

Identification of data wiping tools based on deletion

patterns in ReFS $Logfile

By:

Eun Ji Lee, Seo Yeon Lee, Hyeon Kwon, Sung Jin Lee, Gi Bum Kim

From the proceedings of

The Digital Forensic Research Conference

DFRWS APAC 2023

Oct 17-20, 2023

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first

open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an

informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to

help drive the direction of research and development.

https://dfrws.org

Forensic Science International: Digital Investigation 46 (2023) 301607

Available online 13 October 2023
2666-2817/© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Identification of data wiping tools based on deletion patterns in
ReFS $Logfile

Eun Ji Lee a, Seo Yeon Lee a, Hyeon Kwon b, Sung Jin Lee a, Gi Bum Kim a,*

a Dept. of Forensic Sciences, Sungkyunkwan University, 25-2 Sungkyunkwan-Ro, Jongno-Gu, Seoul, 03063, South Korea
b Deloitte Anjin LLC, Yeongdeungpo-gu, Seoul, South Korea

A R T I C L E I N F O

Keywords:
Data wiping
File deletion
ReFS logfile
Opcode
Anti-forensics
Digital forensics

A B S T R A C T

Data wiping tools permanently delete files by repeatedly overwriting data on a digital device, making file re-
covery impossible. Unlike the conventional deletion methods, which merely remove the file system pointer to the
data, these tools are designed to entirely and irretrievably erase the data. This method can be exploited to
obliterate evidence of a crime. Given the growing prevalence of such tools, a comprehensive analysis of per-
manent deletion behavior is essential, especially concerning the Resilient File System (ReFS). In this study, we
propose a method for detecting user behavior concerning data wiping tools and algorithms in ReFS 3.7. Our
approach relies on the fact that file modifications are logged in the redo record of the $Logfile, and that the
opcode value of the redo record varies depending on the data wiping tool used. Since opcodes were only analyzed
up to version 3.4, we analyzed the newly updated opcodes. Initially, we selected the 12 most commonly used
data wiping tools for our research. In the pattern analysis phase, we applied the algorithms supported by each
tool, generating a distinct deletion pattern for each one. This was accomplished by utilizing consecutive opcodes
to formulate the patterns and monitor transitions in file and directory names. The patterns discerned in the
$Logfile allowed us to determine which data wiping tool was deployed. The proposed methodology simplifies the
identification of not only which data wiping tool has been used, but also the specific deletion behavior exhibited.
We developed a tool incorporating the proposed method. Our subsequent verification confirmed the effectiveness
of our methodology and tools in accurately detecting the use of comprehensive deletion tools. These findings
contribute valuable insights to the acquisition of digital evidence of user deletion behavior in ReFS. Our proposed
methodology will help digital forensic examiners in the detection and identification of data wiping tools’
behavior.

1. Introduction

ReFS is a Windows filesystem developed by Microsoft since the
launch of NTFS the intention of maximizing data availability, ensuring
data integrity, and providing resilience against corruption. Compared to
NTFS supporting 256 TB, ReFS vastly expands available space with
support for an endorsed size of 35 PB (Microsoft, 2023). Despite ReFS
being less commonly used than other file systems its usage doesn’t
exempt it from potential criminal activities (Brinkmann, 2023). As a
non-bootable system, ReFS has fewer artifacts compared to others.
Additionally, digital forensic tools such as Encase, Axiom, FTK, and
Autopsy have limitations when dealing with ReFS. They only analyze up
to specific versions or do not normally work, so that makes it difficult to

find the user behavior, unlike other file systems. Therefore, it’s essential
to develop forensic analysis research to acquire evidence related to
criminal activities. In this study, we focus on the traces left by the usage
of data wiping tools in illicit activities. Internationally, there have been
numerous criminal cases related to data wiping tools, such as the Vir-
ginia case (Woolwine, 2022) and the Swansea case (Jason Evans, 2022).
Politically controversial cases have also emerged, like the one involving
illegal surveillance of civilians by the South Korean Prime Minister’s
Office in June 2008. The court accepted the evidence of data wiping tool
usage from an external computer as proof of document concealment
(Lee, 2020). However, it could only be considered evidence when it was
proven that the wiping tool used was identical to the program installed
on the PC.

DFRWS 2023 APAC - Proceedings of the Third Annual DFRWS APAC
* Corresponding author.

E-mail address: freekgb02@gmail.com (G.B. Kim).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2023.301607

mailto:freekgb02@gmail.com
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301607
https://doi.org/10.1016/j.fsidi.2023.301607
https://doi.org/10.1016/j.fsidi.2023.301607
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301607&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 46 (2023) 301607

2

This paper proposes a methodology for identifying evidence of spe-
cific wiping tool behavior through an opcode pattern analysis of the
$Logfile. To provide insights into complete deletion tools, we analyzed
the functionalities and algorithms of the top 12 widely used tools,
including Easy File Shredder and Kernel File Shredder. A meticulous
examination was conducted to scrutinize the distinct patterns and
relevant information that manifests in $Logfile throughout the course of
data wiping using a range of deletion tools. These data wiping tools
utilize their own algorithms for overwrite files multiple times. The
deletion is executed by applying algorithms supported by each wiping
tool, including the Gutmann algorithm (Gutmann, 1996a), a deletion
method that overwrites data 35 times. We conducted experiments to
investigate whether there are variations in patterns based on the dele-
tion algorithm. We raised the question of whether pattern alterations
depend on the use of a specific algorithm, as well as on the tools
themselves. Furthermore, we analyzed filename changes to determine
whether the deletion behavior can be traced back to specific
characteristics.

The paper is structured as follows: Section 2 reviews previous studies
on ReFS and deletion tools. Section 3 presents the environmental set-
tings in which the methodology was applied and the corresponding re-
sults. Section 4 details the implementation of the method and the
validation of the results obtained from Section 3. Section 5 concludes
with remarks on our findings.

2. Related research

2.1. Concept of ReFS

The key attributes of ReFS encompass integrity streams, storage
space integration, data recovery, proactive error correction, real-time
tier optimization, and VM acceleration optimization. Research had
suggested that the data availability and resilience offered by ReFS could
see it become a more commonly used file system in the future (Lee et al.,
2021). It supports block cloning, sparse VDL, file-level snapshots, and
real-time tier optimization, which are features not present in NTFS.
Moreover, structurally, it uses B + trees, a uniform disk structure that
represents all disk-based information (Gudadhe et al., 2015).

ReFS is a journaling file system that maintains journal files like the
Change Journal and $Logfile to document actions and modifications
(Savoldi et al., 2012). While the Change Journal records the change
history, including file and directory names, it doesn’t allow for the
extraction of sequenced behavior patterns with files. Therefore, in this
study, we focused on the $Logfile, aiming to identify transactions based
on opcode. $Logfile can be used as a forensic artifact by analyzing
metadata related to work activities and target files, hence it was chosen
for our research.

