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A B S T R A C T   

With the increasing use of the Internet for criminal activities, web servers have become more and more important 
during forensic investigations. In many cases, web servers are used to host leaked data, as a management 
interface for Command and Control servers, or as a platform for illicit content. As a result, extracting information 
from web servers has become a critical aspect of digital forensics. By default, a lot of information can already be 
extracted by performing traditional storage forensics including the analysis of logs. However this approach 
quickly reaches its limits as soon as anti-forensic techniques such as the deletion of configuration files or the 
deactivation of logging capabilities are implemented. This paper evaluates the feasibility of memory forensics as 
a complement to traditional storage forensics for cases involving web servers. For this purpose, we present a 
methodology for extracting forensically relevant artefacts from the memory of Apache web servers, which are 
among the most commonly used on the Internet. Through various experiments, we evaluate the applicability of 
our approach in different scenarios. In the process, we also take a closer look at the overall existence of digital 
traces, which cannot easily be found by following a structured approach. Our findings demonstrate that certain 
Apache web server structures contain important information that can be retrieved from memory even after the 
originating event has passed. Additionally, traces such as IP addresses were still found in memory even after 
complete structures were already overwritten by further interaction. These results highlight the benefits and the 
potential of memory analysis for web servers in digital investigations.   

1. Introduction 

In the current digital era, web servers are a fundamental component 
of the interconnected world we heavily rely on. Due to the increase in 
cyber crimes in recent years, they are also inevitably utilized by crimi-
nals, e.g. for black markets or to provide access to leaked data from 
ransomware attacks. On the other hand, web servers and web applica-
tions have always been a common gateway for attackers to gain unau-
thorized access to remote computer networks. This fact dramatically 
increases the involvement of web servers in digital forensic 
investigations. 

Apart from traditional network forensics of captured web server 
traffic and the analysis of the web server’s storage, log files have always 
been a vital source in investigations and subject of various research in 
the past. Kumar et al. for example addressed the problem of tampering 
with log files by proposing a new approach (Kumar et al., 2011), while a 
more recent paper explored the possibilities of deep learning on server 
logs (Nazar et al., 2021). 

However, the limitations of traditional web server forensics, which 
primarily relies on log files, were already highlighted in 2017 (Case and 
Richard III, 2017). The authors pointed out that sensitive information is 
often not captured in log files, or not logged at all, and that memory 
forensics could aid in the recovery of valuable data that would otherwise 
be inaccessible. Despite this, they also noted that existing frameworks 
lack the capability to automatically extract this data. 

In cases where web servers are part of a criminal infrastructure, the 
servers are often configured to generate no log files. Hence, a vital data 
source is not available. The same holds for systems where an attacker 
gained unauthorized access. Clearing the log to conceal the attack is a 
typical task carried out after successfully gaining access. While avoiding 
or cleaning log files is easy and a common task of adversaries, tampering 
with the memory is way more complicated and may even lead to system 
instabilities when existing software is modified. Moreover, recent 
studies indicate that tampering with main memory is harder than 
tampering with evidence on storage media (Schneider et al., 2020). 

Our research aims to take a closer look at the possibilities of memory 
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forensics for web server investigations. For this purpose, we first define 
the concept of forensically relevant artefacts that are crucial in web 
server analysis. Then, we delve into Apache2, one of the most widely 
used web servers, and develop a methodology for an automated 
extraction of its artefacts from memory. Our proposed methods are put 
to the test through experiments conducted using a custom framework, 
which automates various scenarios and generates memory dumps. This 
evaluation not only covers our structured approach, but also focuses on 
other remnants that might exist in memory. 

2. Artefact creation 

Each interaction with a running process can result in a diverse set of 
artefacts at different places. For example, simply visiting a website with 
Firefox may lead to updates in multiple databases, new files in a cache 
folder, and network traffic. Web servers are no exception in that regard. 
To identify forensically relevant artefacts in web servers’ memory, we 
considered common interactions with these servers and subsequently 
defined important artefact categories that would be of interest to a 
forensic investigator during their analysis. For a better understanding, 
the resulting artefact categories will be presented first. 

2.1. Artefacts 

Configuration: The configuration of a web server is a critical arte-
fact in any forensic investigation, as it provides valuable information 
that helps to direct the focus of the investigation. This includes details 
about the defined hosts on the web server, such as their IP addresses and 
ports, as well as paths to the resources served by the server, which can 
assist in analyzing its storage. 

