
 

Analyzing the peeling chain patterns on the Bitcoin 

blockchain 

By: 

Yanan Gong, Kam Pui Chow, Siu Ming Yiu, Hing Fung Ting 

From the proceedings of 

The Digital Forensic Research Conference 

DFRWS APAC 2023 

Oct 17-20, 2023 

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first 

open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an 

informal environment.  

As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to 

help drive the direction of research and development. 

https://dfrws.org 



Forensic Science International: Digital Investigation 46 (2023) 301614

Available online 13 October 2023
2666-2817/© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS 2023 APAC - Proceedings of the Third Annual DFRWS APAC 

Analyzing the peeling chain patterns on the Bitcoin blockchain 

Yanan Gong *, Kam Pui Chow, Siu Ming Yiu, Hing Fung Ting 
The University of Hong Kong, Hong Kong, China   

A R T I C L E  I N F O   

Keywords: 
Bitcoin 
Peeling chain 
Self-change address 
Behavior pattern 

A B S T R A C T   

Bitcoin is a widely used decentralized cryptocurrency. The proportion of Bitcoin transactions used for illegal 
activities is increasing. Mixing services are commonly applied to enhance anonymity and make transaction re
cords more challenging to follow and analyze. The current research on peeling chains is generally based on 
heuristic algorithms to identify change addresses. However, due to the characteristics and limitations of the 
Bitcoin blockchain, there is no such ground truth to ensure the accuracy of each derived change address. This 
research analyzes the peeling chain patterns based on self-change addresses. The use of self-change addresses 
implies that the input address and the address used for receiving the change are controlled by the same entity. 
Also, each chain’s transaction details and generated chain parameters are further verified for more precise re
sults. Combining the two methods ensures the accuracy of the extracted peeling chains to some extent. And the 
corresponding behavior pattern of the extracted chains is studied.   

1. Introduction 

Bitcoin was created in 2008 (Antonopoulos, 2014). Now it is a widely 
used decentralized cryptocurrency. Distributed ledger makes all trans
actions on the blockchain public and transparent. The money flow from 
a target Bitcoin address can be easily traced using Bitcoin Explorer. 
Bitcoin is pseudo-anonymous. Users create transactions through ad
dresses consisting of letters and numbers without associating with 
real-world identities. Except for daily trading, Bitcoin is also popular for 
illegal actions. One famous case, WannaCry (Chen and Bridges, 2017), 
yielded worldwide disaster. According to the crypto crime report from 
Chainalysis (Chainalysis Team, 2023), last year, 2022, the share of 
cryptocurrency transactions correlated to illegal activities reached an 
all-time high of $20.6 billion. 

When law enforcement agencies investigate crypto crimes, a critical 
forensic approach is to trace and analyze the money flow. And re
searches on Bitcoin de-anonymization have constantly been developing. 
Examples include address clustering (Meiklejohn et al., 2013; Zhang 
et al., 2020; Harrigan and Fretter, 2016), where different Bitcoin ad
dresses are clustered together to uncover associations between these 
addresses, analysis studies for the behavioral patterns of Bitcoin trans
actions (Xiang et al., 2022; Phetsouvanh et al., 2021; Chen et al., 2019), 
and the classification of participants and entities in the Bitcoin block
chain network (Makarov and Schoar, 2021; Jourdan et al., 2018; Zola 
et al., 2019). However, criminals would exploit various approaches to 

launder the illegally acquired currency to evade being tracked by law 
enforcement. Mixing services are ordinarily employed to enhance ano
nymity and make transaction records more challenging to follow and 
analyze. The peeling chain is one technique used by mixers or laundry 
services (de Balthasar and Hernandez-Castro, 2017). It starts from a 
Bitcoin address and repeatedly peels off small amounts (Meiklejohn 
et al., 2013). In the Bitifnex hack, peeling chains were used to split some 
of the stolen funds (Statement of Facts). 

Based on different assumptions, definitions, and conditions, the 
current studies have proposed various approaches for revealing peeling 
chains. Generally, when peeling, the larger amount will be transferred to 
a change address. The present research on peeling chains is usually 
based on heuristic algorithms to identify change addresses. However, 
due to the nature of the Bitcoin blockchain, it is impossible to associate 
each Bitcoin address with its actual owner. For example, the new change 
address identified in one peeling chain may be wrong; it may be a 
payment address. There is no such ground truth for the real-world Bit
coin blockchain. Therefore, it is challenging to evaluate the true quality 
of peeling chains obtained from heuristics. There is no guarantee of 
absolute accuracy. The behaviors derived rely on pre-defined hypothe
ses and features. There may be biases and errors that require further 
examination. Also, heuristics are based on particular conditions, and 
there are constraints on the execution. Once the user behaviors or 
blockchain technologies like wallet protocol change, some heuristics 
could be ineffective. 
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Our research analyzes the peeling chain pattern based on self-change 
addresses. In the transaction, the usage of self-change addresses in
dicates that the input address and the address used for receiving the 
change are controlled by the same entity. Firstly, a preliminary defini
tion is proposed, which does not involve redundant assumptions and 
constraints. Chains are collected from the Bitcoin blockchain network 
based on this definition. In addition, each chain’s transaction details and 
generated chain parameters are examined to determine potential 
peeling chains. Finally, uncover corresponding behavior patterns by 
analyzing these chains. Our study can ensure certain reliability of 
recognized peeling chains and further guarantee the accuracy of the 
obtained behavioral patterns. The results may provide reference infor
mation and ideas for crypto investigators. The rest of this paper is 
organized as follows. Section 2 describes related work. Section 3 in
troduces how to extract peeling chains and get chain-related parameters. 
Section 4 further determines and verifies chain data and studies the 
behavior patterns of these potential peeling chains. The last section is 
the conclusion and outlines future research work. 