2.2. Wiping tools and erasure algorithms

Research on wiping activities was conducted on various Windows
artifacts analysis of file systems. Savoldi et al. (2012) discussed scenarios
related to data deletion cases and introduced a methodology to detect
artifacts on a disk. They also used statistical methods to identify deleted
regions on disks filled with random but periodic rule data. A different
approach to our study on $Logfile in ReFS was proposed by Kim and Lee
(2015), which aimed to identify the data wiping tool by extracting the
trace time with the Amcache.hve. Shin et al. (2016) analyzed the file
structure and log storage for a damaged EVTX(Windows XML Event Log)
and proposed a recovery method for Chunk and Record units. Their
comparison and analysis of both recovery methods suggested that the
Chunk unit recovery method is more efficient if there hasn’t been
intentional damage, otherwise, the Record method is more effective.
Smith et al. (2017) documented forensic artifacts that can collect and
recover digital evidence from VMDK files. Their research centered
around identifying forensic artifacts and their locations in virtualized

computing to provide foundational knowledge for future digital forensic
investigations. Cho (2018) addressed the problem of existing data hiding
methods by bit correction in Timestamp of $MFT. There have been
numerous studies analyzing journal files such as $Logfile, where trans-
action operations are recorded, and $UsnJrnl, which records changes in
files and directories. Kim et al. (2020) analyzed user behavior in
$UsnJrnl files and proposed a method to recover deleted $UsnJrnl files.
They recovered $J property records of deleted journal files in
non-allocation areas through file carving and found that they could
recover a minimum of 75 to a maximum of 39,912 compared to
$UsnJrnl:$J files obtained in live areas. Oh et al. (2021) discussed NTFS
Log Tracker v1.7, which is used to manipulate the installation, execu-
tion, and use of suspicious tools based on signatures and patterns. Prior
studies have also conducted experiments using specific data wiping
tools. Jones and Afrifa (2020) performed an experiment on the efficacy
of 8 data wiping tools and discovered that data remained when using
Super File Shredder and Disk wipe. Horsman (2021) analyzed changes
and logs of file properties with 8 data wiping tools in NTFS and FAT,
demonstrating the characteristics that appeared when using data wiping
tools. Unlike NTFS, which records both Redo and Undo opcodes, ReFS
exclusively records Redo opcodes and has a unique filesystem structure.
AlHarbi et al. (2022) confirmed that all files were successfully deleted
and non-recoverable with 4 data wiping tools. They analyzed the file
name that remained in the metadata after file deletion, presented the
characteristics of each tool, and showed that the data wiping tool did not
alter the internal information of the journal file. However, none of these
studies targeted ReFS, and Horsman only viewed fragmentary records
remaining in the log using existing log tools. Data wiping tools are
generally count-based algorithms developed for confidentiality, such as
U.S. DoD 5220, and so forth. These data wiping tools include the erasure
algorithms listed in Table 1. The algorithms differ in the number of
passes and speed. They also vary in the data and methods for over-
writing. E.g., the Gutmann algorithm overwrites the target location 35
times with specific hexadecimal data, such as 00, ff, complement, or
random values, while the other algorithms generally overwrite with
decimal data between one to seven times.

2.3. ReFS forensics

Research on ReFS forensics has been conducted with a limited scope,
primarily focusing on structural analysis and internal operational prin-
ciples. Prade et al. (2019) applied digital forensic methods to version 3.4
of ReFS, analyzing changes in data when utilizing carving technology.

Table 1
Global erasure algorithm standard.

No Algorithm Pass Speed

1 HMG IS5 Base Line(British) (Jones and Afrifa, 2020) 1 Fast
2 GOST R 50739–95(Russian) (Russia, 1995) 2 Fast
3 Air Force(AFSSI) 5020(US) (U.S. Air Force, 1998) 3 Fast
4 Army AR380-19(US) (U.S. Army, 1998) 3 Middle
5 DoD 5220.22 M (US) (U.S. Defense Security Services,

2007)
3 Slow

6 DoD 5220.22 M E(US) (U.S. Defense Security Services,
2007)

3 Fast

7 DoE M-205.1-2 (US) (U.S. Dept. of energy, 2005) 3 –
8 HMG IS5 Enhanced (Jones and Afrifa, 2020) 3 Fast
9 ITSG2006 (Easy file shredder) 3 Fast
10 NAVSO P-5239-26(MFM) (US Navy) (U.S. Dept) 3 Fast
11 NAVSO P-5239-26(RLL) (US Navy) (U.S. Dept) 3 Fast
12 DoD 5220.28 STD (WASHINGTON, 1978) 7 Slow
13 DoD 5220.22 M E C E (WASHINGTON, 1978) 7 Middle
14 Bruce Schneier (Schneier, 1995) 7 Middle
15 VSITR (Bundesamts fr Sicherheit in der, 2004) 7 Slow
16 RCMP TSSIT OPS-II (RCMP G2-003, 2003) 7 Middle
17 N.A.T.O (Bitraser) 7 –
18 Peter Gutmann (Gutmann, 1996a) 35 Very

Slow

E.J. Lee et al.

Forensic Science International: Digital Investigation 46 (2023) 301607

3

However, this approach needs to be improved in its ability to discern
user behavior as it concentrates solely on recovery. Kim (2019) proposed
a method to recover deleted data by analyzing ReFS’s internal metadata.
The author compared the characteristics of existing large file systems,
analyzed data storage principles, and presented two recovery algo-
rithms. Nordvik et al. (2019) demonstrated that tracking deleted files
was possible by analyzing the File Name Attribute (FNA) and data at-
tributes using reverse engineering, yet made no attempt to analyze user
behavior. Lee et al. (2019, 2021) began an opcode analysis of the
$Logfile on ReFS version 3.4 to discern patterns of user behavior. Their
studies on ReFS have primarily analyzed user behavior, but not focused
on wiping. These studies only considered file creation, renaming, con-
tent modification, and normal deletion.

3. Experiment and result

3.1. Methodology

3.1.1. Experiment methodology
To analyze the $Logfile generated after using data wiping tools, we

used VMware Workstation 16.2.2 and Windows Server 2022 Standard
Evaluation (x64-based, 21H2, OS build 20348.587) machine running on
Intel Core i7-6700K processor with 32 GB DIMM 2133 MHz RAM. We
created a partition on Windows and formatted the drive as ReFS(version
3.7) with size of 20,000 MB. We also considered SSDs due to their
different characteristics from hard disks (Maneas et al., 2021). To verify
if methods applied to HDDs can be applied to SSD (Samsung T7 1 TB),
we used the same virtual machine environment. We formatted the
external disk as ReFS and performed the same experiment by connecting
a Portable SSD formatted with ReFS. We could obtained the same
pattern results when inspecting the log file on the SSD as we did with the
HDD.

After creating files with the source script (Matuzalem, 2022), and
directories using the File Explorer ’New context menu’, we wiped them
using both the built-in delete function and data wiping tools. Also, it was
executed on the files using the algorithms supported by each tool. We
selected tools that operated the delete function properly in Windows
ReFS and were publicly available data wiping tools. These tools are
freely available for download on the internet, offer various deletion
functions, and are easily accessible to users.

The analysis outlines the process of generating opcode patterns to
discern user behavior with a data wiping tool. Fig. 1 shows a flow of the
analysis methodology suggested in this study. In the first step, we
analyzed 12 wiping tools to manage user behavior regarding the dele-
tion function. After formatting the disk with ReFS, we created several
files and directories then deleted the files using the tools with their

algorithms. In the second step, we extract the opcodes from the $Logfile.
In the third step, the opcode patterns derived from the same task were
integrated. These derived patterns were categorized into 12 tools. Lastly,
we applied the structure analysis method to the data wiping tools to
derive File Creation patterns and automated this process for the devel-
opment of a program that detects the execution of wiping tools.