Connection: Undoubtedly, information about connections involving 
the analyzed web server is one of the most important artefacts in any 
investigation. This includes details such as IP addresses of remote clients 
that connected to the server, ports used, and timestamps, if available. 
This information can be incredibly valuable in filtering and analyzing 
large amounts of network traffic and in identifying other systems that 
may play a crucial role in the investigation. It is important to note that 
successful connections without any exchanged requests may not be 
recorded in common logs, making the extraction of this information 
from the web server’s memory a crucial aspect of the forensic process. 

TLS data: Most web servers on the market make use of existing TLS 
libraries to handle encrypted connections. For this reason, artefacts 
specific to these libraries (e.g. key material) are not considered a web 
server artefact themselves. However, this category refers to all artefacts 
that are created by the web server and contain information about a TLS 
connection or possibly the server certificate and private key. 

Requests & Responses: In addition to the sole information of the 
existence of a connection, it is in many cases helpful to know what kind 
of communication occurred. In a first step, this includes artefacts about 
the request that was made by the client as well as the response that was 
provided by the web server along with their corresponding headers. 
These artefacts can already convey important information, for example 
in the case of a brute force attack or the use of GET parameters. 

Content: In a second step, the content transferred between the client 
and web server contains even more insights into a past connection. 
While static resources can usually still be extracted from the server, this 
artefact is especially important in cases of dynamic content, which 
cannot be retrieved by a simple file system analysis. 

2.2. Interactions 

Start a web server: This interaction is in fact mandatory for all 
running web servers. After performing this interaction, it is expected 
that information about its current configuration can be extracted. In case 
of a server supporting TLS connections, this may also include informa-
tion of the TLS category. 

Reload web server: It is possible to encounter a web server, whose 
configuration has been reloaded without restarting the process itself. 
Expected artefacts are naturally the newly loaded configuration, but 
may also include remnants of the previous configuration. 

Connect: Prior to any interaction with a client, a connection must be 
established. This can also be the case for port scanning attacks, in which 
case no further content is sent. Naturally, this involves artefacts from the 
connection category. 

Receive request: Receiving a request is the most common interac-
tion to occur on a web server. This will not only create artefacts about 
the request and its content, but likewise the sent response of the server. 
Furthermore, this interaction results in connection information of the 
server. In the case of a TLS connection, also TLS related data can be 
expected. 

Send a response: While this is not a direct interaction with the 
server, it is an implicit reaction to the reception of a request. Sending a 
response also results in similar artefacts about the response like headers 
and status codes, but can also result in content that may be loaded into 
memory before it is sent to the client. 

3. Artefact extraction 

This section describes our proposed methodology for the extraction 
of the most critical Apache2 web server artefacts. These methods can be 
applied to any previously obtained full as well as process memory dump 
– provided that virtual addresses are handled correctly, e.g. by trans-
lating them to physical offsets within the memory dump itself. 

Since developing methodologies for finding forensic artefacts in 
memory reliably can be a tedious task, we summarize the basics con-
cepts that we utilized for our approach:  

● Documentation & Source code: Having access to the source code of 
the application of interest is without any doubt an enormous benefit 
when looking for promising artefact sources. For our research, we 
made use of the available Apache2 source code as well as its docu-
mentation to identify structures of high forensic value (Apache2, 
2023).  

● Hard coded values: Finding such structures in memory however can 
become infeasible, if no suitable unique characteristic of the struc-
ture exists. A rewarding example of such a characteristic are hard 
coded values within the structure itself. These values act similar to 
magic bytes in headers or footers of files and provide a good starting 
point for the detection of a certain structure. This can also be the case 
for special instances of a structure as shown in the example below. 

Listing 1. Method in apr_pools.c used to set the tag field of a given 
apr_pool_t structure. 

Listing 2. Part of httpd/server/main.c creating a pool and hard-coding its 
name tag to “pconf”.   

● Value ranges: Besides hard coded values, some members of a 
structure may (or at least should) only take values from a limited 
range. In the C programming language, this is often the case when 
enumeration data types are used. The following code example shows 
the definition of the ap_conn_keepalive_e data type, which is 
for example used in the conn_rec structure described later on.  
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Listing 3. Declaration of enumeration data type ap_conn_keepalive_e in 
httpd/include/httpd.h.   

● Pointer searches: Most structures in C utilize pointers, which 
reference strings and other dynamically sized members. A pointer 
can then be used to find the location of the member it points to in 
memory. On the other hand, if the location of a member is known, its 
address can be used to search for any possible pointers pointing to 
that specific member. This way it is possible to walk structures 
backwards.  