2. Related work 

There is no requirement in the Bitcoin network to use real names. It 
safeguards user privacy to a certain extent. But all transaction details are 
transparent. Bitcoin provides pseudo-anonymity (Conti et al., 2018). 
The publicly available blockchain data can be utilized to trace the flow 
of Bitcoin. By combining external information, Bitcoin addresses can 
even be linked to some actual owners behind them. Two widely used 
address clustering heuristics were first proposed by Meiklejohn et al. 
(2013) to cluster potentially related Bitcoin addresses. An approach that 
correlates Bitcoin addresses with IP data is presented by Koshy et al. 
(2014). At the same time, various mixing algorithms and designs have 
been introduced to improve security and privacy, such as Coinjoin (Greg 
Maxwell, 2013) and CoinShuffle (Ruffing et al., 2014). With the devel
opment of blockchain technologies and increased user security aware
ness, mixing services are generally adopted to strengthen anonymity. 
For whatever purpose, bitcoin mixers, also known as tumblers, are often 
used for Bitcoin transactions to avoid blockchain transaction analysis. 
Centralized mixers such as Blender.io (Blender.io) collect users’ funds to 
mix. Decentralized mixers, conversely, do not need to rely on third-party 
services, such as Wasabi Wallet (Wasabi Wallet). Mixing services can 
lower the possibility of tracking and make money flow analysis more 
challenging and complex (Chen et al., 2019). And mixing services are 
frequently used for criminal activities like money laundering (Pakki 
et al., 2021). 

When investigating cryptocurrency-related illegal activities, law 
enforcement authorities will trace and study the flow of cryptocurrency 
money. The research community has proposed different methods for 
Bitcoin mixing detection, for example, aiming for anti-money laun
dering prevention. Some studies explore Bitcoin mixers in the real 
world. A comprehensive overview of Bitcoin laundering tools is shown 
by Möser et al. (2013). Through reverse engineering, this work studies 
the operation modes and limitations of those mixing services and pro
vides guidance for anti-money laundering. Pakki et al. (2021) interact 
with real mixing services, and real-world data is collected and analyzed. 
And an overview of the public Bitcoin mixer ecosystem is provided. de 
Balthasar and Hernandez-Castro (de Balthasar and Hernandez-Castro, 
2017) conduct an investigation of some real-world tumblers and 
mixers to identify their characteristics. The study demonstrates some 
limitations and regularities of examined mixing services. 

A part of the research develops various techniques to detect mixing 
related transactions, addresses, etc. Prado-Romero et al. (2018) apply a 
social network model to represent the Bitcoin network and explore 
mixing related accounts through outliers within the community. A 
transaction network analysis structure based on features is presented by 
Wu et al. (2021a). Network motifs are employed, and PU learning is 
utilized to represent the mixing detection problem. The framework 

determines the statistical characteristics of mixing services at the 
network, account, and transaction levels. In (Nan and Tao, 2018), Bit
coin transaction graphs are shown to have community properties. A 
more efficient deep learning way recognizes features from real-world 
mixing services. However, it has three drawbacks. And the mixing ser
vice transactions cannot be accurately characterized due to the lack of 
labels. Interacting with mixing services, from transaction and chain level 
(Shojaeenasab et al., 2022), differentiates typical features and discovers 
patterns. Based on these data, an integrated algorithm is proposed to 
detect mixing transactions, etc. However, accuracy and recall cannot be 
obtained because of the absence of authentic labels of addresses. Sun 
et al. (2022) generalize mixing detection as a transaction classification 
issue and apply transaction trees to trace mixing transactions. An LSTM 
Transaction Tree Classifier (LSTM-TC) algorithm is introduced, and it is 
tested with a pre-build mixing dataset, which achieves a good recall. 
However, it is still being determined whether all features from huge 
transactions can be covered, and the shortage of labeled data for ex
periments is a problem. Hu et al. (2019) demonstrate a node2vec-based 
classifier for finding laundering activities. Transaction graphs are 
adopted to separate laundering transactions from normal transactions to 
categorize and analyze graph features. The work is restricted due to 
inadequate trustworthy label data for illicit transactions. In (Wu et al., 
2021b), current mixing service mechanisms are classified as obfuscating 
and swapping. And a heuristic-based algorithm and transaction analysis 
approach are presented for mixing-related detection, which is examined 
with real Bitcoin mixing services. But there may still be some un
certainties in the measurements due to the absence of absolute ground 
truth. 

