
Forensic Science International: Digital Investigation 49 (2024) 301761

Available online 5 July 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS USA 2024 - Selected Papers from the 24th Annual Digital Forensics Research Conference USA

Applying digital stratigraphy to the problem of recycled storage media

Janine Schneider a,b,*, Maximilian Eichhorn b, Lisa Marie Dreier b, Christopher Hargreaves c,**

a CISPA Helmholtz Center for Information Security, Germany
b Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
c University of Oxford, United Kingdom

A R T I C L E I N F O

Keywords:
Digital stratigraphy
Digital forensics
File systems
Simulation
Removable storage

A B S T R A C T

Previous work has shown that second-hand or even new devices with recycled components can contain remnants
of old data. Given a situation where incriminating evidence is found in non-allocated space of such a device, this
presents an attribution problem. In archaeology or geology, stratigraphy studies the arrangement of strata, or
layers, often used as a dating technique based on the premise that newer layers are situated above older layers.
The digital stratigraphy technique applies the concept to digital forensics and considers how data is positioned
and overlayed on disk to make inferences about when data was created. This research investigates the extent to
which this technique could resolve the data provenance challenge associated with recycled digital storage media.
This paper presents an automated file system activity simulation framework that allows creation, deletion and
modification actions to be carried out at scale using specific file system drivers. Using this tool, a series of ex
periments are carried out to gain an understanding of file system driver behaviour and address this practical
question of provenance of data in non-allocated space.

1. Introduction

Insufficient data sanitisation practices can complicate digital foren
sics. The persistence of data from previous use of the storage media may
raise uncertainties about whether the current owner is knowingly in
possession of potentially incriminating material. This problem has been
shown to exist with second-hand storage devices (Garfinkel and Shelat,
2003; Freiling et al., 2008) and recent work has shown that this problem
also exists for newly purchased USB devices, which may contain residual
old data due to recycled internal components (Schneider et al., 2021).
This raises important attribution challenges to all data found in
non-allocated space on USB storage media, regardless of whether it was
second-hand or newly purchased. It is therefore important to conduct
additional work to determine in what circumstances data on such de
vices could be used as evidence, specifically, in which circumstances
content recovered from non-allocated space could be used as evidence.

This paper addresses this problem using digital stratigraphy tech
niques, and specifically considers: if incriminating recovered content is
identified in non-allocated space on removable storage media that potentially
contains old data, is it possible to differentiate whether that data was deleted

from the current file system or potentially was already present?

1.1. Existing approaches

In order to be able to use a deleted file as evidence, the file must first
be reconstructed. This reconstruction can be performed based on various
properties of the file (Pal and Memon, 2009) and can be non-trivial.
Casey et al. (2019) describes different formal classifications of file re
covery, highlighting the imprecision in language and within tools
regarding the reliability of recovered data from non-allocated space.
This is highly relevant to this problem since data in non-allocated space
on devices that are recycled or have recycled components should be in
one of their well-defined states. These are not repeated in full here, but
files are classed as having three distinct conceptual parts, each of which
may be recoverable or not (in different combinations): filename, file
metadata, and file content.

Assuming some content of interest is found on USB storage media
(with a potentially recycled memory chip) in non-allocated space, a
potential defence could be that since the file was not part of the current
file system, it could have already been present when the device was

* Corresponding author. CISPA Helmholtz Center for Information Security, Germany.
** Corresponding author.

E-mail addresses: janine.schneider@cispa.de (J. Schneider), maximilian.eichhorn@fau.de (M. Eichhorn), lisa.dreier@fau.de (L.M. Dreier), christopher.
hargreaves@cs.ox.ac.uk (C. Hargreaves).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301761

mailto:janine.schneider@cispa.de
mailto:maximilian.eichhorn@fau.de
mailto:lisa.dreier@fau.de
mailto:christopher.hargreaves@cs.ox.ac.uk
mailto:christopher.hargreaves@cs.ox.ac.uk
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2024.301761
https://doi.org/10.1016/j.fsidi.2024.301761
https://doi.org/10.1016/j.fsidi.2024.301761
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2024.301761&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 49 (2024) 301761

2

purchased. Depending on the specific recoverable data, several ap
proaches could be used to investigate the validity of this defence. In the
following subsections, content recovery is assumed, and filename re
covery is grouped with metadata recovery for brevity.

1.1.1. Recoverable metadata
First, if a metadata structure can be found in the current file system

(e.g. a deleted MFT entry) that includes a reference to the recovered
content, then it can be argued that this file came from the current file
system and, therefore, potentially the suspect in question (although at
tempts to link to a suspect are not covered here, only links to the current
file system of the device).

It might also be possible to locate an entire metadata structure that is
in non-allocated space and not directly linked to the current file system,
e.g. an entire FAT32 directory entry structure. In this case, there are
multiple options as this could either be because it came from an older file
system, or it has become detached from the current file system in some
way; perhaps an entire directory was deleted and the reference to that
directory overwritten. On some file systems, there may be approaches to
link this to something in possession of the suspect, e.g. in Nordvik et al.
(2019), it is discussed that the Birth Volume Object ID on NTFS may be
used to link a file to the volume it first obtained an ID, or obtaining MAC
addresses from ObjectIDs.

However, if there is evidence of an older file system, if the metadata
structure of the incriminating content is of a different type, i.e. a FAT
directory entry found when the active file system is NTFS, then this
could be from an earlier file system. However, this does not apply if the
current and previous file systems are the same type. There is also some
further complexity here regarding file system container file formats, for
example, a file that is a virtual machine disk (as also discussed in Casey
et al. (2019)), as this would be a valid reason for metadata structures
from a different file system to be present.