● Sanity Checks: It is important to implement sanity checks while 
extracting data from memory to reduce the likelihood of false posi-
tive results. For instance, a member representing a port number 
should have a value that falls within the range of 0–65535. These 
checks ensure that the extracted data is reliable and accurate. 

3.1. Configuration 

Apache makes use of a server_rec structure, which contains the 
most important information about each virtual server that has been 
configured. This does not only include fundamental values such as the 
server’s host name, listening address and port, but also paths to the error 
logs and the configuration file used to define this virtual server along 
with the exact line number. 

The task of finding a server_rec structure within memory is 
complex, as many of its members’ values are dependent on the server’s 
configuration and are thus not suitable for a direct search of the struc-
ture. To address this, we have devised a three-step process for the 
extraction of the server_rec structure, based on the links between 
multiple structures as depicted in Fig. 1.  

1 The server_rec structure starts with a pointer to a process_rec 
structure. As the name suggests, this structure describes the process, 
in which the virtual server is running. The process_rec structure 
itself contains only little information. However, also the arguments 
provided to the process may be of relevance for an investigation and 
should thus be extracted as well.  

2 To find a process_rec structure in memory, we leverage its second 
attribute, which is a pointer to the configuration pool, referred to as 
pconf. These apr_pool_t structures are used for the management 
of memory regions.  

3 For the detection of the pconf pool, we take advantage of its tag 
attribute, which is a pointer to a string, defining the tag of a pool. In 
the case of the pconf memory pool, the tag is simply ”pconf”. 

Thus, we search for all pconf strings in memory and traverse 
backwards until we reach a potential server_rec structure, which is 
then validated and parsed to extract all relevant configuration infor-
mation. For multiple defined virtual servers, multiple of these structures 
are used and present in memory. 

3.2. Connection 

Information about connections handled by the web server is stored in 
the conn_rec structure. It contains pointers to the IP addresses of the 
client and the local server. Furthermore, for each of these it contains a 
pointer to a apr_sockaddr_t structure defined by the Apache 
Portable Runtime library utilized by the web server. As Fig. 2 illustrates, 
this structure stores additional information such as the ports used. 

For the detection of conn_rec structures in memory we leverage its 
second member, a pointer to the server_rec structure of the virtual 
host the connection belongs to. After we identified all of the available 
server structures in the previous step, we can use their virtual addresses 
to search for possible conn_rec candidates. Since other structures may 
also store the same pointer, we employed additional information for our 
search in order to reduce the number of false positives. 

The keepalive member of the structure stores, whether the 
connection should be kept alive for a future request. As demonstrated in 
the previous section in Listing 3, the value of this member can only take 
three possible values: 0, 1, or 2. Another of its members with a limited 
set of values is outgoing indicating the direction of the connection. As 
shown in Listing 4, a comment in the source code reveals that a valid 
value can only be 0 or 1 at the moment. 

Listing 4. Comment in server/connection.c describing the intended 
values for the outgoing member of conn_rec. 

By including arbitrary place holders for our search pattern, this in-
formation can be combined to specifically search for conn_rec struc-
tures in memory. Additionally, sanity checks can be applied by 
validating values such as the port, family or ipaddr_len within 
corresponding sock_addr_t structures. 

3.3. Request 

One of the most forensically interesting structures used by the 

Fig. 1. Methodology for the extraction of a server_rec structure.  
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Apache web server is the request_rec structure representing a 
received request. As depicted in Fig. 3 the structure contains a pointer to 
the connection it originated from as well as a pointer to the virtual host 
handling this very request. Both of them are represented by a conn_rec 
and server_rec structure respectively. Furthermore, the structure 
contains multiple pointers to various specific parts of the request, such 
as the protocol, hostname or URI. Additionally, certain values like the 
time of the request or other integers are contained directly within the 
structure. 

Apache2 does not have a dedicated structure for the responses it 
generates. Instead, a lot of the information regarding a response to a 
certain request is stored in the corresponding request_rec structure. 
This includes a pointer to the status line as well as the status code 
encoded as an integer, but also all of the headers of the response itself. 
Both, the headers of the response as well as the headers of the request are 
stored using an apr_table_t structure. For parsing the contained in-
formation it is only necessary to access its first member, which is a 
apr_array_header_t structure defining the number of elements in 
the list along with the corresponding size of an element as shown in 
Fig. 4. Using this information it is possible to access all of the individual 
elements of the table. In e table. In our example, each element corre-
sponds to a key:value pair of a header. 