3.1.2. Logfile analysis methodology
The data area of the Logfile contains the $Logfile entry, which is

composed of a Header and Log record, as shown in Fig. 2. Each Log
record consists of multiple different redo records, including a Header,
Data Offset Array, and Transaction Data, with an offset size of 1000. The
Redo record commences at position 0xB0. The Transaction Data is
comprised of a Table path and Data (Prade et al., 2019), allowing us to
discern metadata such as the filename and date. Redo records are uti-
lized to reconstruct changes in the event of a file system error in the Data
Component (Russinovich, 2012). When a change occurs in the file sys-
tem, information about the change and its location is stored to be used
for recovery (Lee et al., 2021). Changes that have not yet been
committed can be reconstructed. Opcodes are recorded in the redo re-
cord, reflecting internal changes prompted by user behaviors in the file.
A previous study (Lee et al., 2021) identified 28 opcodes for ReFS redo
operations in version 3.4. Opcodes were only discovered up to ’1C’
because that’s all that existed in version 3.4. However, we identified the
newly emerged ’1D’, ’1E’, and ’1F’ in version 3.7. by analyzing the refs.
sys file using the IDA free 8.3.230608. Table 2 shows some opcodes

Fig. 1. Analysis methodology.

Fig. 2. Logfile entry structure.

Table 2
Opcodes and operations.

Opcode Redo operation Version

0x01 Redo Insert Row 3.4 (Lee et al., 2021), 3.7
0x02 Redo Delete Row
0x04 Redo Update Data with Root
0x05 Redo Reparent Table
0x06 Redo Allocate
0x07 Redo Free
0x08, 0x09 Redo Set Range State
0x10 Redo Value as Key
0x12 Copy Key Helper
0x0F Redo Delete Table
0x1D Redo Unlink Parent ID 3.7
0x1E Redo Value as Longlong
0x1F Redo Update Stream Summary
0x20 Redo Value as Key

Fig. 3. Detail of redo record (Prade, 2019).

E.J. Lee et al.

ForensicScienceInternational:DigitalInvestigation46(2023)301607

4

Table 3
Wiping tool list and algorithms (O: Available, -: Not Available, Δ: Available only full version).

Tool Name Easy File Shredder File Shredder Hard Wipe Kernel File
Shredder

PC Shredder Remo File Eraser Secure Eraser Super File
Shredder

Turbo Shredder Wipe File xShredder XT File Shredder

Version 2.0.2022
(U.S. Defense Security
Services, 2007)

2.5
(FileShredder)

5.2.1
(Hardwipe)

11.04.0
(Kernel file
shredder)

1.1
(PCShredder,
2008)

2.0.0.5
(Remo Software)

1.0.0
(Secure Eraser)

4.12
(Kakasoft)

0.036
(Turbo Shredder)

3.6
(Wipe File)

7.7.4.9
(xShredder)

2.1
(XT File Shredder)

One(Simple) – O – – – – – O O O – O
Secure – O – – – – – O O O – –
Random O – O – – O O – O O – –
Zero O – O O – O – – O O – –
HMG IS5 BaseLine&

Enhanced
– – – O – – – – – – O –

GOST P50739-95 O – O O – – – – – – O –
Air Force 5020 O – – O – – – – – – O –
AR380-19 O – – O – – – – – – O –
DoD 5220.M 3 O O O O O O – O – – O O
DoD 5220.M E O – – – – – O – – – – O
ITSG2006 O – – – – – – – – – – –
NAVSO P-5239-26(RLL) – – – – – Δ – – – – – –
DoD 5220.28 STD O – – – – Δ – – – – – –
DoD 5220.22 M E C E O – – – O – O – – – O –
Bruce Schneier O – O – – – – – – – O –
VISITR O – O O – – O – – – O –
RCMP TSSIT OPS II – – – – – – – – – – O –
Peter Gutmann O O O O O Δ O O O O O –

E.J. Lee et al.

Forensic Science International: Digital Investigation 46 (2023) 301607

5

found before and the new opcodes we identified in version 3.7. Redo
record can be used to verify the contents of the task from the metadata in
the transaction area under the header using the opcodes, such as fil-
ename and time information. An activity is observable in the same or
consecutive time value-based last checkpoint. The last checkpoint (a
pair of Virtual allocator clocks of the last checkpoint at 0x18 and LSN of
the last checkpoint at 0x20) (AlHarbi et al., 2022) was identified in the
redo record as shown in Fig. 3. We created a pattern by linking opcodes
with the same value.

3.2. Fundamental analysis

3.2.1. Analysis of wiping tool
The tools under analysis provide a default delete function for files

and directories, supporting the removal of superfluous files, i.e., recycle
bin and drive cleanup. We found that the delete function incorporated
one or more algorithms, and each tool included at least four different
algorithms. In this study, we selected only the algorithms present in at
least two of the chosen tools, as illustrated in Table 3.

3.2.2. Analysis of typical deletion pattern
The general deletions have been divided into simple deletion and

permanent deletion (see Table 4). Permanent deletion is performed by
selecting the file and using the ‘Shift + Delete’ key. When deleting a
directory that contains a file, the file pattern emerges first, followed by
the directory pattern.

3.3. Analysis of deletion pattern

3.3.1. Analysis of file deletion pattern
Upon analyzing the opcode of the $Logfile after file deletion using

the data wiping tools, we identified a common File Modification and File
Deletion pattern using the Hex editor. Fig. 4 showcases the File
Renaming pattern "0x02→0x05→0x01→0x04→0x04 →0x04" (herein-
after, P(FR)), and the File Deletion pattern
"0x0F→0x02→0x02→0x0F→0x02→0x04" (hereinafter, P(FD)). Opcode
"0x04″ appears irregularly and is differentiated by being enclosed in

parentheses.

3.3.2. Analysis of Directory Deletion pattern
Directory Deletion was executed differently from file patterns. When

using a wiping tool to permanently delete a directory, we extracted the
common pattern of directory name changes and the pattern of
completely deleting a directory using a Hex editor. Fig. 4 displays the
Directory Renaming pattern ‘0x02→0x02→0x01→0x01→0x04→0x04’
(hereinafter, P(DR)), and the Directory Deletion pattern
‘0x02→0x0F→0x02→0x0F→0x04→0x12’ (hereinafter, P(DD)).

3.4. Wiping tool pattern result

3.4.1. Opcode pattern result
We assigned file and directory names to identify tools and algorithms

in the $Logfile. We then extracted all opcodes within the log range
specified by user behavior, referring to the final location of the log
appearing for each action. Detailed analysis results are tabulated in
Table 5. We consolidated and presented the opcode results in patterned
form. We employed the ‘*’ symbol for the recursive single opcode and
grouped consecutive opcodes using ‘()’. If the pattern varies among
algorithms, all types are explicitly listed. However, if the pattern re-
mains constant, it is consolidated using the "All" label. Analyzing the
opcodes in the $Logfile after deleting a file with a data wiping tool, we
identified identical File Changing patterns and File Deletion patterns
when the file was permanently deleted with the data wiping tool. We
also noticed differences in analysis results for files and directories. In
some cases, files were affected by algorithms while directories were not.
The iteration count of specific opcodes for Easy File Shredder, Hardwipe,
PCShredder, Super File Shredder, and Turbo Shredder was found to be
fluctuate depending on the pattern’s algorithm. For instance, in Easy
File Shredder, the File Renaming Pattern is repeated 36 times in the
Gutmann algorithm (overwriting 35 times) and 8 times by overwriting it
7 times. Consequently, the specific number of iterations according to the
pattern is the value of ‘pass +1’. Easy File Shredder maintains the same
iteration count for both File and Directory in the same algorithm. In
Super File Shredder, file patterns vary in iteration count depending on

Table 4
Patterns of typical actions.

