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A B S T R A C T   

The web browsing activities of a user provide useful evidence for digital forensic investigations. However, 
existing analysis techniques that aim to analyze local artifacts (e.g., history and cache) cannot find useful data (e. 
g., visited URLs) if a user accesses the web using private or secret mode. Hence, string-searching and pattern- 
matching techniques have been proposed and used to examine user activities from a memory dump. These 
simple techniques are useful for identifying individual URLs visited in both normal and private modes. However, 
since a piece of individually detected data does not have context on how it is created, additional analysis efforts 
are required to properly interpret the meaning of the data. This paper proposes Chracer, a practical methodology 
for extracting forensically meaningful information from the virtual memory of a Chromium-based browser by 
systematically discovering objects of web browsing-related classes. Moreover, a proof-of-concept tool developed 
based on the proposed methodology demonstrates that users’ web browsing-related artifacts can be extracted 
effectively from the virtual memory of any Chromium-based browser, such as Google Chrome, Microsoft Edge 
and Brave.   

1. Introduction 

The number of devices that use the Internet, including computers, 
smartphones, in-car infotainment systems, and Internet of Things (IoT) 
devices, is increasing rapidly. Today, individuals not only acquire new 
information through the web, the largest Internet service, but they also 
create new information themselves and post it online. Thus, analysts 
analyze the web browsing history recorded by web browser applications 
to examine users’ web browsing activities. Because web browsing his-
tory contains various types of information related to visited Uniform 
Resource Locators (URLs), visit times, referrers, etc., history is useful in 
reconstructing a user’s activity or investigating initial access to a 
cybersecurity incident. 

Analysts have typically examined users’ web browsing activities by 
analyzing local artifacts, such as history and cache. Unfortunately, 
existing local artifact-based techniques cannot find useful web 
browsing-related artifacts when users access the web using a private (or 
secret) mode, which provides a feature that leaves no web browsing- 
related data in a file system. In addition, many privacy-enhanced ap-
plications do not store sensitive data on nonvolatile storage devices but 
are only temporarily loaded and used in the memory. This makes 
memory forensic techniques increasingly necessary and important 

because data loaded on only the memory can be obtained from a 
memory dump. Volatility (Volatility Framework), the leading memory 
analysis framework, aims to analyze kernel objects managed by oper-
ating systems such as EPROCESS of Windows or struct task_struct of 
Linux. The virtual memory of processes can be analyzed using the 
Volatility framework; however, analysis of an application’s virtual 
memory has mostly been performed using string-searching or 
pattern-matching techniques. These simple techniques are useful for 
identifying individual URLs visited in both normal and private modes 
from the virtual memory byte streams of a web browser application. 
However, search results do not provide context (Garcia, 2007) such as 
how they are created; therefore, additional analysis efforts are required 
to properly interpret the meaning of the data. Search results that do not 
have meaning can render them less useful. 

This paper proposes Chracer, a methodology for extracting forensi-
cally meaningful information to analyze the virtual memory of 
Chromium-based web browser applications using an object layout. The 
object layout describes how the fields (member variables) of classes or 
structures are arranged in memory (e.g., ‘int a’ and ‘int b’ fields are 
located at offsets 0 and 4, respectively), and the object is the mapping of 
the field values in the memory based on the object layout. The proposed 
methodology is summarized as follows: (1) identifying the classes and 
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structures that represent a browser, tab, tab group, visited URL, etc. in 
the source code of the Chromium project; (2) generating the object 
layout of such classes and structures, and scanning a memory dump to 
find Browser objects as the starting points of memory analysis and 
consequently reveal Chromium-based user activities; (3) finally, by 
discovering a Browser object, it is possible to interpret meaningful fields 
and explore all retrievable subobjects using pointer variables to extract 
forensically meaningful information, such as opened tabs and visited 
URLs. 

This study has the following contributions.  

⋅ Identify forensically meaningful classes and structures relevant to 
web browsing activities by inspecting the source code of the Chro-
mium project in Windows.  

⋅ Propose a methodology to automatically generate version-specific 
object layouts of Chromium and to effectively detect web 
browsing-related objects from virtual memory.  

⋅ Overcome the limitations of string-searching and simple pattern- 
matching-based memory analysis techniques by extracting contex-
tual information about web browsing activities.  

⋅ Demonstrate the usefulness of the proposed methodology through 
practical experiments with Google Chrome, Microsoft Edge and 
Brave.  