1.1.2. No file metadata
If no file metadata structures that refer to the recovered content are

available, there are still some approaches to try and link this data to the
current file system. In some circumstances, the file may contain internal
metadata (Bahjat and Jones, 2019) suggesting it is from the current file
system. This could include internal timestamps within the lifetime of the
current file system or a reference to the suspect’s username. It could also
include EXIF data of a camera that is either in the possession of the
suspect or the suspect has pictures on other devices taken with the same
camera. In these cases, attempts can be made to link these pieces of
metadata with the suspect.

Alternatively, it may be possible to find details that suggest that the
file was not associated with the current file system, e.g. if a recovered file
is sector-aligned but is not aligned with the cluster boundaries of the
current file system, in this case, this could indicate that this file did not
come from the current file system, although file system containers could
again explain this. It may also be possible to use data from another
device to demonstrate a link to the deleted content, e.g. link files on a
Windows system referring to files on removable media (Patterson and
Hargreaves, 2012), or a file has internal metadata that has a matching
name with a link file on the suspect’s device.

1.1.3. The worst case?
Finally, if some recovered content is of significant interest, has no file

metadata structures, has no internal metadata linking it to another
system or device of the suspect, and there is no contextual information
within the file content itself, then this data of interest is very difficult to
attribute to the current file system since it cannot be shown that this data
was deleted from the current file system.

1.2. Research goals, contributions and paper structure

The aim of this work is to investigate this remaining challenging

situation, to either demonstrate that carved content could originate from
a previous file system (defence perspective), or that it could be part of
the current file system and has been deleted (prosecution perspective).
This is achieved through the use of digital stratigraphy, and the study of
how two file systems interact when one is written on top of the other.
This work makes the following contributions:

● It provides substantial experimental data that shows when carved
content could, or could not have been part of the current file system
(considering FAT32, NTFS, and exFAT on Windows and Linux).

● It provides a general method and open-source automated File System
Activity Simulator for conducting experiments with file system
drivers on different platforms at scale to understand their behaviour.

● It provides new tools and visualisations to better understand the
write patterns of file system drivers, and tools to examine a disk
image and analyse carved content in the context of other file system
data.

The remainder of the paper is structured as follows: Section 2 reviews
existing work on digital stratigraphy, and Section 3 provides the overall
methodology for this work. Section 4 describes the automation frame
work that was developed, and Section 5 summarises the results of the
experiments conducted. Section 6 reviews the research questions in light
of the results, and a demonstration of the concepts presented is provided
in Section 7. Section 8 provides a discussion of the limitations and
further work, followed by conclusions in Section 9.

2. Related work

2.1. Stratigraphy in archaeology and geology

The origins of stratigraphy are in the disciplines of archaeology
(Harris (1987)) and geology (Lyell (1872)). In both disciplines, the
fundamental idea is to recognise ‘layers’ of rock or sediment and to
establish a succession that can be interpreted to understand how it
evolved. This is based on rules that are derived from observations and
natural laws, e.g., the observation that new sediment accumulates on top
of older sediment; thus, a stratigraphic unit lying below another one
typically was created earlier and thus is assumed to be older Harris
(1987).

2.2. Digital stratigraphy

These concepts were transferred to digital forensics in Casey (2004)
and formalised as digital stratigraphy in Casey (2018), which in
vestigates whether knowing the allocation behaviour of a file system
driver allows certain information about the creation order of files to be
derived from their positions on disk.

Other related work includes Willassen (2008), which investigated
MFT and journal entries as file allocation traces. Employing the
sequence numbers in the file system’s journal file and formal reasoning
about the allocation sequence (based on the first-fit allocation strategy
together with a counter for entry-reuse), it is shown how to establish the
relative ordering of the MFT entries and thus find traces of file
antedating.

Others have investigated FAT32 file system drivers through source
code or dynamic analysis. Tse (2011) concludes that the position of the
first cluster of a file and the average of all cluster locations of a file are
good metrics to determine the relative ordering of files, at least as long
as the file system is not heavily fragmented. Hargreaves (2013) also
provides a visualisation of block allocation within digital forensics,
essentially providing a two-layer stratigraphy view.

Minnaard (2014) used static code analysis of a Linux FAT32 driver as
well as dynamic analysis of a Windows one to find differences in their
behaviour. For the Linux driver, Minnaard (2014) proposes that the
creation order of the files can be directly derived from the positional

J. Schneider et al.

Forensic Science International: Digital Investigation 49 (2024) 301761

3

order of the files, which is disputed in Lee et al. (2015). They point out
that wrap-arounds destroy this direct mapping and add that each
wrap-around creates files and thus creates one lower and one upper
bound for the creation time of a certain file. Still, they admit that they
did not find a way to determine the candidate file for those bounds.
Additionally to the above mentioned, Li et al. (2016) analysed the
FAT32 drivers for Windows and Linux. They dived slightly deeper into
the technical description than Minnaard (2014), but did not try to infer
information about the temporal relationship between creation dates of
files.

Even though Karresand et al. (2020b) aimed to improve file carving
and does not strictly fall in the category of digital stratigraphy, but it
does investigate the allocation strategy of NTFS drivers (Karresand et al.
(2020b); Karresand et al. (2020a); Karresand et al. (2019); Karresand
(2023)). Thus, many of the findings are relevant for digital stratigraphy
as well, e.g., the result that allocation behaviour changed between
Windows 7 and Windows 10, that Windows deviates significantly from a
best-fit strategy or that the disk does not seem to influence the allocation
strategy (Karresand et al. (2020b)).

Previous work has not only investigated allocation behaviour to
derive relative ordering, but also to approximate the absolute date using
digital stratigraphy. This is the aim of two studies conducted by Bahjat
and Jones (2019) and Bahjat and Jones (2023). Both studies take the
creation time of the k-nearest neighbours of a file fragment and try to
approximate the file fragment’s creation time using a lower and an
upper bound.

