

Forensic analysis of SQL server transaction log in

unallocated area of file system

By:

Hoyong Choi, Sangjin Lee

From the proceedings of

The Digital Forensic Research Conference

DFRWS APAC 2023

Oct 17-20, 2023

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first

open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an

informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to

help drive the direction of research and development.

https://dfrws.org

Forensic Science International: Digital Investigation 46 (2023) 301605

Available online 13 October 2023
2666-2817/© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS 2023 APAC - Proceedings of the Third Annual DFRWS APAC

Forensic analysis of SQL server transaction log in unallocated area of
file system

Hoyong Choi *, Sangjin Lee
School of Cybersecurity, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, South Korea

A R T I C L E I N F O

Keywords:
Digital forensics
Database forensics
Database
SQL server
Transaction log

A B S T R A C T

The importance of database forensics is increasing day by day as the use of databases to store sensitive corporate
and personal data increases. Database forensics is a field of digital forensics that deals with database-related
incidents such as data corruption, breaches, and leaks. One of the key functions of database forensics is infor-
mation reconstruction, which is the tracing of actions from the time of an event to the present based on various
information stored in the database. This feature allows investigators to identify unauthorized user actions and
data deletion or manipulation when an incident occurs. Database log data is primarily used to reconstruct in-
formation. Database logs include transaction logs, error logs, event logs, and trace logs. Among them, we focus
on the transaction log of Microsoft SQL Server (MSSQL), one of the most popular database management systems
in the world. Raw-level studies have been conducted on the transaction logs of Oracle and MySQL, other da-
tabases used at the enterprise level. However, there is very little research on MSSQL transaction logs. For this
reason, we analyze the internal structure of the MSSQL transaction log. Based on these finding, we present an
empirical method to identify and extract transaction log records in unallocated area.

1. Introduction

Nowadays, everything that is carried out online is recorded and
stored in databases. The importance of database security, which stores
and manages personal information as well as sensitive corporate data, is
higher than ever. Significant efforts are required to deal with security
incidents through access control, encryption, and maintenance policies
for databases. However, as has been revealed in various studies and
practice, it is virtually impossible to completely prevent threats.
Therefore, it is also important to prepare appropriate countermeasures.

Database forensics is a field of digital forensics that deals with
database-related incidents such as data tampering, breach, and leakages
(Choi et al., 2021). Database forensics aims to answer W5H questions
(Who? What? When? Where? Why? and How?) about database incidents
through a series of processes such as identification, collection, preser-
vation, analysis, and reporting (Chopade and Pachghare, 2019). An
important function of database forensics is to reconstruct the informa-
tion stored in the database at the time of the incident and to reconstruct
a series of actions until reaching the current state of the database
(Sablatura and Zhou, 2017) (Fasan and Olivier, 2012a) (Fasan and
Olivier, 2012b) (Adedayo and Olivier, 2015). In this regard, various

studies have been conducted on various databases, and log files of da-
tabases have been used as input data in this process. In other words, log
files contain very valuable information from the point of view of forensic
analysts (Fowler and Gold).

Database logs include audit logs, error logs, transaction logs, data-
base trace logs (Adedayo and Olivier, 2015). This study analyzes the
transaction logs of Microsoft SQL Server (henceforth referred to as
MSSQL), a relational database with a high global market share
(DB-Engines Ranking, 2023). Previous studies have analyzed the inter-
nal structure of transaction log files of Oracle and MySQL, and data
reconstruction have been conducted (Litchfield) (Frühwirt et al., 2013).
However, few studies have been conducted on transaction logs of
MSSQL databases. Also, in earlier versions of MSSQL, there was no
capability with SQL Server’s own tools to read the transaction logs. This
meant that database experts were forced to either buy third-party tools,
or take wild guesses at restoration points for database recovery (Foster
et al., 2016). In conclusion, a raw-level study of the MSSQL transaction
log is required.

The transaction log is a critical component of a MSSQL database for
ACID (atomicity, consistency, isolation and durability) compliance.
When the SQL server service is restarted, the database enters the

* Corresponding author.
E-mail addresses: hoyoi05@korea.ac.kr (H. Choi), sangjin@korea.ac.kr (S. Lee).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2023.301605

mailto:hoyoi05@korea.ac.kr
mailto:sangjin@korea.ac.kr
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301605
https://doi.org/10.1016/j.fsidi.2023.301605
https://doi.org/10.1016/j.fsidi.2023.301605
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301605&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 46 (2023) 301605

2

recovery state, in which the MSSQL Database Engine reads the SQL
server transaction log file to make sure that the database is in a
consistent state. It does this by writing the committed transactions to the
data file in a roll-forward process, and undoing all uncommitted trans-
actions in a roll-back process. In addition, the transaction log file is used
to restore the database to a specific point of time, in case of a disaster or
system failure. It can be also used to return the database to the previous
state when a ROLLBACK statement is executed after a transaction
(Yaseen, 2023).