⋅ Provide a proof-of-concept tool implemented based on the proposed 
methodology. 

This paper is organized as follows: Section 2 reviews prior studies 
about web browser forensics and application memory forensics, and 
Section 3 provides background knowledge on virtual memory and object 
layout. Sections 4 and 5 introduce Chromium’s classes relating to web 
browsing activities and the proposed memory analysis methodology. 
Section 6 demonstrates the usefulness of the proposed methodology by 
testing it on the Chromium browser. Section 7 discusses the result to 
apply the methodology to Google Chrome, Microsoft Edge and Brave, 
the comparison with a ‘Restore Window’ feature, the possibility of 
carving objects from freed space in a physical memory dump, and the 
limitation of our work. Finally, Section 8 concludes this work and pro-
poses directions for future work. 

2. Related work 

2.1. Memory analysis of web browser-related activities 

A chromehistory (superponible), one of the Volatility framework 
plugins, extracts web browsing history from a virtual memory of Google 
Chrome by discovering record structures of the SQLite database. Chro-
meRagamuffin (cube0x8), a Volatility2 plugin, scans Google Chrome’s 
virtual memory to obtain a list of visited URLs. However, it does not 
extract whether the browser is in private mode, tab group information, 
Secure Socket Layer (SSL) certificate information. Objects of Browser 
class need to be set as starting points, in order to associate visited URLs 
with additional useful information. 

Dija et al. (2021) proposed a methodology to extract words from 
memory, that a user searched for on the Internet. For an experiment, 
they searched some words using web browsers and discovered those 
words from a memory dump. After discovering searched words, they 
proposed an algorithm to find the searched words by analyzing byte 
patterns nearby them. They utilized URL parameter patterns such as 
‘search_query=’ or ‘search?q=’ to find search terms. 

Alfosail and Norris (2021) proposed a method for performing 
memory forensics on the Tor browser. They used the Volatility frame-
work to identify Tor browser processes and Tor network connection and 
utilized pattern-matching techniques to analyze traces of access to onion 
sites by extracting URLs from the Tor browser’s virtual memory. They 
also attempted to determine the actual access of the user by discovering 
HyperText Transfer Protocol (HTTP) requests and responses data. 

Hariharan et al. (2022) conducted a memory forensic analysis of the 
portable web browsers’ private mode that leaves no traces on the fil-
esystem. They ran an executable file stored on an external storage de-
vice, such as a Universal Serial Bus (USB) flash drive, without installing 
it on the operating system. When using the private mode, no traces using 
a web browser are stored in history, cache, etc. They found traces left in 
memory after using web services such as Facebook and YouTube on 
Brave, Tor, Vivaldi, and Maxthon browsers. They showed that traces 
could be found using the yarascan plugin (Volatility plugin - yarascan) 
and it is possible to retrieve traces of a user’s web browsing. 

Iqbal et al. (2022) used Google Meet, an online meeting service using 
a web browser, in Google Chrome, Firefox, and Microsoft Edge, and 
identified online meeting-related information from a memory dump. 
They showed that it is possible to obtain the email addresses, meeting 
room addresses, and sent and received chat messages of users partici-
pating in Google Meet from the web browser’s memory. 

2.2. Object layout based memory forensics of user applications 

Fernández-Álvarez and Rodríguez (2022) proposed a method to 
obtain memory artifacts for the Telegram application on Windows. They 
analyzed Telegram’s source code to identify classes that are related to a 
chat message and modeled their reference relationships with each other. 
Since Telegram uses the Qt framework to provide a Graphical User 
Interface (GUI), in their study, objects such as QString were found in 
Telegram’s virtual memory and reconstructed. 

Manna et al. (2022) proposed a memory forensics technique for 
applications working on .NET Framework and .Net Core. Based on the 
publicly available source code of .Net Core, they developed a Volatility 
plugin that extracts the portable executable (PE) image, loaded modules, 
classes, class member variables, and methods of a .NET application by 
analyzing the layout of key structures. 

2.3. Automatic object layout generation 

Qi et al. (2022) proposed LogicMEM, which automatically generates 
profiles for Linux memory forensics. A profile contains a layout of the 
structures used by the operating system to manage important data such 
as a process. Windows provides symbol files in which Microsoft stores 
structure layout information such as EPROCESS, but Linux does not 
provide this information. Therefore, a profile must be obtained from a 
live system. LogicMEM automatically generates a profile for kernel 
module structures such as struct task_struct by determining the validity of 
values on a field-by-field basis. The profile generated by LogicMEM is 
used by the Volatility framework. 