Vollebregt (2019) takes a similar approach, estimating the lower
bound of the creation time as well as the upper bound of the deletion
time of a file. The approach assumed that the Windows 10 NTFS file
system driver uses a best-fit-strategy, but found that the NTFS file system
drivers used in their real-world datasets differ heavily from that
behaviour. There is also recent work presented in Bojic et al. (2022),
which showed the potential of simulating file system usage and
recording successive states to observe and understand file system driver
behaviour. Other work examines changes in file systems over time for
use in digital forensics, including visualisations. For example, Har
greaves and Chivers (2010) describes a method for detecting hidden
volumes within encrypted containers if multiple copies can be acquired,
for example, from Volume Shadow Copy. Visualisations of the changes
over time are shown, and information about the size of the hidden
container can even be inferred.

Therefore, there is a reasonable set of work attempting to date files,
absolutely or relatively. None have focused on the specific challenge of
recycled removable media, but the existence of this work and basing
techniques upon this knowledge base shows the potential for the
approach.

3. Methodology

3.1. Aim

The focus of this work is to investigate if it is possible to use digital
stratigraphy techniques to provide any attribution information to ‘con
tent only’ data found in non-allocated space on a device that potentially
uses recycled storage components, and link that content to the current
file system.

It is hypothesised that live data will be written in an incremental
manner moving through the blocks of the storage media. Therefore, we
also assume that there is something that could be referred to as a File
System Upper Bound (FSUB), which is the largest block number in which
data from the current file system is known to have been written. This is
discussed in Section 5.4.

Assuming that this is applicable (which will be evaluated later), there
are two scenarios for identified relevant content: First, shown in Fig. 1a),
relevant data is recovered from non-allocated space before the FSUB of
the current file system. Second, shown in Fig. 1b), relevant data is

recovered from non-allocated space beyond the FSUB of the current file
system. Therefore this leads to several research questions:

1. How can it be determined if data is written in a sequential manner for
a given file system?

2. How can the File System Upper Bounds (FSUB) be determined?
3. If data of interest is found in non-allocated space, but prior to the

FSUB of the current file system, could this result from poor saniti
sation practises and, therefore, not be associated with the current file
system?

4. If data is found further into the disk than the current file system
FSUB, is it possible that it was part of the current file system?

3.2. Overall method

The method chosen is to perform file system activity simulations to
understand the file system driver behaviour on multiple systems. To
achieve this, an automation and visualisation framework is developed
that is discussed in Section 4. A series of experiments are conducted that
investigate these research questions, which are explained and docu
mented in Section 5.

4. Automation framework development

This section describes the development of the ‘File System Activity
Simulator’ (FSAS) used to support the experiments in this paper. It is
designed to create file system states that are representative of real-world
systems and to programmatically conduct operations on the file system
using regular OS interfaces. Importantly, it also preserves the file sys
tem’s state after each operation and visualises the results. The Python
script fsas.py is implemented for this purpose. This consists of three
separate commands, which are explained below.

4.1. Generating file system operations

The first command, generate, creates a flowchart for the operations in
a file system and stores it as an XML file. This flow chart generation has a
random element, but the result is static. This mirrors the process of
generating forensic disk image generators in Moch and Freiling (2009).
This allows the use of randomness but in a repeatable manner.

Each created XML file can be executed as often as desired on Win
dows and Linux systems. Support for other operating systems can be
added at any time thanks to the modular structure of the FSAS. The
respective parameters can be taken from the help text and are checked
when the script is executed. The script offers the file operations create,
shrink, enlarge, and delete, as well as the directory operations create and
delete, to simulate as many application scenarios as possible. After
defining the available operations, the individual operations’ parameters
are randomly selected in a loop based on the specified framework con
ditions. This procedure is subject to several consistency checks. For
example, no file can be deleted, reduced or enlarged if no file was
created beforehand. If all checks are passed, the XML file can be written.

Fig. 1. Shows different scenarios where incriminating evidence is located in
different positions relative to the current File System Upper Bound.

J. Schneider et al.

Forensic Science International: Digital Investigation 49 (2024) 301761

4

4.2. Executing file system operations

The second command, execute, calls a Python function that executes
the previously created XML file on a specific file system. Various pa
rameters can be selected for this script, for example optional parameters
can be used to select different output types that preserve the state of the
file system before the first operation and after each operation. These
outputs include various additional tools that must be accessible via the
PATH environment variable when used. In addition, the specially
developed output formats alloc, nonzero, and pattern can be selected.
However, these use The Sleuth Kit (TSK) Python bindings pytsk and can
only be used for file systems whose support is implemented in the
bindings. The script reads, checks and executes commands from the
XML. Before the first operation is performed, the selected tools are
applied to the initial file system. After each operation, an output is
created and logged in the output directory using the enabled tools.

4.3. Generating visualisations

Finally, plot forms the third command. The different plot types casey,
scatter, and heatmap can be selected for this command (all discussed
later). At this point, several auxiliary files are created according to the
plot type, which can be very large depending on the file system size
being examined. For the creation of plots of type casey and scatter the
Python library Matplotlib is used, and for the heatmap Plotly is used.

5. Experimental results

5.1. Overview

This section provides the experimental results used to address the
research questions. First, file system driver behaviour is explored in
Section 5.2, highlighting allocation behaviour and differences between
Windows and Linux drivers. Section 5.3 summarises additional findings
regarding file system specifics on different operating systems.1

Section 5.4 then investigates the concept of File System Upper Bound
theorised earlier, showing how it can be calculated and providing
tooling for it. Section 5.5 then conducts experiments considering if data
from old file systems can be found in the current file system prior to the
FSUB. These results focus on the file system behaviour, but acknowl
edging the partitioning in which file systems sit, in addition experiments
were performed with formatting the removable storage media. These are
not included in full due to space constraints, but in summary, the ex
periments show that ‘quick format’ does not zero-fill the file system, in
contrast to the non-quick format option. Furthermore, space outside of
the partition remains untouched.