In this study, we analyze the detailed internal structure of trans-
action log files and propose a method to identify and extract transaction
log records remaining in the unallocated area of the file system by uti-
lizing structural features. We also present a way to reconstruct the query
that caused the log record to occur using the extracted log record.
Finally, we implement the method proposed in this study as a tool to
perform evaluations on real data as well as self-generated data. The main
contribution of this paper is summarized as follows:

• We present the internal structure of the MSSQL transaction log file.
There are few studies on MSSQL transaction log files. In this paper,

• We introduce identification algorithm of MSSQL transaction log re-
cord based on the record structure. In addition, we propose a method
for reconstructing SQL queries.

• Data records can be recovered by extracting transaction log records
from the unallocated area of the file system.

• User behavior can be tracked, and data records can be reconstructed
through extracted transaction log records.

• We publish our implementation1 to share database forensic
knowledge.

The remainder of this paper is organized as follows: Related works
are presented in Section 2. In Section 3, we introduce an internal
structure of the MSSQL transaction log file. Next, we discuss the char-
acteristics of transaction log records to be identified and present a
method for extracting transaction log records in the unallocated area
using these characteristics and reconstructing SQL queries in Section 4.
In Section 5, we implement the method presented in this paper. Finally,
in Section 6 and 7, we evaluate the performance of the proposed method
based on actual data and self-generated data and discuss conclusions and
future works.

2. Related works

Various forensic methods for examining databases, such as log
analysis and investigation model development, have been studied.
Among these methods, several studies have been conducted to recon-
struct information stored in databases using log data.

2.1. Data reconstruction

Although there are various types of databases, each database has its
own transaction log file. In addition to transaction log files, each data-
base management system has several types of log data.

Adedayo et al. described what kind of log data the following data-
bases contain: MySQL, MSSQL, PostreSQL, Oracle, DB2, and Sybase.
They also researched the default logging configuration of each database
(Adedayo and Olivier, 2015). The authors mention that the default log
setting on a database may not be adequate for forensic information
reconstruction. So, they proposed an ideal log setting method for
reconstructing information stored in database.

Fasan et al. presented an algorithm, which is based on the formal
model of relational databases, for reconstructing a database for forensic
purposes (Fasan and Olivier, 2012b). The authors use a relational

algebra log and value blocks of relations to perform database recon-
struction along with inverse relational algebra operators.

Tripathi et al. proposed a block diagram that may guide a database
forensic examiner to obtain the evidence to detect database tampering
(Tripathi and Meshram, 2012). The target database is Oracle, and lo-
cations where evidence for tamper detection can be obtained were
identified based on Litchfield’s Oracle database forensic papers. Key
evidence includes redo logs that store all data change histories, data
blocks that may include dropped objects, TNS (Transparent Network
Substrate) Listener’s log files, and audit trails that can identify attacker
intrusion information.

Sablatura et al. discussed the concepts behind reconstruction in
digital forensics, and the dimensions of database research (Sablatura
and Zhou, 2017). They mentioned that each of the dimensions of data-
base forensics are united under the use of log files to reconstruct the
activity that has occurred on the database. They described ideal log
setting and forensically aware database logging for database
reconstruction.

2.2. Log file analysis on database

Wright et al. conducted forensic performance tests of LogMiner, a
basic built-in tool available from Oracle 8i (Wright, 2005). It is possible
to check the DML/DDL (Data Manipulation Language/Data Definition
Language) history by analyzing the redo log. The authors tested whether
a forensic timeline could be constructed through the tool and whether
the derived results showed accurate time values. They concluded that
LogMiner could be the main source of information in a forensic inves-
tigation and allow subsequent recovery of lost data.

Litchfield presented the mechanism that redo logs work and
analyzed the undocumented binary format of redo logs (Litchfield).
Oracle database has a function to dump log data and LogMiner to
analyze log data, but the author noted that using these functions not
only corrupts the data that could potentially become forensic evidence,
but also extracts only part of the log data so that the forensic in-
vestigators may not be viewing all the evidence. He presented binary
analysis and query reconstruction methods for DML and DDL queries,
and mentioned that being able to interpret the binary format can turn up
evidence that tools such as LogMiner or the ASCII dump files don’t.

Frühwirt et al. proposed methods for forensic analysis of MySQL
InnoDB by analyzing the redo logs, which are primarily used for crash
recovery within the storage engine (Frühwirt et al., 2013). The authors
analyzed the internal structure of the redo log and implemented a pro-
totype to identify and recover transactions. Based on the prototype
implementation, they showed methods for recovering INSERT, DELETE,
and UPDATE statements issued against a database.

Li described the mechanism of locating transaction log records by
LSN (Log Sequence Number) in the process of MSSQL instance recovery.
He explained the detailed process of forward and rollback operations (Li,
2021), and how to interpret the meaning of LSN. He also calculated the
physical location of redo log records in MSSQL transaction log file.

