023b) and a substantial 75 % share in North America in 2020 
(Department 2023a). 

The extent to which these devices facilitate home surveillance re
mains largely unexplored. Although Amazon asserts that they do not 
share this data with third parties, concerns persist about potential uses 
like targeted advertising (Guo 2022). Addressing these concerns, Bugeja 
et al. (2021) noted that Roomba has introduced a privacy policy on its 
mobile application and website, which details data collection and usage. 
Users may opt out of data sharing by disabling the “Clean Map” feature 
in the Roomba mobile application. Providing awareness of these privacy 
risks is vital for consumers. Companies must implement robust privacy 
and security measures to safeguard user data. This data, while raising 
privacy concerns, may prove indispensable for digital forensic 
investigations. 

Investigators increasingly rely on IoT devices as digital evidence 
sources in cases. For example, Amazon Alexa was used to investigate 
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Angie White’s murder by her husband, Daniel White. Incriminating 
voice commands stored in the cloud helped establish a timeline and 
provide crucial evidence against Daniel White (BBC 2023). Similarly, 
Echo smart speakers have been used in murder investigations, with 
judges ordering Amazon to provide recordings and device data as po
tential evidence (Whittaker 2018). 

We developed a cloud-based method for digital investigators to 
extract and analyze data from autonomous vacuums at crime scenes. 
Through studying Roomba’s network communications, we designed a 
forensic tool to visualize the vacuum’s navigation over time. This tool 
was validated using a simulated crime scene, proving its ability to detect 
environmental alterations related to crime. 

Our contributions are as follows.  

• We conducted the primary forensic analysis of the Roomba cloud 
infrastructure by analyzing its communication methods to access 
undocumented and hidden APIs for extracting artifacts. This allowed 
us to obtain operational data without directly interfacing with the 
physical device.  

• We created PyRoomba, a Python-based open-source application that 
utilizes the APIs we discovered. This tool allows secure, authenti
cated access to Roomba’s cloud infrastructure, enabling the retrieval 
of artifacts in a manner that maintains forensic integrity. We’ve 
made PyRoomba available to the public on GitHub .2 

• We conducted a simulated crime scene case study to showcase po
tential forensic applications. The study presented how PyRoomba 
can reconstruct events, detect environmental changes, and provide 
insights unavailable via the Roomba mobile application. 

This paper is organized as follows. Section 2 provides current 
research regarding autonomous robot vacuums. We discuss our pro
cedure in Section 3, and we present the artifacts we retrieved as APIs in 
Section 4. Section 5 introduces the Python application based on our 
findings. Section 6 evaluates the results and includes a case study, while 
Section 7 presents the evaluation discussion. Section 8 presents the 
Limitation of our work. Finally, Section 9 discusses conclusions. 

2. Related work 

Previous research has addressed forensic challenges associated with 
the extraction and analysis of digital traces from IoT devices through the 
introduction of novel data extraction methods, the development of 
frameworks and tools to standardize practices, and the exploration of 
security and privacy issues. 

2.1. Data extraction methods 

Servida and Casey (2019) introduced a six-step forensic methodol
ogy, emphasizing the importance of data collection from IoT devices, 
cloud providers, and hardware analysis. The study successfully extracted 
traces from various sources, including system logs, user commands, 
device memory, networks, and smartphone applications, with recovered 
credentials enabling cloud data access. 

Kim et al. (2020) addressed challenges in extracting meaningful data 
from diverse smart home devices. They focused on devices like Google 
Nest Hub, Samsung SmartThings, and Kasa Cam for forensic purposes, 
encompassing device data, movements, voice commands, and call his
tory. Through correlational analysis, they derived a comprehensive 
framework with enhanced data accuracy for smart home data forensics. 

Chung et al. (2017) presented a novel approach to digital forensics 
within the Alexa ecosystem. Their approach combined cloud-native and 
client-side forensics to support investigations. They introduced the 
Cloud-based IoT Forensic Toolkit (CIFT) tool as a proof-of-concept for 

identifying, acquiring, and analyzing artifacts from cloud and local de
vices in the Alexa ecosystem. 