5.2. File system driver behaviour

This section discusses experiments investigating the basic patterns of
file system driver behaviour across different driver versions and oper
ating systems.2

Casey (2018) provides plots for digital stratigraphy from a disk
image using the first cluster on the y-axis, and created timestamp on the
x-axis. As discussed earlier, the FSAS is able to output plots in this style.
The benefits and limitations of this plot type will be shown in this sec
tion, along with additional plot types to complement this original plot

type. The remainder of this section describes the specific findings from
the experiments.

5.2.1. Sequential writes
The term sequential writes refers to an allocation behaviour where

blocks are allocated in an incremental manner forming linear allocation
patterns. To investigate whether FAT32, exFAT or NTFS show such a
behaviour, experiments are conducted where the formatted partition is
populated with files until 95 % of the file system space is in use. After
wards, a casey plot (Casey, 2018) is created for each of the resulting final
images. For FAT32 and exFAT, sequential allocation behaviour for these
experiments could be confirmed on Linux and Windows. However, a
different behaviour could be observed for NTFS as there are areas with
sequential allocation on both platforms, but these are not contiguous
(see Fig. 2). On Windows, the areas of sequential allocation are much
broader. Meanwhile, with Linux, these areas are interrupted by areas in
which high fluctuations can be observed.

5.2.2. File deletion and block reuse
Additional experiments investigated how the different file systems

behave when deletion is involved. This time the automated FSAS created
and deleted files randomly until 80 % of the file system space was in use.

Furthermore, a new visualisation was developed to analyse this set of
experiments, allowing analysis of the status of blocks. This visualisation
differs from the visualisation in Casey (2018) as a scatter plot is used
instead of a line plot, and block groups of four blocks each are used
instead of individual starting clusters. Multiple variations of the plot are
possible e.g. one showing the allocation status (blue) and one showing
where known file content can be observed (green). Only the allocation
status plots are shown for brevity. In addition, the axes are reversed,
which corresponds to archaeology stratigraphy representations, and is
important later for consistency as other visualisations are added, which
show data being written on top of other data.

Since each individual block status in the file system is to be visualised
across many operations, data reduction is essential. Therefore, the vis
ualisation shows only the changes of each block and, thus, implicitly the
status after each operation. The first line of each scatter plot shows the
status of the file system before the first operation, all blocks (except
those used to store file system structures) are considered not allocated
and not containing file data.

The results of the experiments show that when file deletion is
involved, there are differences between the file and operating systems.
With FAT32 on Linux, files are still written to incremental start clusters,
even after deletions occur, and any de-allocated blocks are not imme
diately reused. Only after the end of the file system is reached, are the
open gaps filled again sequentially, provided they are large enough. On
Windows, any de-allocated blocks (from deletions) are filled again if
they are wide enough, as seen in Fig. 3.

The immediate filling of gaps can also be observed with exFAT.
However, there are no noticeable differences between the exFAT allo
cation patterns on different operating systems. Regardless of the dif
ferences already mentioned for NTFS, smaller platform-related

Fig. 2. NTFS file system allocation behaviour on Linux (left) and Windows
(right) shown in a Casey-style plot. In this experiment, 95 % of a 250 MB file
system space was allocated.

1 Please note that both sectors and clusters/blocks are referred to in this
section. However, because of the underlying pytsk implementation of many of
the tools, for FAT32 and exFAT, only sectors are reported since the library does
not provide cluster values for those file systems.

2 The OS driver versions used in these experiments are: Debian 11 dosfstools
4.2, ntfs-3g v2017.3.23AR.3, exfatprogs 1.1.0 and Windows 11 FAT
10.0.22621.2506, NTFS 10.0.22621.2715, exFAT 10.0.22621.2506.

J. Schneider et al.

Forensic Science International: Digital Investigation 49 (2024) 301761

5

differences can be identified when deleting files, as can be seen in Fig. 4.
Gaps that occur with NTFS are also filled. Unfortunately, making more
precise statements about this behaviour based on the plots is difficult.

However, additional file system specifics can be observed when
looking at the plots and the underlying data more closely.

5.3. File system specifics

While analysing the results of the experiments on the file system
driver behaviour, some file system specific features became apparent
depending on the different operating systems, which are presented in
the following.

In order to analyse this in more detail, the visualisation was devel
oped further and evolved into a dynamic heatmap. The advantage of
using a dynamic heatmap instead of a static scatter plot is that different
colours can be used to visualise actual status (instead of implicit status)
and combinations of statuses. Furthermore, interesting data locations
can be zoomed in (in the HTML version of the plot). An example of the
advantages can be seen in Figs. 5 and 6 which are equivalent alternative
representations of Figs. 3 and 4. With the help of the heatmap colour
visualisation, some interesting specifics can be observed for FAT32 and
NTFS. The most important colours are: light green (allocated file data),
dark green (non-allocated deleted file data), yellow (allocated but zero-
filled), brown (content that is not allocated, non-zero and does not
contain the standard file pattern, which sometimes can indicate file
system metadata) and purple (old data, discussed later).

5.3.1. FAT32 specifics
The beginning of each partition formatted with FAT32 contains the

two File Allocation Tables (FATS). However, the two FATs on Linux are
larger than on Windows, and they also have different locations, most
likely due to the different default cluster sizes for these volumes (512

bytes for Linux and 2048 bytes for Windows).

5.3.2. NTFS specifics
With NTFS under Linux, a reserved area can be observed at the

beginning of the file system, where new file data is written only after this
area. There is also a second reserved area initially marked as allocated
and located deeper into the volume. The area at the beginning of the file
system contains the $MFT and builds its reserved area, whereas the later
area contains the $MFTMirr. On Windows, those two file system struc
tures are switched.