3. Basic structure of MSSQL transaction log file

MSSQL is one of the most popular relational databases worldwide. A
DBMS (Database Management System) installation contains a set of
system databases as well as user databases that are created as needed.
Like the system databases, the user database consists of three types of
files: the primary data file, secondary data files, and transaction log files.
The primary and secondary data files are used to store database objects
such as tables and rows. The transaction log files keep records of the
events that occur on the database, making them useful for recovery from
failed transactions and retrieval of a consistent version of the database if
the system crashes.

In term of a forensic examiner, transaction log files can be valuable
evidence that contain important information. In this paper, we analyze 1 URL: https://github.com/dbforensic/sql-transaction-log-parser.

H. Choi and S. Lee

https://github.com/dbforensic/sql-transaction-log-parser

Forensic Science International: Digital Investigation 46 (2023) 301605

3

the internal structure of undocumented transaction log file to identify
and extract log records. However, since the structure is not documented,
the meaning of all fields cannot be interpreted, and continuous analysis
is required.

3.1. Virtual Log Files (VLFs)

MSSQL internally divides each transaction log file into several Vir-
tual Log Files (VLFs), as shown in Fig. 1. A VLF is made up of several
blocks of 512 bytes in size. VLFs do not have a fixed size, and there is no
fixed number of VLFs for transaction log files. MSSQL dynamically de-
termines the size of the VLF while creating or extending the log file.
Administrators cannot configure or set the size or number of VLFs.

The information of each VLF in the current database can be obtained
by executing the dbcc loginfo command (Delaney and Freeman, 2013).
The output of this command, as shown in Fig. 2. FSeqNo column in
Fig. 2 indicates the sequential number of the VLF, and Status indicates
whether the corresponding VLF is allocated. If this column value is 2, it
means the corresponding VLF is currently allocated (Li, 2021). FileSize
column is the size of the VLF, and StartOffset column is the starting
offset of the VLF. Parity is a value for maintaining the integrity of the
VLF. Each block in a VLF has parity bits. When the log is first created, it
is zero-initialized. As the log is written, the first byte of each block in the
VLF has parity bits stamped on it. The initial value of the parity bits is 64,
and it changes to 128 when the VLF is reused. Then, for each successive
reuse of a VLF, the parity bits flip back-and-forth between 64 and 128.
The original data of the first byte of each block changed to the parity bits
is stored in the log blocks to which the block belongs.

Information on each VLF can be found in the VLF header area, as
shown in Fig. 3. The following information is included in the VLF header
found in this study: FSeqNo, FileSize, StartOffset.

3.2. Log blocks

Log blocks consists of several blocks within the VLF, and their size is
variable. Fig. 4 shows the overall structure of the log blocks, which in-
cludes the log block header, log records, the array of record offsets, and
the original bytes of parity. The log record is represented in Section 3.3.

The log block header is 72 bytes in size. There are currently three
field values analyzed: The number of slots, the size of log blocks, and
first LSN in log blocks. Each field value in the log file can be interpreted
as little-endian.

The number of slots field indicates the number of live log records
within the log blocks. The size of log blocks field indicates the size of
in-use area within the log blocks. A log blocks consists of several blocks,
but there may be unused blocks. Therefore, the total size of the log
blocks is a multiple of the block size, but the size of in-use area can be
verified through The size of log blocks field. This field is the size from
the beginning of the log blocks to the array of record offset area, and
indicates the end of the array of record offset area. First LSN in log
blocks field is literally the first LSN in the log blocks.

The array of record offsets indicates the location where log records
are stored on the log blocks. It consists of 2-byte values that represent the
start position of each record. As seen in Fig. 4, the value at the end of the

array points to the first record on the log blocks. The array of record
offsets is stored in reverse order.

As mentioned above, the parity bits can have a value of 0, 64, or 128.
However, the first byte of each block, which is now used for parity bits,
also includes other information. The fifth bit of the first byte indicates
whether the block is the first block in the log blocks, and the fourth bit
indicates whether it is the last block. For example, if the first byte of the
block is 0x88, the parity bits is 128, which indicates that the block is the
last block of the log blocks. The parity bits is similar to Fixup Arrays of
NTFS (Fixup, 2023) and Tornbits of MSSQL data files (Choi et al., 2021).

The original byte of parity is an area that stores the original data of
the first byte of each block that has been changed to the parity bits. It
stores the original bytes in reverse order as a 1-byte array. If there is an
unallocated block in the log blocks, the original byte of the block is also
overwritten with the parity bits.

