

Chracer: Memory analysis of Chromium-based browsers

By:

Geunyeong Choi, Jewan Bang, Sangjin Lee, Jungheum Park

From the proceedings of

The Digital Forensic Research Conference

DFRWS APAC 2023

Oct 17-20, 2023

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first

open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an

informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to

help drive the direction of research and development.

https://dfrws.org

Forensic Science International: Digital Investigation 46 (2023) 301613

Available online 13 October 2023
2666-2817/© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS 2023 APAC - Proceedings of the Third Annual DFRWS APAC

Chracer: Memory analysis of Chromium-based browsers

Geunyeong Choi a, Jewan Bang b, Sangjin Lee a, Jungheum Park a,*

a School of Cybersecurity, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, South Korea
b Cyber Investigation Bureau, National Office of Investigation, Korean National Police Agency, Seoul, South Korea

A R T I C L E I N F O

Keywords:
Digital forensics
Volatile data
Memory forensics
Web browser
User activity
Counter anti-forensics

A B S T R A C T

The web browsing activities of a user provide useful evidence for digital forensic investigations. However,
existing analysis techniques that aim to analyze local artifacts (e.g., history and cache) cannot find useful data (e.
g., visited URLs) if a user accesses the web using private or secret mode. Hence, string-searching and pattern-
matching techniques have been proposed and used to examine user activities from a memory dump. These
simple techniques are useful for identifying individual URLs visited in both normal and private modes. However,
since a piece of individually detected data does not have context on how it is created, additional analysis efforts
are required to properly interpret the meaning of the data. This paper proposes Chracer, a practical methodology
for extracting forensically meaningful information from the virtual memory of a Chromium-based browser by
systematically discovering objects of web browsing-related classes. Moreover, a proof-of-concept tool developed
based on the proposed methodology demonstrates that users’ web browsing-related artifacts can be extracted
effectively from the virtual memory of any Chromium-based browser, such as Google Chrome, Microsoft Edge
and Brave.

1. Introduction

The number of devices that use the Internet, including computers,
smartphones, in-car infotainment systems, and Internet of Things (IoT)
devices, is increasing rapidly. Today, individuals not only acquire new
information through the web, the largest Internet service, but they also
create new information themselves and post it online. Thus, analysts
analyze the web browsing history recorded by web browser applications
to examine users’ web browsing activities. Because web browsing his-
tory contains various types of information related to visited Uniform
Resource Locators (URLs), visit times, referrers, etc., history is useful in
reconstructing a user’s activity or investigating initial access to a
cybersecurity incident.

Analysts have typically examined users’ web browsing activities by
analyzing local artifacts, such as history and cache. Unfortunately,
existing local artifact-based techniques cannot find useful web
browsing-related artifacts when users access the web using a private (or
secret) mode, which provides a feature that leaves no web browsing-
related data in a file system. In addition, many privacy-enhanced ap-
plications do not store sensitive data on nonvolatile storage devices but
are only temporarily loaded and used in the memory. This makes
memory forensic techniques increasingly necessary and important

because data loaded on only the memory can be obtained from a
memory dump. Volatility (Volatility Framework), the leading memory
analysis framework, aims to analyze kernel objects managed by oper-
ating systems such as EPROCESS of Windows or struct task_struct of
Linux. The virtual memory of processes can be analyzed using the
Volatility framework; however, analysis of an application’s virtual
memory has mostly been performed using string-searching or
pattern-matching techniques. These simple techniques are useful for
identifying individual URLs visited in both normal and private modes
from the virtual memory byte streams of a web browser application.
However, search results do not provide context (Garcia, 2007) such as
how they are created; therefore, additional analysis efforts are required
to properly interpret the meaning of the data. Search results that do not
have meaning can render them less useful.

This paper proposes Chracer, a methodology for extracting forensi-
cally meaningful information to analyze the virtual memory of
Chromium-based web browser applications using an object layout. The
object layout describes how the fields (member variables) of classes or
structures are arranged in memory (e.g., ‘int a’ and ‘int b’ fields are
located at offsets 0 and 4, respectively), and the object is the mapping of
the field values in the memory based on the object layout. The proposed
methodology is summarized as follows: (1) identifying the classes and

* Corresponding author.
E-mail addresses: geunyeong@korea.ac.kr (G. Choi), jwbang@police.go.kr (J. Bang), sangjin@korea.ac.kr (S. Lee), jungheumpark@korea.ac.kr (J. Park).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2023.301613

mailto:geunyeong@korea.ac.kr
mailto:jwbang@police.go.kr
mailto:sangjin@korea.ac.kr
mailto:jungheumpark@korea.ac.kr
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301613
https://doi.org/10.1016/j.fsidi.2023.301613
https://doi.org/10.1016/j.fsidi.2023.301613
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301613&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 46 (2023) 301613

2

structures that represent a browser, tab, tab group, visited URL, etc. in
the source code of the Chromium project; (2) generating the object
layout of such classes and structures, and scanning a memory dump to
find Browser objects as the starting points of memory analysis and
consequently reveal Chromium-based user activities; (3) finally, by
discovering a Browser object, it is possible to interpret meaningful fields
and explore all retrievable subobjects using pointer variables to extract
forensically meaningful information, such as opened tabs and visited
URLs.

This study has the following contributions.

⋅ Identify forensically meaningful classes and structures relevant to
web browsing activities by inspecting the source code of the Chro-
mium project in Windows.

⋅ Propose a methodology to automatically generate version-specific
object layouts of Chromium and to effectively detect web
browsing-related objects from virtual memory.