The peeling chain technique is everywhere. It is implemented in 
exchanges or gambling (Ahmed et al., 2019). It is also extensively 
applied for mixing services (Wu et al., 2021b). When mixing, the redi
rection of funds can be achieved through different peeling chains (de 
Balthasar and Hernandez-Castro, 2017). To avoid tracking where the 
illicit fund is going, peeling chains are an easy and suitable way to 
distribute money for money launderers. The peeling chain starts with a 
single Bitcoin address, and a small amount of Bitcoin keeps getting 
peeled off (Meiklejohn et al., 2013). For example, an address containing 
30 BTC peels off 3 BTC the first time and 2 BTC the second time, and the 
peeling process is repeated until the funds are split into many small 
amounts. These small amounts can flow to different addresses or ser
vices to obfuscate money tracking. Wu et al. (2021b) divide peeling 
chains as a swapping mechanism of mixing services. The peeling chain is 
represented by starting, middle, and ending points. The end node is 
determined by whether the change output from this node is used for a 
multi-input transaction. de Balthasar and Hernandez-Castro (de Balth
asar and Hernandez-Castro, 2017) think transactions on the peeling 
chain may include two to five outputs, and one general feature exhibited 
by peeling chains is that the chain node is only related to one receiving 
transaction and one sending transaction. Based on the address, trans
action, and cluster features, Kappos et al. (2022) propose a new heuristic 
to identify peel chains. The heuristic starts from the cluster generated by 
the co-spend heuristic, then each transaction within the cluster will be 
examined by an algorithm to obtain the corresponding peeling chain. 
Even though the dataset is provided and manually verified by Chainal
ysis, it is still hard to determine the quality of the results. There needs to 
be relevant data to prove the correctness of these chains. 

3. Chains on the Bitcoin blockchain 

The blockchain data until UTC 2023-01-16 01:35:09 (block height: 
0–772162) was parsed. The whole data has 796,564,036 transactions in 
total. We used BlockSci (Kalodner et al., 2020) to extract the relation
ships among all transactions. BlockSci is a blockchain analysis tool that 
assigns each transaction an internal index. The provided ‘spending_t
x_index’ links a specific transaction output to the next transaction. 

Y. Gong et al.                                                                                                                                                                                                                                    
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3.1. Preliminary definition 

The peeling chain starts from a Bitcoin address and peels off Bitcoin 
repeatedly (Meiklejohn et al., 2013). A Bitcoin transaction can have a 
random number of inputs and outputs. The input and output ratios of the 
parsed blockchain data were calculated. The distributions of different 
numbers of inputs/outputs are shown in Figs. 1 and 2. From the 

distribution results, it can be seen that the vast majority of transactions 
have input/output numbers between 1 and 6. For input, one input has 
the highest proportion of transactions, accounting for 73.1524%. For 
outputs, the largest percentage of transactions with two outputs is 
73.9741%. The total number of transactions with one input and two 
outputs is 448,723,821, which accounts for 56.3324%. It is more than 
half of the total number of transactions. 

Fig. 1. Distribution of different numbers of inputs (Bitcoin blockchain).  

Fig. 2. Distribution of different numbers of outputs (Bitcoin blockchain).  

Fig. 3. Self-change address use rate.  
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In current studies, most of them utilize the one-time change (OTC) 
heuristic (Meiklejohn et al., 2013) or its variants to identify the change 
address in a transaction. The OTC heuristic depends on address reuse (i. 
e., the appearance of an address) to determine the change address. With 
the development of blockchain technologies and increased user security 
awareness, the wallet usually generates a new address to receive Bitcoin 
for a transaction. Current heuristic algorithms are based on pre-defined 
hypotheses and characteristics. And because of the nature of the Bitcoin 
blockchain, it is impossible to reveal the real-world owner for every 
address. Hence, the change addresses produced by heuristics may 
contain errors. For example, a transaction with two outputs may have 
two receivers and has no change. But if one output meets pre-defined 
conditions, it is recognized as a change address, which will cause a 
false positive. In a transaction, a self-change address represents the 
address used to receive the change, the same as the input address 
(Meiklejohn et al., 2013). Bitcoin transactions require a pair of keys. The 
creation of a transaction needs the signature of the private key. For 
transactions with one input and two outputs, if one output is the 
self-change address, then the self-change output is undoubtedly the 
address used to receive the change. And the input address and change 
address are identical, which further illustrates that the input amount and 
the change amount are controlled by the same entity. The self-change 
address use rate for each year is calculated in Fig. 3. The percentage 
value means the proportion of transactions using self-change addresses 
among transactions with one input and two outputs. Last year, 2022, for 
transactions with one input and two outputs, the percentage of trans
actions that include the self-change address was 33.3637%. It is still 
common to use self-change addresses in Bitcoin transactions. 

According to the above discussion, our preliminary definition for 
extracting peeling chains is as follows:  

• Each transaction on the peeling chain only has one input and two 
outputs. One output is used to peel off part of Bitcoin, and the other is 
to receive the change. Under this condition, coinbase transactions 
cannot be the start transaction of a peeling chain. A coinbase trans
action is used to obtain the block reward, and its input does not hold 
a valid address with the UTXO (Unspent Transaction Output) refer
ence. It displays the coinbase field information. In some Bitcoin Ex
plorers, like WalletExplorer (WalletExplorer.com), the input of the 
coinbase transaction is set to zero. In this research, the input number 
of the coinbase transaction is zero.  

• In the two outputs, one is the self-change address. And the self- 
change address is a valid Bitcoin address. The condition is not 
satisfied if the address field is null. Note that the situation with two 
self-change addresses does not meet this condition. 