In our work, we propose an advanced memory forensic technique 
using object layout analysis to overcome the limitations of existing web 
browser-related memory forensics. 

3. Background 

3.1. Virtual memory 

Virtual memory is one of the memory management techniques, in 
which the operating system allocates each process with a unique 
memory space only accessible by that particular process; this unique 
memory space is called a virtual address space. When a process accesses 
its own virtual address space, the operating system translates the virtual 
address into a physical address to access the data stored in the physical 
memory. The virtual memory technique prevents multiple processes 
from interfering with each other’s memory space and allows each pro-
cess to use a memory space larger than the size of the actual physical 
memory. 

Virtual memory is separated into user mode and kernel mode. The 
user-mode area is divided into the text area where executable code is 
stored, the stack area where function local variables are stored, and the 
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heap area where dynamically allocated space is located during runtime. 
Since the heap area contains data generated by a process as it runs, 

there is considerable useful information for analyzing the application 
memory, such as cipher keys that encrypt sensitive data and passwords 
entered by a user. In addition, the objects of class or struct used by a 
process to internally manage data for processing are located in the heap 
area. Hence, if it can identify the objects in the process memory, it can 
provide context for the extracted data. 

3.2. Object layout 

In C++, a class type includes class, struct, and union. This paper 
writes them as a class. A class consists of fields storing a value and 
methods being responsible for an action. When the source code is built, 
the compiler generates object layouts that determine the arrangement of 
fields in a class. The mapping of a source-level class into machine-level 
memory is called an “object layout algorithm” (Ramananandro et al., 
2011). An object means that a class is mapped (instanced) into the 
memory based on the object layout. In Windows, the methods are 
located in a text area, such as the .text section in the PE file format. 
Fields, however, are located in the stack or heap area in the order in 
which they are declared. 

For example, Chromium’s NavigationEntryImpl is a class that stores a 
visited URL, the title of a document on such URL, etc. Fig. 1 shows a 
NavigationEntryImpl object in a 64-bit Chromium browser process. Fig. 1 
(A) shows the object layout of the NavigationEntryImpl class, and Fig. 1 
(B) displays the raw byte stream of the object while being dynamically 
created and loaded into memory. Fig. 1 (a)–(f) denotes the fields of title_, 
favicon_, ssl_, transition_type_, user_typed_url_ and restore_type_ and their 
corresponding values. In Fig. 1 (B), there are 4-byte alignment paddings 
behind transition_type_ and restore_type_. The NavigationEntryImpl object 
shown in Fig. 1 (B) contains information about the default startup page 
URL, which is chrome://newtab/, when creating a new tab. 

In C++ standard, there is an alignment requirement that describes 
the arrangement of the fields (Objects and alignment). Alignment im-
plies that 2- and 4-byte must be located at memory addresses that are 
multiples of two and four, respectively. If a one-byte field is followed by 
a four-byte field, three bytes of alignment padding are inserted between 
the two fields. In the case of class inheritance, the fields of the parent 
class are placed first, followed by those of the child class. If a virtual 
function exists within a class, the object of that class has a pointer to the 
virtual function table. Nonvirtual member functions do not affect the 
layout of the object. In this work, we generate object layouts for the 
Chromium project source code and discover objects allocated to the 
virtual memory to extract meaningful information from a forensic 

perspective. 
For example, in Chromium, the “64-bit object layout” of string, 

vector, and map, which are the representative C++ Standard Template 
Library (STL) container classes, is as follows. 

3.2.1. std::string and std::u16string 
A string type is a 24-byte data structure to store null-terminated 

strings. std::string has a string consisting of single-byte characters. If 
the length of the string is less than 23 characters, the character array is 
stored at offset 0; otherwise, the pointer in the character array is stored. 
std::u16string has a string consisting of 16-bit characters. If the length of 
the string is less than 11 characters, it stores a 16-bit character array; 
otherwise, it stores a pointer in the array. 

3.2.2. std::vector 
A vector is an ordered data structure. It is internally implemented as 

an array of elements. The start and end addresses of the array are stored 
at offsets 0 and 8, respectively. 