Operation Pattern

File Creation 0x01→0x04→0x10→0x04→0x01→0x00→0x04→0x20→0x04→(0x04)
File Modification 0x06→0x1f→0x1f→0x04→0x04→0x08
File Renaming 0x02→0x05→0x01→0x04→0x04→0x04
Simple File Deletion 0x01→0x04→0x10→0x00→0x04→0x01→0x00→0x06→0x04→0x04→0x04→0x02→0x05→0x01→0x04→

0x10→0x04→0x01→0x04→0x03→0x04→0x04→0x01→0x04→0x04→0x04→0x04→0x04→0x04→0x08
Permanent File Deletion 0x0f→0x02→0x02→0x0f→0x02→0x04
Directory Creation 0x04→0x10→0x01→0x01→0x01→0x0e→0x03→0x04
Directory Renaming 0x02→0x02→0x01→0x01→0x04→0x04
Simple Directory Deletion P(Directory Creation)→0x06→0x04→0x04→0x04→0x04→0x03→0x02→0x02→0x01→0x01→0x0e→

0x04→0x03→0x04→0x04→0x04→0x01→0x04→0x03→0x04→0x04→0x08
Permanent Directory Deletion 0x02→0x0f →0x02→ 0x0f→0x04→ 0x12
Permanent Directory Deletion Containing Files 0x0f→0x02→0x02→0x0f→0x02→0x02→0x02→0x0f→0x02→0x0f→0x04→0x12

Fig. 4. Opcode pattern for File Renaming(Top, Left)/Deletion(Bottom, Left) and Directory Renaming(Top, Right)/Deletion(Bottom, Right).

E.J. Lee et al.

Forensic Science International: Digital Investigation 46 (2023) 301607

6

the algorithm, but in directory patterns, all patterns remain consistent
regardless of the algorithm. Hardwipe has different patterns depending
on the file size. When we create a file size of 10 KB in Hardwipe, the
pattern is as follows: ‘0x04→(0x1f→0x04)*69 → 0x1f→0x04→0x07→

0x1f→0x04→P(FR) *3→P(FD)’. However, when the file size is set to 50
KB, the pattern becomes ‘[4(N * More than 20)→
0x1f→0x04→0x07→0x1f→0x04→P(FR)*3→P(FD)]’. In this case, it is
confirmed that N is variable depending on the file size.

Table 5
Data wiping pattern results.

Algorithm File Deletion Pattern Directory Deletion Pattern

Easy File Shredder

Random, Zero 0x04*2→P(FR)*4→0x07→0x1f→P(FD) P(DR)*2→P(DD)
GOST P50739 0x04*3→P(FR)*4→0x07→0x1f→P(FD)
Air Force 5020, AR380-19, DoD M 3, ITSG 2006, DoD M E 0x04*4→P(FR)*4→0x07→0x1f→P(FD)
DoD 5220.28 STD, DoD MECE, Bruce Schneier, VISITR 0x04*8→P(FR)*4→ 0x07→0x1f→P(FD) P(DR)*8→P(DD)
Peter Gutmann 0x04*36→P(FR)*37→0x07→0x1f→P(FD) P(DR)*36→P(DD)

File Shredder

All 0x04*2→0x1f→0x04→0x07→0x1f→0x04→P(FR)→P(FD) P(DR)→0x04→0x03*2→P(DD)

Hardwipe

Random, Zero, GOST P50739, DoD M 3, Bruce Schneier, VSITR,
Peter Gutmann

((0x1f)→0x04*(variable))→0x1f→0x04→0x07→0x1f→0x04→P(FR)*3→P(FD) P(DR)*3→P(DD)

Kernel File Shredder

All 0x06→0x1f*2→0x08*3→P(FR)→0x07→0x1f→P(FD) P(DR)→P(DD)

PC Shredder

DoD M 3 0x04*3→P(FR)→0x07→0x1f→P(FD) P(DR)→0x04→P(DD)
DoD MECE 0x04*7→P(FR)→0x07→0x1f→P(FD)
Peter Gutmann 0x04*35→P(FR)→0x07→0x1f→P(FD)

Remo File Eraser

All 0x04→0x1f→0x04*2→P(FR)→0x07→0x1f→P(FD) P(DR)→P(DD)

Secure Eraser

All 0x06→0x1f→0x08→0x1f→0x04→0x07→0x1f→0x04→P(FR)*9→P(FD) P(DR)*9→P(DD)

Super File Shredder

One, Secure, DoD M 0x04→0x06→(0x1f*2→0x08→0x04*2→0x06)*2→0x1f*2→0x08→0x04*2
→0x1f→0x04→0x07→0x1f→0x04→P(FR)→P(FD)

P(DR)→P(DD)

Peter Gutmann 0x04→0x06→(0x1f*2→0x08→0x04*2→0x06)*14→0x1f*2→0x08→
0x04*2→0x1f→0x04→0x07→0x1f→0x04→P(FR)→P(FD)

TurboShredder

Zero, One, Secure Random 0x04*(variable)→P(FR)*pass→0x04*(pass+1)→0x07→0x1f→P(FD) Not Available
Peter Gutmann 0x04*(variable)→P(FR)→0x04*37→0x07→0x1f →P(FD)

WipeFile

All 0x04*2→0x07→0x1f→0x04→P(FR)→0x04*3→P(FD) 0x04→0x03*2→P(DR)→0x04→
0x04→(0x03*2→0x04*2)*3→P
(DD)

xShredder

All 0x06→0x04*4→(0x04)→P(FR)→0x04(0x04)*6→0x07→0x04→P(FD) Not Available

XT File Shredder

All 0x04→0x1f→0x04→0x07→0x1f→0x04→P(FR)→P(FD) P(DD)

Table 6
File/directory name transition according to renaming pattern.

Tool Filename pattern + (extension pattern) Directory

Easy File Shredder A random array of alphabets, symbols and number A random array of alphabets and number
File Shredder Random number + (. repeat ‘Z’) Random number
Hardwipe Random lowercase alphabets Random lowercase alphabets
Kernel File Shredder Repeat one random uppercase letter Repeat one random uppercase letter
PC Shredder temp + Random 11 number temp + Random 11 number
Remo File Eraser Repeat ‘x’ + (. Repeat ‘x’) Repeat ‘x’
Secure Eraser A random array of alphabets or number A random array of alphabets or number
Super File Shredder 1070E08F + Random number 0. + four-digit random number
Turbo shredder A random array of alphabets or number –
Wipe File Random alphabets and number + (. random letter) Random alphabets and number
xShredder Repeat one random lowercase letter –
XT File Shredder Random lowercase alphabets + (.random alphabets) –

E.J. Lee et al.

Forensic Science International: Digital Investigation 46 (2023) 301607

7

Table 7
Summary of pattern result.

Tool Node, Edge Diagram

Easy File
Shredder

np(EasyFileShredder) = {0x04,0x07,0x1f,P(FR),P(FD)}
ep(EasyFileShredder) = {0x04 →P(FR),P(FR)→0x07, 0x07 →0x1f,0x04 →0x1f,0x1f →P(FD)}

File
Shredder

np(FileShredder) = {0x04,0x07,0x1f,P(FR),P(FD)}
ep(FileShredder) = {0x04 →0x07,0x07 → 0x1f,0x1f →0x04,0x04 →0x1f ,0x04 →P(FR),P(FR)→P(FD)}

Hardwipe np(Hardwipe) = {0x04,0x07,0x1f ,P(FR),P(FD)}
ep (Hardwipe) = {0x1f→0x04,0x04→0x07,0x07→0x1f,0x1f→P(FR),0x04→P(FR),P(FR)→P(FD)}

Kernel
File
Shredder

np(KernelFileShredder) = { 0x06,0x07,0x08,0x1f,P(FR),P(FD)}
ep(KernelFileShredder) = {0x06 →0x1f ,0x1f →0x08, 0x07 →0x1f,0x1f →P(FR),0x08 →P(FR),0x1f →P(FD)}