⋅ Overcome the limitations of string-searching and simple pattern-
matching-based memory analysis techniques by extracting contex-
tual information about web browsing activities.

⋅ Demonstrate the usefulness of the proposed methodology through
practical experiments with Google Chrome, Microsoft Edge and
Brave.

⋅ Provide a proof-of-concept tool implemented based on the proposed
methodology.

This paper is organized as follows: Section 2 reviews prior studies
about web browser forensics and application memory forensics, and
Section 3 provides background knowledge on virtual memory and object
layout. Sections 4 and 5 introduce Chromium’s classes relating to web
browsing activities and the proposed memory analysis methodology.
Section 6 demonstrates the usefulness of the proposed methodology by
testing it on the Chromium browser. Section 7 discusses the result to
apply the methodology to Google Chrome, Microsoft Edge and Brave,
the comparison with a ‘Restore Window’ feature, the possibility of
carving objects from freed space in a physical memory dump, and the
limitation of our work. Finally, Section 8 concludes this work and pro-
poses directions for future work.

2. Related work

2.1. Memory analysis of web browser-related activities

A chromehistory (superponible), one of the Volatility framework
plugins, extracts web browsing history from a virtual memory of Google
Chrome by discovering record structures of the SQLite database. Chro-
meRagamuffin (cube0x8), a Volatility2 plugin, scans Google Chrome’s
virtual memory to obtain a list of visited URLs. However, it does not
extract whether the browser is in private mode, tab group information,
Secure Socket Layer (SSL) certificate information. Objects of Browser
class need to be set as starting points, in order to associate visited URLs
with additional useful information.

Dija et al. (2021) proposed a methodology to extract words from
memory, that a user searched for on the Internet. For an experiment,
they searched some words using web browsers and discovered those
words from a memory dump. After discovering searched words, they
proposed an algorithm to find the searched words by analyzing byte
patterns nearby them. They utilized URL parameter patterns such as
‘search_query=’ or ‘search?q=’ to find search terms.

Alfosail and Norris (2021) proposed a method for performing
memory forensics on the Tor browser. They used the Volatility frame-
work to identify Tor browser processes and Tor network connection and
utilized pattern-matching techniques to analyze traces of access to onion
sites by extracting URLs from the Tor browser’s virtual memory. They
also attempted to determine the actual access of the user by discovering
HyperText Transfer Protocol (HTTP) requests and responses data.

Hariharan et al. (2022) conducted a memory forensic analysis of the
portable web browsers’ private mode that leaves no traces on the fil-
esystem. They ran an executable file stored on an external storage de-
vice, such as a Universal Serial Bus (USB) flash drive, without installing
it on the operating system. When using the private mode, no traces using
a web browser are stored in history, cache, etc. They found traces left in
memory after using web services such as Facebook and YouTube on
Brave, Tor, Vivaldi, and Maxthon browsers. They showed that traces
could be found using the yarascan plugin (Volatility plugin - yarascan)
and it is possible to retrieve traces of a user’s web browsing.

Iqbal et al. (2022) used Google Meet, an online meeting service using
a web browser, in Google Chrome, Firefox, and Microsoft Edge, and
identified online meeting-related information from a memory dump.
They showed that it is possible to obtain the email addresses, meeting
room addresses, and sent and received chat messages of users partici-
pating in Google Meet from the web browser’s memory.

2.2. Object layout based memory forensics of user applications

Fernández-Álvarez and Rodríguez (2022) proposed a method to
obtain memory artifacts for the Telegram application on Windows. They
analyzed Telegram’s source code to identify classes that are related to a
chat message and modeled their reference relationships with each other.
Since Telegram uses the Qt framework to provide a Graphical User
Interface (GUI), in their study, objects such as QString were found in
Telegram’s virtual memory and reconstructed.

Manna et al. (2022) proposed a memory forensics technique for
applications working on .NET Framework and .Net Core. Based on the
publicly available source code of .Net Core, they developed a Volatility
plugin that extracts the portable executable (PE) image, loaded modules,
classes, class member variables, and methods of a .NET application by
analyzing the layout of key structures.

2.3. Automatic object layout generation

Qi et al. (2022) proposed LogicMEM, which automatically generates
profiles for Linux memory forensics. A profile contains a layout of the
structures used by the operating system to manage important data such
as a process. Windows provides symbol files in which Microsoft stores
structure layout information such as EPROCESS, but Linux does not
provide this information. Therefore, a profile must be obtained from a
live system. LogicMEM automatically generates a profile for kernel
module structures such as struct task_struct by determining the validity of
values on a field-by-field basis. The profile generated by LogicMEM is
used by the Volatility framework.

In our work, we propose an advanced memory forensic technique
using object layout analysis to overcome the limitations of existing web
browser-related memory forensics.

3. Background

3.1. Virtual memory

Virtual memory is one of the memory management techniques, in
which the operating system allocates each process with a unique
memory space only accessible by that particular process; this unique
memory space is called a virtual address space. When a process accesses
its own virtual address space, the operating system translates the virtual
address into a physical address to access the data stored in the physical
memory. The virtual memory technique prevents multiple processes
from interfering with each other’s memory space and allows each pro-
cess to use a memory space larger than the size of the actual physical
memory.

Virtual memory is separated into user mode and kernel mode. The
user-mode area is divided into the text area where executable code is
stored, the stack area where function local variables are stored, and the

G. Choi et al.

Forensic Science International: Digital Investigation 46 (2023) 301613

3

heap area where dynamically allocated space is located during runtime.
Since the heap area contains data generated by a process as it runs,

there is considerable useful information for analyzing the application
memory, such as cipher keys that encrypt sensitive data and passwords
entered by a user. In addition, the objects of class or struct used by a
process to internally manage data for processing are located in the heap
area. Hence, if it can identify the objects in the process memory, it can
provide context for the extracted data.