3.2.3. std::map 
A map is a data structure of key–value pair consisting of keys that 

cannot be duplicated and values that can be obtained through such keys. 
The map is internally implemented as a red-black tree ordered by the 
key data. Each node has three-pointers for the left, right, and parent 
nodes: Boolean, key data, and value data. 

4. Chromium’s classes relating to web browsing activities 

In this section, we inspect the Chromium source code to identify 
classes relevant to a user’s web browsing activity. The Chromium 
browser has a Browser class, which is responsible for a single window, 
and various classes for managing tab groups, tabs, and lists of visited 
URLs. Figure 2 shows the classes and relationships between them that 
are of interest from a digital forensics perspective; (a)-(d) represent 
classes related to the browser, tab group, tab, and information about the 
URL visited by a user, respectively. The colored boxes indicate the key 
classes. The key fields of each class are listed in Table 1. 

4.1. Browser 

Browser class manages a single window and can refer to pointer 
variables to discover tab groups, tabs, and other key subobjects. The key 
fields contain information, such as the window name, a tab strip to 
manage tabs, and a profile to store information about the user and ses-
sion. Note that the profile_ member has a ProfileImpl object when 

Fig. 1. ‘Object layout’ (A) and ‘object’ (B) of NavigationEntryImpl class.  
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normally used; however, it has an OffTheRecordProfileImpl object when 
using the private mode. 

TabStripModel class manages tab groups and tabs. It stores a list of 
tabs that are currently active in a Chromium window using a single 
vector container and contains information about the tab group. It also 
stores the index number of the last used tab; therefore, it can be used to 
trace the user’s last activity. 

4.2. TabGroup 

A tab group is a feature that combines multiple tabs into a single 
group. A group_model_ member of a TabGroupModel type included in a 
TabStripModel class manages tab-group-related data using the groups_ 
member of the std::map type with TabGroupId and TabGroup as the key 
and value, respectively. The TabGroup stores information regarding the 
current tab group, such as its name and color, in a TabGroupVisualData- 
type visual_data_ member. 

4.3. Tab 

A tab is a component that renders the web page of the visited URL of 
the user. The Tab class manages whether a tab is pinned, the group to 
which the tab belongs, etc. It also stores a list of visited URLs, which can 

be obtained through the contents_ member of the WebContents type. The 
WebContents class is implemented by the WebContentsImpl class. To 
obtain a list of visited URLs, they must be appropriately referred to 
subobjects through the class reference relationships shown in Fig. 2. 

4.4. NavigationEntry 

NavigationEntry class contains information about the individual URL 
the user visited. Each time the user visits a new URL in each tab, a new 
NavigationEntry object is created. They are stored and managed in the 
entries_ member, which is a single vector container, in the Navi-
gationControllerImpl class. In addition, the favicon and SSL certificate 
information are stored in this class. NavigationEntry class is implemented 
by the NavigationEntryImpl class. 

The frame_tree_ member of the NavigationEntryImpl class can refer to 
the FrameNavigationEntry class. The final URL of the entry can be ob-
tained from the FrameNavigationEntry object. When a user visits a spe-
cific URL, the user_typed_url_ member of the NavigationEntryImpl class has 
the first accessed URL, whereas the url_ member of the FrameNavigatio-
nEntry class has the final URL after all the redirections. Hence, it contains 
a list of redirected URLs and referrer-related data. 

5. Methodology 

5.1. Overview 

This section proposes an automated system for extracting the 
forensically meaningful information identified in Section 4 from the 
virtual memory areas of Chromium processes. First, the system builds 
the Chromium source codes (considering different commits and ver-
sions) to generate the corresponding symbol files. Then, to extract 
meaningful information from virtual memory, it obtains detailed object 
layout information by interpreting the symbol files and discovers rele-
vant objects from a memory dump by validating the values that each 
field can store. The workflow of the proposed methodology is illustrated 
in Fig. 3. 

5.2. Automatic object layout generation 

Chromium can be built in Windows using Ninja (Checking out and 
Building Chromium for Windows). Ninja (Ninja) compiles the source 
code using a Visual Studio compiler, which normally creates a Program 
Database (PDB) symbol file used to store additional information for 
debugging (e.g., object layouts, function names, and so on). To obtain 
object layouts from the created PDB, we utilized Ghidra’s PDB parsing 
feature (Ghidra). Since the object layouts of each class mentioned in the 
previous section are stored in PDB files related to chrome.dll and content. 
dll, we attempted to convert each PDB file into a user-friendly readable 
format, such as Extensible Markup Language (XML), to easily utilize that 
information in subsequent automation processes. 