3.3. Log record

A transaction log consists of groups of log records, which are stored
in log blocks. The fn_dblog() system function, which allows users to read
through the active portion of the transaction log file and retrieve useful
information about modification activities in the database, is used to
analyze the log record structure. All log records have a fixed size format
of 24 bytes, and the rest of the structure has a different format depending
on the operation. The operations and identifiers, which are the main
research subjects of this paper, are as follows:

• LOP_INSERT_ROWS (0x02)
• LOP_DELETE_ROWS (0x03)
• LOP_MODIFY_ROW (0x04)
• LOP_BEGIN_XACT (0x80)
• LOP_COMMIT_XACT (0x81)

Fig. 5 shows the structure of the 24-byte common area of all log
records. Log Record Fixed Length field indicates the size of the fixed-
length area of the record and has a different value depending on the
operation. Previous LSN exists for the log record chain of log records.
Log records belonging to the same transaction can be grouped based on
Transaction ID. Operation field indicates what type of data is stored in
the log record. For example, when using an INSERT query, the Opera-
tion field has a value of LOP_INSERT_ROWS, a value of LOP_DELE-
TE_ROWS for a DELETE query, and a value of LOP_MODIFY_ROW for an

Fig. 1. MSSQL Log file structure (SQL Server transaction log architecture and
management guide).

Fig. 2. dbcc loginfo

Fig. 3. VLF header structure.

H. Choi and S. Lee

Forensic Science International: Digital Investigation 46 (2023) 301605

4

UPDATE query.
Fig. 6 shows the log record structure for the following operations:

LOP_INSERT_ROWS, LOP_DELETE_ROWS, and LOP_MODIFY_ROW. Slot
ID and Page ID fields indicate the location of the data row in the data file
that the log record affects. Page ID field contains the file ID and page
number of data file. For example, in the case of a log record with an
operation value of LOP_MODIFY_ROW, the position of changed data in
the data file can be verified through Slot ID and Page ID fields. Parti-
tionId field indicates the table the log record affects. Offset in Row field
indicates the starting position of the modified data within the data row,

and Modify Size field indicates the size of the modified data. The log
records have a fixed length of 0x35, and after the fixed-length area, the
total log record length is determined through Num Elements and
RowLog Contents Length fields.

The data to be stored in RowLog Contents for each operation is
determined. In the LOP_INSERT_ROWS record, the entire inserted data is
stored in the first element of RowLog Contents. In the LOP_DELE-
TE_ROWS record, data to be deleted is stored in the first element of
RowLog Contents. In the above two cases, data records can be recon-
structed only with the data stored in RowLog Contents. However, in the
case of LOP_MODIFY_ROW, data before change is stored in RowLog
Contents 0 and data after change is stored in RowLog Contents 1, and
each data is part of a data record. Therefore, the entire data record
stored in the data file is required to reconstruct the data record before
the change.

Fig. 7 shows the log record structures of LOP_BEGIN_XACT and
LOP_COMMIT_XACT. Each log record contains the execution and end
times of a transaction. The time value consists of 8 bytes, the first 4 bytes
(0x0000AF9C as in Fig. 7a) as the number of days since 1900-01-01, and
subsequent 4 bytes (0x01130E41 as in Fig. 7a) as the number of ticks (1/
300 of second) since the midnight (CAST Hex Value for Datetime, 2023).

4. Proposed method

This section proposes a method for identifying and extracting log
records in the unallocated area. In this paper, we assume that there are
two cases in which transaction log remains in the unallocated area. The
first is when the size of the transaction log file shrinks. Transaction log
files shrink in the following cases (Delaney and Freeman, 2013):

• Execute BACKUP LOG statement
• Set recovery mode to SIMPLE
• Never do a full backup of the database

Contrary to the assumption that data remains in the unallocated
area, when the size of a transaction log file shrinks, the data is truncated

Fig. 4. Log blocks structure (applied with parity).

Fig. 5. Record structure: Common area.

Fig. 6. Record structure: INSERT/DELETE/MODIFY.

H. Choi and S. Lee

Forensic Science International: Digital Investigation 46 (2023) 301605

5

and permanently deleted. That means all log records prior to the oldest
active transaction are invalidated and all VLFs not containing any part of
the active log are marked as reusable (Delaney and Freeman, 2013).
Therefore, it does not remain in the unallocated area. The second case is
when the backup file of the transaction log file is deleted. In general,
database servers use a backup function periodically to control the size of
transaction log files and roll back data files in preparation for accidents.
The backup files are kept for a certain period according to the mainte-
nance policy and then deleted to adjust the capacity of the storage
volume. Part of the deleted transaction log backup file remains in the
unallocated area of the file system.

There are two methods for identifying data fragments in the unal-
located area: content-based and format-based (Park and Lee, 2014). This

paper only focuses on log records, so a format-based method is adopted.
Fig. 8 shows the procedure of the method presented in this paper, which
consists of two steps: log record identification and query reconstruction.

4.1. Log record identification

The first step is to identify log records using signatures. Although
there is no signature or magic number for identifying log records, the log
records’ fixed length area is used as a signature for signature detection.
Table 1 shows signatures and operation identifiers for each log record.
Log record identification verifies the existence of an operation value that
matches the signature at a 16-byte location based on the detected
location, after signature detection.

Fig. 7. Record structure: BEGIN/COMMIT.

Fig. 8. Procedure of the proposed method.