3.2. Chain extraction 

Based on the above definition, chains that satisfy these two condi
tions are extracted from the Bitcoin blockchain. This kind of chain in
cludes at least two successive transactions. And this is the formation 
criteria for the smallest length of chains. Collect as much data as possible 
from the blockchain to avoid the loss of any potential peeling chains. 
The collected data requires further processing as the complexity of the 
Bitcoin blockchain. Remove non-necessary data records and errors to 
make the dataset more accurate. Perform pre-processing for the gath
ered data. Bitcoin blockchain allows the existence of Null data/OP_RE
TURN/Data carrier transactions (Null Data, OP_RETURN). Users can 
store data on the blockchain through the OP_RETURN opcode script 
(Null Data). The immutability of the Bitcoin blockchain ensures that the 
stored data is irreversible. Such transactions exist in the blockchain, and 
one of their outputs is OP_RETURN type, also known as null-data output 
type. This kind of output does not have a valid Bitcoin address and is not 
for trading. Outputs with OP_RETURN opcode cannot be spent (Bistarelli 
et al., 2019). Therefore, the transactions with OP_RETURN outputs are 
not peeling chains. 

Check the obtained chain data and delete transactions containing the 
OP_RETURN type. Generally, the OP_RETURN output does not carry any 
Bitcoin amount. First, check the output amount for every transaction on 
each chain. The transaction is discarded if one output amount is zero. 
Bitcoin blockchain is different from the Ethereum blockchain. Some
times the output of a transaction on the Ethereum blockchain is shown 
as 0, and the transaction may be a token transfer. BRC-20 (BRC-20 To
kens), the token based on the Bitcoin blockchain, was introduced in 
March of this year (Katie Rees, 2023). Our blockchain data collection is 
until January this year, and token transactions will not be considered. 
Among the chains having at least one OP_RETURN output, it is found 
that OP_RETURN outputs may contain Bitcoin, i.e., 0.00000001 BTC. In 
this case, all output addresses are further examined to see whether they 
are the null data type without valid Bitcoin addresses. The record is 
removed if the address type is null data and the address field is null. 
While processing, the entire chain containing OP_RETURN output is not 
removed directly. To avoid data loss, the chain will be rearranged ac
cording to the index (position) of this transaction. The new chain could 
be formed if at least two successive regular transactions exist. 

Non-standard transactions exist in the Bitcoin blockchain. This type 
of transaction is rare, and the occurrence sometimes is the cause of er
rors (Bistarelli et al., 2019). Non-standard transactions are not consid
ered. After pre-processing, the original chain dataset includes 13,025, 
575 chains, and the total number of transactions is 83,215,800. 

Fig. 4. Distribution of transaction rounds (Raw Dataset).  
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3.3. Chain parameter 

Some chain-related parameters need to be calculated for subsequent 
observation and analysis. For each chain in the dataset, transaction 
round, time interval, block height interval, peeling amount, and peeling 
percentage are computed. 

Transaction round. It indicates how many times Bitcoin amounts 
have been peeled off from a starting address when finishing a series of 
peeling. It is the total number of the peeling process. Time interval. It 
represents the interval between the transaction time of the first trans
action and the time of the last transaction. There are two expressions for 
this parameter. The original interval shows the difference between two 
Unix timestamps. The other form is transformed into the human date 
and represented by hours. Block interval. It is the interval between the 
block height numbers of the last transaction and the first transaction on 
the chain. Peeling amount. It is the Bitcoin amount of each non-self- 
change output. That is the amount peeled off each time. Peeling Per
centage. It is the percentage of the peeled Bitcoin amount to the input 
amount of this transaction. Fig. 4 shows the distribution of transaction 
rounds in the raw dataset. It can be seen that the proportion of chains 
with two transaction rounds is the highest, at 42.6043%. It is 
approaching half of the total number of chains. And Fig. 5 shows the 
time/block intervals for the raw dataset. The time interval is in hours. As 

can be seen, most chains have large time/block interval values. Some 
chains took longer than a day to create. The creation time of most chains 
is long, and large block height intervals exist. There are even some block 
intervals exceeding 32,400 blocks. 

4. Pattern analysis 

According to existing studies, peeling chains can have thousands of 
peeling series. The formation criteria for the smallest length of chains is 
to have at least two successive transactions. To prevent the loss of po
tential peeling data, chains with small transaction rounds will not be 
removed directly. Although there are many studies for mixing detection, 
the Bitcoin blockchain has no such ground truth data. There is no mixer 
revealing all mixing-related transaction details inside the service. Thus, 
any length of chain collected should be subjected to further 
examination. 

4.1. Peeling chain determination 

In the Bitcoin blockchain, the peeling chain is a commonly used 
technique. Not only can it be used for mixers but also exchanges. Our 
objective is to identify peeling chains generated by mixers and derive 
their behavior patterns. In general, mixers make use of auto-program 

Fig. 5. Distribution of time/block intervals (Raw Dataset).  
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scripts to process a large number of transactions. Manually generated 
transactions are extremely unlikely, meaningless, and time-consuming. 
In order to determine the specific peeling chains generated by mixers, 
the internal details of the transactions and chain statistics are examined. 