Sequentially allocated areas are only occasionally found under
Linux. Whereas on Windows, the file system is written sequentially up to
and after the $MFT. This results in a gap encompassing the $MFT and its
reserved area. Data is only written to this area if no more space is
available.

5.4. File System Upper Bound (FSUB)

The data generated in the previous section can also be used to
investigate the concept of a calculable FSUB, defined as the largest block
number in which data from the current file system is known to have been
written. The method for calculating the FSUB from a file system has
subtle differences depending on the file system. There are also two FSUB
values that can be identified, one calculated from the live files in a
volume, and another using information from deleted metadata struc
tures that can still be linked to the current file system.

For FAT32, with live files, the furthest block in use by the file system
can be easily determined by iterating through the live files, following
each of their FAT chains and recording the highest block in use by any
live file (this can be seen on the right of Fig. 5). To include data from
deleted files on FAT32, since the FAT itself is zeroed when a file is

Fig. 3. FAT32 file system allocation and deletion behaviour on Linux (left) and
Windows (right) (shows allocation status changes). In this experiment, 80 % of
a 250 MB file system space was allocated in summary. Shows that on Linux the
allocation only returns to old blocks once the end of the volume is reached,
whereas Windows fills old blocks earlier.

Fig. 4. NTFS file system allocation and deletion behaviour on Linux (left) and
Windows (right). In this experiment, 80 % of a 250 MB file system space was
allocated in summary. The diagram shows the allocation status changes of each
block over the different operations.

Fig. 5. FAT32 file system allocation and deletion behaviour on Windows. In
this experiment, 80 % of a 250 MB file system space was allocated. Equivalent
of Fig. 3.

Fig. 6. NTFS file system allocation and deletion behaviour on Windows. In this
experiment, 80 % of a 250 MB file system space was allocated. Equivalent
of Fig. 4.

J. Schneider et al.

Forensic Science International: Digital Investigation 49 (2024) 301761

6

deleted, the cluster number with the most confidence is the ‘first cluster’
recorded in the directory entry for a deleted file. However, this is
potentially incomplete since a file can occupy more than one cluster if it
is larger than the cluster size from the volume, so a ‘possible FSUB’ can
be calculated using the start sector of the file furthest into the volume,
plus the size of the file, although there is uncertainty in the accuracy of
this since files can be fragmented.

For NTFS, it is possible to determine the highest block number in use
by live files by considering each data run for each live MFT record. This
approach can also be used on deleted files in NTFS since the data runs
remain intact even after file deletion (until a new file overwrites the
record). However, the complexity in NTFS, as seen in the previous sec
tion, is that specific metadata files ($MFT or $MFTMirr) are written part
way into the volume. Therefore, the naive calculation of the FSUB is not
always representative.

5.4.1. Validating FSUB concept
From the experiments conducted, it can be seen that data is written

incrementally, in some cases moving back to fill de-allocated blocks, but
it is possible to derive the highest block used. Since the aim is to use the
FSUB position to determine if recovered content could have been part of
the current file system, it is necessary to determine the FSUB not from
the incremental experiments but from a disk image and to determine if
this is representative.

To validate this concept, a tool (get_fsub_info.py) was written in Py
thon that uses pytsk to identify and display the FSUB based on live files
but also deleted. Experiments were performed that use the File System
Activity Simulator initially only to create files and track the highest
written block, and to compare it with the values calculated using get_f
sub_info.py targeting the final disk image. This was effective, and all
values corresponded. The second part of the experiment included mul
tiple deleted file behaviours in the process and compared the highest
block number written during the experiment with the calculated FSUB
from the final resulting disk image. An extreme example is visualised in
Fig. 7 and shows the creation of files up to 95 % of the disk, and then
deleting the most recent files down to about 50 % capacity. A large
difference between the FSUB from the disk image and the historically
logged FSUB can be seen. For this example, the maximum recorded
sector was 472,019, but the FSUB calculated from the approach in
get_fsub_info recorded only 271,011. This shows some of the worst-case
performance of this approach, although potential improvements are
discussed in Section 8.

This shows that an FSUB can be calculated for a disk image, but there
are limitations due to the inherent unreliability of deleted file recovery.
Therefore, an FSUB calculated for a disk image is likely to be a conser
vative lower estimate of how far into the volume files have been written,
and according to all data generated, it cannot be an overestimate.

5.5. Investigating previous file system data prior to FSUB

With the concept of an FSUB demonstrated and calculable, this
section considers the possibility of data from a previous file system
manifesting below the FSUB. In order to investigate this question, the
disks used for the previously described experiments were initialised with
a specific pattern (‘this is old data’) before the disks were formatted (as
discussed earlier, leaving much of the partition filled with the old
pattern). With this baseline established, experiments were conducted,
file system operations were performed, and files were written with a
different consistent pattern, meaning that new data can be differentiated
from old data. Since the new visualisation allows the different states of
blocks to be represented, it is possible to see when old data remains
visible in specific disk areas. Furthermore, a tool check_for_old_data.py
was developed to compliment the visualisations, which allowed a simple
output of all blocks that contained the old data pattern.

5.5.1. FAT32
For Windows and Linux, the old data pattern was visible above the

FSUB until the end of the volume. No old data was visible in the file
system reserved area or the FATs in all resulting datasets. However,
within the data area, several sectors containing old data were found in
all experiments for Windows. This was investigated further, and it was
found that the number of contiguous sectors containing old data was
between 1 and the cluster size minus 1. This is because while sector slack
of files was found to be zeroed, the sectors that contained old data were
the cluster slack of new files written to the file system. Aside from these
instances, no old data was found within the volume until the FSUB was
reached. For Linux, the cluster slack of files was zeroed, and no old data
was found before the FSUB.