3.2. Object layout

In C++, a class type includes class, struct, and union. This paper
writes them as a class. A class consists of fields storing a value and
methods being responsible for an action. When the source code is built,
the compiler generates object layouts that determine the arrangement of
fields in a class. The mapping of a source-level class into machine-level
memory is called an “object layout algorithm” (Ramananandro et al.,
2011). An object means that a class is mapped (instanced) into the
memory based on the object layout. In Windows, the methods are
located in a text area, such as the .text section in the PE file format.
Fields, however, are located in the stack or heap area in the order in
which they are declared.

For example, Chromium’s NavigationEntryImpl is a class that stores a
visited URL, the title of a document on such URL, etc. Fig. 1 shows a
NavigationEntryImpl object in a 64-bit Chromium browser process. Fig. 1
(A) shows the object layout of the NavigationEntryImpl class, and Fig. 1
(B) displays the raw byte stream of the object while being dynamically
created and loaded into memory. Fig. 1 (a)–(f) denotes the fields of title_,
favicon_, ssl_, transition_type_, user_typed_url_ and restore_type_ and their
corresponding values. In Fig. 1 (B), there are 4-byte alignment paddings
behind transition_type_ and restore_type_. The NavigationEntryImpl object
shown in Fig. 1 (B) contains information about the default startup page
URL, which is chrome://newtab/, when creating a new tab.

In C++ standard, there is an alignment requirement that describes
the arrangement of the fields (Objects and alignment). Alignment im-
plies that 2- and 4-byte must be located at memory addresses that are
multiples of two and four, respectively. If a one-byte field is followed by
a four-byte field, three bytes of alignment padding are inserted between
the two fields. In the case of class inheritance, the fields of the parent
class are placed first, followed by those of the child class. If a virtual
function exists within a class, the object of that class has a pointer to the
virtual function table. Nonvirtual member functions do not affect the
layout of the object. In this work, we generate object layouts for the
Chromium project source code and discover objects allocated to the
virtual memory to extract meaningful information from a forensic

perspective.
For example, in Chromium, the “64-bit object layout” of string,

vector, and map, which are the representative C++ Standard Template
Library (STL) container classes, is as follows.

3.2.1. std::string and std::u16string
A string type is a 24-byte data structure to store null-terminated

strings. std::string has a string consisting of single-byte characters. If
the length of the string is less than 23 characters, the character array is
stored at offset 0; otherwise, the pointer in the character array is stored.
std::u16string has a string consisting of 16-bit characters. If the length of
the string is less than 11 characters, it stores a 16-bit character array;
otherwise, it stores a pointer in the array.

3.2.2. std::vector
A vector is an ordered data structure. It is internally implemented as

an array of elements. The start and end addresses of the array are stored
at offsets 0 and 8, respectively.

3.2.3. std::map
A map is a data structure of key–value pair consisting of keys that

cannot be duplicated and values that can be obtained through such keys.
The map is internally implemented as a red-black tree ordered by the
key data. Each node has three-pointers for the left, right, and parent
nodes: Boolean, key data, and value data.

4. Chromium’s classes relating to web browsing activities

In this section, we inspect the Chromium source code to identify
classes relevant to a user’s web browsing activity. The Chromium
browser has a Browser class, which is responsible for a single window,
and various classes for managing tab groups, tabs, and lists of visited
URLs. Figure 2 shows the classes and relationships between them that
are of interest from a digital forensics perspective; (a)-(d) represent
classes related to the browser, tab group, tab, and information about the
URL visited by a user, respectively. The colored boxes indicate the key
classes. The key fields of each class are listed in Table 1.

4.1. Browser

Browser class manages a single window and can refer to pointer
variables to discover tab groups, tabs, and other key subobjects. The key
fields contain information, such as the window name, a tab strip to
manage tabs, and a profile to store information about the user and ses-
sion. Note that the profile_ member has a ProfileImpl object when

Fig. 1. ‘Object layout’ (A) and ‘object’ (B) of NavigationEntryImpl class.

G. Choi et al.

Forensic Science International: Digital Investigation 46 (2023) 301613

4

normally used; however, it has an OffTheRecordProfileImpl object when
using the private mode.

TabStripModel class manages tab groups and tabs. It stores a list of
tabs that are currently active in a Chromium window using a single
vector container and contains information about the tab group. It also
stores the index number of the last used tab; therefore, it can be used to
trace the user’s last activity.

4.2. TabGroup

A tab group is a feature that combines multiple tabs into a single
group. A group_model_ member of a TabGroupModel type included in a
TabStripModel class manages tab-group-related data using the groups_
member of the std::map type with TabGroupId and TabGroup as the key
and value, respectively. The TabGroup stores information regarding the
current tab group, such as its name and color, in a TabGroupVisualData-
type visual_data_ member.

4.3. Tab

A tab is a component that renders the web page of the visited URL of
the user. The Tab class manages whether a tab is pinned, the group to
which the tab belongs, etc. It also stores a list of visited URLs, which can

be obtained through the contents_ member of the WebContents type. The
WebContents class is implemented by the WebContentsImpl class. To
obtain a list of visited URLs, they must be appropriately referred to
subobjects through the class reference relationships shown in Fig. 2.