Zhou et al. (2022) extracted and analyzed Roomba’s operational 
logs, installation details of the control system, and application usage 
records, all sourced from the memory of a smartphone. While this study 
offered valuable insights into smartphone-based data acquisition, our 
research differed in its approach and focus. Our work focused on the 
cloud forensic analysis of Roomba vacuums, leveraging undocumented 
APIs for a more comprehensive and forensically sound method of data 
extraction. 

2.2. Frameworks and tools 

Meffert et al. (2017) proposed Forensic State Acquisition from 
Internet of Things framework (FSAIoT) to address issues associated with 
standardization, storage limitations, and diverse communication pro
tocols. Wu et al. (2019) presented findings from an IoT forensics survey, 
emphasizing challenges in acquiring and analyzing IoT data and devices 
while shaping a clear understanding of the field. Dorai et al. (2018) 
introduced the Forensic Evidence Acquisition and Analysis System 
(FEAAS), an open-source tool designed to assist digital forensics in smart 
home IoT scenarios. Additionally, Baggili et al. (2015) detailed pre
liminary forensic analysis of popular smartwatches, and they high
lighted their sluggish security in other work (Ricci et al., 2017). Pace 
et al. (2023) recently developed an open-source tool called Tile Artifact 
Parser (TAP) to parse forensic data from Bluetooth trackers. The 
research highlighted the complexity of IoT device forensics because of 
issues like standardization, limited historical data, and constant con
nectivity challenges. 

There has been a development of open-source projects implementing 
Roomba’s cloud APIs, contributing to the broader understanding of IoT 
device control and interaction (Koalazak 2021, Clown0503, 2014). This 
past work examined and implemented Roomba’s operational frame
work, allowing users to control Roomba devices via an alternative to the 
official application. While this past work was interesting, it did not ac
quire data from Roomba’s cloud infrastructure in a forensically sound 
manner. This past work changes the integrity of the evidence by con
trolling the device and its operations. 

2.3. Security and privacy issues 

Panwar et al. (2019) and Bugeja et al. (2021) addressed smart home 
security and privacy concerns, highlighting potential risks tied to fea
tures like Roomba’s mapping technology. They emphasized the impor
tance of frameworks such as Privacy Risk Analysis of Smart Homes 
(PRASH) for systematically identifying privacy threats and aiding digital 
forensics. Similarly, Hartzog (2014) discussed privacy and data security 
concerns, particularly regarding Roomba’s mapping technology. While 
prior studies explored privacy and security concerns for data collected 
by Roombas and other IoT devices, this work uniquely studies the 
forensic value of Roomba’s data collection. 

3. Methodology 

Our methodology consisted of four phases: preparation, identifica
tion of cloud APIs, tool creation, and validation. 

3.1. Preparation 

The preparation phase involved obtaining the necessary hardware 
components and installing the required software on the devices (see 
Table 1). We first acquired a Roomba vacuum cleaner (Roomba J Series) 
and an Android smartphone (Samsung Galaxy s10+). The official 
Roomba mobile application was downloaded from the Google Play Store 
and logged in using user credentials. The acquired Roomba was previ
ously linked to another account, requiring that we reset the device in 2 https://github.com/BiTLab-BaggiliTruthLab/PyRoomba. 
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accordance with the official Roomba guidelines (iRobot Corporation, 
2023). Concurrently, apk-mitm and mitmproxy tools were installed on 
our Windows PC. Additionally, the mitmproxy certificate was success
fully integrated into our Android phone and Windows PC. 

We used apk-mitm to inspect the Roomba mobile application’s 
HTTPS traffic (Shroudedcode 2019) (see Fig. 1a). To track the HTTPS 
traffic of the mobile application, we connected our test phone to our 
Windows PC using the mobile hotspot feature. Both the test phone and 
the PC must be on the same network. Next, we proceeded to install both 
mitmproxy and the modified Roomba application onto our test phone. 
Once installed, we authenticated the app using our credentials and 
established a connection with the Roomba (see Fig. 1b). 