To detect the request_rec structures in memory, we leverage 
specific members that should have values within a well-defined range. 
These members include: 

● proto_num: This integer-typed member indicates the HTTP proto-
col version used in the request, such as HTTP 1.1, which is repre-
sented by 1001 or 0x03e9 in hexadecimal. We include values for all 
available HTTP versions in our search.  

● status: Also an integer, this member provides information on the 
status code of the response, such as 0x0194 for a 404 Not Found 
response and 0x00c8 for a 200 Found response. Our search includes 
the values for the most common HTTP status codes.  

● proxyreq: This enumerated datatype member is used to denote 
proxy requests and can only have values of 0, 1, 2, or 3. 

Considering these limitations for some of its members eliminates the 
necessity to detect other structures for the extraction of request_rec 
structures from memory beforehand. However, a previously detected 
server_rec structure could be used for validation. 

3.4. Content 

Recovering remnants of content transmitted by the server and, 
especially, by the client can be a valuable asset in an investigation. 
However, the most effective method for extracting this content from 
memory is contingent upon the way in which the data was processed by 
various modules. As a result, we concentrate our efforts on extracting the 
smallest units utilized by Apache2’s memory management. While this 
approach guarantees that a significant portion of data can be recovered 
in theory, it also means that some data may still need further 
interpretation. 

Fig. 2. Connection information stored in conn_rec and sock_addr_t structures.  

Fig. 3. Structure of a request_rec used in Apache2.  
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Listing 5. Bucket types used by Apache2 defined in apr/include/apr_-
buckets.h. 

Apache2 makes use of so called buckets to store various kinds of data. 
A bucket is never used alone, but instead multiple buckets are grouped 
together and stored in a ring structure referred to as a bucket brigade 
(Apache Tutor). Listing 5 provides an overview of the defined bucket 
types, which can not only refer to data in memory (e.g. apr_buck-
et_type_heap), but also to a part of a file (i.e. apr_buck-
et_type_file). Since brigades and buckets are used to hold content 
data as well, our methodology describes how to extract bucket 
structures. 

As shown in Fig. 5, each apr_bucket structure starts with a pointer 
to a bucket type structure. For each type of bucket, a separate type 
structure is declared and stored in memory. An example for such a 
declaration can be seen in Listing 6. We can identify a specific type 
structure by utilizing its name attribute. In our example, the heap and 
file bucket types store a pointer to the strings ”HEAP” and ”FILE”, 

respectively. Similar to our previous server_rec approach, we can 
search the memory for all occurrences of these strings and use their 
addresses as a search parameter for the corresponding apr_buck-
et_type_t structure. 

To minimize the number of false positives, we also make use of the 
hard-coded number of functions, which is 5 in our example. Once the 
virtual address of a specific bucket type structure has been found, it can 
be used to detect all buckets of that type, represented by apr_bucket 
structures pointing to that specific type structure. Each type of bucket 
has its own structure, and in the case of a heap bucket, the final data 
stored in the bucket is referenced by the base pointer. 

Listing 6. Instance for a heap bucket type defined in apr/buckets/apr_-
buckets_heap.c. 

3.5. TLS data 

Our research concentrates specifically on the extraction of artefacts 
unique to the Apache2 web server. As such, the extraction of informa-
tion from structures created by cryptographic libraries like OpenSSL 
falls outside the scope of our investigation. There has already been 

Fig. 4. Links between an apr_table_t and its entries.  

Fig. 5. Structures for two buckets of type heap and file.  
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extensive research on this topic, with several publications addressing the 
challenge of extracting key material from the memory of these libraries 
(Maartmann-Moe et al., 2009; Taubmann et al., 2016). Nevertheless, 
having an understanding of the links between Apache2’s own structures 
and external libraries is useful and can be leveraged to apply other 
methods focused on TLS-specific structures. 

3.5.1. Configuration 
As previously discussed, the server_rec structure contains crucial 

information regarding the configuration of a virtual host. Some of this 
information, such as the document root, is stored in a cor-
e_server_config structure. A pointer to this configuration structure 
can be located as the first element in a configuration vector, which is 
referenced by the module_config attribute in the server structure, as 
illustrated in Fig. 6. This configuration vector holds pointers to various 
modules’ per-server configuration structures. When SSL is enabled, our 
experiments have shown that the corresponding SSL configuration 
structure, SSLSrvConfigRec, can typically be found at index 26, 
though this value may vary. 