5.3. Extraction of forensically meaningful information 

The classes can have member variables of various types. These 
include fundamental types (e.g., int and double), class types (e.g., class 
and struct), enumeration types (e.g., enum), and pointer types with vir-
tual memory address values. “Pointer” type members typically point to 
objects of other fundamental or class types on the heap area. All the 
algorithms are presented in the Appendix. 

5.3.1. Validation of a pointer value 
The Algorithm 1 can be utilized to determine the validity of values 

stored in the pointer type members. Specifically, the algorithm takes a 
specific virtual address value and checks whether it is within the range 
of valid addresses in user mode and included in the Virtual Address 
Descriptor (VAD) list of the target process. 

Table 1 
The list of key fields of each class.  

Class Name Field Name Description 

Browser profile_ User profile (it can be used to 
distinguish whether that 
window is private or not) 

tab_strip_model_ Tabs and tab groups 
session_id_ ID of this Browser object 
bookmark_bar_state_ Bookmark bar state that 

represents whether it shows 
window_has_shown_ Boolean that represents 

whether 
user_title_ Window’s name 

ProfileImpl path_ AppData path 
TabStripModel contents_data_ List of created tabs 

group_model_ Tab groups-related data 
selection_model_ Index of the last used tab 

TabGroup id_ ID of the tab group 
visual_data_ Visual data of the tab group 
tab_count_ Count of tabs in the tab group 

TabGroupId token_ 16-byte array representing 
unique ID 

TabGroupVisualData title_ Name of the tab group 
color_ Theme color of the tab group 

NavigationControllerImpl entries_ List of visited URL 
NavigationEntryImpl frame_tree_ Data related to HTTP request 

unique_id_ ID of the entry 
title_ Document title of the visited 

web page 
favicon_ Favicon data (URL, etc.) 
ssl_ SSL data (Certificate, etc.) 
user_typed_url_ Visited URL (shown in address 

bar) 
timestamp_ Visited timestamp (Chrome 

timestamp) 
http_status_code_ HTTP response status code 

FrameNavigationEntry url_ Accessed URL (after redirect) 
referrer_ Referrer data 
redirect_chain_ List of redirected URLs 
method_ HTTP request method 

FaviconStatus url Favicon URL 
image Favicon image data 

SSLStatus certificates SSL certificate data 
X509Certificate subject_ Owner of the certificate 

issuer_ Entity that issues the 
certificate 

valid_start_ Start of validity date 
valid_expiry_ Expiry of validity date 
serial_number_ Serial number of the certificate  
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To effectively discover the objects of a particular class in a memory 
dump, it is necessary to validate the values stored in several key fields of 
the class. For example, assume that a particular class has a field having a 
pointer value at offset “0x100”. If an object of a particular class exists at 
address “0x200`3456`8760” (= base), a value stored at address 
“0x200`3456`8860” (= base + offset) should be a valid virtual address 
for referencing another object. The accuracy of detecting valid objects 
will increase with more member variables that should be checked for 
valid values. 

5.3.2. Validation of fields 
Algorithm 2 represents detailed steps for validating the values of an 

object loaded at a virtual address. Individual pointer fields can be vali-
dated using Algorithm 1, and a certain field can be validated by 

determining whether its value is nullable. The value of an enumeration 
type can be checked to determine whether it is included within the range 
corresponding to its enumeration definition, and a boolean field value 
must have only zero or one as its value. In addition, if a field contains a 
pointer value to reference an object of another class, Algorithm 2 is 
called recursively, as indicated in line 29 of the algorithm. 

5.3.3. Scanning Browser objects 
Algorithm 3 describes how to detect Browser objects in a virtual 

memory space of the target Chromium process, which can be obtained 
by traversing nodes stored in the process’s VAD tree. The algorithm uses 
only memory areas with PAGE_READWRITE protection, excluding read- 
only pages, to increase the efficiency of the object-carving operation. In 
addition, since the Browser class has a virtual function, it has a 64-bit 

Fig. 2. Chromium’s browsing-related classes and their relationships.  

