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A B S T R A C T   

In the ever-expanding landscape of computation, graphics processing units have become one of the most essential 
types of devices for personal and commercial needs. Nearly all modern computers have one or more dedicated 
GPUs due to advancements in artificial intelligence, high-performance computing, 3D graphics rendering, and 
the growing demand for enhanced gaming experiences. As the GPU industry continues to grow, forensic in
vestigations will need to incorporate these devices, given that they have large amounts of VRAM, computing 
power, and are used to process highly sensitive data. Past research has also shown that malware can hide its 
payloads within these devices and out of the view of traditional memory forensics. While memory forensics 
research aims to address the critical threat of memory-only malware, no current work focuses on video memory 
malware and the malicious use of the GPU. Our work investigates the largest GPU manufacturer, NVIDIA, by 
examining the newly released open-source GPU kernel modules for the development of forensic tool creation. We 
extend our impact by creating symbol mappings between open and closed-source NVIDIA software that enables 
researchers to develop tools for both “flavors” of software. We specifically focus our research on artifacts found in 
RAM, providing the foundational methods to detect and map NVIDIA Object Compiler Structures for forensic 
investigations. As a part of our analysis and evaluation, we examined the similarities between open-and-closed 
kernel modules by collecting structure sizes and class IDs to understand the similarities and differences. A 
standalone tool, NVSYMMAP, and Volatility plugins were created with this foundation to automate this process 
and provide forensic investigators with knowledge involving processes that utilized the GPU.   

1. Introduction 

Graphics Processing Units (GPUs) are one of the most essential types 
of computing technology in both personal and commercial computing, 
experiencing rapid growth driven by advancements in artificial intelli
gence (AI), High Performance Computing (HPC), and 3D graphics 
rendering. Over the past decade, GPUs have become integral parts of 
personal computers. With this development, more forensic in
vestigations will involve one or more GPUs. 

Currently, the GPU market is dominated by three primary manu
facturers: NVIDIA, AMD, and Intel. At the time of writing, NVIDIA is 
currently the largest manufacturer, holding 84 % of the GPU market 
(Peddie 2023). In 2023, NVIDIA’s market capitalization passed one 
trillion for the first time, making it one of the five trillion-dollar USD 
companies in the technology market (Apple, Microsoft, Alphabet, 
Amazon, and NVIDIA) (Reuters 2023). While NVIDIA is one of the 
world’s largest companies, there is little research involving the use of the 

GPU for malicious intentions and even less for forensics regarding a 
GPU. 

As GPUs continue to become a commodity for customers, forensic 
concerns arise surrounding the substantial computation power a GPU 
can provide for specific tasks and the kernel level trust the operating 
system provides to the device. Advanced malware/rootkits can abuse 
the GPU and even hide valuable evidence within Video Random-Access 
Memory (VRAM), avoiding Antivirus (AV). While there is no known 
“wild” malware that hides within the GPU, nation-state attacks could 
utilize the GPU to become undetectable. Currently, no one is looking 
into this possibility, and in our work, we aim to start to address this 
threat. 

Previous research has only scratched the surface of valuable infor
mation that can be found in the GPU ecosystem. Our work aims to 
address this gap by conducting the first peer-reviewed analysis of NVI
DIA kernel modules on Linux-based systems. Additionally, we present 
methods to identify and extract NVIDIA Object Compiler (NVOC) 
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structures for both open and closed-source modules, offering symbol 
mappings between drivers to allow for future GPU forensic tools and 
research. 

Our contributions are as follows:  

• We present the first peer-reviewed analysis of NVIDIA’s kernel 
modules/drivers on Linux systems.  

• We provide methods to identify and extract NVOC structures for 
both Open and Closed-source Modules. 

• We provide mappings and memory snippets1 of NVOC Class Defini
tions structures between open and closed-source NVIDIA drivers to 
allow for future memory forensic tools and works focused on GPU 
Forensics.  

• We created multiple open-source plugins2 for Volatility to parse 
important artifacts out of memory for an investigation.  

• We created NVSYMMAP,3 a Python 3.0 tool, to automate the entire 
process of mapping NVOC Class Definitions structures between new 
Open and Closed Source Modules. 

Our work aims to reveal how valuable artifacts can be found within a 
system’s Random-Access Memory (RAM) for NVIDIA GPUs and provide 
industry tools for both open and closed-source environments. 

2. Motivations and goals 

Until recently, NVIDIA’s code was primarily closed-source, making 
the creation of forensic tools nearly impossible because of the enormous 
amount of reverse engineering required to understand how the software 
operates. However, in May 2022, NVIDIA released open-source GPU 
Kernel modules under dual GPL/MIT licenses that allow users to opt into 
(Cherukuri et al., 2023). This change is a pivotal step toward enhancing 
the utilization and security of NVIDIA GPUs on Linux. However, despite 
this progress, a critical limiting factor still exists: most users will still 
utilize closed-source drivers. 

To address this limitation, our work aims to understand the inner- 
workings of both kernel modules, how structures are laid out in mem
ory, and what type of memory to look in – RAM or VRAM. If we can 
parse vital information to determine if a process used the GPU mali
ciously and what it was trying to accomplish, then investigators will 
have a greater understanding of what occurred during an incident. 