H. Choi and S. Lee

Forensic Science International: Digital Investigation 46 (2023) 301605

6

Since the data to be verified may be the first 4 bytes of the block,
signatures considering the parity bits are also added. For example, if
signature 0x40003E00 is detected and the value located at the offset
0x16 based on the detected location is 0x02, then the data at the
detected location is used for INSERT query reconstruction.

4.2. Query reconstruction

In this paper, we perform reconstruction for INSERT, DELETE, and
UPDATE queries. INSERT, DELETE, and UPDATE queries can be
reconstructed through a single log record analysis. However, queries
such as DROP and CREATE TABLE cannot be reconstructed only with a
single log record analysis. These queries can only be analyzed by
reconstructing the entire transaction log by analyzing each log record
that occurs. Therefore, in this paper, INSERT, DELETE, and UPDATE
queries that can be analyzed based on a single log record were selected
as analysis targets. Query reconstruction consists of two steps: log record
structure analysis and data record structure analysis.

The procedure to analyze log record from unallocated area data is
shown in Fig. 8. First, it calculates the log record length based on the
identified log record offset. Next, log record data is loaded from the
unallocated area through the calculated record length. Lastly, it analyzes
the log record structure according to the operation.

Query reconstruction is performed according to the operation. To
reconstruct a query, not only the log record, but also the data file of the
database is required because information of the table schema is needed.
So, Choi et al. is referred to analyze data file and data record (Choi et al.,
2021).

As explained in Section 3.3, the INSERT and DELETE data record is
stored in the first element of RowLog Contents. Query reconstruction is
performed using the data records stored in RowLog Contents 0. Since

the conditional statement at the time of DELETE query execution is not
known, the conditional statement is constructed based on the column
data of the data record. Fig. 9 shows the reconstruction results of INSERT
or DELETE queries.

Unlike DELETE and INSERT records, only part of the data record is
stored in the log record for UPDATE records. Therefore, the data records
to which the UPDATE query is applied are acquired from the data file,
and then query reconstruction is performed. As described in Section 3.3,
in the case of the LOP_MODIFY_ROW log record created when an UP-
DATE query is executed, the data before change is stored in the first
element of RowLog Contents and the data after change is stored in the
second element. Using the data of RowLog Contents and Offset in row
field, the data record obtained from the data file can be converted to the
data before executing the UPDATE query. UPDATE query reconstruction
is conducted through the acquired data records before and after UP-
DATE query execution. Fig. 10 shows the reconstruction results of UP-
DATE query.

After reconstructing the query, LOP_BEGIN_XACT and LOP_COM-
MIT_XACT log record, which have the same transaction ID as the
reconstructed log record, indicate the start and end times of the query.

5. Implementation

In this paper, two types of modules were implemented. First, to
verify the log file structure in Section 3, a module was developed to
analyzes the transaction log file(.ldf). This module basically analyzes the
live log record in the log file, and when data files (.mdf) are input,
INSERT, UPDATE, and DELETE query reconstruction of the log record
on the user table is performed.

Second, to verify the method proposed in this paper, a module was
developed to identify log records in the unallocated area and analyze the
log record structure. This module also reconstructs the query for the user
table when the data file of the database that is the target of transaction
log backup is input.

Fig. 11 shows the developed modules and how to use them. It was
developed based on Python 3.11 and consists of 3 files. The datafile.py
file is a data file analysis module of MSSQL (Choi et al., 2021), and the
logfile.py file is a log file analysis module in which the method proposed
in this paper is implemented. According to the type of input data, there
are four modes.

• 0: Only transaction log file (.ldf)
• 1: Transaction log file with data file (.mdf)
• 2: Only unallocated area data
• 3: Unallocated area data with data file (.mdf)

For modes 0 and 2, only log record identification and structural
analysis are performed, as there are no data files required to reconstruct
the query. In modes 1 and 3, the input data file is analyzed, and query
reconstruction is also performed.

Table 1
Log record signature.

Operation (identifier) Signature

LOP_INSERT_ROWS (2)
LOP_DELETE_ROWS (3)
LOP_MODIFY_ROW (4)

0x00003E00
0x40003E00
0x48003E00
0x80003E00
0x88003E00

LOP_BEGIN_XACT (0x80) 0x00004C00
0x40004C00
0x48004C00
0x80004C00
0x88004C00

LOP_COMMIT_XACT (0x81) 0x00005000
0x40005000
0x48005000
0x80005000
0x88005000

Fig. 9. Result of reconstruction query: INSERT or DELETE.

H. Choi and S. Lee

Forensic Science International: Digital Investigation 46 (2023) 301605

7

The result data includes query strings for data that has been suc-
cessfully reconstructed, and log records that cannot be reconstructed are
output as raw data along with transaction start and end times.

6. Experiment and result

In this paper, we present a method for identifying and extracting
transaction log records in the unallocated area and reconstructing the
query. To evaluate this method, experiments were conducted based on
two types of data sets.