4.4. NavigationEntry

NavigationEntry class contains information about the individual URL
the user visited. Each time the user visits a new URL in each tab, a new
NavigationEntry object is created. They are stored and managed in the
entries_ member, which is a single vector container, in the Navi-
gationControllerImpl class. In addition, the favicon and SSL certificate
information are stored in this class. NavigationEntry class is implemented
by the NavigationEntryImpl class.

The frame_tree_ member of the NavigationEntryImpl class can refer to
the FrameNavigationEntry class. The final URL of the entry can be ob-
tained from the FrameNavigationEntry object. When a user visits a spe-
cific URL, the user_typed_url_ member of the NavigationEntryImpl class has
the first accessed URL, whereas the url_ member of the FrameNavigatio-
nEntry class has the final URL after all the redirections. Hence, it contains
a list of redirected URLs and referrer-related data.

5. Methodology

5.1. Overview

This section proposes an automated system for extracting the
forensically meaningful information identified in Section 4 from the
virtual memory areas of Chromium processes. First, the system builds
the Chromium source codes (considering different commits and ver-
sions) to generate the corresponding symbol files. Then, to extract
meaningful information from virtual memory, it obtains detailed object
layout information by interpreting the symbol files and discovers rele-
vant objects from a memory dump by validating the values that each
field can store. The workflow of the proposed methodology is illustrated
in Fig. 3.

5.2. Automatic object layout generation

Chromium can be built in Windows using Ninja (Checking out and
Building Chromium for Windows). Ninja (Ninja) compiles the source
code using a Visual Studio compiler, which normally creates a Program
Database (PDB) symbol file used to store additional information for
debugging (e.g., object layouts, function names, and so on). To obtain
object layouts from the created PDB, we utilized Ghidra’s PDB parsing
feature (Ghidra). Since the object layouts of each class mentioned in the
previous section are stored in PDB files related to chrome.dll and content.
dll, we attempted to convert each PDB file into a user-friendly readable
format, such as Extensible Markup Language (XML), to easily utilize that
information in subsequent automation processes.

5.3. Extraction of forensically meaningful information

The classes can have member variables of various types. These
include fundamental types (e.g., int and double), class types (e.g., class
and struct), enumeration types (e.g., enum), and pointer types with vir-
tual memory address values. “Pointer” type members typically point to
objects of other fundamental or class types on the heap area. All the
algorithms are presented in the Appendix.

5.3.1. Validation of a pointer value
The Algorithm 1 can be utilized to determine the validity of values

stored in the pointer type members. Specifically, the algorithm takes a
specific virtual address value and checks whether it is within the range
of valid addresses in user mode and included in the Virtual Address
Descriptor (VAD) list of the target process.

Table 1
The list of key fields of each class.

Class Name Field Name Description

Browser profile_ User profile (it can be used to
distinguish whether that
window is private or not)

tab_strip_model_ Tabs and tab groups
session_id_ ID of this Browser object
bookmark_bar_state_ Bookmark bar state that

represents whether it shows
window_has_shown_ Boolean that represents

whether
user_title_ Window’s name

ProfileImpl path_ AppData path
TabStripModel contents_data_ List of created tabs

group_model_ Tab groups-related data
selection_model_ Index of the last used tab

TabGroup id_ ID of the tab group
visual_data_ Visual data of the tab group
tab_count_ Count of tabs in the tab group

TabGroupId token_ 16-byte array representing
unique ID

TabGroupVisualData title_ Name of the tab group
color_ Theme color of the tab group

NavigationControllerImpl entries_ List of visited URL
NavigationEntryImpl frame_tree_ Data related to HTTP request

unique_id_ ID of the entry
title_ Document title of the visited

web page
favicon_ Favicon data (URL, etc.)
ssl_ SSL data (Certificate, etc.)
user_typed_url_ Visited URL (shown in address

bar)
timestamp_ Visited timestamp (Chrome

timestamp)
http_status_code_ HTTP response status code

FrameNavigationEntry url_ Accessed URL (after redirect)
referrer_ Referrer data
redirect_chain_ List of redirected URLs
method_ HTTP request method

FaviconStatus url Favicon URL
image Favicon image data

SSLStatus certificates SSL certificate data
X509Certificate subject_ Owner of the certificate

issuer_ Entity that issues the
certificate

valid_start_ Start of validity date
valid_expiry_ Expiry of validity date
serial_number_ Serial number of the certificate

G. Choi et al.

Forensic Science International: Digital Investigation 46 (2023) 301613

5

To effectively discover the objects of a particular class in a memory
dump, it is necessary to validate the values stored in several key fields of
the class. For example, assume that a particular class has a field having a
pointer value at offset “0x100”. If an object of a particular class exists at
address “0x200`3456`8760” (= base), a value stored at address
“0x200`3456`8860” (= base + offset) should be a valid virtual address
for referencing another object. The accuracy of detecting valid objects
will increase with more member variables that should be checked for
valid values.

5.3.2. Validation of fields
Algorithm 2 represents detailed steps for validating the values of an

object loaded at a virtual address. Individual pointer fields can be vali-
dated using Algorithm 1, and a certain field can be validated by

determining whether its value is nullable. The value of an enumeration
type can be checked to determine whether it is included within the range
corresponding to its enumeration definition, and a boolean field value
must have only zero or one as its value. In addition, if a field contains a
pointer value to reference an object of another class, Algorithm 2 is
called recursively, as indicated in line 29 of the algorithm.

5.3.3. Scanning Browser objects
Algorithm 3 describes how to detect Browser objects in a virtual

memory space of the target Chromium process, which can be obtained
by traversing nodes stored in the process’s VAD tree. The algorithm uses
only memory areas with PAGE_READWRITE protection, excluding read-
only pages, to increase the efficiency of the object-carving operation. In
addition, since the Browser class has a virtual function, it has a 64-bit

Fig. 2. Chromium’s browsing-related classes and their relationships.