We know GPUs will commonly transfer information between RAM 
and VRAM. By examining the drivers of the system’s GPU, we can begin 
to understand how memory management and translation occur and 
leverage this to find forensic evidence. We can examine NVIDIA’s kernel 
module, stored in RAM, to extract the necessary system information 
regarding the GPU for an investigation. 

While past research has focused on examining VRAM, we believe by 
examining the contents of RAM, we can start to develop forensic tools to 
detect GPU-assisted malware and standalone GPU malware. Our 
research aims to provide the foundation for comprehensive forensic 
methods and tools capable of extracting artifacts from RAM for any 
version of NVIDIA Linux drivers. 

3. Background 

This section provides background knowledge for the rest of the 
paper, including an introduction to Linux Kernel Modules, NVIDIA 
Kernel Modules, and NVOC Structures. 

3.1. Linux kernel modules and Kallsyms 

Linux kernel modules are executables that can be dynamically 
loaded and unloaded into kernel space when the system runs. These 
modules can extend the kernel’s functionality by implementing in
terfaces for devices as drivers. Each module serves a specific purpose and 
can export symbols through Kallsyms. 

Kallsyms, the Linux kernel symbol table, is a data structure that 
contains information about code within kernel space, such as the address 
of functions and structures in memory. Kallsyms displays the dynami
cally loaded address of each symbol, which can be utilized to locate 
essential structures in the kernel memory space and parse associated 
data. Kallsyms is exported to userspace via /proc/kallsyms. 

3.2. NVIDIA kernel modules 

NVIDIA currently provides two distinct “flavors” of kernel drivers for 
Linux-based operating systems – open source and closed source. Each 
version of the drivers helps provide the kernel with an interface to access 
and utilize the GPU. When an NVIDIA driver is installed on a Linux- 
based system, four distinct kernel modules are loaded into kernel space:  

• nvidia: The main NVIDIA Kernel module we investigate in this work.  
• nvidia_modeset: The NVIDIA Kernel module that handles the mode 

setting of the GPU.  
• nvidia_drm: The NVIDIA kernel module that handles the Direct 

Rendering Manager. 
• nvidia_uvm: The NVIDIA kernel module that handles Unified Vir

tual Memory. 

These modules implement interfaces provided by the Direct Rendering 
Manager (DRM), drm_kms_helper, and Video kernel modules. They also 
provide interfaces to userland processes for accessing the GPU. To list 
these modules, users can run lsmod and grep for “nvidia”. In this work, 
we exclusively examine Nvidia’s 525 drivers; however, our methods 
extend to future versions of the drivers. 

3.3. NVIDIA object compiler 

NVIDIA’s kernel modules use NVOC for a large portion of their driver 
code base. NVOC is a preprocessor that allows NVIDIA to add specific 
metadata to the headers of structures to allow for lookups, feature toggle 
flags, and specific chip behaviors. NVIDIA uses NVOC in both their open 
and closed-source kernel modules for Linux and Windows drivers. NVOC 
code generator is a fork of Clang 3.X and is currently a closed-source tool 
used within NVIDIA (Tijanic 2022). NVOC follows the general structure 
of C++, implementing a Run-Time Type Information (RTTI) structure 
for each object. Within each NVOC_RTTI structure (Listing 3) is a pointer 
to a Class Definition structure, which can be used to map symbols be
tween open and closed source modules. 

In the open-source kernel modules, NVOC files are found in /src/ 
nvidia/generated/. Files with the endings _nvoc.c and _nvoc.h were 
pre-compiled using NVOC. These files contain important information for 
creating memory forensics tools relating to GPUs and can be used to 
understand NVIDIA’s ecosystem. In Source Code Analysis and Method 
Creation, we expand upon this background knowledge to explain how 
NVOC is implemented and can be used to locate and map open-to-closed 
source structures. 

4. Methodology 

This section describes our methodology for examining NVIDIA’s 
source code and creating forensic tools. We expand on our work by 
explaining our methods to locate and parse NVOC structures for both 
open and closed-source Nvidia drivers. 

Our methodology follows: 

1 https://github.com/LSUACL/GPU-Forensics/tree/main/memory-snippets.  
2 https://github.com/LSUACL/GPU-Forensics/tree/main/plugins.  
3 https://github.com/LSUACL/GPU-Forensics/tree/main/NVSYMMAP. 
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1. Source Code Analysis  
2. Memory Acquisition  
3. Memory Analysis  
4. Method Creation 

4.1. Source code analysis 

NVIDIA’s open-source drivers can be downloaded from their GitHub 
repository.4 We manually analyzed the structure of the source code to 
understand and identify code patterns we could utilize to locate struc
tures in memory. After reviewing the overall architecture of the code
base, we determined a substantial amount of the software could be 
covered by focusing on the OS-agnostic and auto-generated code. 

A significant number of these files and structures utilized NVOC. 
NVOC structures follow a unique layout that can be utilized to map 
structures in memory and between each module. Each NVOC structure 
has a unique CLASSID that can be used to map and identify data struc
tures. An example of a CLASSID declaration from the open-source code 

can be found in Listing 1. 

Listing 1. Example of NVOC ClassID Declaration 

Each of these CLASSIDs are held within a unique NVOC_CLASS_DEF 
structure in the NVOC_CLASS_INFO member (Listing 6 Line 3). These 
class definition structures are directly exported through /proc/kall
syms, allowing the ability to locate them after a memory sample has 
been collected. In these structures, important information, such as the 
size of the structure, RTTI provider ID, and name (if the NV_PRINTF_
STRINGS_ALLOWED is set), is included. With each class definition 
symbol mapped, we can use the method described in Reverse NVIDIA 
Object Lookup to locate any NVOC structure in memory. 