3.2. Identification of undocumented cloud APIs 

In the second phase, we used the mitmweb, a web-based interface of 
mitmproxy tool to view and monitor the HTTPS traffic between the 
iRobot mobile application and Amazon’s web server (see Fig. 1c). This 
was essential as the traffic was Transport Layer Security (TLS) encryp
ted, necessitating the use of a Man-in-the-Middle (MitM) approach to 
decrypt and analyze the data. We analyzed the network traffic to iden
tify all the Application programming interface (API) requests. Our 
criteria for identification focused on the name of the APIs and the JSON 
responses this APIs returned. If the JSON contained information such as 

timestamps, user metadata, coordinates, or any map-related details, we 
considered that APIs relevant. All detected API requests, headers, query 
parameters, and responses were documented. We saved these in
teractions as Flows—captured sequences of network requests and re
sponses that are viewable and inspectable via the mitmweb interface. 
Next, we used these findings (APIs) to develop a forensic tool. 

3.3. Tool creation: PyRoomba 

We developed PyRoomba, a forensic web application built with Py
thon 3.11, that extracts Roomba’s navigational mission data via un
documented Roomba APIs without direct device interaction, ensuring 
forensic integrity (refer to Fig. 5bd). This application not only generates 
maps from the navigation data, as detailed in Section 5, but also offers 
timestamps, detected objects, and coverage details. While Roomba 
captures and labels images during navigation, Amazon encrypts them 
for security. PyRoomba grants users access to these encrypted images via 
direct download links, along with crucial cryptographic information like 
the encryption and hash keys, as well as the initialization vector (IV). 

3.4. Validation 

To validate PyRoomba, we set up two controlled environments: one 
larger room and one smaller room, both filled with common household 
objects to replicate real-world scenarios. In the larger room, we 
deployed the Roomba four times, while in the smaller room, we ran it 
twice. Based on the API data, we used our proposed algorithm to 
construct a map of the room. We compared the map produced by 
PyRoomba against the actual scene. Additionally, we evaluated the map 
created by PyRoomba in comparison to the map generated by the native 
Roomba mobile application (which offers fewer details than our forensic 
application). 

4. Undocumented Roomba APIs 

We performed intensive traffic analysis using mitmproxy to gain 
insight into Roomba’s cloud services. Our analysis revealed transfers of 
JSON-formatted artifacts between the Roomba device, mobile applica
tion, and cloud services. Although Roomba does not publish official APIs 
documentation, our analysis revealed undocumented APIs used by their 
mobile application. By capturing and interpreting JSON responses from 
the cloud, we discovered six APIs related to device configuration and 
usage data. Table 2 outlines the features of the undocumented Roomba 
APIs and their potential significance for forensic investigations. Overall, 
this analysis provided valuable insight into the cloud services and data 
formats used by Roomba devices. With an in-depth analysis of undoc
umented APIs, our application can access artifacts without going 
through the official mobile application, limiting the risk of accidental 

Table 1 
List of apparatus.  

Hardware/ 
Software 

Use Company Software/Model Version 

Galaxy s10+ Roomba 
Companion 
Device 

Samsung Android 11.0.0 

Windows PC Roomba 
Companion 
Device 

Microsoft 
Corporation 

Windows 10.0.22621 

Roomba J 
Series - 
j715020 

Tested Roomba 
Device 

iRobot 
Corporation 

sapphire+23.12.4 + 2023- 
06-07- 
cca733b60c4+Firmware- 
Production+150 

APK-MITM 
Tool 

Modification of 
Android APK files 
to enable 
Hypertext 
Transfer Protocol 
Secure (HTTPS) 
inspection 

Open Source v1.2.1 

MITMProxy 
Tool 

An interactive 
HTTPS proxy tool 
for intercepting 
and analyzing 
network traffic 

Open Source mitmproxy 10.1.0  

Fig. 1. Network traffic analysis of amazon roomba.  