Fig. 3. Operational workflow for memory analysis of Chromium-based browsers.  
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pointer at offset 0 to reference a relevant virtual function table. More-
over, it must be located at a virtual memory address that is a multiple of 
eight owing to the alignment requirements of C++. Therefore, it per-
forms a validation check on each candidate Browser object in 8-byte 
increments. 

As mentioned above, when a candidate virtual memory address is 
detected where a Browser object exists, several key fields of the object 
can be accessed and validated by referring to its object layout. 
Furthermore, the relevant classes mentioned in the previous section are 
retrieved based on their referential relationships to extract forensically 
meaningful information. 

6. Experiment and result analysis 

6.1. Experimental setup 

The operating system used for the experiment was Windows 11 22H2 
(OS Build 22621.1265), and the Chromium version was 113.0.5650.0 
(Chromium source code commit fed2d65). The compiler used for the 
build was Visual C++ Compiler v19.33.31630 in Visual Studio 2022 
v17.3.6. 

The goal of the experiment is to carve the Browser object from the 
virtual memory of the target Chromium based on the object layout 
analyzed in Section 4 and further obtain information about the user’s 
activity, such as the list of created tabs, visited URLs, and SSL 
certificates. 

6.2. Implementation and dataset 

Chracer, which we developed as a proof-of-concept tool, takes two 
inputs: a user-space memory dump (in this case a Windows minidump), 
and parsed symbol file. The minidump file was extracted from the 
Chromium browser process using Process Hacker v2.39.124 (Process 
Hacker), and the symbol file was parsed by Ghidra by converting the 
PDB of chrome.dll and content.dll into XML files. Chracer uses these XML 
files to obtain object layouts of user activity-related classes. The source 
code and dataset are publicly available on Github (Chracer). The 
detailed user’s browsing activities performed for each experiment were 
documented in Chracer’s GitHub repository. 

6.3. Results 

6.3.1. Carving browser objects 
To discover the Browser object that is responsible for a single 

Chromium window in the virtual memory of the Chromium process, the 
methodology proposed in the previous section was applied. In this 
experiment, we created four Chromium windows with a default tab for 
each window, visiting particular websites in the following order: Goo-
gle, GitHub, YouTube, and Chromium. Fig. 4 shows that Chracer dis-
covers four Browser objects in the virtual memory dump and extracts the 
session ID, tab number, document title on a page, and visited URL. Each 
Chromium window can be distinguished by its session ID, resulting in 
four Browser objects with different session IDs residing in the memory. 

6.3.2. Extracting tab groups 
A std::map is a data structure comprising a pair of keys and values and 

has a binary tree structure internally. In this experiment, Chracer 

extracts tab-group information from the virtual memory of the Chro-
mium process by interpreting the std::map structure, with TabGroupId 
and TabGroup as the key and value, respectively. We added eight tabs to 
one Chromium window and set each of the two tabs into one group to 
create a total of four tab groups. In addition, we set the name of each tab 
group to “TabGroup{Number}” manually. Fig. 5 shows that Chracer 
identifies the TabGroup and TabGroupVisualData objects and outputs the 
tab group name, tab group color, and the index of the tabs included in 
that tab group. 

6.3.3. Extracting tabs 
Chromium uses std::vector to manage multiple tabs and tab-related 

information (e.g., visited URLs). An std::vector is an ordered data struc-
ture internally containing an array. In this experiment, Chracer in-
terprets the vector structure to extract the tabs included in a Chromium 
window and visited URLs included in each tab. We created two tabs in a 
single Chromium window and visited five URLs in each tab. Table 2 
shows the list of visited URLs. 

As shown in Fig. 6, Chracer identifies two tabs and five visited URLs 
in each tab. 

6.3.4. Extracting SSL certificates 
The SSL certificate information of the web server visited by the user 

can be obtained from memory. Fig. 7 shows obtained certificate infor-
mation (*.wikipedia.org and *.chromium.org) from a memory dump of the 
previous experiment (Section 6.3.3). A web server certificate is an 
important component that ensures server authenticity. However, in a 
system infected by a malicious attacker, a malicious certificate can be 
inserted into the list of trusted certificates. In this case, a certificate error 
may not occur when accessing a phishing site created by the attacker. 
Therefore, it is necessary to extract the certificate information loaded in 
the memory and utilize it when analyzing an infected system. 