4.1.1. Transaction details 
First, pay attention to the details inside the Bitcoin transaction script. 

The transaction version (Transactions), which specifies the version 
number of the transaction, can be either one or two. And each trans
action has the ‘lock_time’ field (Transactions), which indicates the time 
or block height number that the transaction can be valid. The input for 
non-coinbase transactions includes the sequence number field 
(Sequence Number (Transactions)), which announces whether the 
transaction can be updated before the locktime. It is usually the default 
value, 0xFFFFFFFF (Transactions). The default one does not affect the 
transaction. A sequence number smaller than the default value, i.e., 
0xFFFFFFFE, suggests that the transaction enables lock time. With the 
introduction of transaction replacement, sequence numbers below 
0xFFFFFFFE can be used for Opt-in Replace-by-Fee (RBF) from 2016 
(Opt-in RBF FAQ). Opt-in RBF indicates whether the transaction can be 
replaced. That is to increase the transaction fee to facilitate transaction 
confirmation. In the obtained chain dataset, the input number of 
transactions is always one, so there is only one sequence number for 
each transaction on a chain. 

Second, focus on the address script details in Bitcoin transactions. 
There are different kinds of Bitcoin addresses, such as the pay-to-public- 
key-hash type. BlockSci (Kalodner et al., 2020) is utilized to classify 
address types, and it can categorize addresses in the Bitcoin blockchain 
into ten general types. Our preliminary definition requires all trans
action addresses in the chain to be valid Bitcoin addresses. However, 
BlockSci is no longer developed since November 2020 (BlockSci De
velopers, 2020). For example, the outputs of the ‘WitnessUnknownAd
dress’ type have valid Bitcoin addresses, and BlockSci cannot parse 
address strings. For transaction records that BlockSci cannot generate 
the address strings, further parsing and checking are performed. As of 
block height 481824, which is August 2017, the Segregated Witness 
(SegWit) consensus rule can be executed (Segregated Witness Wallet 
Development Guide). SegWit has altered the format of Bitcoin trans
actions, and its introduction is to deal with the concerns related to 
transaction malleability (Bitcoin Developer Guide). It improves the 
speed of Bitcoin transactions, and SegWit transactions can achieve fewer 
transaction fees. If the wallet employed by mixers supports and enables 
SegWit, then all transactions created by that wallet should be SegWit 
transactions. Set a SegWit flag for each transaction. 

Based on the above analysis, parse the transaction version number, 
‘lock_time’ field, sequence number, all address types, and SegWit flag for 
each transaction in the chain dataset. The transaction version, address 
type, and locktime may be set identically in such chain if the mixer runs 
auto-programs to generate peeling chains. On the same chain, the 
sequence numbers should indicate the same meaning. The enabled 
functions indicated by each sequence number will be identical. To 
identify a chain from auto-programs, sequence numbers of all trans
actions are classified into three categories, which may all be the default 
value, 0xFFFFFFFE, or smaller than 0xFFFFFFFE. Also, chains with 
different sequence numbers are not deleted directly. New chains are 
formed by intercepting transactions that satisfy all conditions and meet 
the chain formation criteria. The transaction format on the same chain 
should be the same. That is, the SegWit flags on a peeling chain are all 
true or false. For more precise results, the chain dataset is further pro
cessed to select chains consisting of transactions with identical trans
action version, address type, locktime, sequence number category, and 
SegWit flag. After selection, there are 5,598,367 chains that meet the 
criteria, and the size of the number of chains in the original dataset is 
reduced by nearly 60%. 

4.1.2. Chain statistics 
In the processed data, the chains with two or three transaction 

rounds account for 68.9900% of the total. This kind of chain with a small 
transaction round can be created by a normal user. For example, it could 
be two consecutive transactions for payments. And mixers may also 
make such chains. Chains with small transaction rounds should be 
further verified. When analyzing the whole blockchain data, it is found 
that the UTXOs (Unspent Transaction Outputs) of many chains with 
small transaction rounds will be aggregated in one transaction. That is, 
UTXOs from the same Bitcoin address are gathered in a consolidation 
transaction with only one output. And all the input and output addresses 
in the transaction are identical. 

The verification for small chains is based on chain parameters. First, 
check whether the next transaction for the last transaction on the chain 
is a consolidation transaction (i.e., transactions having multiple inputs 
and only one output). According to the distribution of different inputs on 
the Bitcoin blockchain, the vast majority of transactions have input 
numbers between one and five, accounting for 95.4848%. Normal users 
rarely create transactions with more than five inputs. Therefore, if the 
inputs of the subsequent consolidation transaction are larger than five 
and all addresses within this transaction are the same, the chain having a 
small transaction round may be a peeling chain. Next, currently, the 
Bitcoin blockchain takes approximately 10 min to generate a new block. 
To attract customers, mixers advertise that the minimum mixing time 
will be several block times and the maximum time will be one day. The 
completion time for mixing is an essential consideration for customers 
when choosing mixers. Mixers usually ensure that customers can with
draw their funds as early as possible. According to the interval statistics, 
it is found that most short chains have block intervals within ten blocks 
and time intervals within an hour. Thus, if mixers generate the short 
chain via auto-programs and the user has not set a particular mixing 
time (i.e., lock_time = 0), the time interval between transactions is 
considered to be within 1 h, and the block interval should be no larger 
than ten. There are two reasons why the time or block interval of the 
short chain is not necessarily set to zero. Firstly, there are negative in
tervals in the real-world blockchain, and different blocks may have the 
same timestamp. Secondly, due to the complexity of the Bitcoin block
chain, the situation exists that transactions cannot be confirmed timely 
because of the large traffic of transactions, network delay, and other 
reasons. 