PC
Shredder

np(PCShredder) = {0x04,0x07, 0x1f,P(FR),P(FD)}
ep(PCShredder) = {0x04 →P(FR),P(FR)→0x07,0x07 →0x1f ,0x1f →P(FD)}

Remo File
Eraser

np(RemoFileEraser) = {0x04,0x07,0x1f,P(FR),P(FD)}
ep(RemoFileEraser) = { 0x04 →0x1f,0x1f →0x04,0x07 → 0x1f,0x04 →P(FR),P(FR)→0x07,0x1f →P(FD)}

Secure
Eraser

np(Secure Eraser) = {0x04,0x06,0x07, 0x08,0x1f,P(FR),P(FD)}
ep (SecureEraser) = {0x06 →0x1f , 0x1f→0x04, 0x07→0x1f, 0x1f→0x04, 0x04→0x07, 0x07→0x1f , 0x04→P(FR),
P(FR)→P(FD)}

Super File
Shredder

np(SuperFileShredder) = {0x04,0x06,0x07,0x08,0x1f,P(FR),P(FD)}
ep(SuperFileShredder) = {0x04 →0x06, 0x06 →0x1f,0x1f →0x08, 0x08 →0x04, 0x1f →0x04,0x04 →0x1f,
0x07 →0x1f,0x04 →0x07,0x04 →P(FR),P(FR)→P(FD)}

Turbo
Shredder

np(TurboShredder) = {0x04,0x07,0x1f,P(FR),P(FD)}
ep(TurboShredder) = {0x04 →P(FR),P(FR)→0x04,0x04 → 0x07,0x07 →0x1f ,0x1f →P(FD)}

WipeFile np(WipeFile) = {0x04,0x07,0x1f,P(FR),P(FD)}
ep(WipeFile) = {0x04 →0x07,0x07 →0x1f,0x1f →0x04,0x04 →P(FR),P(FR)→0x04,0x04 →P(FD)}

XT File
Shredder

np(XTFileShredder) = {0x04,0x07,0x1f,P(FR),P(FD)}
ep(XTFileShredder) = {0x04→0x1f, 0x1f→0x04, 0x04→0x07, 0x07→0x1f, 0x04→P(FR), P(FR)→P(FD) }

xShredder np(xShredder) = {0x04, (0x04),0x06, 0x07,P(FR),P(FD)}
ep(xShredder) = {0x06 →0x04, 0x04 →P(FR), (0x04)→P(FR),0x04 →(0x04),P(FR)→0x04,0x04 →P(FR),
0x04 →0x07, (0x04)→0x07,0x04 →P(FD)}

E.J. Lee et al.

Forensic Science International: Digital Investigation 46 (2023) 301607

8

3.4.2. Filename pattern result
Transitions in File/Directory Names can also be observed in the

metadata area where the Renaming pattern appears. As illustrated in
Table 6, these name transitions exhibited distinct characteristics for
each tool and were unaffected by the algorithms employed. In some
instances, such as with Kernel File Shredder, these transitions were
recurrently composed of capital letters. Conversely, others, like Hard-
wipe, comprised random alphabets. Identifying the variations in file
name changes collectively enables the differentiation of opcode patterns
even in instances of duplication.

3.5. Data wiping tool patterns

As shown in Table 7, the experimental results are represented
through a diagram with nodes and edges. Opcodes within each sequence
were set as nodes, and the edges connecting the nodes were used to
denote the order and repetition count. This diagram comprehensively
represents the existing pattern by tracking overall opcode changes and
identifying specific alterations. When a node repeats, it’s represented in
a rotational form. The connecting link (edge) and (node) for ‘0x04’ are
shown as a dotted line to distinguish it from 0x04. Interestingly, while
most tools had ’0x04’, ’0x1f’, and ’0x07’, Kernel File Shredder, Super
File Shredder, and xShredder only include ’0x06’ and ’0x08’. They all
had different diagrams, which implies that each tool exhibits unique
characteristics.

4. Implementation and verification

4.1. Implementation

To assess our approach, we developed a tool using the proposed
method of opcode analysis based on the $Logfile structure and detection
of data wiping tools. We utilized a Python 3.10 development environ-
ment with Pyside and PyQt5 GUI (URL: https://github.com/jameman
ionda/ReFS_Detector). The tool’s operation is as follows: 1) Upon
uploading the $Logfile, 2) the log area is analyzed, yielding a result
comprised of the file, time, and opcodes appearing in time units. The
resulting fields are structured as [Detect Tool Name] – [Filename] –
[Date] – [Pattern]. The Filename and Date fields were extracted from the
time and filenames of the Data area’s metadata. The Detect Tool Name
field stores specific tool patterns, and after extracting the opcodes of the
input file, 3) compares these with the analyzed patterns of the 12 tools,
4) indicating the tool name if a match is found. Moreover, 5) if a specific
tool is not utilized, but the Renaming (P(FR)/P(DR)) or Deletion (P(FD)/
P(DD)) pattern is embedded, the program raises an alert for potential
data wiping tool usage. This program can also be updated to include
patterns for new tools beyond the 12 deletion tools already
incorporated.

4.2. Verification

To gauge the accuracy of the implemented program in detecting the
behavior of data wiping tools, we conducted a cross-validation process

using the patterns described in Section 4.1. We used an open-source
script (Matuzalem, 2022) to generate dummy files of sizes 10 KB, 50
KB, 100 KB, and 10,240 KB, in order to examine the potential impact of
file size changes, similar to Hardwipe. Additionally, to assess the
effectiveness of the detection capability, we utilized a dataset of PDF,
XLS, and DOC files obtained from Digital Corpora (Simson Garfinkel,
2020) (Digital Corpora, 2021). By randomly applying files of different
sizes from this dataset, we could verify the detection capability. For each
repetition, we created a total of 70 files to be deleted one by one using
each tool and algorithm combination. This allowed us to perform veri-
fication using the number of files as shown in Table 8. The dummy file
was directly created on the ReFS partition through the program, and for
the pdf/xls/doc files of various sizes, only deletion was performed on the
already created files. All the logs were processed for deletion in the order
specified in Appendix A.

As a result, we were able to successfully detect all the tools consis-
tently. The generated log files, along with the respective tools, can be
found in ReFS_Detector repository. However, in the case of Turbo’s
Gutmann, the log file size was exceptionally large, so we added it
separately as it overwrote the existing $Logfile.

5. Conclusion

Permanent deletion primarily aims not only to destroy evidence but
also to protect privacy. Accordingly, numerous studies have been con-
ducted on permanent deletion in various file systems. However, only a
few have specifically focused on ReFS. While previous research has
addressed file creation, modification, and deletion in ReFS, it only
considered standard deletion. In contrast, our work has honed in on the
anti-forensic issue, concentrating on the deletion behavior within
wiping tools.

To detect user behavior concerning data wiping tools in ReFS, we
focused that actions can be identified from the $Logfile. It involves using
the $Logfile to detect behavior for 12 wiping tools and identifying each
tool. We found a variety of patterns, yielding different results for each
algorithm, and tools with the same pattern exist regardless of the algo-
rithm. As for the P(File Deletion), both the deletion pattern and the
renaming pattern were common across all tools, nearly consistent with
the file renaming and file deletion patterns addressed in previous
research. Therefore, we discovered that file renaming and file deletion
patterns always remain when files are deleted using complete deletion
tools. Our findings also revealed that the resulting data can be influ-
enced by wiping tools, which employ deletion algorithms to overwrite
files multiple times based on specific algorithms. We also uncovered the
name transition in the metadata area, recorded along with the name
change pattern, according to the tool used. Finally, we implemented a
tool capable of detecting and identifying a data wiping tool using the
analysis method and the extracted pattern. The wiping tool used was
appropriately detected when we checked through the program we
developed after an actual wipe. Future releases of ReFS may impact our
findings. Therefore, regular updates to the tool will be necessary, as
there might be minor differences in results based on the version of ReFS
as we see the difference between 3.4 and 3.7.