The discovered SSL configuration structure links to the 
modssl_ctx_t structure, which in turn points back to the SSL 
configuration. By leveraging this relationship, it is possible to validate 
the candidates in the configuration vector, in case the correct module 
index is not known. Moreover, the modssl_ctx_t contains a pointer 
providing a crucial link to a SSL_CTX object, which is used by OpenSSL 
to establish secure SSL/TLS connections (OpenSSL Foundation). 
Furthermore, it also holds a pointer to the modssl_pk_server_t 
structure, which can be used to obtain the file paths of the server’s 
certificate and key files, providing important information for the 
investigation. 

3.5.2. Connection 
Apache2 makes use of a SSLConnRec whenever a TLS connection is 

handled. Besides a pointer to an SSL structure, it also contains a refer-
ence to a potential client certificate and used cipher suites. Since it also 
contains a pointer to the structure of the server handling the connection, 
we leverage its previously known address to search for any SSLConn-
Rec candidates. For this search, we also exploit the fact that the corre-
sponding pointer to the server structure is preceded by members with a 
limited range of values, such as non_ssl_request. This enumeration 
datatype can only take values of 0, 1, 2 and 3. 

4. Evaluation 

4.1. Dataset creation 

For the development and evaluation of our methodologies, we 

created a custom framework that can establish a running web server and 
execute a predefined set of actions, such as requests. The framework 
then captures the memory dump of the web server’s processes by iter-
ating over the regions using the current process information stored in 
/proc/<PID>/maps and /proc/<PID>/mem. Note that this 
approach loads all requested data into memory, which might not be the 
case when obtaining a full physical memory dump. However, the cor-
responding data can then be found on the persistent storage (e.g. swap 
files), which should be included during the investigation. Furthermore, 
our framework also extracts additional data such as its log files or 
configuration. It also records a network capture of all interactions with 
the server including potential TLS keys, which, when combined with the 
other data, creates a reliable ground truth for our evaluation. 

Both the web server and the clients used to perform requests were 
implemented using Docker containers. This approach not only optimizes 
resource usage but also offers the flexibility to test various web server 
solutions in the future. The actions performed during the experiment are 
defined in a YAML file, making it easy to share and reproduce the sce-
narios. The framework as well as the YAML configuration files used in 
the subsequent evaluations are publicly available (Hilgert et al., 2023). 

4.2. Experiments 

In this section, we present a series of experiments we have conducted 
in order to create as well as recover forensically relevant artefacts from 
Apache2 memory dumps. Our Apache2 setup employs the event Multi- 
Processing Module (MPM), which is based on the worker MPM (The 
Apache Software Foundation). This configuration involves a parent 
process that spawns child processes, which in turn create server and 
listener threads. In our experiments, we use the default configuration, 
which spawns two child processes, resulting in a total of three Apache2 
processes whose memory dumps will be acquired and analyzed in the 
course of the experiments. Recovery of artefacts was performed by our 
automated extraction method following a structured approach as well as 
by searching for known traces in memory directly. This was done to 
showcase what artefacts actually remain in memory. 

4.2.1. Configuration 
For the purpose of this evaluation, we set up a simple server 

configuration as depicted in Fig. 7. The configuration specifies a virtual 
host that listens on port 443 and all IP addresses, represented by the 
asterisk. The server name used is example.com. The right side of the 
figure displays the results of our automated artefact extraction from 
memory, following the methodology outlined in the previous section. As 
it can be seen, all the necessary information was extracted successfully, 
including the document root of the virtual host, as well as the path and 
precise line number of the virtual host’s configuration. This information 

Fig. 6. Link between the SSLSrvConfigRec and server_rec structures.  
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is particularly critical in scenarios where the original configuration file 
has been deleted or altered on the persistent storage. The corresponding 
server_rec structure was present in all three of the acquired process 
dumps. 

4.2.1.1. Reload a configuration. In this experiment, we investigated the 
possibility of retrieving remnants of virtual hosts in memory even after 
the web server has reloaded a new configuration file. To test this sce-
nario, we set up an Apache2 web server and defined ten different virtual 
hosts, ranging from example-one.com to example-ten.com, each 
listening on a different port between 8081 and 8090. Afterwards, we 
reloaded the server with a new configuration that only defined one 
virtual host for example-reloaded.com on port 8091. Finally, we 
checked if any server_rec structures of the previously defined virtual 
hosts could still be found in memory. 