According to the transaction round distribution of the processed 
dataset, the round between four to ten also accounts for a significant 
proportion, which is 26.2869%. For chains with a transaction round 
between four and ten, relying on the peeling amount may not be a 
suitable way. If the peeling amount is always the same for each trans
action on the chain, it may be a peeling chain generated by the auto- 
program. It may also be that users have purchased identical products 
from merchants multiple times. The time period of the chain needs to be 
checked, and whether the locktime is set to a particular value. Consid
ering traffic congestion and other issues, if locktime is zero, then keep 
sufficient time to be two block times for each transaction round, i.e., for 
chains with transaction round value n, the limitation for the maximum 
block interval is 2*n. This maximum block interval limit also applies to 
small chains containing two or three transactions. Based on the above 
analysis, extract the chain data that meets these conditions. 

After verifying the transaction’s internal details and chain parame
ters in the previous step, the obtained chain data is most likely peeling 
chains. It cannot be absolutely certain that the current chain data are all 
peeling chains from mixers. Even though we used self-change addresses, 
transaction details, and chain parameters for more exact peeling chains, 
the inability to know the actual owner of each address is currently a 
limitation of Bitcoin blockchain research. It is unsolvable now. And 
because of privacy and other issues, no mixer makes all used address 
data publicly available. Our method ensures the accuracy of the 
extracted peeling chains to some extent. The final dataset includes 
624,573 chains, with a total transaction volume of 9,813,092. 
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4.2. Behavior discussion 

Some figures show the details of the final obtained chains. From 
Fig. 6, the distribution of transaction rounds shows that the numbers of 
transactions for most chains are within five. As the number of trans
action rounds increases, the number of chains decreases. A tiny portion 
of chains have a length larger than 120. In Fig. 7, about 79.0479% of the 
chains are created within a day. Chains with a time/block interval of 
0 account for about a quarter of the total. And more than half of the 
chains were created within an hour. 63.5871% of chains have block 
intervals of no more than ten block heights in Fig. 8. There are chains 
with a block height interval larger than 200, as some chains have a long 
transaction round. Fig. 9 shows the most peeling amounts are no more 
than one Bitcoin. On some chains, the peeling amount is the same each 
time. And some chains’ peeling address is also identical each time in the 
peeling process. Generally, this type of chain has a small block/time 
interval. In Fig. 10, the peeling percentage in 58.0550% of the trans
actions does not exceed 0.05%. And 71.1888% of the transactions 
peeled off the Bitcoin amount which is less than 1% of the input amount. 
Only 4.7771% of the transactions had a peeling percentage greater than 

50%. And the peeling value for most transactions is less than half of the 
input amount. For transactions with a large peeling percentage, the 
explanation is provided in the subsequent part. From the distributions of 
these chain parameters, it can be seen that the distributions of time in
tervals and block intervals in this chain dataset indicate that most chains 
were created within a short period of time. 

While calculating the time intervals, it is found that some chains 
have negative time intervals. There are 738 such chains in the dataset. 
The reason why negative time intervals exist is that there is a situation 
that the timestamp of the current block is earlier than the time of the 
previous block. For example, the UTC Time for block 362940 is 2015-06- 
28 17:18:34 while the UTC Time of block 362941 is 2015-06-28 
17:16:02. The block time of block 362940 is later than that of block 
362941. The proportion of negative time intervals on the whole block
chain is pretty small, but this situation exists (Marcel Waldvogel, 2022). 
Note that a block interval of zero does not necessarily mean that all 
transactions on the chain are in the same block. And a chain with zero 
time interval does not automatically imply the block height interval is 
also zero. That is, if the time interval of a chain is zero, the block height 
interval may not be zero. There are blocks with identical timestamps in 

Fig. 6. Distribution of transaction rounds.  

Fig. 7. Distribution of time interval.  
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Fig. 8. Distribution of block interval.  

Fig. 9. Distribution of peeling amount.  

Fig. 10. Distribution of peeling percentage.  
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the blockchain. For example, block 655042 and block 655043 have the 
same timestamp. 

These chain parameter data should be studied in combination when 
determining and analyzing peeling chains. Relying on a single chain 
parameter cannot accurately identify peeling chains and their behaviors. 
If the value of the transaction round is large, and the time/block interval 
is relatively small, there is a high probability that the chain is a peeling 
chain generated via auto-program script. Similarly, for chains having 
large time/block intervals, transaction rounds should be considered for 
the determination. For example, a chain with over 4,000 transactions, 
although the time interval is greater than one day, could be a peeling 
chain if it continuously peels off Bitcoin. The peeling percentage should 
not be required to be a smaller value every time, e.g., less than half of the 
input value. It is because when parsing the chain, it is found that the 
peeling amount of one transaction on the chain may exceed 50%, but the 
peeling amounts before and after that transaction satisfy the condition of 
peeling a smaller value. For example, in a chain, the transaction round is 
22, and the peeling percentage of the twelfth transaction is 59.0999%, 
greater than 50%. However, each peeling percentage is smaller than 
50% for other transactions on the chain (most of them are less than 
10%). In this case, assessing whether the corresponding time and block 
intervals are reasonable values is essential. Suppose the block interval of 
the chain is 0, and the timestamps of all transactions are the same; the 
chain is likely to be a peeling chain. 