Listing 2. NVOC_CLASS Definition Structure 

Each NVOC_CLASS_DEF structure also has an associated NVOC_RTTI 
structure that points to it (Listing 3). This pointer is the first member of 
the RTTI structure (Listing 3 Line 2). These NVOC_RTTI structures are 
also unique to each NVOC structure and can be used in mapping NVOC 
structures. 

Listing 3. NVOC_RTTI Definition Structure 

In Method Creation, we explain how we use NVOC’s structure format 
to map symbols and structures from open to closed-source modules. 

Listing 4. Nvidia Symbols From Open and Closed Source Software  

4.2. Memory acquisition 

To properly assess NVIDIA’s GPUs memory footprint, we needed to 
collect physical memory samples because GPUs are not easily virtualized 
and, in most cases, are run on physical hardware. In future work, we aim 
to explore NVIDIA’s Virtual GPU Software; however, in this work, all 
memory samples acquired were with Surge Collect Pro,5 a physical 
memory sample acquisition tool. 

We created two testing environments that included the same NVIDIA 
GPU and operating system. We then installed each flavor of the drivers 
(open and closed) and verified they were in use. After the drivers were 
loaded into memory, we took physical memory images of the systems so 
we could inspect each driver for NVOC structures. A detailed apparatus 
of devices and software for our research is displayed in Table 1. 

4.3. Memory analysis 

To analyze each of the memory samples, we decided to use Vola
tility6 2.6 because it is open-source and widely available. The Volatility 
Framework is a collection of volatile memory tools that offer in
vestigators insight into the current state of a machine at acquisition and 
can be used to extract digital artifacts from volatile memory. 

We primarily utilized the Linux volshell plugin to navigate memory 
dumps to search for NVOC structures. We determined many of these 
NVOC structures were in use for the open-source drivers and could be 
found with their associated kallsym. We also determined that the closed- 
source module followed the NVOC implementation when examining the 
memory sample. With this information, we started to develop methods 
to search and parse each NVOC structure for both modules. 

4 https://github.com/NVIDIA/open-gpu-kernel-modules. 

5 https://www.volexity.com/products-overview/surge/.  
6 https://github.com/volatilityfoundation/volatility. 
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4.4. Method creation 

We first explain our method of mapping symbols between open-to- 
closed source NVIDIA modules. To build on this, we explain how, 
once mappings have been created between each module’s symbols, we 
can use a reverse pointer lookup method to find the addresses of NVOC 
structures in kernel memory. After identifying the location in memory of 
NVOC structures, we explain our parsing methodology. With this 
methodology, other researchers can build forensic tools to parse artifacts 
from memory regarding NVIDIA’s GPUs. We build on this foundation in 
the Tool Creation section to create plugins for Volatility 2.6 that auto
mate each of these methods and a standalone tool, NVSYMMAP, for 
automating the complete process of mapping modules. 

4.4.1. Mapping open-to-closed source kernel modules symbols and objects 
The first step of providing a proper memory forensics foundation for 

NVIDIA GPU kernel modules is providing mappings that cover open and 
closed-source software. We achieved this by creating links of symbols 
between each module. Each of the module’s exported symbols can be 
found in /proc/kallsyms. One major issue with mapping symbols be
tween modules is vital symbols are “scrubbed” in the closed-source 
module and can not be directly mapped by name. An example output 
of each module kallsyms is shown in Listing 4. We can overcome this 
issue by utilizing the following method. 

We first compile a list of NVOC CLASSIDs from the open-source code. 
Next, we locate the associated open-source symbol and examine its 
memory contents to confirm the CLASSID. Finally, we scan each closed 
source symbol (related to the Nvidia kernel module) for the same 

CLASSID. Once we find each symbol for open and closed source mod
ules, we then create a mapping. An example of the AccessCounterBuffer 
NVOC structure’s class definition memory contents for both modules can 
be found in Listing 5, and Fig. 1 displays an overview of the result of this 
process. 

With these mappings between open-to-closed source symbols, we can 
now develop forensic tools that work for both kernel modules. After 
mapping each symbol for NVOC_CLASS_DEF, we use a reverse lookup 
method, described in the Reverse NVIDIA Object Lookup section, to 
locate desired structures. Note many of the closed-source scrubbed 
symbols are not structures but functions; our methods focus only on 
NVOC structures and their associated members. 

4.4.2. Recursive descent NVIDIA ClassID lookup 
A second method was also created to map symbols for either module. 

With the knowledge from Source Code Analysis, we understand that all 
NVOC structure’s first member points to a NVOC_RTTI structure, and 
NVOC_RTTI to NVOC_CLASS_DEF. With this we can probe each kallsym 
and check if the first eight bytes are a valid pointer within the context of 
the kernel. If so, we follow this pointer and continue checking for 
another pointer while keeping track of the depth. Once the first eight 
bytes are not a valid pointer, we check to see if a valid CLASSID is found. 
If so, then we check to see if the related closed-source module has the 
same symbol (checking for depth and CLASSID). One result of this 
method is the mapping between _nv022923rm (closed) and the g_pSys 
(open), with a depth of three, which points to the OBJSYS CLASSID. This 
method is shown in Fig. 2a. 