The first data set was self-generated, as there is no sample data set to
evaluate the method proposed in this paper. The second data set utilized
live SQL server data.

6.1. Self-generated data set

In this section, two types of experiments were conducted. First, to
verify the log file structure analyzed in Section 3, the self-generated data
set log file was analyzed using the module implemented in Section 5.
Additionally, to verify the analysis results, a comparative analysis is
conducted with commercial tools used in the forensic field, such as
ApexSQL Recover (ApexSQL) and Stellar Log Analyzer for MSSQL
Database (Stellar Data Recovery). All data sets generated in this paper
are based on SQL Server 2019.

The data set to validate for the log file structure is created in the
following scenario:

1. Insert 1000 data rows 3 times
2. Update 1000 data rows
3. Delete 1000 data rows

If log files are correctly analyzed, a total of 5000 log records should
be identified. The analysis module implemented in this paper and

commercial tools successfully detected 5000 log records. Table 2 shows
the validation of the analysis in Section 3.

Second, to verify the method proposed in this paper, a virtual volume
was created to back up the transaction log. Then, some of the backup
files were deleted. The detailed scenario is as follows:

1. Database full backup and transaction log backup
2. Insert 1,000 data rows
3. Transaction log backup
4. Insert 1,000 data rows
5. Transaction log backup
6. Insert 1,000 data rows
7. Transaction log backup
8. Update 1,000 data rows & Delete 1,000 data rows
9. Database full backup and transaction log backup

10. Delete the 1st to 3rd transaction log files

The scenario was created such that database full backups and
transaction log backups were performed periodically on a real system. It
was assumed that deleted transaction log files were deleted after the
retention period in the real system. Then, the unallocated area in the
volume was extracted using EnCase, a widely used forensic tool
(OpenText Encase Forensic, 2023), and analyzed through the module
implemented in this paper.

Fig. 10. Result of reconstruction query: UPDATE.

Fig. 11. Components of implemented modules and an usage.

Table 2
Log record identification performance for each query (the number of identified
log record/total log record).

Tool Insert Delete Update

Proposed Method 3000/3000 1000/1000 1000/1000
ApexSQL 3000/3000 1000/1000 1000/1000
Stellar Log 3000/3000 1000/1000 1000/1000

H. Choi and S. Lee

Forensic Science International: Digital Investigation 46 (2023) 301605

8

6.2. Real case: SQL server 2014

Experimental data were extracted from the SQL Server 2014 server
that had been used for about 8 years. The server contains several data-
bases, and the maintenance plan function was used to perform database
and transaction log backup. The backup files have an expiration date
and are deleted after the expiration date.

In the case of the database to be analyzed, daily database backup and
hourly transaction log backup were performed, and a plan to keep the
backup files for two weeks was set. Fig. 12 shows database backup files
viewed through EnCase. As backup files were stored or deleted in a 2 TB
volume, the data extraction function of EnCase was used to extract un-
allocated area data from the volume. Then, analysis was conducted by
inserting the unallocated area data and data files of the database to be
analyzed into the module implemented in this paper. The size of the
extracted unallocated area was 1.18 TB.

6.3. Experimental results

As a result of the experiment on the self-generated data set, it was
confirmed that the log file structure was correctly analyzed, as shown in
the Table 2. Additionally, to verify the method proposed in this paper,
the results of inserting the unallocated area of the sample data and the
database data file are shown in the Table 3.

As mentioned in the scenario of self-generated data, since three
transaction log backup files were deleted, the number of LOP_INSER-
T_ROWS, LOP_DELETE_ROWS, and LOP_MODIFY_ROW existing in each
file was compared with the number of records reconstructed by the
module implemented in this paper. The first file is the back up file before
the transaction occurred, so there are no log records for the user table.
The second file contains log records with 1,000 INSERT records. Of
these, 974 log records were detected and reconstructed in the unallo-
cated area. The last file has 1,000 INSERT records, of which 967 were
reconstructed from the unallocated area.

As a result of experiments on the data of a real case, the identification
method presented in this paper identified 37 million expected offsets as
log records. 50,000 offsets were sampled to analyze the log record
structure and reconstruct queries. Of the 50,000 sampled offsets, log
record analysis was performed on a total of 2,587 offsets, of which 27
records were reconstructed. Fig. 13 shows part of the reconstructed
queries.

The results of the experiment show that more than 95% of the
deleted log records for the self-generated data set were detected and
reconstructed in the unallocated area. In data set of the real case, a large
number of data expected to be log records were detected, and some of
them were sampled and reconstructed. However, the number of log
records reconstructed was small compared to the number of signatures
detected. This is because the data set of real data has a very large

capacity and a long period of use, so various types of data are scattered.
The fact that transaction log records executed in 2020 were identi-

fied and reconstructed in the unallocated area of the server used until
2022 is a meaningful result. Additionally, the fact that the structure of
the log record did not change from SQL Server 2014 to 2019 suggests
that the method presented in this paper can be applied to transaction log
records of databases from SQL Server 2014 to 2019.