Fig. 3. Operational workflow for memory analysis of Chromium-based browsers.

G. Choi et al.

Forensic Science International: Digital Investigation 46 (2023) 301613

6

pointer at offset 0 to reference a relevant virtual function table. More-
over, it must be located at a virtual memory address that is a multiple of
eight owing to the alignment requirements of C++. Therefore, it per-
forms a validation check on each candidate Browser object in 8-byte
increments.

As mentioned above, when a candidate virtual memory address is
detected where a Browser object exists, several key fields of the object
can be accessed and validated by referring to its object layout.
Furthermore, the relevant classes mentioned in the previous section are
retrieved based on their referential relationships to extract forensically
meaningful information.

6. Experiment and result analysis

6.1. Experimental setup

The operating system used for the experiment was Windows 11 22H2
(OS Build 22621.1265), and the Chromium version was 113.0.5650.0
(Chromium source code commit fed2d65). The compiler used for the
build was Visual C++ Compiler v19.33.31630 in Visual Studio 2022
v17.3.6.

The goal of the experiment is to carve the Browser object from the
virtual memory of the target Chromium based on the object layout
analyzed in Section 4 and further obtain information about the user’s
activity, such as the list of created tabs, visited URLs, and SSL
certificates.

6.2. Implementation and dataset

Chracer, which we developed as a proof-of-concept tool, takes two
inputs: a user-space memory dump (in this case a Windows minidump),
and parsed symbol file. The minidump file was extracted from the
Chromium browser process using Process Hacker v2.39.124 (Process
Hacker), and the symbol file was parsed by Ghidra by converting the
PDB of chrome.dll and content.dll into XML files. Chracer uses these XML
files to obtain object layouts of user activity-related classes. The source
code and dataset are publicly available on Github (Chracer). The
detailed user’s browsing activities performed for each experiment were
documented in Chracer’s GitHub repository.

6.3. Results

6.3.1. Carving browser objects
To discover the Browser object that is responsible for a single

Chromium window in the virtual memory of the Chromium process, the
methodology proposed in the previous section was applied. In this
experiment, we created four Chromium windows with a default tab for
each window, visiting particular websites in the following order: Goo-
gle, GitHub, YouTube, and Chromium. Fig. 4 shows that Chracer dis-
covers four Browser objects in the virtual memory dump and extracts the
session ID, tab number, document title on a page, and visited URL. Each
Chromium window can be distinguished by its session ID, resulting in
four Browser objects with different session IDs residing in the memory.

6.3.2. Extracting tab groups
A std::map is a data structure comprising a pair of keys and values and

has a binary tree structure internally. In this experiment, Chracer

extracts tab-group information from the virtual memory of the Chro-
mium process by interpreting the std::map structure, with TabGroupId
and TabGroup as the key and value, respectively. We added eight tabs to
one Chromium window and set each of the two tabs into one group to
create a total of four tab groups. In addition, we set the name of each tab
group to “TabGroup{Number}” manually. Fig. 5 shows that Chracer
identifies the TabGroup and TabGroupVisualData objects and outputs the
tab group name, tab group color, and the index of the tabs included in
that tab group.

6.3.3. Extracting tabs
Chromium uses std::vector to manage multiple tabs and tab-related

information (e.g., visited URLs). An std::vector is an ordered data struc-
ture internally containing an array. In this experiment, Chracer in-
terprets the vector structure to extract the tabs included in a Chromium
window and visited URLs included in each tab. We created two tabs in a
single Chromium window and visited five URLs in each tab. Table 2
shows the list of visited URLs.

As shown in Fig. 6, Chracer identifies two tabs and five visited URLs
in each tab.

6.3.4. Extracting SSL certificates
The SSL certificate information of the web server visited by the user

can be obtained from memory. Fig. 7 shows obtained certificate infor-
mation (*.wikipedia.org and *.chromium.org) from a memory dump of the
previous experiment (Section 6.3.3). A web server certificate is an
important component that ensures server authenticity. However, in a
system infected by a malicious attacker, a malicious certificate can be
inserted into the list of trusted certificates. In this case, a certificate error
may not occur when accessing a phishing site created by the attacker.
Therefore, it is necessary to extract the certificate information loaded in
the memory and utilize it when analyzing an infected system.

6.3.5. Identifying private mode
Chromium provides an incognito (private) mode. Prior research

(Hariharan et al., 2022; Said et al., 2011) has shown that using the
private mode leaves no data on the file system. In this experiment,
Chracer identifies all Chromium windows from the memory and de-
termines whether each window is in private mode. It also extracts the
URLs visited in the private mode. By determining the class type of an
object stored in the profile_ of the Browser object using Algorithm 2, we
can determine whether the window is in private mode. If a Chromium
window is in private mode, the object of the OffTheRecordProfile class is
stored in the profile_ field. Otherwise, the profile_ normally contains an
object of the ProfileImpl class. Therefore, if the result of “validate
(*profile_, OffTheRecordProfile, OL, VAD)” is true, its Chromium window
is in private mode.

In this experiment, we created four windows: two private windows
and two normal windows. In addition, we visited one URL in each
window, accessing Chromium and Wikipedia pages in private windows
and Google and YouTube pages in normal windows.