4.4.3. Heuristically searching for NVIDIA ClassIDs 
Finally, we created a heuristic method to search for undocumented 

CLASSIDs and structures for the closed-source drivers. We probed each 
kallsym and searched for the structure of an NVOC_CLASS_DEF. If the 
structure was detected, the memory was examined and verified. Inter
estingly, we discovered by searching that some of the CLASSIDs declared 
in the open-source modules that do not have associated structures in 
memory or the source code are found in the closed-source modules. One 
example of this occurring is the NVOC structure OBJGPULOG. This 
structure is found in the closed-source modules with the associated 
_nv002107rm kallsym and is initialized with a size of 496 bytes. 

Listing 5. Example of NVOC Class Definition Kallsym Output  

4.4.4. Reverse NVIDIA object lookup 
While each NVOC structure does not have an exported kallsym, we 

can work backward from its associated NVOC_CLASS_DEF. Each struc
ture generated by NVOC follows the same memory layout (described in 
the Source Code Analysis section), which can be used to locate it. 

A NVOC structure’s first member is a pointer to its associated 
NVOC_RTTI structure. Listing 6 shows an example of this. By utilizing 
how NVIDIA’s NVOC objects are created, with each structure pointing to 
a RTTI structure and each RTTI pointing to an NVOC_CLASS_DEF (where 
each Class Definition has an associated symbol in kallsyms), we can 
locate any NVOC structure in memory that we desire. 

Listing 6. Example of NVOC Structure 

Table 1 
Apparatus table depicting the hardware and software utilized throughout the experiment.  

Hardware/Software Use Company Software/Model Version 

Volatility Memory Forensics Framework Volatility Foundation 2.6 
Surge Collect Pro Memory Acquisition Tool Volexity 23.03.28 
Ubuntu Operating System Canonical 22.04 LTS 
NVIDIA Open-Kernel Module GPU Driver NVIDIA 525.125.06 
NVIDIA Closed-Kernel Module GPU Driver NVIDIA 525 
HxD Hex Editor mh-nexus 2.5 
VSCode Integrated Development Environment Microsoft 1.86.0 
RTX 3080ti GPU MSI n/a  
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We can use a reverse pointer lookup to map RTTI structs to NVOC 
class definitions. After mapping each RTTI structure, we can continue 
using reverse pointer lookup to map NVIDIA objects to RTTI structures. 
This process is depicted in Fig. 2b and is automated in a volatility plugin 
created as described in Tool Creation. 

4.4.5. NVIDIA object parsing 
After identifying where these structures are in memory and their 

associated sizes, we needed a way of adequately extracting the data and 
members of the structures. NVIDIA offers an option to build their open 
kernel modules in debug mode by enabling the DEBUG flag – adding the 
gcc flag “-gsplit-dwarf” to the compilation. This flag will separate the 
information of the executable into two files,*.o (“OBJECT”) and*.dwo 
(“DWARF object”). After investigating each of the files created on 
compilation, we identified a way of extracting a structure’s memory 
footprint from the .dwo files with the debug information. While this 
method allows us to generate artificial memory structures, such as 
vtypes for Volatility 2, we are unable to use this method for the closed- 
source modules due to the absence of *.dwo files provided. 

For closed-source modules, we utilize the NVOC_CLASS_INFO 
structure, which, after investigation, appears to be the same between 
open and closed modules to identify the size of the desired structure. 
After parsing the structure from memory, we make use of the open- 
source definition to map the closed-source structure. In most cases, 
this method can be used to locate the desired data; however, each 
structure will range in difficulty due to no direct references to how the 
structure’s members are laid out. 

Note the current standard of parsing debugging information for 
Volatility vtypes/symbols is using dwarf2json7; however, this tool 
currently does not support .dwo files; thus, we could not utilize it. 

5. Tool creation 

In this section, we will discuss the plugins and tools we created to 
automate the process of mapping symbols between drivers and the 
ability to locate desired structures in memory. After providing these 
foundational plugins, we extend our work into a forensic-specific plugin 
to parse valuable evidence from a system. We also provide a standalone 
tool, NVSYMAP, for automating the mapping process of each driver. 

5.1. CheckNvidia 

The CheckNvidia plugin runs a scan to print out if an NVIDIA kernel 
module was in use. If an NVIDIA module is found, the plugin will print 
out the information about the module. To obtain additional information 
about the NVIDIA module, CheckNvidia will pull from two sources of 
information – module_kset from the Linux kernel and pNVRM_ID from 
the NVIDIA module. This information is then combined and displayed to 
the user. 

5.2. NVOC_CLASS_DEF scan 

The NVOC_CLASS_DEF Scan plugin scans the kernel pages that 
contain modules. It looks for NVOC_CLASS_DEF structures in memory 
using two types of scanning. The first scanning type will utilize the 
“known” list of NVOC CLASSIDs. The plugin will also iteratively scan 
memory using the sliding window technique (scanning byte by byte). 
Once a word matches one of the list’s entries, the plugin will validate the 
structure using a heuristic and add the location of the found NVOC_
CLASS_DEF structure to display. The second technique utilizes a heu
ristic mechanism to find NVOC_CLASS_DEF structures by using the 
validating mechanism that method one implements. The technique will 
scan all NVIDIA-specific symbols in kallsyms. 