6.4. Limitations

As a result of analyzing the extracted data, several limitations were
identified.

• The study presented in this paper focuses on the identification and
analysis of single log records, not the entire transaction log file. This
means that the original data area of the parity bits, which should be
accessed in units of log blocks, cannot be accessed. Therefore,
reconstruction must be conducted in a state where the parity bits are
overwritten, not the original data of the log record.

• If log records are fragmented according to the minimum unit stored
in the file system, query reconstruction is difficult. For example, in
the case of NTFS, files are stored in units of clusters. If a transaction
log file is fragmented and a single log record is divided and stored in
separate clusters, reconstruction is difficult.

These limitations are due to the fact that the method is designed to
reconstruct log records that have been deleted from the file system.
When a log record is deleted, it is not actually removed from the file
system. Instead, the space occupied by the log record is marked as free.
This means that the original data of the log record is still present in the
file system, but it is not accessible. The method presented in this paper
reconstructs log records by searching for the signatures of log records in
the unallocated area of the file system. However, if the log records are
fragmented, data fragments of the log records may be spread out across
multiple clusters. This make it difficult to reconstruct the log records.

Despite these limitations, the method presented in this paper is a
valuable tool for forensic investigators. It can be used to reconstruct log
records that have been deleted from the file system, which can provide
valuable insights into the activities that took place on the system.

7. Conclusion

Due to the increasing use of databases for storing corporate and
private sensitive data, the importance of database forensic is increasing
day by day. Information reconstruction, one of the key features of
database forensics, is a technique that tracks the database from the time
when an incident occurred to the current state. Information recon-
struction uses various type of log data generated by the databases, such
as transaction logs, error logs, system logs, and trace logs. In this paper,
we analyze the transaction log of MSSQL databases. Among the many
types of log records, we focus on INSERT, DELETE, and UPDATE queries.
For these queries, there is a 1:1 correspondence between each query and
a log record operation. However, in the case of table CREATE and DROP
queries, there is no 1:1 correspondence between the query and a log
record operation. Instead, these queries are performed by combining
multiple log records within a single transaction. In other words, recon-
structing CREATE and DROP table queries requires analyzing the entire Fig. 12. Backup files.

Table 3
Log record detection rate for each deleted transaction backup
file.

Deleted Backup file Detection rate(%)

1st file 0
2nd file 97.4 (974/1000)
3rd file 96.7 (967/1000)

H. Choi and S. Lee

Forensic Science International: Digital Investigation 46 (2023) 301605

9

transaction log, not a single log record. So, we will analyze transaction
logs for CREATE and DROP table queries and conduct query recon-
struction studies based on log records.

We have focused on MSSQL among various DBMSs, but there are
many other DBMSs and new DBMSs are continuously being developed.
All databases record transaction logs by default. Therefore, based on the
method presented in this paper, we will study practical forensic methods
on log data for various databases of the latest version.

Acknowledgements

This work was supported by Police-Lab 2.0 Program (www.kipot.or.
kr) funded by the Ministry of Science and ICT (MSIT, Korea) & Korean
National Police Agency (KNPA, Korea) [Project Name: Research on Data
Acquisition and Analysis for Counter Anti-Forensics/Project Number:
210121M07].

References

Adedayo, O.M., Olivier, M.S., 2015. Ideal log setting for database forensics
reconstruction. Digit. Invest. 12, 27–40. https://doi.org/10.1016/j.
diin.2014.12.002.

CAST Hex value for Datetime - SQL server to MySQL migration - SQLines tools — sqlines.
com. https://www.sqlines.com/sql-server-to-mysql/cast_datetime_hex. (Accessed 10
May 2023).

Choi, H., Lee, S., Jeong, D., 2021. Forensic recovery of sql server database: Practical
approach. IEEE Access 9, 14564–14575. https://doi.org/10.1109/
ACCESS.2021.3052505.

Chopade, R., Pachghare, V.K., 2019. Ten years of critical review on database forensics
research. Digit. Invest. 29, 180–197.

DB-Engines Ranking — db-engines.com. https://db-engines.com/en/ranking. (Accessed
9 May 2023).

Delaney, K., Freeman, C., 2013. Microsoft SQL Server 2012 Internals: Micro SQL Serve
2012 Int_p1. Microsoft Press.

Fasan, O.M., Olivier, M., 2012a. Reconstruction in database forensics. In: Advances in
Digital Forensics VIII: 8th IFIP WG 11.9 International Conference on Digital
Forensics, vol. 8. Springer, Pretoria, South, pp. 273–287. Africa, January 3-5, 2012,
Revised Selected Papers.

Fasan, O.M., Olivier, M.S., 2012b. On Dimensions of Reconstruction in Database
Forensics.

Fixup - concept - NTFS Documentation — inform.pucp.edu.pe. http://inform.pucp.edu.
pe/ inf232/Ntfs/ntfs_doc_v0.5/concepts/fixup.html. (Accessed 11 May 2023).