Table 8
Design of verification.

No Validation method File type Number of files Size of file (KB) Repetition

1 Fixed-size validation Create Dummy File using script 70 10 2
2 Fixed-size validation Create Dummy File using script 70 50 2
3 Fixed-size validation Create Dummy File using script 70 100 2
4 Fixed-size validation Create Dummy File using script 70 10,240 1
5 Variable-size validation PDF, XLS, DOC files with variable size 70 8~36,235 3

Total number of files 700

Total number of Logfiles 10

E.J. Lee et al.

https://github.com/jamemanionda/ReFS_Detector
https://github.com/jamemanionda/ReFS_Detector

Forensic Science International: Digital Investigation 46 (2023) 301607

9

Deletion patterns are not merely an analytical result but can also be
used effectively in investigations. By storing each tool’s wiping pattern
in a database, the function of identifying the data wiping tool can prove
wiping action by checking the results of the opcode automatic analysis.
The ReFS $Logfile size can vary based on the file system size and
operation frequency, and it can be adjusted through settings. If the
$Logfile space becomes full, older behavior may be challenging to
analyze as the log file will be reused. The tool that we implemented will

help digital forensic examiners determine whether the data wiping tool
was used. We recommend correlating the $Logfile findings together with
other artifacts, not relying on a single source. Detecting wiping patterns
during an investigation could indicate potential evidence deletion. Both
the analysis method and results against the data wiping tool proposed in
this study are anticipated to aid in uncovering and identifying perma-
nent delete behavior in dedicated digital forensic investigation.

Appendix

Table A.9
Data used for variable size validation

Filename Extention Size (KB)

01_01_Easy_Random(70) doc 40
01_02_Easy_Zero(69) xls 7699
01_03_Easy_GOST(68) pdf 144
01_04_Easy_Airforce(67) doc 57
01_05_Easy_AR380(66) xls 2319
01_06_Easy_DoDM3(65) pdf 9051
01_07_Easy_DoDME(64) doc 55
01_08_Easy_ITSG2006(63) xls 27929
01_10_Easy_DoD28STD(62) doc 172
01_11_Easy_DoD22MECE(61) xls 5450
01_12_Easy_Bruce(60) pdf 222
01_13_Easy_VISITR(59) doc 177
01_15_Easy_Gutmann(58) pdf 9731
02_01_FileShred_One(57) doc 66
02_02_FileShred_Secure(56) xls 34
02_03_DoDM3(55) pdf 2213
02_03_Gutmann(54) doc 175
03_01_Hard_Random(53) xls 80
03_02_Hard_Zero(52) pdf 222
03_03_Hard_GOST(51) doc 57
03_04_Hard_DoDM3(50) xls 3707
03_05_Hard_Bruce(49) pdf 1047
03_06_Hard_VISITR(48) doc 105
03_07_Hard_Gutmann(47) xls 70
04_01_Kernel_Zero(46) pdf 160
04_02_Kernel_HMG(45) doc 173
04_03_Kernel_GOST(44) xls 51
04_04_Kernel_AirForce(43) pdf 593
04_05_Kernel_AR380(42) doc 13838
04_06_Kernel_DoDM3(41) xls 99
04_07_Kernel_VISITR(40) pdf 8
04_08_Kernel_Gutmann(39) doc 20
05_01_PC_DoDM3(38) xls 90
05_02_PC_DoDMECE(37) pdf 64
05_03_PC_Gutamann(36) doc 1299
06_01_Remo_Random(35) xls 14303
06_02_Remo_Zero(34) pdf 43
06_03_Remo_DoDM3(33) doc 138
07_01_Secure_Random(32) xls 2757
07_02_Secure_DoDME(31) pdf 268
07_03_Secure_DoD22MECE(30) doc 112
07_04_Secure_VISITR(29) xls 73
07_05_Secure_Gutmann(28) pdf 927
08_01_Super_One(27) doc 30
08_02_Super_Secure(26) xls 2679
08_03_Super_DoDM3(25) pdf 1216
08_04_Super_Gutmann(24) doc 136
09_01_Wipe_One(23) doc 28
09_02_Wipe_Secure(22) xls 9252
09_03_Wipe_Random(21) pdf 36235
09_04_Wipe_Zero(20) doc 545
09_05_Wipe_Gutmann(19) xls 3682
10_01_xShredder_HMG(18) pdf 383
10_02_xShredder_GOST(17) doc 32
10_03_xShredder_AirForce(16) xls 7699
10_04_xShredder_AR380(15) pdf 591
10_05_xShredder_DoDM3(14) doc 103
10_06_xShredder_DoDMECE(13) xls 2319
10_07_xShredder_Bruce(12) pdf 4916
10_08_xShredder_VISITR(11) doc 90

(continued on next page)

E.J. Lee et al.

Forensic Science International: Digital Investigation 46 (2023) 301607

10

Table A.9 (continued)

Filename Extention Size (KB)

10_09_xShredder_RCMP(10) xls 27929
10_10_xShredder_Gutmann(09) pdf 177
11_01_XT_DoDM3(08) doc 425
11_02_XT_DoDME(07) xls 5450
11_03_XT_One(06) doc 95
12_01_Turbo_One(05) xls 2790
12_02_Turbo_Secure(04) pdf 158
12_03_Turbo_Random(03) doc 6411
12_04_Turbo_Zero(02) xls 3065
12_05_Turbo_Gutmann(01) pdf 46

Table A.10
Wiping Tool List and Functions(O: Available, -: Unavailable, Δ: Delete only subdir)

Function/Tool Easy
File
Shredder

File
Shredder

Hard
Wipe

Kernel
File
Shredder

PC
Shredder

Remo
File
Eraser

Secure
Eraser

Super
File
Shredder

Turbo
Shredder

Wipe
File

xShredder XT
File
Shredder

Wipe File O O O O O O O O O O O O
Wipe Directory O O O O O O O O – O Δ O
Repeat Option O – – – – – – – – – – –
Speed Option – – O – – – – – – – – –
Zero After Wipe O – – – – – O O – – –
Cleanup Drive/Disk O – O – – O – – – – – –
Cleanup Recycle bin – – O O – O – – – – O O
Cleanup Pagefile – – O O – – – – – – O –
Cleanup Free Space O O O – – O – – – – O –
Cleanup System File – – – O – – O – – – – –
Cleanup Registry – – – – – – O – – – – –
Cleanup Useless File – – – O – – – – – – – –
MultiTask O O – O O O O O O O O O
Schedule Task – – – O – O O – – – O –
Log – – O O – – O – – O – O
Report – – – – – – O – – – – –

Table A.11
Data Wiping Pattern Results (ReFS version 3.4)

Algorithm File Deletion Pattern Directory Deletion Pattern

Easy File Shredder

Random, Zero P(FR)*3→P(FD) P(DR)*2→P(DD)
GOST P50739-95 P(FR)*4→P(FD)
Air Force 5020, AR380-19, DoD 5220.M 3, ITSG2006
DoD 5220.M E P(FR)*5→P(FD) P(DR)*4→P(DD)
DoD 5220.28 STD, DoD 5220.22 M E C E, Bruce

Schineier, German VISITR
P(FR)*9→P(FD) P(DR)*8→P(DD)

Peter Gutmann P(FR)*37→P(FD) P(DR)*36→P(DD)