In our experiments, a reload of the Apache2 web server, initiated by 
the command service apache2 reload, resulted in the replacement 
of the two running child processes with new processes. Regarding 
server_rec structures, only the structure for example-reloaded. 
com could be found in the process memory of all three running Apache2 
processes. All other matches appeared to be false positives. Nonetheless, 
multiple traces of the previously defined virtual hosts were still present 
in the process memory, as depicted in Fig. 8. Our test results revealed 
that this included, for instance, all of the 10 previously defined server 
host names. 

4.2.2. Connection 
This experiment focuses exclusively on the artefacts created by a 

basic connection, which we define as a successful TCP handshake initi-
ated by a client. To accomplish this, a predetermined number of 

connections were consecutively established at three-second intervals by 
different clients, each with a unique IP address. Each connection was 
ended prior to the establishment of the next one, so that no active 
connections were present when the memory dump was taken. 

Regardless of the number of established connections, only two of the 
conn_rec structures could be recovered from memory matching the 
number of child process created in our experimental setup. For this 
reason, we additionally evaluated the pure existence of the client IP 
addresses involved in the previous connections within the acquired 
memory dump. The results for different numbers of connections were:  

● 25 connections: All of the IP addresses were found twice within each 
of the three Apache memory dumps.  

● 50 connections: All of the IP addresses were found twice within each 
of the three Apache memory dumps except for the first. 

● 100 connections: In this scenario, the IP addresses of early con-
nections were not found, while the IP addresses of later connections 
were present in memory. The availability of IP addresses for con-
nections in the middle was inconsistent, which prompted us to repeat 
the experiment 50 times and count the overall number of IP ad-
dresses found. The results, shown in Fig. 9, indicate that roughly the 
last 50 addresses could be found at least 300 times (which equals two 
IP addresses per process dump times 50 runs), while the first ad-
dresses were only found rarely or not at all. The results for the middle 
section vary. Furthermore, we also counted the number of correctly 
extracted connection structures within these 50 runs. It was observed 
that they were only present for the most recent requests. 

The results of the experiment indicate that a significant number of IP 
addresses from past connections can still be present in memory. This is 
particularly valuable in forensic investigations, as these IP addresses are 
not recorded in any log files. 

4.2.3. Requests & responses 
In the first experiment, we generated a basic HTTP GET request to 

retrieve an image from our web server. After the server sent the response 
and closed the connection, we obtained a memory dump. The results, as 
depicted in Fig. 10, reveal that important information from the request, 
such as connection details, the header of the request, and the complete 
path to the requested resource, could still be recovered from memory by 
searching for request_rec structures. As previously noted, Apache2 
does not have a dedicated structure for responses, so information about 
the response, such as the status code and headers, is also stored in the 
request structure and was successfully extracted. 

Persistence of request artefacts 
In another experiment, we focused on the persistence of requests in 

memory similar to the prior experiment involving connections. This 
time, 100 subsequent requests were made by different clients. Our aim 
was to determine not only the presence of any request_rec structures 

Fig. 7. Content of example.com.conf configuration file compared to artefacts extracted from memory by our structured approach.  

Fig. 8. Traces of previously defined virtual hosts in memory.  
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still present in memory, but also to assess the pure existence of any in-
formation about previous requests. To do this, we conducted a further 
search for complete request lines, which consist of a method, URI, and 
HTTP version number. As each client requested a unique resource, we 
were able to match the found request lines in memory to the corre-
sponding client. This experiment was repeated 50 times to obtain a 
comprehensive understanding of the persistence of requests in memory. 
Furthermore, we also attempted to identify any strings created for log-
ging purposes in memory to distinguish them from other request 
remnants. 

Fig. 11 shows that similar to the previously extracted connection 
structures, request structures could only be found for later requests. It 
can also be seen that there is a higher likelihood of finding request lines 

from more recent requests in memory. However, in some cases even 
request lines from very early requests could still be found. We also 
observed that the amount of artefacts left in memory by different re-
quests was inconsistent, with some requests leaving significantly more 
trace than others. Despite a manual examination of the resources and 
memory dumps, no clear explanation for this disparity was found. 