As shown in Fig. 8, Chracer identifies all Chromium windows and
effectively determines whether they are in private mode. Furthermore,
the visited URLs can be extracted from a private mode window. This is
useful for investigating user activities that attempt to hide suspicious

Fig. 4. Output of Chracer: Browser objects. Fig. 5. Output of Chracer: Tab groups.

G. Choi et al.

Forensic Science International: Digital Investigation 46 (2023) 301613

7

intentions.

7. Discussion

7.1. Chromium-based browsers

We applied the methodology proposed in Section 5 to Chromium-
based Google Chrome (v111.0.5563.65), Microsoft Edge
(v111.0.1661.44), and Brave (v1.52.129). We found that some object
layouts, including the Browser class, were different from those in the
official Chromium source code. For example, the title_ field of the Nav-
igationEntryImpl class is located at 0xE0 offset in Chromium’s source
code but is located at 0xC8 offset in Google Chrome’s virtual memory.
However, we needed to adjust the offsets of some fields by manually
comparing a raw byte stream of key objects, such as Browser, to interpret
and correlate all relevant objects.

We dumped minidump files after visiting some websites. Table 3
shows the list of visited URLs using Google Chrome, Microsoft Edge, and
Brave.

Fig. 9 shows the results of extracting user activity-related informa-
tion of Google Chrome, Microsoft Edge, and Brave, respectively.

7.2. Non-volatile session restore information

Chromium browser provides a session restore feature, called
“Restore Window”, to restore the last used session when the Chromium
process is abnormally terminated or a user wants to reuse the last ses-
sion. A session contains information about a user’s web browsing ac-
tivities, including windows, tabs, and a list of visited URLs, that has
accumulated since the browser was launched. Chromium stores the last
session information in the Last Session and Last Tabs files. There are
publicly available tools to interpret these artifacts (CCL Solutions Group;
lemnos); however, they can only parse information stored in nonvolatile
files. Since SSL certificate information in normal/private mode and the

list of visited URLs in private mode are not stored in the file system,
utilizing the proposed methodology can provide additional useful in-
formation from a digital forensics perspective than using only nonvol-
atile data.

7.3. Free pages and browsing-related objects

When a process terminates or frees unused pages, the operating
system does not immediately initialize (overwrite NULL to) the freed
page. The freed pages are set to the free state until they are allocated to
another process, and the data used by the process remain on the page
while they are in the free state. This suggests the possibility of finding
forensically meaningful information on freed pages in the physical
memory. If analysts know the object layout of the class that they want to
discover, the object-carving algorithm (Algorithm 2) used in this
methodology can be utilized to find forensically meaningful information
in the freed pages.

7.4. Limitations of the proposed methodology

The proposed methodology first carves the Browser object and then

Table 2
The list of visited URLs on each tab.

Tab Order Web Pages

First Tab 1 https://www.wikipedia.or
2 https://en.wikipedia.org/wiki/Digital_forensics
3 https://en.wikipedia.org/wiki/Computer_forensics
4 https://en.wikipedia.org/wiki/Digital_evidence
5 https://en.wikipedia.org/wiki/Best_evidence_rule

Second
Tab

1 https://www.chromium.org/chromium-projects/
2 https://www.chromium.org/Home/
3 https://www.chromium.org/developers/
4 https://www.chromium.org/developers/getting-around-the-

chrome-source-code/
5 https://www.chromium.org/developers/design-document

s/multi-process-architecture/

Fig. 6. Output of Chracer: Tabs and visited URLs on each tab.

Fig. 7. Output of Chracer: SSL certificates relating to visited websites.

Fig. 8. Output of Chracer: URLs visited in private mode.

Table 3
The list of visited URLs on each browser.

Browser Order Web Pages

Google Chrome 1 https://www.wikipedia.org
2 https://en.wikipedia.org/wiki/Digital_forensics
3 https://en.wikipedia.org/wiki/Cybercrime
4 https://en.wikipedia.org/wiki/Cyberwarfare
5 https://en.wikipedia.org/wiki/Cyberattack

Microsoft Edge 1 https://www.wikipedia.org
2 https://en.wikipedia.org/wiki/Digital_forensics
3 https://en.wikipedia.org/wiki/IoT_Forensics
4 https://en.wikipedia.org/wiki/Memory_forensics
5 https://en.wikipedia.org/wiki/Volatility_(software)

Brave 1 https://www.wikipedia.org
2 https://en.wikipedia.org/wiki/Digital_forensics
3 https://en.wikipedia.org/wiki/Network_forensics
4 https://en.wikipedia.org/wiki/Transport_Layer_Securi

ty
5 https://en.wikipedia.org/wiki/HTTPS

G. Choi et al.

https://www.wikipedia.or
https://en.wikipedia.org/wiki/Digital_forensics
https://en.wikipedia.org/wiki/Computer_forensics
https://en.wikipedia.org/wiki/Digital_evidence
https://en.wikipedia.org/wiki/Best_evidence_rule
https://www.chromium.org/chromium-projects/
https://www.chromium.org/Home/
https://www.chromium.org/developers/
https://www.chromium.org/developers/getting-around-the-chrome-source-code/
https://www.chromium.org/developers/getting-around-the-chrome-source-code/
https://www.chromium.org/developers/design-documents/multi-process-architecture/
https://www.chromium.org/developers/design-documents/multi-process-architecture/
https://www.wikipedia.org
https://en.wikipedia.org/wiki/Digital_forensics
https://en.wikipedia.org/wiki/Cybercrime
https://en.wikipedia.org/wiki/Cyberwarfare
https://en.wikipedia.org/wiki/Cyberattack
https://www.wikipedia.org
https://en.wikipedia.org/wiki/Digital_forensics
https://en.wikipedia.org/wiki/IoT_Forensics
https://en.wikipedia.org/wiki/Memory_forensics
https://en.wikipedia.org/wiki/Volatility_(software)
https://www.wikipedia.org
https://en.wikipedia.org/wiki/Digital_forensics
https://en.wikipedia.org/wiki/Network_forensics
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/HTTPS

Forensic Science International: Digital Investigation 46 (2023) 301613

8

extracts forensically meaningful information by referencing its fields
and pointers. Thus, if it fails to find the Browser object, it is difficult to
proceed with the step that refers to fields or pointers to extract useful
information, such as tab groups and the list of visited URLs.