Foster, E.C., Godbole, S., Foster, E.C., Godbole, S., 2016. Overview of microsoft sql
server, Database Systems. A Pragmatic Approach, pp. 461–467.

K. Fowler, G. Gold, Sql Server Database Forensics, Memory.
Frühwirt, P., Kieseberg, P., Schrittwieser, S., Huber, M., Weippl, E., 2013. Innodb

database forensics: Enhanced reconstruction of data manipulation queries from redo
logs. Inf. Secur. Tech. Rep. 17 (4), 227–238.

Li, A., 2021. Research on redo log record locating mechanism in sql server instance
recovery. In: Journal of Physics: Conference Series, vol. 1952. IOP Publishing,
032056.

D. Litchfield, Oracle Forensics Part 1: Dissecting the Redo Logs, NGSSoftware Insight
Security Research (NISR), Next Generation Security Software Ltd, Sutton.

OpenText Encase Forensic — opentext.Com. https://www.opentext.com/products/e
ncase-forensic. (Accessed 11 May 2023).

Park, J., Lee, S., 2014. Data fragment forensics for embedded dvr systems. Digit. Invest.
11 (3), 187–200.

SQL Server transaction log architecture and management guide - SQL Server — learn.
microsoft.com. https://learn.microsoft.com/en-us/sql/relational-databases/sql-ser
ver-transaction-log-architecture-and-management-guide?view=sql-server-ver16.
(Accessed 13 May 2023).

Sablatura, J., Zhou, B., 2017. Forensic database reconstruction. In: 2017 IEEE
International Conference on Big Data (Big Data). IEEE, pp. 3700–3704.

Tripathi, S., Meshram, B.B., 2012. Digital evidence for database tamper detection. J. Inf.
Secur. 3, 113–121. https://doi.org/10.4236/jis.2012.32014.

Wright, P.M., 2005. Oracle database forensics using logminer. In: June 2004 Conference.
SANS Institute, pp. 1–39.

Yaseen, A.. SQL server transaction log architecture — sqlshack.com. https://www.sqlsh
ack.com/sql-server-transaction-log-architecture/. (Accessed 9 May 2023).

Stellar Data Recovery. SQL log analyzer tool - open amp; read SQL server transaction log
— stellarinfo.com. https://www.stellarinfo.com/mssql-log-analyzer.php. (Accessed
10 May 2023).

Sql Server Recovery Tool, ApexSQL. https://www.apexsql.com/sql-tools-recover.aspx
(last accessed 24 December 2020).

Fig. 13. Analysis result: real case.

H. Choi and S. Lee

http://www.kipot.or.kr
http://www.kipot.or.kr
https://doi.org/10.1016/j.diin.2014.12.002
https://doi.org/10.1016/j.diin.2014.12.002
https://www.sqlines.com/sql-server-to-mysql/cast_datetime_hex
https://doi.org/10.1109/ACCESS.2021.3052505
https://doi.org/10.1109/ACCESS.2021.3052505
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref4
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref4
https://db-engines.com/en/ranking
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref6
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref6
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref7
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref7
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref7
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref7
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref8
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref8
http://inform.pucp.edu.pe/%20inf232/Ntfs/ntfs_doc_v0.5/concepts/fixup.html
http://inform.pucp.edu.pe/%20inf232/Ntfs/ntfs_doc_v0.5/concepts/fixup.html
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref10
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref10
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref12
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref12
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref12
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref13
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref13
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref13
https://www.opentext.com/products/encase-forensic
https://www.opentext.com/products/encase-forensic
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref16
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref16
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-log-architecture-and-management-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-log-architecture-and-management-guide?view=sql-server-ver16
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref19
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref19
https://doi.org/10.4236/jis.2012.32014
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref22
http://refhub.elsevier.com/S2666-2817(23)00117-8/sref22
https://www.sqlshack.com/sql-server-transaction-log-architecture/
https://www.sqlshack.com/sql-server-transaction-log-architecture/
https://www.stellarinfo.com/mssql-log-analyzer.php
https://www.apexsql.com/sql-tools-recover.aspx

	2023_APAC_cover
	Forensic-analysis-of-SQL-server-transaction_2023_Forensic-Science-Internatio
	Forensic analysis of SQL server transaction log in unallocated area of file system
	1 Introduction
	2 Related works
	2.1 Data reconstruction
	2.2 Log file analysis on database

	3 Basic structure of MSSQL transaction log file
	3.1 Virtual Log Files (VLFs)
	3.2 Log blocks
	3.3 Log record

	4 Proposed method
	4.1 Log record identification
	4.2 Query reconstruction

	5 Implementation
	6 Experiment and result
	6.1 Self-generated data set
	6.2 Real case: SQL server 2014
	6.3 Experimental results
	6.4 Limitations

	7 Conclusion
	Acknowledgements
	References