Although the number of retrievable request structures from memory 
is limited, information about prior requests remains accessible. The 
ability to search for a complete request line, made up of a method, URI, 
and HTTP version number, is a valuable tool for detecting this infor-
mation. In real-world scenarios, the exact request line may not be 
known, but by exploiting the limited possible values for methods and 
HTTP version numbers, it is possible to create a search pattern for the 

Fig. 9. Cumulative occurrences of conn_rec structures and IP addresses within memory after 50 iterations, 100 connections each.  

Fig. 10. Actual request in Wireshark compared to the extracted information from memory.  
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detection of HTTP requests. 

4.2.4. Content 
Before we evaluate the structured extraction of the previously 

mentioned buckets used by Apache, it is crucial to asses the amount of 
content that could at most be retrieved from memory. For this reason, 
we conducted experiments to show, which parts of a sent or received file 
actually exist in memory after the request was handled. For this, we 
created an artificial file with a unique pattern, which enabled us to know 
the exact original location of any detected fragment of the file in 
memory. We created artificial files in sizes of 5 MB, 50 MB and 500 MB, 
which were stored on the server and requested by a client. Furthermore, 
the files were transferred in different ways including the use of TLS and 
compression as shown in Table 1. 

It can be seen that for a transmission without TLS and in which the 
resource was not compressed, no traces of the file were found in mem-
ory. This could be to various reasons, one of them being the Enable-
Sendfile feature in Apache2, which bypasses the necessity for files to be 
loaded into memory when they are sent. When gzip was used as a 
compression algorithm, parts of the file were existent in memory, since it 
had to be loaded into memory for compression. The same holds true for 
TLS connections. However, the amount of data that could be found in 
memory was very limited compared to the original size of the requested 
file. 

When running these experiments multiple times we observed irreg-
ularities in the amount of content that was present in memory. These 
scenarios are marked with an * in Table 1, which gives the most frequent 
(in our cases in more than 80% of all runs) value that could be observed. 

Deviations of these values were highest for the gzip scenarios of the 
50 MB file, in which in some instances up to roughly 4 MB of the arti-
ficial file could be found in memory. 

POSTed data 
In this experiment, we concentrate on data transmitted by the client, 

which is accomplished by sending a single POST request with similar 
artificial files to the server. Since POSTed data is in many cases subject to 
further processing by other processes, we proxy the request to a simple 
Flask application in the background utilizing the mod_proxy module. 
The Flask application simply accepts the request and returns a 200 OK 
response. 

Table 2 shows the results for varying data sizes, taking into account 
that POSTed data by clients is usually smaller, e.g. when sending form 
data. The data was always sent uncompressed. It can be seen that except 
for the smallest file without TLS, remnants of each resource could be 
found in memory, even when no further processing by compression or 
cryptographic libraries occurred. When TLS was used, it was even 
possible to detect almost the complete data of the 5 kB file. 

Fig. 12 shows, which parts of the 5 MB files could be detected in 
memory. Each block in the map represents a 512-byte fragment of a 
transferred file. The color of a block indicates how often it has been 
found in memory summed up over all 50 experiment runs. Surprisingly, 
the data that was still present in memory was not the exact end of the file 
and the data areas were rather stable. There is one area in the middle of 
the 5 MB, which we found reliably in almost all experiments. Further-
more, the beginning of the file as well as a different area in the middle 
could be found in roughly half of the cases. The same behavior was also 
observed for the 5 MB file sent without TLS. 

Fig. 11. Remnants of requests within memory after 50 iterations, 100 requests each.  

Table 1 
Amount of bytes of a requested resource that could be found in memory after the 
request.  

Sent via 5 MB 50 MB 500 MB 

No TLS Plain 0 kB 0 kB 0 kB 
gzip 33.28 kB 33.28 kB* 4259.84 kB* 

TLS Plain 18.94 kB 18.43 kB* 13.82 kB* 
gzip 33.28 kB 33.28 kB* 4259.84 kB*  

Table 2 
Amount of bytes of a sent resource that could be found in memory after the 
request.  

Sent via 512 B 5 kB 5 MB 

Plain No TLS 0 kB 1.2 kB 9.73 kB 
TLS 0.5 kB 5 kB 24.57 kB  
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Extraction of buckets 
In our evaluation, we focused on the feasibility of extracting heap 

buckets for the POST scenarios described earlier. Surprisingly, only two 
valid heap buckets were identified in the memory of the six cases 
analyzed. One of these buckets contained the response data sent by the 
web server, as depicted in Fig. 13. This was observed even in the cases 
where TLS was used. However, the origin of the data inside the second 
bucket remains unknown and requires additional investigation. More-
over, by employing our methodology for extracting heap buckets, other 
types of buckets can also be extracted to assess their usefulness in in-
vestigations in the future. 