5.3. Reverse structure lookup and acquisition 

The reverse structure lookup plugin will locate the NVOC Structure 
in memory by working backward with the Reverse Ascent Lookup 
method. The plugin begins searching for the symbol associated with the 
CLASSID provided by the user. Then, the kernel will be scanned to 
search for a pointer directed at the NVOC_CLASS_DEF. If the NVOC_RTTI 
is found, then the plugin will again scan memory, looking for a pointer 
directed at the NVOC_RTTI structure. Fig. 3 displays an example output 
of this plugin when searching of the structure associated with the 
OBJGPU class name with the CLASSID of 0x7ef3cb. Note that two RTTI 
structures were found; this is because the RsResourcelist symbol also 
held a pointer to the NVOC_CLASS_DEF of OBJGPU. For acquiring the 
memory associated with the structure, the plugin will use the address of 
the structure found and the size of the structure from the 
NVOC_CLASS_DEF. 

5.4. GPU accounting 

NVIDIA provides the ability to track the usage of resources 
throughout the lifespan of an individual process via the GPU Accounting 
capability. When enabling this feature, users can manage and monitor 
the usage of their GPU via NVIDIA Management Library (NVLM) and 
nvidia-smi. The GpuAccounting structure in /src/nvidia/generated/ 
g_gpu_acct_nvoc.h holds this information. The NVOC structure holds 
essential information for a forensic investigation, such as start time, end 
time, live processes, dead processes, Process identifier (PID), and much 
more. By parsing this structure from memory, we can account for the 
history of the processes run on the GPU and potentially identify mali
cious processes. 

While this is straightforward for collecting forensic evidence, there 
are some limitations to this method. The first limitation of this method is 
there is no current way to enable GPU Accounting on the open-source 

Fig. 1. Diagram of cross-mapped symbols.  

7 https://github.com/volatilityfoundation/dwarf2json. 
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modules. The second limitation is that GPU Accounting is not enabled by 
default for the closed-source modules. Users must enable GPU Ac
counting with NVIDIA’s nvidia-smi tool via the command line using the 
following command: 

5.5. NVSYMMAP 

NVSYMMAP,8 NV Symbol Mapper, is an open-source command line 
tool written in Python3, created to automate the process of mapping 
symbols within and between NVIDIA kernel modules on Linux with 
memory forensics. NVSYMMAP was developed to map new releases of 
NVIDIA drivers with ease. 

Fig. 4 displays the workflow of the tool for mapping open-to-closed 
source symbols. First, a user will create two environments with each 
open and closed driver they desire to map (Fig. 4a). Next, the user will 
acquire memory and /proc/kallsyms from each system (Fig. 4b). These 
files are then passed into NVSYMMAP with the associated Volatility2 
profiles. Once NVSYMMAP has the proper information, it will create 
temporary files with commands (Fig. 4c) to pass into each instance of 
Volatility running the Linux_volshell plugin (Fig. 4d). The commands 
generated by NVSYMMAP will inspect each NVIDIA-related symbol and 
search for NVOC CLASSIDs in memory. This information is then passed 
back into NVSYMMAP and parsed to create mappings between each 
driver (Fig. 4e). 

6. Evaluation 

This section evaluates our methods for identifying NVOC_CLASS_DEF 
structures within NVIDIA kernel drivers with NVSYMMAP. We analyze 
the effectiveness and correctness of our tool by utilizing a manually 
created ground truth. 

6.1. Identification of NVOC_CLASS_DEF structures 

We first manually examined the open-source NVIDIA kallsyms that 
relate to each NVOC_CLASS_DEF. Each NVOC_CLASS_DEF has an 
exported kallsym starting with “__nvoc_class_def_.” We created a list of 
these kallsyms, and manually verified the associated NVOC CLASSIDs 
(from the source code) by examining each symbol’s memory content – 
resulting in 171 total CLASSIDs/structures for our ground truth. We then 
used NVSYMMAP to verify our manually created data with the curated 
__nvoc_class_def_list. After confirming our ground truth, we “blindly” 
searched all of the kallsym (related to NVIDIA) for the open-source 

Fig. 3. Example of the reverse lookup plugin with the NVOC structure OBJGPU  

Fig. 4. Workflow of NVSYMMAP  

Fig. 2. Methods to map and extract NVOC structures.  

8 https://github.com/LSUACL/GPU-Forensics/tree/main/NVSYMMAP. 
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modules, amounting to 14447 total symbols, to find each of the 
__nvoc_class_def_kallsyms. While we cannot create ground truth for the 
closed-source modules, we decided to run NVSYMAP with the generated 
list of CLASSIDs to compare the results with the open-source. 

6.2. Results 

Fig. 5 shows the results of our evaluation. The graph displays the 
total number of NVOC Class Definitions found for each test. Our ground 
truth is shown as “known” with a total of 171 structures. When testing 
the list blindly on the open kernel modules, NVSYMSMAP was able to 
find each of the known class definitions with 19 additional false positive 
symbols. Each of these 19 false positives was associated with a parent list 
structure in relation to the CLASSID. When running the test on the 
closed-source module, we detected 193 total symbols in relation to the 
CLASSID list. 