5.5.2. NTFS
On Windows, some old data was found very early on in the volume,

confined to file system files, for example, $Extend/$RmMetadata/
$Repair/$Corrupt. In addition, as shown earlier in Fig. 6, since the
$MFT is located part way into the volume, and because an area is
initially reserved for expansion, old data can potentially be found in
significant amounts prior to the FSUB. On Linux, old data was located at
the start of the volume (typically cluster 3), but also in a large number of
clusters representing the MFT reserved area, since for Linux, the $MFT
was found at the start of the volume rather than later on. Also, since data
is sometimes written on either side of the $MFTMirr file without first
reaching it, there can be large areas of old data that can be found, as
shown in Fig. 8.

Therefore, on NTFS, if old data was originally present on the disk, it
is very possible to locate it within the FSUB of the new file system. On
FAT, that is also true, however, the files are written contiguously (and
may go back and fill de-allocated blocks), and so the old data that would
potentially be found is limited to runs within the cluster slack of written

Fig. 7. This shows the addition of files on FAT32 followed by deleting the last
40 % of those created. You can see that the final FSUB derived from the live
data would be less than the furthest block allocated over the life of the volume.

Fig. 8. Shows NTFS on Linux, the distribution of live data on either side of
$MFTMirr, without necessarily reaching it, resulting in old data (purple) being
found within the FSUB.

J. Schneider et al.

Forensic Science International: Digital Investigation 49 (2024) 301761

7

files and, therefore, limited to cluster_size - 1 sector.

5.5.3. exFAT
For exFAT on Windows, old data is found very early on in the volume

in the reserved area, and in some system files (typically cluster slack of
files such as $Upcase), and interestingly also in the FAT. Once in the data
area, the properties regarding old data preservation are similar to FAT,
and while areas of old data are present prior to the FSUB, they are
exclusively in the cluster slack of new files written.

6. Discussion

In this work, over sixty experiments have been conducted, and only a
small selection is possible to present here. Nevertheless, many inter
esting insights into file system driver behaviour have been gained. This
section revisits the research questions proposed in Section 3.

Research Question 1 was concerned with determining if data is
written in a sequential manner for a given file system, and it has been
shown that for FAT and exFAT, this is generally the case. NTFS is more
complicated due to file system metadata structures in the middle of the
volume, and this has implications for other aspects of the work, which is
discussed later.

Research Question 2 asked: how determining the File System Upper
Bound could be achieved. It has been shown that it is possible to
calculate a value for FAT, exFAT and NTFS by looking at both live and
deleted files on a disk image and noting the blocks that they occupy. For
file systems such as NTFS, because of the non-sequential allocation, the
naïve FSUB calculation is not always representative because of the file
system metadata structures part way through the volume. However, for
the others, the naïve approach is effective. However, even then, uncer
tainty around deleted files makes any calculated value likely to be a
conservative lower estimate of the true value. This is, however, in some
ways advantageous. Since we are discussing the potential of using data
from non-allocated space as evidence below the FSUB, the fact that this
is a very conservative estimate by design should give increased confi
dence in results from below the FSUB.

Research Question 3 asked: if data of interest is found in non-
allocated space, but prior to the FSUB of the current file system, could
this be a result of poor sanitisation practises and, therefore, not associ
ated with the current file system? For FAT, it has been shown that if data
is located prior to the FSUB, and is larger than the available cluster slack
of a file on the current file system, experiments have been unable to
show that this data would be the result of poor sanitisation practises, and
the data is more likely to have come from the current file system. This
represents a significant improvement, given the potential implications of
Schneider et al. (2021) regarding removable media. For exFAT, it is
similar, but the data area only must be considered as old data may be
found in the reserved area or FAT. However, for NTFS, more work is
needed as it has been shown that there are multiple ways in which data
could be located before the FSUB e.g. for low use drives the area between
the $MFT (on Windows) and the highest allocated cluster of user added
files (rather than NTFS metadata files). Further work refining the FSUB
concept for more complex file systems may, in future, allow confidence
in recoverability in some cases.

Research Question 4 asked: If data is found further into the disk than
the current file system FSUB, is it possible that the data was part of the
current file system? Experiments have shown that since calculating the
FSUB from a disk image does have inherent uncertainty, it is possible
that data above the FSUB could have been part of the current file system,
especially if near to the FSUB or there have been a large number of
recent deletions. However, it is currently difficult to prove this associ
ation when comparing the data to those below the FSUB, and given the
experimental results to date, the data obtained above the FSUB should
be treated with caution. Further work may be able to evolve the FSUB
calculation, which is relatively simple at present, based only on block
allocations of live files and recoverable deleted files with metadata, but

other techniques, such as using files with linkable internal metadata,
would allow the FSUB to be extended with more confidence, but further
work is required.

7. Demonstration

With the knowledge gained in the previous section, it is possible to
demonstrate an approach to address the original problem of data of
interest being identified in non-allocated space from removable media
(e.g. via carving).

If it is possible to observe the carved data in the context of the overall
structure of the current file system, then it should be possible to reason
about the relevance of that data.

In order to achieve this, a tool df_digger.py was developed. This tool
does not use experimental data, but instead targets a disk image, for
example from an investigation in which the context of some carved data
needs to be understood.

This tool produces a comparable visualisation to the experiment
data, with block numbers of the volume on the x-axis, but on the y-axis,
as disk images do not have incremental full records of changes to the file
system, this is instead inferred from file metadata. Each file on the file
system is considered in sequential order according to their created
timestamp. In addition, the blocks occupied by that file are determined,
and the tool treats each file creation as equivalent to an experimental
‘operation’ and creates a similar visualisation, showing incremental
allocation of blocks.