File Shredder

All 0x04*3→P(FR)→P(FD) P(DR)→0x04→0x03*2→P(DD)

Hardwipe

Zero 0x06→0x04*2 → 0x08→0x04*3 → 0x07→0x04*2→(0x04)→ (FR)*
3→P(FD)

P(DR)*3→P(DD)

DOD 5220.22 M 0x06→0x04*2 → 0x08→0x04*5 → 0x07→0x04*2→(0x04)→P(FR)*
3→P(FD)

GOST P50739 0x06→0x04*2 → 0x08→0x04*7 → 0x07→0x04*2→(0x04)→P(FR)*
3→P(FD)

Bruce Schneier, VSITR 0x06→0x04*2 → 0x08→0x04*15 → 0x07→0x04*2 (0x04)→P(FR)*
3→P(FD)

Peter Gutmann 0x06→0x04*2 → 0x08→0x04*71 → 0x07→0x04*2→(0x04)→P(FR)*
3→P(FD)

Kernel File Shredder

All 0x04→0x04→P(FR)→P(FD) P(DR)→P(DD)

PC Shredder

All P(FR)→P(FD) P(DR)→0x04→P(DD)

(continued on next page)

E.J. Lee et al.

Forensic Science International: Digital Investigation 46 (2023) 301607

11

Table A.11 (continued)

Algorithm File Deletion Pattern Directory Deletion Pattern

Remo File Eraser

All 0x04→P(FR)→P(FD) P(DR)→P(DD)

Secure Eraser

All 0x04→P(FR)*9→P(FD) P(DR)*9→P(DD)

Super File Shredder

One, DoD 5220 22M, Secure Eraser 0x04→{0x06→0x04*2 → 0x08→0x04*2}(3)→0x04*2 →
0x07→0x04*2→(0x04)→P(FR)→P(FD)

P(DR)→P(DD)

Gutmann 0x04→{0x06→0x04*2 → 0x08→0x04*2}(15)→0x04*2 →
0x07→0x04*2→(0x04)→P(FR)→P(FD)

TurboShredder

Zero, One, Secure 0x04→P(FR)*4 → 0x04(0x04)*2→(0x04) →P(FD) Not Available
Peter Gutmann 0x04→P(FR) →(0x04) →P(FD)

WipeFile

All 0x04*2→P(FR)→0x04*3→P(FD) 0x04→0x03*2→P(DR)→0x04→0x04→[0x03*2 →
0x04*2]*3→P(DD)

xShredder

All 0x06→0x04*4→(0x04)→P(FR)→0x04(0x04)*6 → 0x07→0x04→P
(FD)

Not Available

XT File Shredder

All 0x04*3→P(FR)→P(FD) P(DD)

References

AlHarbi, R., AlZahrani, A., Bhat, W.A., 2022. Forensic analysis of anti-forensic file wiping
tools on Windows. J. Forensic Sci. 67, 562. https://doi.org/10.1111/1556-
4029.14907.

Bitraser. Supports Global Algorithms for Media Sanitization. URL. https://www.bitraser.
com/data-erasure-standards.php.

Brinkmann, Martin, 2023. Windows 11 is Getting Refs Support. URL: http://www.gh
acks.net/2023/01/24/windows-11-is-getting-refs-support. xShredder. URL https://
sourceforge.net/projects/xshredder/.

Bundesamts fr Sicherheit in der Informationstechnik, 2004. Richtlinien zum
Geheimschutz von Verschlusssachen beim Einsatz von Informationstechnik.

Cho, G.S., 2018. A Steganographic Data Hiding Method in Timestamps by Bit Correction,
vol. 23, p. 75. https://doi.org/10.9708/jksci.2018.23.08.075.

Digital Corpora. URL. https://downloads.digitalcorpora.org/corpora/files/CC-MAIN-20
21-31-PDF-UNTRUNCATED/zipfiles/0000-0999/.

Easy file shredder. URL. https://www.easyfileshredder.com/features.php.
FileShredder. URL: https://www.fileshredder.org/.
Garfinkel, Simson, 2020. Digital Corpora. URL: https://downloads.digitalcorpora.org/co

rpora/files/govdocs1/by_type/.
Gosstandart of Russia, 1995. GOST R 50739-50795.
Gudadhe, S., Deoghare, R., Dhade, P., 2015. Window ReFS file system: a study. Int. J.

Adv. Res. Comput. Commun. Eng. 4 https://doi.org/10.17148/
IJARCCE.2015.44138.

Gutmann, P., 1996. Secure deletion of data from magnetic and solid-state memory. In:
Sixth USENIX Security Symposium, p. 77.

Hardwipe. https://hardwipe.en.softonic.com/.
Horsman, G., 2021. Digital tool marks (DTMs): a forensic analysis of file wiping software.

Aust. J. Forensic Sci. 53, 96. https://doi.org/10.1080/00450618.2019.1640793.
Jason Evans, 2022. Convicted Sex Offender used Data. URL: http://www.walesonline.co.

uk/news/wales-news/convicted-sex-offender-used-data-24874840.
Jones, A., Afrifa, I., 2020. An evaluation of data erasing tools. J. Digit. Forensic Secur.

Law 15. https://doi.org/10.15394/jdfsl.2020.1615.
Kakasoft. Super file shredder. URL: https://super-file-shredder.en.softonic.com./.
Kernel file shredder. URL: https://www.nucleustechnologies.com/file-shredder.html.
Kim, S.H., 2019. Analysis of ReFS Data Storage Principles and Study of Deleted Data

Recovery Technology Using Metadata”. Korea University.
Kim, M.H., Lee, S.J., 2015. Method of estimating the deleted time of applications using

Amcache.hve. J. Kor. Inst. Inf. Secur. Cryptol. 25, 573.
Kim, D.G., Park, S.H., Jo, O., 2020. Analyzing past user history through recovering

deleted $UsnJrnl file. J. Converg. Inf. Technol. 10, 23.
Lee, J.S., 2020. The criminal meaning of the evidence destruction and that of the

criminal case against another. Kor. Lawyers Assoc. J. 69, 192. https://doi.org/
10.17007/klaj.2020.69.1.007.

Lee, S.H., Choi, H.Y., Park, J.H., Lee, S.J., 2019. Analysis of ReFS journaling file. J. Digit.
Forensic 13, 189. https://doi.org/10.22798/kdfs.2019.13.3.189.

Lee, S.H., Park, J.H., Hwang, H.U., Lee, S.Y., 2021. Forensic analysis of ReFS journaling.
Forensic Sci. Int.: Digit. Invest. 38, 301136 https://doi.org/10.1016/j.
fsidi.2021.301136.

Maneas, S., Mahdaviani, K., Emami, T., Schroeder, B., 2021. Reliability of SSDs in
Enterprise Storage Systems: A Large-Scale Field Study, vol. 17, p. 27.

Matuzalem (Mat) Muller dos Santos, 2022. URL: https://github.com/matuzalemmuller/
dummy-files-creator.

Microsoft. URL. https://learn.microsoft.com/en-us/windows-server/storage/refs/refs
-overview.

Nordvik, R., Georges, H., Toolan, F., Axelsson, S., 2019. Reverse engineering of ReFS.
Digit. Invest. 30, 127. https://doi.org/10.1016/j.diin.2019.07.004.

PCShredder, 2008. URL: http://www.pcshredder.com/.
Prade, P., Grob, T., Dewald, A., 2019. Forensic Analysis of the Resilient File System

(ReFS) Version 3.4. Friedrich-Alexander-Universitat Erlangen-Nurnberg, Dept. of
Computer Science. https://d-nb.info/1201551625/34.