7. Experimentation 

This section describes our approach to experimenting with each open 
and closed-source NVIDIA driver. We aim to evaluate the drivers’ dif
ferences and similarities by examining each NVOC structure. We also 
want to explore undocumented NVOC structures and their associated 
sizes and CLASSIDs. While this experiment only examined the 525 
modules, our approach can be applied to newer versions of the drivers. 

7.1. Approach 

For our experimentation, we used NVSYMMAP. We created two new 
environments with each open and closed source 525 drivers and 
extracted the necessary information to parse each NVOC structure’s 
class definition. In our testing, we searched for undocumented structures 
not found in the open-source code. We also examined the 171 known 
structures that were in use for the open modules and compared their 
sizes to the associated closed-source structures. 

7.2. Findings 

We found a significant amount of additional information about 
NVOC structures could be obtained by examining the closed-source 
NVIDIA drivers. Fig. 6a depicts the amount of NVOC structures uti
lized per version. In the open-source code, we were able to document 
263 structures, and in the closed source, we identified 67 undocumented 

structures. The closed-source drivers utilize 330 total structures, and the 
open-source drivers utilize only 171 structures. 

Interestingly, when examining and mapping CLASSIDs from the 
open-source code to the closed-source code, we recognized that the 
NVOC class definition structures are scrubbed alphabetically by class 
name (ignoring capitalization) where they iterate from _nv001924rm to 
_nv002253rm (AccessCounterBuffer-ZbcApi). With this knowledge, re
searchers can potentially infer the undocumented class names and 
which NVOC structures are specific to the closed-source drivers. One 
example of narrowing down a symbol’s class name is _nv001979rm and 
_nv001981rm, where the CLASSIDs are GpuManagementApi and 
GpuResource, resulting in _nv001979rm’s CLASSID name falling be
tween GpuMa-GpuRe. 

Additionally, we examined the sizes associated with the documented 
open-source structures versus the closed-source structures. We sepa
rated each group arbitrarily into three groups: exact (for the same size), 
small (for less than 100 bytes in difference), and large (for greater than 
100 bytes in difference). Fig. 6b shows the results; most notable from the 
data is that 59 of the 171 structures tested are the exact same size in both 
modules. In Appendix, we display a partial listing of the obtained data, 
and the full results can be found on our github. 

8. Related work 

Most of the research on GPU forensics was completed in 2015, and 
little work has been compiled since then. We briefly describe the related 
work in GPU-Assisted Malware, GPU Forensics, and Memory Forensics. 

8.1. GPU-assisted malware 

GPU-Assisted malware utilizes the computational power and 
elevated trust of the GPU to perform specific tasks such as packing, 
unpacking, Direct Memory Access (DMA), and Crypto Mining. At the 
time of writing, there is no known “wild” GPU-assisted malware that 
tries to hide in VRAM to avoid AV. However, a post on a hacker forum 
offered a Proof of concept (POC) malware that utilized the GPU memory 
buffer to store malicious code to evade AV RAM scanning (Ilascu 2021). 
In addition to this, academic researchers created malware/rootkits to 
show how it could leverage hiding valuable information within the 
VRAM of a GPU (Reynaud 2008; Vasiliadis et al., 2015; Ladakis et al., 
2013). One example of GPU-Assisted rootkit is JellyFish.9 JellyFish was 
a POC academic malware that ran on Windows, Linux, and MAC in 2015 
(Bongiorni 2015). Interestingly, JellyFish utilized OpenCl to interact 
with either NVIDIA or AMD products for “snooping” via DMA. 

8.2. GPU forensics 

GPU forensics is the process of investigating and analyzing the ma
licious use of the GPU. Balzarotti et al. (2015) examined the many ap
proaches an attacker may take to misuse a GPU and its impact on 
memory forensics. To address these threats, a framework was suggested 
for analyzing GPU-executed malware by Apostol et al. (2021); however, 
the approach focused on high-level APIs that could be avoided by 
advanced attacks, whereas our approach focuses on investigating the 
drivers of the GPU for forensic evidence. 

8.3. Memory forensics 

Memory forensics is the analysis of a system’s volatile memory. Case 
& Richard III (2017) provided a critical analysis of the current state of 
memory forensics and an overview of the issues that need to be 
addressed. We believe addressing new architectures is one major core 
issue and should be studied. Works involving Apple Silicon, 

Fig. 5. Evaluation of NVSYMSMAP  

9 https://github.com/nwork/jellyfish. 

C.J. Bowen et al.                                                                                                                                                                                                                                

https://github.com/nwork/jellyfish


Forensic Science International: Digital Investigation 49 (2024) 301760

8

Programmable Logic Controllers (PLC), and NVIDIA GPUs extend 
memory forensic’s reach and address advanced attacks (Mettig et al., 
2023, Awad et al., 2023). 

9. Discussion and future work 

Our work provides a foundation for future research involving GPU 
forensics. We created the first memory forensic tools for GPUs that 
provide forensic investigators with valuable insight into which processes 
accessed the GPU for NVIDIA drivers. We also presented the first anal
ysis of NVIDIA open-source kernel modules and mapping to associate 
closed-source modules. Comparing our work with previous research, we 
contributed significant improvements to the current state of forensics 
involving GPUs, specifically NVIDIA products. 

As described in Section 4, we created methods to accurately and 
reliably locate NVOC structures in memory for both open and closed- 
source NVIDIA kernel modules. These methods provided will help 
make future work possible surrounding GPU forensics. 