6.3.5. Identifying private mode 
Chromium provides an incognito (private) mode. Prior research 

(Hariharan et al., 2022; Said et al., 2011) has shown that using the 
private mode leaves no data on the file system. In this experiment, 
Chracer identifies all Chromium windows from the memory and de-
termines whether each window is in private mode. It also extracts the 
URLs visited in the private mode. By determining the class type of an 
object stored in the profile_ of the Browser object using Algorithm 2, we 
can determine whether the window is in private mode. If a Chromium 
window is in private mode, the object of the OffTheRecordProfile class is 
stored in the profile_ field. Otherwise, the profile_ normally contains an 
object of the ProfileImpl class. Therefore, if the result of “validate 
(*profile_, OffTheRecordProfile, OL, VAD)” is true, its Chromium window 
is in private mode. 

In this experiment, we created four windows: two private windows 
and two normal windows. In addition, we visited one URL in each 
window, accessing Chromium and Wikipedia pages in private windows 
and Google and YouTube pages in normal windows. 

As shown in Fig. 8, Chracer identifies all Chromium windows and 
effectively determines whether they are in private mode. Furthermore, 
the visited URLs can be extracted from a private mode window. This is 
useful for investigating user activities that attempt to hide suspicious 

Fig. 4. Output of Chracer: Browser objects.  Fig. 5. Output of Chracer: Tab groups.  
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intentions. 

7. Discussion 

7.1. Chromium-based browsers 

We applied the methodology proposed in Section 5 to Chromium- 
based Google Chrome (v111.0.5563.65), Microsoft Edge 
(v111.0.1661.44), and Brave (v1.52.129). We found that some object 
layouts, including the Browser class, were different from those in the 
official Chromium source code. For example, the title_ field of the Nav-
igationEntryImpl class is located at 0xE0 offset in Chromium’s source 
code but is located at 0xC8 offset in Google Chrome’s virtual memory. 
However, we needed to adjust the offsets of some fields by manually 
comparing a raw byte stream of key objects, such as Browser, to interpret 
and correlate all relevant objects. 

We dumped minidump files after visiting some websites. Table 3 
shows the list of visited URLs using Google Chrome, Microsoft Edge, and 
Brave. 

Fig. 9 shows the results of extracting user activity-related informa-
tion of Google Chrome, Microsoft Edge, and Brave, respectively. 

7.2. Non-volatile session restore information 

Chromium browser provides a session restore feature, called 
“Restore Window”, to restore the last used session when the Chromium 
process is abnormally terminated or a user wants to reuse the last ses-
sion. A session contains information about a user’s web browsing ac-
tivities, including windows, tabs, and a list of visited URLs, that has 
accumulated since the browser was launched. Chromium stores the last 
session information in the Last Session and Last Tabs files. There are 
publicly available tools to interpret these artifacts (CCL Solutions Group; 
lemnos); however, they can only parse information stored in nonvolatile 
files. Since SSL certificate information in normal/private mode and the 

list of visited URLs in private mode are not stored in the file system, 
utilizing the proposed methodology can provide additional useful in-
formation from a digital forensics perspective than using only nonvol-
atile data. 

7.3. Free pages and browsing-related objects 

When a process terminates or frees unused pages, the operating 
system does not immediately initialize (overwrite NULL to) the freed 
page. The freed pages are set to the free state until they are allocated to 
another process, and the data used by the process remain on the page 
while they are in the free state. This suggests the possibility of finding 
forensically meaningful information on freed pages in the physical 
memory. If analysts know the object layout of the class that they want to 
discover, the object-carving algorithm (Algorithm 2) used in this 
methodology can be utilized to find forensically meaningful information 
in the freed pages. 

7.4. Limitations of the proposed methodology 

The proposed methodology first carves the Browser object and then 

Table 2 
The list of visited URLs on each tab.  

Tab Order Web Pages 

First Tab 1 https://www.wikipedia.or 
2 https://en.wikipedia.org/wiki/Digital_forensics 
3 https://en.wikipedia.org/wiki/Computer_forensics 
4 https://en.wikipedia.org/wiki/Digital_evidence 
5 https://en.wikipedia.org/wiki/Best_evidence_rule 

Second 
Tab 

1 https://www.chromium.org/chromium-projects/ 
2 https://www.chromium.org/Home/ 
3 https://www.chromium.org/developers/ 
4 https://www.chromium.org/developers/getting-around-the- 

chrome-source-code/ 
5 https://www.chromium.org/developers/design-document 

s/multi-process-architecture/  

Fig. 6. Output of Chracer: Tabs and visited URLs on each tab.  