4.2.5. TLS data 
As described earlier, we only focus on Apache2 specific artefacts. For 

this reason, artefacts creating any crucial key material were not found. 
In a first experiment, we evaluated our approach for the extraction of a 
TLS configuration. The results, as shown in Fig. 14, demonstrate that it is 
possible to determine if TLS is enabled for a virtual host and retrieve the 
paths for the certificates and keys utilized by the server. Furthermore, 
the extracted configuration contains a valuable link to the SSL_CTX. 

We also applied our methodology for the extraction of SSLConnRec 
structures. Unfortunately, this approach provided limited value as the 
only information that could be extracted, besides the pointer to the SSL 
member, was the cipher suite, which was stored in the format described 
by OpenSSL (e.g. HIGH:!aNULL:!aNULL:!eNULL:!EXP) (OpenSSL 
Foundation, Inc.). 

4.2.6. Robustness 
The previous experiments were performed on Apache version 2.4.52, 

which is the default package installed via apt on Ubuntu 22.04 at the 
time of writing this paper. Since structures may change over time, we 
chose to evaluate the robustness of our approach, by testing the 
extraction of relevant artefacts on other versions of the Apache web 
server. According to recent statistics, Apache 2.4 is currently the most 
prevalent version (W3Techs, 2023). However, 10% of websites running 
Apache are still using version 2.2, whose life time already ended in 
2018. For this reason, we performed additional experiments on Apache 
2.4.43 as well as 2.2.34, which were released three and more than six 
years ago respectively. 

While the general methodology described in this paper could still be 
applied to the older Apache versions, some modifications in our 
implementation had to be made. First, older versions of Apache utilize 
httpd as their default process name, which was changed to apache2 

Fig. 12. Presence of 512 Byte blocks of the 5 MB files sent via POST requests with TLS in memory.  

Fig. 13. Extracted heap bucket data containing the HTTP response.  
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later. This circumstance has to be considered when validating proc-
ess_rec structures. Secondly, even though the same structures are 
used in version 2.2.34, the order of their members has changed. For this 
reason, we have added a heuristic approach to determine automatically, 
which version of a structure in memory was found. However, even 
though structures were modified over time, the members and links be-
tween them utilized by our methodology have been constant over time. 

5. Conclusion and future work 

Memory forensics has long been recognized as a valuable tool for 
investigations, particularly for extracting key information and analyzing 
malicious processes. Despite the recognition of memory forensics as a 
desirable component in web server investigations as pointed out by Case 
et al., in 2017 (Case and Richard III, 2017), little progress has been made 
in this field since then. 

For this reason, this paper explored the potential of memory foren-
sics in the context of web servers by identifying and examining foren-
sically relevant artefacts that can be found in their memory. We focused 
our analysis on Apache2, one of the most widely used web servers, and 
developed a unique methodology for extracting crucial information 
about connections, requests, and configurations from its memory. Our 
methodology represents the first of its kind and provides a foundation 
for further exploration and extraction of Apache2 artefacts as well as for 
analyzing other web server implementations. 

We implemented our methodology as a standalone tool, which can 
be used to analyze dumped process memory. Furthermore, it will be 
implemented as a Volatility 3 plugin to be able to work on full memory 
dumps. Additionally, we have introduced a framework for creating 
various test scenarios to support the development and evaluation of 
future web server forensic methods. All of these implementations will be 
released as open-source software and made available on GitHub (Hilgert 
et al., 2023). 

Our evaluation showed that it is in fact possible to extract Apache2 
structures from memory, which can be of relevance during an investi-
gation, e.g. when configuration files have been deleted from persistent 
storage. On the other hand, it also highlighted the limitations of a 
structured approach, when it comes to Apache2 web server forensics and 

revealed the potential of unstructured approaches to recover significant 
remnants such as IP addresses and request lines that persist in memory, 
even when structured approaches reach their limitations. In the future, it 
is important to evaluate if and how these traces can be mapped to any 
possible events that have occurred on the web server. 

Furthermore, it is important to note that the results we presented 
here serve as a lower bound for the artefacts that can be found during an 
investigation. When a complete physical memory dump is available, our 
methods would also be able to find certain structures, which have been 
freed by the Apache process but not yet been reused by the operating 
system or different processes. The possibilities of an analysis on a full 
memory dump is subject to further research. 
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