Prade, P., Grob, T., Dewald, A., 2020. Forensic analysis of the Resilient File system
(ReFS) version 3.4. Forensic Sci. Int.: Digit. Invest. 32, 300915 https://doi.org/
10.1016/j.fsidi.2020.300915.

RCMP G2-003, 2003. Hard Drive Secure Information Removal and Destruction
Guidelines.

Remo software. URL: https://www.remosoftware.com/remo-file-eraser.
Russinovich, M., 2012. Windows Internals, Part 2.
Savoldi, A., Piccinelli, M., Gubian, P., 2012. A statistical method for detecting on disk

wiped areas. Digit. Invest. 8, 194. https://doi.org/10.1016/j.diin.2011.06.005.
Schneier, B., 1995. Applied cryptography. In: Protocols, Algorithms, and Source Code in

C, second ed. John Wiley & Sons, USA.
Secure eraser. URL: https://secure-eraser.en.softonic.com./.
Shin, Y.H., Cheon, J.Y., Kim, J.S., 2016. Study on recovery techniques for the deleted or

damaged event log(EVTX) files. J. Kor. Inst. Inf. Secur. Cryptol. 26, 387. https://doi.
org/10.13089/JKIISC.2016.26.2.387.

Smith, C., Dietrich, G., Kwang, K., Raymon, C., 2017. Identification of forensic artifacts
in VMWare virtualized computing. Secur. Priv. Commun. Netw. 85 https://doi.org/
10.1007/978-3-319-78816-6_7.

Turbo shredder. URL. https://sourceforge.net/projects/turboshredder/.
U.S. Air Force, 1998. System Security Instruction.
U.S. Army, 1998. Army Regulation 380-19.
U.S. Defense Security Services, 2007. Clearing and Sanitization Matrix.
U.S. Dept. of energy, 2005. DOE M 205.1-2, Clearing, Sanitization, and Destruction of

Information System Storage Media, Memory Devices, and Related Hardware Manual.
U.S. Dept. of the Navy. NAVSO 5239-26, Remanence.
Woolwine, Jason, 2022. Virginia Beach Man. URL: http://www.wtkr.com/news/virgin

ia-beach-man-sentenced-27-years-for-creating-video-of-himself-sexually-abusing4-
year-old-boy.

Washington, D.C., 1978. DoD Instruction 5220.28, Application of Special Eligibility and
Clearance Requirements in the SIOP-ESI Program for Contractor Employees.

Wipe file. URL: https://www.gaijin.at/en/software/wipefile.
xShredder, URL : sourceforge.net/p/xshredder/wiki/Home.
XT file shredder. URL: https://www.lizard-labs.com/.

E.J. Lee et al.

https://doi.org/10.1111/1556-4029.14907
https://doi.org/10.1111/1556-4029.14907
https://www.bitraser.com/data-erasure-standards.php
https://www.bitraser.com/data-erasure-standards.php
http://www.ghacks.net/2023/01/24/windows-11-is-getting-refs-support.%20xShredder.%20URL
http://www.ghacks.net/2023/01/24/windows-11-is-getting-refs-support.%20xShredder.%20URL
https://sourceforge.net/projects/xshredder/
https://sourceforge.net/projects/xshredder/
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref3
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref3
https://doi.org/10.9708/jksci.2018.23.08.075
https://downloads.digitalcorpora.org/corpora/files/CC-MAIN-2021-31-PDF-UNTRUNCATED/zipfiles/0000-0999/
https://downloads.digitalcorpora.org/corpora/files/CC-MAIN-2021-31-PDF-UNTRUNCATED/zipfiles/0000-0999/
https://www.easyfileshredder.com/features.php
https://www.fileshredder.org/
https://downloads.digitalcorpora.org/corpora/files/govdocs1/by_type/
https://downloads.digitalcorpora.org/corpora/files/govdocs1/by_type/
https://doi.org/10.17148/IJARCCE.2015.44138
https://doi.org/10.17148/IJARCCE.2015.44138
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref13
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref13
https://hardwipe.en.softonic.com/
https://doi.org/10.1080/00450618.2019.1640793
http://www.walesonline.co.uk/news/wales-news/convicted-sex-offender-used-data-24874840
http://www.walesonline.co.uk/news/wales-news/convicted-sex-offender-used-data-24874840
https://doi.org/10.15394/jdfsl.2020.1615
https://super-file-shredder.en.softonic.com./
https://www.nucleustechnologies.com/file-shredder.html
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref19
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref19
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref20
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref20
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref21
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref21
https://doi.org/10.17007/klaj.2020.69.1.007
https://doi.org/10.17007/klaj.2020.69.1.007
https://doi.org/10.22798/kdfs.2019.13.3.189
https://doi.org/10.1016/j.fsidi.2021.301136
https://doi.org/10.1016/j.fsidi.2021.301136
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref25
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref25
https://github.com/matuzalemmuller/dummy-files-creator
https://github.com/matuzalemmuller/dummy-files-creator
https://learn.microsoft.com/en-us/windows-server/storage/refs/refs-overview
https://learn.microsoft.com/en-us/windows-server/storage/refs/refs-overview
https://doi.org/10.1016/j.diin.2019.07.004
http://www.pcshredder.com/
https://d-nb.info/1201551625/34
https://doi.org/10.1016/j.fsidi.2020.300915
https://doi.org/10.1016/j.fsidi.2020.300915
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref33
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref33
https://www.remosoftware.com/remo-file-eraser
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref35
https://doi.org/10.1016/j.diin.2011.06.005
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref37
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref37
https://secure-eraser.en.softonic.com./
https://doi.org/10.13089/JKIISC.2016.26.2.387
https://doi.org/10.13089/JKIISC.2016.26.2.387
https://doi.org/10.1007/978-3-319-78816-6_7
https://doi.org/10.1007/978-3-319-78816-6_7
https://sourceforge.net/projects/turboshredder/
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref43
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref44
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref45
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref47
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref47
http://www.wtkr.com/news/virginia-beach-man-sentenced-27-years-for-creating-video-of-himself-sexually-abusing4-year-old-boy
http://www.wtkr.com/news/virginia-beach-man-sentenced-27-years-for-creating-video-of-himself-sexually-abusing4-year-old-boy
http://www.wtkr.com/news/virginia-beach-man-sentenced-27-years-for-creating-video-of-himself-sexually-abusing4-year-old-boy
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref8
http://refhub.elsevier.com/S2666-2817(23)00119-1/sref8
https://www.gaijin.at/en/software/wipefile
http://sourceforge.net/p/xshredder/wiki/Home
https://www.lizard-labs.com/

	2023_APAC_cover
	Identification-of-data-wiping-tools-based-_2023_Forensic-Science-Internation
	Identification of data wiping tools based on deletion patterns in ReFS $Logfile
	1 Introduction
	2 Related research
	2.1 Concept of ReFS
	2.2 Wiping tools and erasure algorithms
	2.3 ReFS forensics

	3 Experiment and result
	3.1 Methodology
	3.1.1 Experiment methodology
	3.1.2 Logfile analysis methodology

	3.2 Fundamental analysis
	3.2.1 Analysis of wiping tool
	3.2.2 Analysis of typical deletion pattern

	3.3 Analysis of deletion pattern
	3.3.1 Analysis of file deletion pattern
	3.3.2 Analysis of Directory Deletion pattern

	3.4 Wiping tool pattern result
	3.4.1 Opcode pattern result
	3.4.2 Filename pattern result

	3.5 Data wiping tool patterns

	4 Implementation and verification
	4.1 Implementation
	4.2 Verification

	5 Conclusion
	Appendix 5 Conclusion
	References