Fig. 7. Output of Chracer: SSL certificates relating to visited websites.  

Fig. 8. Output of Chracer: URLs visited in private mode.  

Table 3 
The list of visited URLs on each browser.  

Browser Order Web Pages 

Google Chrome 1 https://www.wikipedia.org 
2 https://en.wikipedia.org/wiki/Digital_forensics 
3 https://en.wikipedia.org/wiki/Cybercrime 
4 https://en.wikipedia.org/wiki/Cyberwarfare 
5 https://en.wikipedia.org/wiki/Cyberattack 

Microsoft Edge 1 https://www.wikipedia.org 
2 https://en.wikipedia.org/wiki/Digital_forensics 
3 https://en.wikipedia.org/wiki/IoT_Forensics 
4 https://en.wikipedia.org/wiki/Memory_forensics 
5 https://en.wikipedia.org/wiki/Volatility_(software) 

Brave 1 https://www.wikipedia.org 
2 https://en.wikipedia.org/wiki/Digital_forensics 
3 https://en.wikipedia.org/wiki/Network_forensics 
4 https://en.wikipedia.org/wiki/Transport_Layer_Securi 

ty 
5 https://en.wikipedia.org/wiki/HTTPS  
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extracts forensically meaningful information by referencing its fields 
and pointers. Thus, if it fails to find the Browser object, it is difficult to 
proceed with the step that refers to fields or pointers to extract useful 
information, such as tab groups and the list of visited URLs. 

Since the size of the symbol files (chrome.dll and content.dll) is 
significantly large, Chracer takes a long execution time; thus, it must be 
optimized. Our future work will focus on enhancing Chracer to improve 
this aspect. 

As mentioned in Section 7.1, although Google Chrome, Microsoft 
Edge and Brave are based on Chromium, the offsets of certain fields may 
differ from those of the official Chromium source code. Automatic ad-
justments of these offsets were not performed. 

8. Conclusion and future directions 

Existing memory forensics for user applications has been mostly 
performed with string searching and simple pattern matching. However, 
since there is no or insufficient context to interpret a piece of data 
detected by those traditional approaches, additional analysis efforts are 
required to reveal user activity-related context. This work dissected 
Chromium’s source code to identify classes relating to a user’s web 
browsing activities such as creating a browser window, adding tabs, and 
visiting specific URLs. Based on object layouts automatically generated 
from the source codes, it is possible to detect and correlate relevant 
objects (e.g., Browser, Tab, NavigationEntryImpl, etc.) from virtual 
memory of Chromium processes, in order to extract forensically mean-
ingful browsing-related traces. Also, we were able to extract informa-
tion, such as SSL certificates, that previous works had not extracted. 
Furthermore, this paper proposed a systematic methodology to auto-
mate the entire process for Chromium browser memory forensics. 

Further, this paper demonstrated that the proposed methodology can 
correctly extract forensically meaningful information, such as a list of 
visited URLs, even when a Chromium browser is running in private 
mode. Although some classes’ fields and types needed to be manually 
adjusted due to differences with the official Chromium, our experiments 
showed that the proposal can be applied to any Chromium-based 
browsers such as Google Chrome, Microsoft Edge and Brave. Our find-
ings overcome the limitations of traditional string search and pattern 

matching methods, and moreover can be used to identify users’ web 
browsing activities in detail. 

This work only focuses on Windows environments along with object 
layouts obtained by building the Chromium source code on Windows. In 
future work, we will propose a generalized methodology that can be 
applied to other operating systems such as Linux, macOS, and Android. 
In addition, we plan to conduct research on popular user applications 
other than web browsers, in order to effectively detect memory objects 
and analyze their correlations for assisting digital investigation. 

The current version of Chracer processes a minidump of target pro-
cess. Therefore, We are working on developing a Volatility3 plugin 
based on our proposal for processing a physical memory dump. Unfor-
tunately, we haven’t found an effective way to reference higher-level 
classes from lower-level classes. We will find the method that back-
tracks traversal of pointer from child object to parent object. 

Appendix 

Algorithm 1. Validating a virtual memory address 

Algorithm 2. Validating fields of a candidate object 

Fig. 9. Output of Chracer: URLs visited in Google Chrome, Microsoft Edge, and Brave.  
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Algorithm 3. Scanning Browser object(s)  
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