A.R. Onik et al.                                                                                                                                                                                                                                 



Forensic Science International: Digital Investigation 48 (2024) 301686

4

activation by investigators. 
It’s crucial to note that the official Roomba mobile application does not 

offer comprehensive data. Specifically, our application provides obstacle 
types identified on the map and discloses the names of obstacles imaged by 
Roomba. Additionally, using the official app poses a risk in forensic in
vestigations, as unintentional activation of the Roomba is possible. Our 
application mitigates this risk. 

4.1. Roomba’s Platform Configuration API 

We examined a Platform Configuration API that yields configuration 
specifics of Roomba’s IoT platform. For the “U.S.” region, the API 
identified three deployments under the deployments key, likely 
meaning staging, testing, and production settings. The common 
configuration parameters include.  

• awsRegion: Region where the Roomba server is located. 
• httpBase: Base URL for unauthenticated Hypertext Transfer Pro

tocol (HTTP).  
• httpBaseAuth: Base URL for authenticated HTTP.  
• mqtt: This highlights Roomba uses Message Queuing Telemetry 

Transport (MQTT) protocol. The messaging system is designed for 
devices with limited memory and bandwidth. 

4.2. Roomba’s Account Provider API 

Our analysis discovered an Account Provider API to access account 
management information. Roomba uses gigya, a customer identity 
management platform. The JSON data provided by this API includes first 
and last name, email address, country, account registration timestamp, 
last login timestamp, user preferences, and account status. In a forensic 
investigation, this data helps establish user behavior, verify identity, and 
correlate with other pieces of evidence. The returned JSON object 
contains the following properties.  

• timestamps: Contains registered timestamp, signature timestamp, 
created timestamp, last login timestamp, and last updated time
stamp. This provides a details timeline of an account activity.  

• loginProvider: Indicates whether the user is logged in via a social 
network or a site. 

• newUser: Either True or False. A value of True means the ac
count was recently created. A value of False means this account has 
existed for some time.  

• isVerified: Information about Accounts email Verification.  

• verifiedTimestamp: Provides the timestamp for when the account 
was verified. This will help to establish the timeline of when the 
account was created. 

4.3. Roomba’s Mission History API 

In the Roomba Mission History API, detailed information on cleaning 
missions is provided. This detailed documentation includes the 
following parameters.  

• chrgM: Charge duration (in minutes) while navigating.  
• chrgs: Total charging time (in seconds).  
• cmd: Command types (e.g., train, start, resume, pause).  
• initiator: Roomba’s start method (remoteApp, localApp, or 

manual).  
• dirt: Refers to the coordinates of dirt detected by the Roomba 

during its operation.  
• dockedAtStart: Whether Roomba began from its dock.  
• durationM: Navigation duration (in minutes).  
• missionId: Unique identifier for the mission.  
• nMssn: Total mission count.  
• pmap: IDs (pmap_id and pmapv_id) for navigation data, used to 

reconstruct Roomba’s path as described in Section 4.4. This infor
mation is employed to reconstruct the robot’s navigation map, of
fering a comprehensive view of its movement and coverage during its 
navigation.  

• runM: Total runtime (in minutes).  
• softwareVer: Roomba’s software version.  
• sqft: Cleaned area (in square feet). 

4.4. Roomba Map Detail Coordinates API 

This API, utilizing pmap_id and pmapv_id, fetches detailed 
Roomba navigation specifics. The key “maps” in the response contain.  

• map_header: Metadata about the map including name, creation 
time, and mission count.  

• border: Outer boundary coordinates detected by Roomba.  
• regions: Segmented area coordinates identified by Roomba.  
• layers: Coordinates for map information like coverage, and dirt. 

Coverage points offer coordinates that allow us to map the area the 
Roomba has cleaned in a room.  

• points2d: Contained two-dimensional points representing specific 
locations or features on the map 

Table 2 
Roomba endpoint APIs and forensic relevance.  

API Category Undocumented Roomba APIs Description Forensic Relevancy 

Platform 
Configuration 

https://disc-prod.iot.irobotapi.com/v1/discover/endpoints? 
country_code = US 

Configuration details about the 
iRobot IoT platform 

Provides insight into the infrastructure and potential 
data storage locations. 