In addition, we provide a comprehensive list of mappings for 
NVOC_CLASS_DEF symbols between kernel modules to extend the reach 
of future work and make new tool creation more accessible. With this 
new foundation of how NVIDIA stores information related to their GPUs 
on Linux-based systems, forensic investigators can start to detect and 
analyze malicious software that utilizes the GPU. 

In future work, we aim to extend the amount of forensic evidence 
that can be found by an investigator. Notably, we want to investigate 
methods of obtaining physical VRAM images. In previous research, tools 
were created with OPENCL and CUDA to obtain a VRAM image; how
ever, these tools operate from user-land, causing significant changes to 
RAM and potentially VRAM due to context switches required to map the 
memory. One patch was developed by NVIDIA for the DFRWS 2015 
memory forensics challenge10 that obtained a physical VRAM image 
from kernel space; however, this was specifically for the 343.13 drivers. 
Once we create tools for obtaining VRAM, we believe that we will be 

able to map the pages a process utilizes in the GPU with the NVOC 
structures that control address translation and memory allocation. 

10. Conclusions 

GPU memory forensics is possible and should be studied. Within our 
work, we showed that NVIDIA has opened up parts of its software that 
researchers can utilize to create tools and methods to extract vital 
forensic information. It is possible to examine both sets of modules, open 
and closed, and begin to understand the inner workings of how a GPU 
operates. 

Malicious cyber attacks will continue to advance over time, so we 
need to keep improving our defensive tools. We need to address the 
threat of malware hiding information within VRAM, and we can only do 
that with a physical memory image of VRAM and RAM. Our approach of 
starting in RAM and working towards VRAM is the correct way of 
developing tools, and we believe that it is the solution to solving this 
blind spot in the forensics realm. With the methods and mappings we 
provided, researchers can begin to extend the view of memory forensics 
into the GPU environment. Our work has resulted in a new foundation 
for this area, and we are committed to building on it to combat the 
evolving landscape of cyber threats. 
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Appendix  

Class Name Class ID Open-Source Kallsym Open-Size Closed-Source Kallsym Closed-Size Difference 