Figs. 9 and 10 show plots for FAT32 and NTFS, generated entirely
from final disk images. If these are compared with Figs. 5 and 6 earlier,
the structure and trends can be seen to be approximately the same, but
without detailed information about file operations, such as what has
been deleted from where. However, the FSUB can be clearly seen for
FAT32, in addition to the patterns of writes as to how that FSUB was
reached, and for NTFS, the complexity of the allocation algorithms and
MFT reserved space can be seen.

To show data recovered from non-allocated space in the context of
other file system data, df_digger.py allows additional parameters (–car
ved_start, –carved_end) to represent some carved data of interest in the
top rows of the visualisation.

With the knowledge gained through the experiments and this new
visualisation tool, it is now possible to return to the original problem.
Two disk images representing two scenarios were manually created with
no automation, and no manual disk edits. Scenario one recreates the
case where incriminating data was stored on the disk prior to the suspect
receiving the device. A file of interest was carved from sectors late in the
disk. Fig. 11 shows df_digger’s representation of that carved data in
context, where the identified content of interest is shown to be beyond
the FSUB, and there is no evidence of any data from the current file
system being written in that area. In this case, use of that carved data as
evidence would be unwise.

Scenario two recreates the case where the suspect stored

Fig. 9. Shows a visualisation of a FAT32 disk image (Windows) with data
derived from the final disk image. Green is allocated data, and blue is
non-allocated.

J. Schneider et al.

Forensic Science International: Digital Investigation 49 (2024) 301761

8

incriminating data themselves within the current file system. Here a file
was stored within a FAT file system but file operation circumstances
mean that links to that file from within the file system have been
overwritten. Fig. 12 shows the visualisation of this disk image, where the
carved content is embedded within data from the current file system.
Earlier experiments have shown that for FAT32, on Windows, the only
old data that resides below the FSUB is in cluster slack of written files,
meaning a maximum of 512 bytes for this example (1024 cluster size).
Therefore, all data available suggests that this recovered content is likely
to have been in the current file system. This is a significant development
as a case can now be made that using these techniques, data recovered
and situated in these circumstances could potentially be considered as
evidence.

Furthermore, Fig. 13 shows the ability to zoom into the blocks con
taining the carved data of interest. Prior to those blocks, the creation of/
IVORY GULL/2.jpg can be seen, and afterwards, the creation of/
IVORY GULL/4.jpg. There are two hypotheses at this point. First, that

the data of interest was created in between the times of 2.jpg and 4.jpg,
or that a file was previously in those blocks at that time, was subse
quently deleted, and then the carved file was written there at a later
date, then deleted. In either case, some timing information can be
determined that it was created after file 2.jpg. Looking at the raw data
and noting the file is the exact size of the gap between 2.jpg and 4.jpg,
requires that for hypothesis 2 the original file created was the same size
(to the nearest block) of the recovered carved data. Reasoning about
bounded timing information is weaker than the attribution to the cur
rent file system, but it is still a significant development in potential
digital stratigraphy techniques.

8. Limitations and future work

In this paper, sixty experiments on FAT32, exFAT and NTFS using
both Windows 11 and Debian 11 file system drivers have been con
ducted. A File System Activity Simulator was created and used to
replicate actions that a user may carry out. While a large number of
experiments was conducted, further permutations of creations, deletions
and modifications are always possible to further test the conclusions
drawn in this paper, with larger numbers of operations over a longer
period of time. Furthermore, other versions of Windows, Linux and the
file system drivers could be tested, as well as currently excluded plat
forms like macOS, or file systems such as APFS. Also, since the experi
ments presented in this paper have been conducted on virtual machines
using virtual disks, real removable storage media could also be tested,
although the hardware implementation should be abstracted away, and
the small number of tests using df_digger on real USB devices showed
similar results.

While the conclusions for FAT32 have been established to the point
that a demonstration is possible, and a similar example could be con
structed for exFAT, for NTFS, the complexity of the allocation algorithm
suggests additional larger-scale simulations should be conducted to
further understand the consequences of data in non-allocated space on
NTFS on removable media. There are likely improvements to the FSUB
concept with file systems such as NTFS that do not have a simple linear
progression with cluster allocation and have metadata structures in the
middle of the volume.

The FSUB calculation could also be further improved since,
currently, the live files and deleted files with recoverable metadata are
processed, and the highest allocation block is taken. As discussed earlier,
it is also possible to add on file size to that, but fragmentation may
introduce errors. Advanced techniques, such as using options presented
in Section 1, such as identifying a separate carved file with internal
metadata linkable to the suspect, may allow alternative methods of
establishing the FSUB, allowing a carved file without metadata to be
considered.

In terms of development practicalities, the use of df_digger on larger
FAT32 volumes is currently a challenge due to the underlying pytsk
technology, which works in sectors rather than clusters for FAT32 and
exFAT file systems. Larger volumes therefore generate a number of data
points that currently cannot be plotted. Options have been implemented
to mitigate this, allowing max_blocks or max_files to be capped, which
allows specific file system areas to be examined closely, but a better
solution is needed. Furthermore, because of the usage of pytsk, currently,
only TSK-supported file systems can be simulated and analysed with this
framework.

Finally, despite the work in this paper, there may still be legal bar
riers or perceptions to overcome regarding the use of data from non-
allocated space, even with additional work to strengthen the
conclusions.

9. Conclusions

This paper set out to investigate if incriminating recovered content is
identified in non-allocated space on removable storage media that

Fig. 10. Shows a visualisation of a NTFS disk image (Windows) with data
derived from the final disk image. Green is allocated data, and blue is
non-allocated.

Fig. 11. Shows visualisation of FAT32 (scenario one) with carved data located
outside FSUB (see top row).

Fig. 12. Shows visualisation of FAT32 (scenario two) with carved data located
inside FSUB (see top row).

J. Schneider et al.

Forensic Science International: Digital Investigation 49 (2024) 301761

9

potentially contains old data, is it possible to differentiate whether that
data was deleted from the current file system or potentially was already
present.