Account Provider https://accounts.us1.gigya.com/accounts.getAccountInfo User account and profile 
information 

Offers a timeline of account activity, login methods, and 
verification status, which can be used to track user 
interactions and potential unauthorized access. 

Mission History https://auth3.prod.iot.irobotapi.com/v1/robotid/ 
missionhistory?filterType = app_id 

Comprehensive dataset about 
Roomba’s activities 

Offers insights into Roomba’s operations, including Wi- 
Fi connections, charging times, and cleaning durations. 
This can help establish timelines and identify 
anomalies. 

Roomba Map 
Detail 
Coordinates 

https://auth3.prod.iot.irobotapi.com/v1/robotid/pmaps/ 
pmap_id/versions/pmapv_id/ 

Information regarding Roomba’s 
navigational coordinates to 
reconstruct the map 

Offers a digital footprint, enabling the reconstruction of 
events, verification of objects, detection of 
environmental changes.  

Obstacle Detected https://auth1.prod.iot.irobotapi.com/v1/robots/ 
340EE4928078487E853BF9F3180A3898/imageupload/ 
metadata 

Details about the type of obstacle Forensically relevant in reconstructing events, 
understanding environmental dynamics, and 
establishing potential evidence in investigations. 

Image Retrieval https://auth1.prod.iot.irobotapi.com/v1/robots/ 
340EE4928078487E853BF9F3180A3898/imageupload/ 
imagesurl 

Link to download Encrypted 
Images captured by Roomba 

Images to see the Obstacles presented in an 
Environment.  
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• pose2d: Coordinates of Roomba’s docker position, start and end 
position.  

• objects: Types of Objects and their coordinates Roomba detected.  
• hazards: Objects Roomba detected but couldn’t identify the type 

were categorized as hazards and provided coordinates.  
• escape_events: Coordinates of brush caught into something and it 

stopped.  
• door_coords: Coordinates of doors. 

4.5. Roomba Obstacle Detection API 

The Roomba Obstacle Detection API provides information that can 
help in investigations. In JSON response, some files have encrypted 
images. All images are labeled with the name of the object in them. 

4.6. Image Retrieval API 

This API offers links to download images taken by Roomba during its 
navigation. Besides images, the API includes files with encryption keys, 
hash values, and IV specifics. Additionally, a file lists all the JSON details 
obtained from the Obstacle Detection API. It’s important to note that 
these downloadable links are available for a limited duration. During 
our analysis, we observed that the link remained active for approxi
mately 36 h. Interestingly, if the images captured by the Roomba are 
reviewed, this link disappears. 

5. PyRoomba: a roomba forensics application 

PyRoomba, developed in Python 3.11, serves as a cloud forensic tool 
that surpasses the standard Roomba mobile applications in data 
extraction capabilities. It ensures secure data retrieval from the cloud, a 
contrast to potential risks posed by mobile applications that may inad
vertently activate the Roomba or face data loss due to uninstallation or 
phone resets. This approach safeguards forensic integrity, offering reli
able and secure cloud-based data access. Noteworthy features include 
the extraction of detailed Mission History (depicted in Fig. 2a), of
fering insights into Roomba’s missions, and Mission Details 
(Fig. 2b), providing specific mission details. The Navigational Map 
(refer to Fig. 2c) presents a comprehensive 2D map with detected ob
jects, timestamps, and environmental insights. A distinctive attribute of 
PyRoomba lies in its ability to download data of identified objects, 
enhancing the depth of forensic analysis. The tool incorporates real-time 
checks during login and data fetching, ensuring adaptability to API 
changes and maintaining consistent reliability. Through historical 
analysis of Roomba’s API, PyRoomba demonstrates enduring consis
tency, particularly in login endpoints, instilling confidence in its long- 
term utility. 

The key features of PyRoomba are. 