AccessCounterBuffer 0x1f0074 __nvoc_class_def_AccessCounterBuffer 1288 _nv001924rm 1288 0 
BinaryApi 0xb7a47c __nvoc_class_def_BinaryApi 1204 _nv001927rm 1072 132 
BinaryApiPrivileged 0x1c0579 __nvoc_class_def_BinaryApiPrivileged 1288 _nv001928rm 1360 72 
ChannelDescendant 0x43d7c4 __nvoc_class_def_ChannelDescendant 1256 _nv001932rm 1272 16 
ComputeInstanceSubscription 0xd1f238 __nvoc_class_def_ComputeInstanceSubscription 1048 _nv001935rm 1048 0 
ConsoleMemory 0xaac69e __nvoc_class_def_ConsoleMemory 1312 _nv001938rm 1320 8 
ContextDma 0x88441b __nvoc_class_def_ContextDma 1256 _nv001939rm 1256 0 
DebugBufferApi 0x5e7a1b __nvoc_class_def_DebugBufferApi 1032 _nv001940rm 1032 0 
DeferredApiObject 0x8ea933 __nvoc_class_def_DeferredApiObject 1632 _nv001941rm 1648 16 
Device 0xe0ac20 __nvoc_class_def_Device 1608 _nv001942rm 1856 248 
DiagApi 0xaa3066 __nvoc_class_def_DiagApi 1320 _nv001943rm 1352 32 
DispCapabilities 0x99db3e __nvoc_class_def_DispCapabilities 1032 _nv001944rm 1032 0 
DispChannel 0xbd2ff3 __nvoc_class_def_DispChannel 1256 _nv001945rm 1256 0 
DispChannelDma 0xfe3d2e __nvoc_class_def_DispChannelDma 1576 _nv001946rm 1576 0 
DispChannelPio 0x10dec3 __nvoc_class_def_DispChannelPio 1576 _nv001947rm 1576 0 
DispCommon 0x41f4f2 __nvoc_class_def_DispCommon 2232 _nv001948rm 3056 824 
DisplayApi 0xe9980c __nvoc_class_def_DisplayApi 984 _nv001954rm 992 8 
DisplayInstanceMemory 0x8223e2 __nvoc_class_def_DisplayInstanceMemory 200 _nv001955rm 208 8 
DispObject 0x999839 __nvoc_class_def_DispObject 1504 _nv001949rm 1512 8 
DispSfUser 0xba7439 __nvoc_class_def_DispSfUser 1032 _nv001951rm 1032 0 
DispSwObj 0x6aa5e2 __nvoc_class_def_DispSwObj 1296 _nv001952rm 1304 8 
DispSwObject 0x99ad6d __nvoc_class_def_DispSwObject 1824 _nv001953rm 1804 20 
Event 0xa4ecfc __nvoc_class_def_Event 720 _nv001958rm 720 0 
EventBuffer 0x63502b __nvoc_class_def_EventBuffer 1000 _nv001959rm 1000 0 
Fabric 0x0ac791 __nvoc_class_def_Fabric 144 _nv001963rm 136 8 
FABRIC_VASPACE 0x8c8f3d __nvoc_class_def_FABRIC_VASPACE 696 _nv001961rm 696 0 
FlaMemory 0xe61ee1 __nvoc_class_def_FlaMemory 1336 _nv001968rm 1344 8 
FmSessionApi 0xdfbd08 __nvoc_class_def_FmSessionApi 904 _nv001969rm 904 0 
GenericEngineApi 0x4bc329 __nvoc_class_def_GenericEngineApi 1040 _nv001974rm 1416 376 
GenericKernelFalcon 0xabcf08 __nvoc_class_def_GenericKernelFalcon 312 _nv001975rm 400 88 
GpuAccounting 0x0f1350 __nvoc_class_def_GpuAccounting 127560 _nv001977rm 93768 33792 
GpuDb 0xcdd250 __nvoc_class_def_GpuDb 128 _nv001978rm 120 8 
GPUInstanceSubscription 0x91fde7 __nvoc_class_def_GPUInstanceSubscription 1104 _nv001972rm 1104 0 
GpuManagementApi 0x376305 __nvoc_class_def_GpuManagementApi 704 _nv001979rm 704 0 
GpuResource 0x5d5d9f __nvoc_class_def_GpuResource 768 _nv001981rm 768 0 
GpuUserSharedData 0x5e7d1f __nvoc_class_def_GpuUserSharedData 1024 _nv001982rm 1024 0 
GSyncApi 0x214628 __nvoc_class_def_GSyncApi 1208 _nv001973rm 1208 0 
Hdacodec 0xf59a20 __nvoc_class_def_Hdacodec 1024 _nv001991rm 1040 16 
Heap 0x556e9a __nvoc_class_def_Heap 1560 _nv001992rm 1560 0 
I2cApi 0xceb8f6 __nvoc_class_def_I2cApi 1064 _nv001998rm 1064 0 
INotifier 0xf8f965 __nvoc_class_def_Inotifier 56 _nv001999rm 56 0 
Intr 0xc06e44 __nvoc_class_def_Intr 5344 _nv002006rm 6160 816 
IntrService 0x2271cc __nvoc_class_def_IntrService 48 _nv002007rm 48 0 
IoAperture 0x40549c __nvoc_class_def_IoAperture 264 _nv002008rm 264 0 
KernelBif 0xdbe523 __nvoc_class_def_KernelBif 816 _nv002010rm 752 64 
KernelBus 0xd2ac57 __nvoc_class_def_KernelBus 30064 _nv002011rm 28832 1232 
KernelCcu 0x5d5b68 __nvoc_class_def_KernelCcu 824 _nv002013rm 720 104 
KernelCcuApi 0x3abed3 __nvoc_class_def_KernelCcuApi 1056 _nv002014rm 1056 0 
KernelCE 0x242aca __nvoc_class_def_KernelCE 1080 _nv002012rm 1056 24 
KernelCeContext 0x2d0ee9 __nvoc_class_def_KernelCeContext 1592 _nv002015rm 1608 16 
KernelChannel 0x5d8d70 __nvoc_class_def_KernelChannel 2056 _nv002016rm 2144 88 
KernelChannelGroup 0xec6de1 __nvoc_class_def_KernelChannelGroup 456 _nv002017rm 504 48 
KernelChannelGroupApi 0x2b5b80 __nvoc_class_def_KernelChannelGroupApi 1192 _nv002018rm 1192 0 
KernelCtxShare 0x5ae2fe __nvoc_class_def_KernelCtxShare 184 _nv002019rm 192 8 
KernelCtxShareApi 0x1f9af1 __nvoc_class_def_KernelCtxShareApi 1064 _nv002020rm 1064 0 
KernelDisplay 0x55952e __nvoc_class_def_KernelDisplay 912 _nv002021rm 848 64 
KernelFalcon 0xb6b1af __nvoc_class_def_KernelFalcon 136 _nv002022rm 224 88 
KernelFifo 0xf3e155 __nvoc_class_def_KernelFifo 1552 _nv002023rm 1664 112 
KernelFsp 0x87fb96 __nvoc_class_def_KernelFsp 880 _nv002024rm 776 104 
KernelGmmu 0x29362f __nvoc_class_def_KernelGmmu 24544 _nv002025rm 24624 80 
KernelGraphics 0xea3fa9 __nvoc_class_def_KernelGraphics 1592 _nv002026rm 1544 48 
KernelGraphicsContext 0x7ead09 __nvoc_class_def_KernelGraphicsContext 1064 _nv002027rm 1144 80 
KernelGraphicsContextShared 0xe7abeb __nvoc_class_def_KernelGraphicsContextShared 1600 _nv002028rm 160 1440 
KernelGraphicsManager 0xd22179 __nvoc_class_def_KernelGraphicsManager 1216 _nv002029rm 1112 104 
KernelGraphicsObject 0x097648 __nvoc_class_def_KernelGraphicsObject 1656 _nv002030rm 1704 48 
KernelGsp 0x311d4e __nvoc_class_def_KernelGsp 79048 _nv002031rm 79144 96 
KernelHead 0x0145e6 __nvoc_class_def_KernelHead 152 _nv002032rm 192 40 
KernelHostVgpuDeviceApi 0xb12d7d __nvoc_class_def_KernelHostVgpuDeviceApi 1328 _nv002033rm 1328 0 
KernelIoctrl 0x880c7d __nvoc_class_def_KernelIoctrl 632 _nv002035rm 528 104  
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