In addition, the peeling amount and the peeling percentage should be 
evaluated together. Directly limiting the peeling amount/percentage to 
be within a particular value for each transaction on the chain is not a 
good way. In the experiments, it is found that the starting address of 
some chains has a large Bitcoin amount, and the peeling percentage is 
very low for the first peeling processes. As the peeling process continues, 
the input value of transactions in the later parts of the chain becomes 
smaller, increasing the peeling percentage. For example, the Bitcoin 
amount in the starting address in a particular chain is over 50 BTC, and 
1.15 BTC is peeled off with a peeling percentage of less than 3% for the 
first time. And the transaction round of this chain is long. After a series of 
peeling, the input amount is less than 0.067 in one transaction, and the 
peeling amount is 0.05 BTC. The peeling percentage is greater than 75% 
this time. However, the chain is still undergoing the peeling process. The 
peeling amount becomes small each time, and the peeling percentage 
slightly increases. In this case, further checking the corresponding 
transaction round is necessary. The increase in the peeling percentage 
could be reasonable for chains with very long transaction rounds. Note 
that the above analysis of chain parameters is based on the pre-verified 
results that the transaction details on the chain are identical. 

Our objective is to identify peeling chains generated by mixers and 
derive their behavior patterns. In general, mixers make use of auto- 
program scripts to process a large number of transactions. It can be 
learned from the extracted chain dataset that the trend of chain pa
rameters is relatively obvious. The period of this type of chain is very 
short, usually no more than one day or even 1 h. And the Bitcoin peeling 
value is not large. However, the peeling amount may not always be a 
smaller value (below 50%). It should be linked with the corresponding 
peeling percentage. The sequence number of the vast majority of 
transactions is the default value, and the lock time is zero. Bitcoin is 
peeled off to a peeling address each time in the peeling process. Chains 
with totally identical peeling addresses account for 16.4970%. Overall, 
the resulting statistics are consistent with the expected characterization 
of a peeling chain. That is, the peeling chain can continuously peel off 
small amounts to other addresses within a short period to distribute and 
transfer funds. 

5. Conclusion 

The present research on peeling chains is usually based on heuristic 
algorithms to identify change addresses. Due to the features and limi
tations of the Bitcoin blockchain, there is no such ground truth data to 

mark the actual owner for each Bitcoin address. The accuracy of derived 
change addresses cannot be guaranteed. The subsequent behavior 
analysis of peeling chains may have bias. Our research studies the 
peeling chain patterns based on self-change addresses. The use of self- 
change addresses suggests that the input and the address used for 
receiving the change are controlled by the same entity. Also, the trans
action details and chain parameters are further examined. Combining 
the two steps ensures the accuracy of the extracted peeling chains to 
some extent. However, relying on self-change addresses limits the 
number of extracted chains from the real-world Bitcoin blockchain. The 
peeling chains with one-time change addresses cannot be discovered. 
The incapacity to accurately identify every one-time change address is 
also a limitation of current Bitcoin de-anonymization and mixing 
detection work. 

Future work will focus on whether peeling chains can be simulated 
with a Bitcoin simulation model. As the data generated by the simulator 
can associate the real owner with every address in the simulated 
network, it is possible to study peeling chains with one-time change 
addresses and verify the effectiveness of current techniques. 

References 

Ahmed, M., Shumailov, I., Anderson, R., 2019. Tendrils of crime: visualizing the 
diffusion of stolen bitcoins. In: Graphical Models for Security: 5th International 
Workshop, GraMSec 2018. Springer, Oxford, UK, pp. 1–12. July 8, 2018, Revised 
Selected Papers 5.  

Antonopoulos, A.M., 2014. Mastering Bitcoin: Unlocking Digital Cryptocurrencies. 
O’Reilly Media, Inc.”. 

de Balthasar, T., Hernandez-Castro, J., 2017. An analysis of bitcoin laundry services. In: 
Secure IT Systems: 22nd Nordic Conference, NordSec 2017, Tartu, Estonia, 
November 8–10, 2017, Proceedings 22. Springer, pp. 297–312. 

Bistarelli, S., Mercanti, I., Santini, F., 2019. An analysis of non-standard transactions. 
Front. Blockchain 2, 7. 

Opt-in RBF FAQ. Available at: https://bitcoincore.org/en/faq/optin_rbf/. (Accessed 6 
January 2023). 

Blender.io. Available at: https://blendor.io/. (Accessed 3 March 2023). 
Segregated Witness Wallet Development Guide. Available at: https://bitcoincore.org/en 

/segwit_wallet_dev/. (Accessed 6 January 2023). 
Bitcoin Developer Guide. Available at: https://btcinformation.org/en/devel 

oper-guide#transaction-malleability. (Accessed 6 January 2023). 
BlockSci Developers, 2020. Blocksci version 0.7 documentation. Available at: https://cit 

p.github.io/BlockSci/index.html. (Accessed 21 March 2023). 
BRC-20 Tokens. Available at: https://www.brc-20.io/. (Accessed 1 May 2023). 
Chainalysis Team, 2023. The 2023 crypto crime report:everything you need to know 

about cryptocurrency-based crime. Available at: https://go.chainalysis.com/ 
2023-crypto-crime-report.html. (Accessed 22 April 2023). 