• Amazon Web Services (AWS) Authentication: Uses AWS authen
tication to ensure that the data downloaded from the cloud is 
authentic and reliable. With the inherent data integrity and security 
features of AWS, the data retrieved from this application is safe
guarded against tampering or manipulation, thereby enhancing its 
reliability.  

• Full Mission History and Details: Provides a timeline record of 
where and when the Roomba was active. For forensic investigations, 
it can help determine the presence or movement of individuals or 
objects in a particular area at a specific time.  

• 2D Map Generation From Roomba Mission Details: Visualizes a 
2D map of where the Roomba has cleaned or traversed. If there are 
specific areas the Roomba didn’t access or unusual patterns in its 
movement, this might indicate obstacles, changes in the environ
ment, or other interruptions that could be related to an incident. 

5.1. Authentication 

Our application requires AWS authentication to collect cloud-based 
data associated with a Roomba. We implemented an authentication 
process based on the guidelines provided in the official AWS 
documentation.3 

5.2. Mission history and details 

The Mission History documents all navigations executed under a 
specific account linked with the Roomba. It’s important to note that data 
from any previous accounts cannot be retrieved if a factory reset has 
occurred. However, the total number of missions run by the Roomba 
since its inception can be accessed, as the mission count is always 
recorded from its start. Additionally, the Roomba mobile application 
provides 30 navigation histories, but PyRoomba allows retrieval of all 
navigation histories. Using PyRoomba, users can access a range of 
mission details such as the mission number, whether the Roomba 
charged during the mission, dirt detection, starting point (whether it 
began from the dock or not), task completion status, mission duration, 
start and end times, bin cleaning status, the initiating entity, pause 
duration, and the covered area in square feet. For a more visual repre
sentation of these details, users can select individual mission numbers 
under the “Mission History” section of the application. Fig. 2 presents a 
visual representation of the“Mission Details” interface in the 
application. 

5.3. PlotMap: navigational map generation 

PyRoomba’s PlotMap feature provides a 2D map visualization of 
Roomba’s navigated areas and detected objects. This visualization is 
derived from data obtained through the Mapping Metadata API. Key 
elements of the data include room boundaries, the positions and orien
tations of objects, and specific locations such as docking stations, en
trances, exits, and hazards. The PlotMap process involves plotting these 
data points onto a 2D map, effectively representing Roomba’s move
ment, cleaning coverage, and interactions with obstacles. For those 
interested in the detailed implementation of the PlotMap feature, the 
complete code is available in our code repository for further exploration. 

The visualization starts by outlining the room’s borders and then 
marking key locations like the starting point, docking station, and 
endpoints of the Roomba’s journey. Doors are represented by magenta 
lines, highlighting entrances and exits. Hazards and obstacles, such as 
furniture, are also plotted to show areas Roomba navigates around. Our 
algorithm focuses on detailing the areas cleaned by Roomba, indicated 
by the density of coverage points within the mapped area. Additionally, 
it highlights locations where Roomba encountered difficulties or was 
stuck, providing a comprehensive view of its operational efficiency and 
navigational challenges. 

6. Evaluation 

This section presents our experimental analysis comparing 
PyRoomba’s forensic capabilities against the standard Roomba mobile 
application. We focused on four core aspects.  

• Accuracy of Navigational Data: How does PyRoomba compare to 
the Roomba mobile application in accurately and comprehensively 
capturing navigational data?  

• Performance Consistency: Evaluating PyRoomba’s effectiveness in 
different environments, specifically in rooms of varying sizes. 

3 https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticatin 
g-requests.html. 
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• Reliability After Resets: Testing PyRoomba’s ability to retrieve and 
analyze data post-factory resets, simulating real-world scenarios.  

• Crime Scene Case Study: Applying PyRoomba in a simulated crime 
scene to detect environmental alterations and identify potentially 
significant unusual objects for forensic analysis. 

Our controlled experiments aim to understand the comparative 
effectiveness of our tool in forensic contexts, providing insights into its 

potential and limitations. 