Since the size of the symbol files (chrome.dll and content.dll) is
significantly large, Chracer takes a long execution time; thus, it must be
optimized. Our future work will focus on enhancing Chracer to improve
this aspect.

As mentioned in Section 7.1, although Google Chrome, Microsoft
Edge and Brave are based on Chromium, the offsets of certain fields may
differ from those of the official Chromium source code. Automatic ad-
justments of these offsets were not performed.

8. Conclusion and future directions

Existing memory forensics for user applications has been mostly
performed with string searching and simple pattern matching. However,
since there is no or insufficient context to interpret a piece of data
detected by those traditional approaches, additional analysis efforts are
required to reveal user activity-related context. This work dissected
Chromium’s source code to identify classes relating to a user’s web
browsing activities such as creating a browser window, adding tabs, and
visiting specific URLs. Based on object layouts automatically generated
from the source codes, it is possible to detect and correlate relevant
objects (e.g., Browser, Tab, NavigationEntryImpl, etc.) from virtual
memory of Chromium processes, in order to extract forensically mean-
ingful browsing-related traces. Also, we were able to extract informa-
tion, such as SSL certificates, that previous works had not extracted.
Furthermore, this paper proposed a systematic methodology to auto-
mate the entire process for Chromium browser memory forensics.

Further, this paper demonstrated that the proposed methodology can
correctly extract forensically meaningful information, such as a list of
visited URLs, even when a Chromium browser is running in private
mode. Although some classes’ fields and types needed to be manually
adjusted due to differences with the official Chromium, our experiments
showed that the proposal can be applied to any Chromium-based
browsers such as Google Chrome, Microsoft Edge and Brave. Our find-
ings overcome the limitations of traditional string search and pattern

matching methods, and moreover can be used to identify users’ web
browsing activities in detail.

This work only focuses on Windows environments along with object
layouts obtained by building the Chromium source code on Windows. In
future work, we will propose a generalized methodology that can be
applied to other operating systems such as Linux, macOS, and Android.
In addition, we plan to conduct research on popular user applications
other than web browsers, in order to effectively detect memory objects
and analyze their correlations for assisting digital investigation.

The current version of Chracer processes a minidump of target pro-
cess. Therefore, We are working on developing a Volatility3 plugin
based on our proposal for processing a physical memory dump. Unfor-
tunately, we haven’t found an effective way to reference higher-level
classes from lower-level classes. We will find the method that back-
tracks traversal of pointer from child object to parent object.

Appendix

Algorithm 1. Validating a virtual memory address

Algorithm 2. Validating fields of a candidate object

Fig. 9. Output of Chracer: URLs visited in Google Chrome, Microsoft Edge, and Brave.

G. Choi et al.

Forensic Science International: Digital Investigation 46 (2023) 301613

9

Algorithm 3. Scanning Browser object(s)

Acknowledgements

This work was supported by Institute for Information & communi-
cations Technology Promotion(IITP) grant funded by the Korea gov-
ernment(MSIT) (No.2022-0-00281, Development of digital evidence
analysis technique using artificial intelligence technology).

References

Alfosail, M., Norris, P., 2021. Tor forensics: Proposed workflow for client memory
artefacts. Comput. Secur. 106, 102311.

Chromium Docs. Checking out and Building Chromium for Windows. Available: https
://chromium.googlesource.com/chromium/src/+/main/docs/windows_build_ins
tructions.md. (Accessed 16 May 2023).

cppreference. Objects and alignment. Available: https://en.cppreference.com/w/c/la
nguage/object. (Accessed 16 May 2023).

CCL Solutions Group. ccl_chrome_indexeddb. Available: https://github.com/cclgrouplt
d/ccl_chrome_indexeddb. (Accessed 16 May 2023).

cube0x8. ChromeRagamuffin. https://github.com/cube0x8/ChromeRagamuffin.
(Accessed 16 May 2023).

Dija, S., Ajana, J., Indu, V., Sabarinath, M., 2021. Web Browser Forensics for Retrieving
Searched Keywords on the Internet. In: 2021 3rd International Conference on
Advances in Computing, Communication Control and Networking. ICAC3N,
pp. 1664–1668.

Fernández-Álvarez, P., Rodríguez, R.J., 2022. Extraction and analysis of retrievable
memory artifacts from Windows Telegram Desktop application. Forensic Sci. Int.:
Digit. Invest. 40, 301342 (selected Papers of the Ninth Annual DFRWS Europe
Conference).

Volatility Foundation. Volatility Framework. https://www.volatilityfoundation.org.
(Accessed 16 May 2023).

Volatility Foundation. Volatility plugin - yarascan. Available: https://github.com/volatili
tyfoundation/volatility3/blob/develop/volatility3/framework/plugins/yarascan.
py. (Accessed 2 July 2023).

Garcia, G.L., 2007. Forensic physical memory analysis: an overview of tools and
techniques. In: TKK T-110.5290 Seminar on Network Security, pp. 305–320.