Chen, Q., Bridges, R.A., 2017. Automated behavioral analysis of malware: a case study of 
wannacry ransomware. In: 2017 16th IEEE International Conference on Machine 
Learning and Applications (ICMLA). IEEE, pp. 454–460. 

Chen, X., Hasan, M.A., Wu, X., Skums, P., Feizollahi, M.J., Ouellet, M., Sevigny, E.L., 
Maimon, D., Wu, Y., 2019. Characteristics of bitcoin transactions on cryptomarkets. 
In: Security, Privacy, and Anonymity in Computation, Communication, and Storage: 
12th International Conference, SpaCCS 2019. Proceedings 12, Springer, Atlanta, GA, 
USA, pp. 261–276. July 14–17, 2019.  

Conti, M., Kumar, E.S., Lal, C., Ruj, S., 2018. A survey on security and privacy issues of 
bitcoin. IEEE commun. Surv. Tutorials. 20, 3416–3452. 

Greg Maxwell, 2013. Coinjoin: bitcoin privacy for the real world. Available at: https://bit 
cointalk.org/index.php?topic=279249.0. (Accessed 6 March 2023). 

Harrigan, M., Fretter, C., 2016. The unreasonable effectiveness of address clustering. In: 
2016 Intl Ieee Conferences on Ubiquitous Intelligence & Computing, Advanced and 
Trusted Computing, Scalable Computing and Communications, Cloud and Big Data 
Computing, Internet of People, and Smart World Congress (Uic/atc/scalcom/ 
cbdcom/iop/smartworld). IEEE, pp. 368–373. 

Hu, Y., Seneviratne, S., Thilakarathna, K., Fukuda, K., Seneviratne, A., 2019. 
Characterizing and Detecting Money Laundering Activities on the Bitcoin Network 
arXiv preprint arXiv:1912.12060.  

Jourdan, M., Blandin, S., Wynter, L., Deshpande, P., 2018. Characterizing entities in the 
bitcoin blockchain. In: 2018 IEEE International Conference on Data Mining 
Workshops (ICDMW). IEEE, pp. 55–62. 

Kalodner, H., Möser, M., Lee, K., Goldfeder, S., Plattner, M., Chator, A., Narayanan, A., 
2020. {BlockSci}: design and applications of a blockchain analysis platform. In: 29th 
USENIX Security Symposium (USENIX Security 20), pp. 2721–2738. 

Kappos, G., Yousaf, H., Stütz, R., Rollet, S., Haslhofer, B., Meiklejohn, S., 2022. How to 
peel a million: validating and expanding bitcoin clusters. In: 31st USENIX Security 
Symposium. USENIX Security 22, pp. 2207–2223. 

Katie Rees, 2023. What are bitcoin’s new brc-20 tokens and what do they do? Available 
at: https://www.makeuseof.com/what-are-bitcoin-brc-20-tokens/. (Accessed 1 May 
2023). 

Y. Gong et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S2666-2817(23)00126-9/sref1
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref1
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref1
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref1
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref2
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref2
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref3
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref3
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref3
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref4
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref4
https://bitcoincore.org/en/faq/optin_rbf/
https://blendor.io/
https://bitcoincore.org/en/segwit_wallet_dev/
https://bitcoincore.org/en/segwit_wallet_dev/
https://btcinformation.org/en/developer-guide#transaction-malleability
https://btcinformation.org/en/developer-guide#transaction-malleability
https://citp.github.io/BlockSci/index.html
https://citp.github.io/BlockSci/index.html
https://www.brc-20.io/
https://go.chainalysis.com/2023-crypto-crime-report.html
https://go.chainalysis.com/2023-crypto-crime-report.html
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref12
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref12
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref12
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref13
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref13
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref13
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref13
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref13
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref14
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref14
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=279249.0
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref16
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref16
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref16
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref16
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref16
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref17
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref17
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref17
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref18
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref18
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref18
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref19
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref19
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref19
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref20
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref20
http://refhub.elsevier.com/S2666-2817(23)00126-9/sref20
https://www.makeuseof.com/what-are-bitcoin-brc-20-tokens/


Forensic Science International: Digital Investigation 46 (2023) 301614

10

Koshy, P., Koshy, D., McDaniel, P., 2014. An analysis of anonymity in bitcoin using p2p 
network traffic. In: Financial Cryptography and Data Security: 18th International 
Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected 
Papers 18. Springer, pp. 469–485. 

Makarov, I., Schoar, A., 2021. Blockchain Analysis of the Bitcoin Market. Technical 
Report. National Bureau of Economic Research. 

Marcel, Waldvogel, 2022. Bitcoin block timing statistics. Available at: https://netfuture. 
ch/2022/03/bitcoin-block-timing-statistics/. (Accessed 1 April 2023). 

Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M., 
Savage, S., 2013. A fistful of bitcoins: characterizing payments among men with no 
names. In: Proceedings of the 2013 Conference on Internet Measurement 
Conference, pp. 127–140. 
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