6.1. Procedure 

Our evaluation consisted of performing multiple iterations of the 
cleaning routine with the Roomba in two separate environments with 
different sizes and object density: a small bedroom and a larger studio 
apartment. Following each iteration, we constructed maps using both 

Fig. 2. Visualization of the main features of the PyRoomba application.  

Fig. 3. Maps generated during iterations 1–4 by pyroomba and the roomba mobile application for the studio apartment environment. For each iteration, Pyroomba’s 
map is shown on the left, and the roomba App’s map is shown on the right. 
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PyRoomba and the Roomba mobile application (see Figs. 3 and 4). 
Additionally, we executed factory resets on the Roomba. We did this to 
emulate potential user behavior in real-world scenarios where devices 
are reset for various reasons, such as resale or troubleshooting. After 
each reset, a new ID was utilized to log into the Roomba, ensuring that 
any retained data could not be attributed to continuous sessions or 
cached user profiles. 

6.1.1. Studio apartment exploration 
The studio apartment consisted of multiple objects, including a bed, 

kitchen area, refrigerator, shoe rack, kitchen cabinet, two pairs of shoes, 
an oven, numerous cables, and fabric bags. We conducted four runs in 
this environment over two days (two runs per day). 

6.1.2. Small bedroom exploration 
The small bedroom was furnished with a bed, reading table, 

ottoman, a single pair of shoes, and cables. Notably, this room also 
contained a distinct cabinet with a door. We conducted two runs in this 
environment. 

6.1.3. Objectives 
Our primary objective was to measure how accurately and consis

tently the Roomba can recognize objects and detect hazards or obstacles. 
Further, we sought to determine if subsequent runs would provide new 
insights, detect previously unnoticed hazards, or fail to recognize ob
stacles identified during previous runs. Finally, running the Roomba in 
the small bedroom allowed us to understand its behavior in a more 
restricted environment. 

6.2. Results 

The results from the Roomba iterations provide insightful observa
tions into its performance, object recognition, and cleaning patterns in 
both environments. 

The maps for the studio apartment exploration, iterations 1 to 4, are 
presented in Fig. 3. We observe differences regarding the Roomba’s 
coverage and object detection capabilities. In the first iteration, as 
depicted in Fig. 3a, the Roomba operated for 43 min, covering an 
expanse of 164 sqft. It identified 5 objects: 2 shoes, 1 pet waste, and 2 
cables. In contrast, iteration 2 (Fig. 3b) was shorter at 26 min and 
covered 161 sqft. It detected 5 objects: three pieces of cloth, a cable, and 
a shoe. In iteration 3 (Fig. 3c) the Roomba ran for 36 min, covering 162 
sqft. It detected 8 objects: 2 fabric bags, 2 cloths, a shoe, and 3 cables. 
The final run, iteration 4, is illustrated in Fig. 3d. The Roomba operated 
for 33 min and covered 148 sqft. It detected 11 objects: 5 cables, 3 fabric 

bags, 2 shoes, and a cloth. 
The map outcomes for the small bedroom exploration, iterations 5 

and 6, are depicted in Fig. 4a and b. In iteration 5, the Roomba ran for 
21 min and covered 112 sqft. It detected no objects. We suspect this is 
due to navigational obstructions. In iteration 6, the Roomba ran for 15 
min and covered 92 sqft. It detected 4 objects: 2 shoes, a cable, and pet 
waste. 

6.3. Case study: crime scene simulation 

We prepared a room with standard items as shown in Fig. 5a. The 
Roomba was activated to navigate and document the area. This initial 
scan began at 20:22:14 GMT on Tue, 03 Oct 2023, and ended at 20:52:00 
GMT, with a duration of 29 min, and covered an area of 156 sqft. During 
its run, the Roomba identified one cloth, five cables, two shoes, two 
fabric bags, one toy, and one pet bowl. The map generated by PyRoomba 
is shown in Fig. 5b. After running this initial baseline scenario, we 
simulated a crime, positioning a dead body on the floor and accompa
nying it with knives. We then reactivated the Roomba to map the 
modified scene. 