Chracer. Available: https://github.com/geun-yeong/Chracer. (Accessed 17 July 2023).
Hariharan, M., Thakar, A., Sharma, P., 2022. Forensic Analysis of Private Mode Browsing

Artifacts in Portable Web Browsers Using Memory Forensics. In: 2022 International
Conference on Computing, Communication, Security and Intelligent Systems.
IC3SIS, pp. 1–5.

Iqbal, F., Khalid, Z., Marrington, A., Shah, B., Hung, P.C., 2022. Forensic investigation of
Google Meet for memory and browser artifacts. Forensic Sci. Int.: Digit. Invest. 43,
301448.

NSA. Ghidra. Available: https://ghidra-sre.org. (Accessed 16 May 2023).
Ninja. Available: https://ninja-build.org. (Accessed 16 May 2023).
lemnos. chrome-session-dump. Available: https://github.com/lemnos/chrome-sess

ion-dump. (Accessed 16 May 2023).
Process hacker. Available: https://processhacker.sourceforge.io. (Accessed 16 May

2023).

G. Choi et al.

http://refhub.elsevier.com/S2666-2817(23)00125-7/sref1
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref1
https://chromium.googlesource.com/chromium/src/+/main/docs/windows_build_instructions.md
https://chromium.googlesource.com/chromium/src/+/main/docs/windows_build_instructions.md
https://chromium.googlesource.com/chromium/src/+/main/docs/windows_build_instructions.md
https://en.cppreference.com/w/c/language/object
https://en.cppreference.com/w/c/language/object
https://github.com/cclgroupltd/ccl_chrome_indexeddb
https://github.com/cclgroupltd/ccl_chrome_indexeddb
https://github.com/cube0x8/ChromeRagamuffin
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref6
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref6
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref6
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref6
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref7
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref7
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref7
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref7
https://www.volatilityfoundation.org
https://github.com/volatilityfoundation/volatility3/blob/develop/volatility3/framework/plugins/yarascan.py
https://github.com/volatilityfoundation/volatility3/blob/develop/volatility3/framework/plugins/yarascan.py
https://github.com/volatilityfoundation/volatility3/blob/develop/volatility3/framework/plugins/yarascan.py
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref10
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref10
https://github.com/geun-yeong/Chracer
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref12
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref12
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref12
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref12
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref13
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref13
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref13
https://ghidra-sre.org
https://ninja-build.org
https://github.com/lemnos/chrome-session-dump
https://github.com/lemnos/chrome-session-dump
https://processhacker.sourceforge.io

Forensic Science International: Digital Investigation 46 (2023) 301613

10

Manna, M., Case, A., Ali-Gombe, A., Richard, G.G., 2022. Memory analysis of .NET and .
Net Core applications. Forensic Sci. Int.: Digit. Invest. 42, 301404 (proceedings of
the Twenty-Second Annual DFRWS USA).

Qi, Z., Qu, Y., Yin, H., 2022. LogicMEM: Automatic Profile Generation for Binary-Only
Memory Forensics via Logic Inference. In: Proceedings of 2022 Network and
Distributed System Security Symposium.

Ramananandro, T., Dos Reis, G., Leroy, X., 2011. Formal verification of object layout for
c++ multiple inheritance. Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL’11, pp. 67–80.

Said, H., Al Mutawa, N., Al Awadhi, I., Guimaraes, M., 2011. Forensic analysis of private
browsing artifacts. In: 2011 International Conference on Innovations in Information
Technology, pp. 197–202.

superponible, 2023. Volatility Plugins. Available: https://github.com/superponible
/volatility-plugins. (Accessed 16 May 2023).

G. Choi et al.

http://refhub.elsevier.com/S2666-2817(23)00125-7/sref15
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref15
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref15
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref19
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref19
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref19
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref20
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref20
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref20
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref21
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref21
http://refhub.elsevier.com/S2666-2817(23)00125-7/sref21
https://github.com/superponible/volatility-plugins
https://github.com/superponible/volatility-plugins

	2023_APAC_cover
	Chracer--Memory-analysis-of-Chromiu_2023_Forensic-Science-International--Dig
	Chracer: Memory analysis of Chromium-based browsers
	1 Introduction
	2 Related work
	2.1 Memory analysis of web browser-related activities
	2.2 Object layout based memory forensics of user applications
	2.3 Automatic object layout generation

	3 Background
	3.1 Virtual memory
	3.2 Object layout
	3.2.1 std::string and std::u16string
	3.2.2 std::vector
	3.2.3 std::map

	4 Chromium’s classes relating to web browsing activities
	4.1 Browser
	4.2 TabGroup
	4.3 Tab
	4.4 NavigationEntry

	5 Methodology
	5.1 Overview
	5.2 Automatic object layout generation
	5.3 Extraction of forensically meaningful information
	5.3.1 Validation of a pointer value
	5.3.2 Validation of fields
	5.3.3 Scanning Browser objects

	6 Experiment and result analysis
	6.1 Experimental setup
	6.2 Implementation and dataset
	6.3 Results
	6.3.1 Carving browser objects
	6.3.2 Extracting tab groups
	6.3.3 Extracting tabs
	6.3.4 Extracting SSL certificates
	6.3.5 Identifying private mode

	7 Discussion
	7.1 Chromium-based browsers
	7.2 Non-volatile session restore information
	7.3 Free pages and browsing-related objects
	7.4 Limitations of the proposed methodology

	8 Conclusion and future directions
	Appendix
	Acknowledgements
	References