During the second run, the Roomba documented an area of 126 sqft. 
This mapping was initiated at 05:06:36 GMT on Wed, 04 Oct 2023, and 
completed at 05:34:08 GMT, lasting 27 min. The updated room’s setup 
can be seen in Fig. 5c. The crime scene PyRoomba map, presented in 
Fig. 5d, demonstrated changes in identified items: three clothes, three 
cables, four shoes, two fabric bags, and one toy. Most significantly, the 
Roomba flagged two new “hazards.” Upon manual inspection, these 
hazards were linked to the simulated dead body and the knives. 

7. Discussion 

From the Roomba’s navigation of the two environments, we observe 
different object detection behaviors. In the studio apartment explora
tion, the Roomba detected a diverse range of objects, with dining, car
pet, and refrigerator being detected more consistently across iterations. 

Additionally, the data suggests that the Roomba may be improving 
its detection algorithms with each iteration as it discovered the Kitchen 
cabinet in the fourth iteration. The same decision can be concluded for 
iterations 5 and 6. Initially, it overlooked shoes and cables within the 
room. However, in subsequent iterations, it identified these obstacles. 
We find that the Roomba performed better in a small bedroom compared 
to the larger studio apartment. The Roomba obtains better coverage in a 
smaller space and spots objects more accurately. 

When we compared the maps generated by our system with those 
from Roomba’s mobile application, it became clear that our maps 

Fig. 4. Maps generated by pyroomba and roomba mobile application for the small bedroom environment, iterations 5–6.  
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contained more detailed environmental information. This added detail 
not only highlights the efficiency of our constructed maps but also 
provides the advantage of not being entirely reliant on the Roomba 
mobile application. From a forensic standpoint, this data is valuable. 
PyRoomba maps can be pivotal for scene reconstruction. The time
stamps can assist in creating event timelines, and differences in object 
recognition may suggest the removal of items. 

The Roomba’s ability to identify changes in the environment, such as 
a decrease in navigable area from 156 sqft to 126 sqft, indicates its 
potential in forensic contexts. The decrease in the mapped area indi
cated the dead body, potentially limiting the Roomba’s navigation 
space. While the Roomba successfully identified new items like the body 
and knives, it classified them as “hazards” without detailing their spe
cific nature. This highlights that while the Roomba can note changes in 
an environment, human inspection is important in interpreting these 
modifications. 

8. Limitations 

While our approach is robust, it exhibits several limitations in 
retrieving all forensic artifacts from Roomba devices. Firstly, it is 
centered on cloud acquisition and does not encompass device-level 
acquisition. Secondly, it necessitates user credentials. Thirdly, our 
findings are specific to the Roomba J series model; we have not con
ducted tests on all Roomba models. To decrypt the encrypted images, 
necessary components included the encryption key (the password for 
scrambling images), the hash (a unique code to verify image integrity), 
the IV for ensuring unique encryptions, and the master key (a top-level 
key for securing the encryption key) (Bozorg-Haddad et al., 2017). 
However, due to our inability to access the master key, we couldn’t 
decrypt the images. Nonetheless, the image labels helped identify their 
content without needing to decrypt them. 

9. Conclusions 

Despite extensive work on IoT forensics, Roomba’s cloud forensics 

have remained unexplored in peer-reviewed literature. Using HTTPS 
interception and web API analysis, we successfully extracted rich 
forensic data from Roomba. In our research, we recognized the ethical 
complexities in using undocumented APIs. These APIs, although not 
publicly documented, are part of the application’s accessible interface. 
We ensured our methods were ethically sound and legally compliant, 
particularly in handling private user data. This highlights the impor
tance of ethical responsibility in cloud forensics. Our creation, 
PyRoomba, is a forensically robust Python application for this purpose. 
Our approach and tool establish a framework for IoT cloud forensics, 
particularly in cases of limited device data access. 

Our future work aims to develop a generalized model that catego
rizes data across various automated vacuum robots, potentially broad
ening our framework to include multiple brands and models, thus 
enhancing its applicability and depth. 
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