To do this, the concept of a File System Upper Bound has been
defined, and experiments conducted to verify that it can be calculated
from a final disk image. It has been determined that it should represent a
conservative estimate of how far into the storage media data has been
written.

The research has also shown that residues of old data could be found
prior to the FSUB for FAT32 and NTFS, but the amounts and conse
quences vary. For FAT32 on Windows, small amounts are found within
cluster slack of files, but this has been shown to be somewhat mitigated
for the purposes of this paper. For NTFS, it is more complicated as
potentially large areas of the volume could contain old data, however,
future work may be able to improve of the FSUB method and move to
multiple masks for more complex file systems. It has also shown that
there are significant differences between file system driver behaviour
and that care is needed to understand the host OS when making in
ferences from file system artifacts.

However, experiments regarding content identified beyond the FSUB
are mixed. In the experiments where the true FSUB is recorded at every
stage, by definition, no data from the live file system was written beyond
that. However, when a FSUB is calculated from a disk image, because
files are deleted and metadata references to that content may be over
written, at present, it is difficult to say that content beyond that FSUB
was or was not part of the current file system.

However, in the demonstration section, examples have shown that
despite previous work on recycled removable storage media and their
components, suggesting that data in non-allocated space should be
treated with caution, this work has shown a technique that, based on the

experiments conducted, attribution of some data to the current file
system could be achieved. It has even shown the potential to provide
some approximate timing information to that previously metadata-free
carved content.

Therefore, this could prevent important evidence from such media
from being disregarded, and also shows the need for substantial further
work into the application of stratigraphy concepts to digital forensics.

The code, datasets and additional information are available at https:
//github.com/janineschneider/Digital-Stratigraphy.

CRediT authorship contribution statement

Janine Schneider: Methodology, Software, Validation, Formal
Analysis, Investigation, Resources, Data Curation, Writing - Original
Draft, Writing - Review & Editing, Visualization, Funding acquisition.
Maximilian Eichhorn: Methodology, Software, Validation, Formal
Analysis, Investigation, Resources, Data Curation, Writing - Original
Draft, Writing - Review & Editing, Visualization. Lisa Marie Dreier:
Writing - Original Draft, Writing - Review & Editing. Christopher
Hargreaves: Conceptualization, Methodology, Software, Validation,
Formal Analysis, Investigation, Writing - Original Draft, Writing - Re
view & Editing, Visualization, Supervision, Project administration.

Acknowledgments

We thank the anonymous reviewers for their helpful comments. This
work has been supported by Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) as part of the Research and Training
Group 2475 “Cybercrime and Forensic Computing” (grant number 393
541 319/GRK2475/1-2019).

Appendix

Disk Formatting Behaviour (Section 3)

For this experiment, a virtual disk was initialised with the pattern ’this is old data’ written repeatedly from sector 0 to LBAmax. This baseline disk
was then attached to a Windows 10 virtual machine and formatted with permutations of MBR, FAT32 and NTFS, using the ‘quick format’ option in the
Windows formatting tool, both ticked and unticked.

As illustrated in Tables 14 and 15 for FAT32 (NTFS partitioning did not change the partition based results), the ‘quick format’ option writes the
essential partition structures at the start of the disk, and the essential file system structures in the partition for the file system type that has been
created. Outside of the partition created, using either option, old data remains between the MBR and the start of the first partition, and after the final
partition. The key difference between the two options is within the partition/file system itself. Without ‘quick format’, a search for ‘old data’ produced
no results and non-file system areas had been zeroed, whereas with the ‘quick format’ option, sectors containing ‘this is old data’ remained. From a
formatting perspective, at least, this shows that using either formatting option, old data could be found when examining media, and it is much more
likely if the ‘quick format’ option was used. To understand this further, it is necessary to consider the file system driver behaviour, which applies to
data found within the current partition.

Fig. 13. Shows the identified carved content in context, with the files associated with the adjacent blocks shown (2.jpg and 4.jpg).

J. Schneider et al.

https://github.com/janineschneider/Digital-Stratigraphy
https://github.com/janineschneider/Digital-Stratigraphy

Forensic Science International: Digital Investigation 49 (2024) 301761

10

Table 14
Example MBR, FAT32 configuration with ‘quick format’ selected.

Start End Details

0 0 Boot sector + MBR
1 127 Old data
128 505983 Partition, contains core file system structures and old data
505984 511999 Old data

Table 15
Example MBR, FAT32 configuration with ‘quick format’ deselected.

Start End Details

0 0 Boot sector + MBR
1 127 Old data
128 505983 Partition, contains core file system structures and zeroed data
505984 511999 Old data

Description of selected experiments conducted (Section 5)

As part of the paper, various experiments have been conducted which are explained below in greater detail. The experiments were carried out for
the FAT32, exFAT and NTFS file systems on the Debian 11 and Windows 11 operating systems. The operating systems were installed on virtual
machines, which were assigned corresponding virtual hard disks on which the experiments were carried out. The virtual hard disks were dimensioned
at 0.25 GB, as the experiments generate large output data, and the runtime increases drastically with larger file systems.

95p In the experiments labelled 95p, only files in the file system are created in the individual operations. An 8-byte pattern consisting of the file ID
is created as the file content of the created files. For the file with the id one and the file name file_001.txt, the pattern f0000001 is selected as the file
content and repeated according to the file size. The file sizes for the operations are selected randomly from the interval of 1 MB–3 MB. Files of this size
are written until a usage of the file system of approx. 95 % is reached. Corresponding to a disk size of 0.25 GB, 117 files were created with the XML file
we used.

95p_dir Like the 95p experiments, files are created in the operations with 95p_dir. However, the operation create directory is added in those ex
periments. As the directories use less memory than the files created, the number of operations increases to 231 and 114 files are created. To do justice
to realistic utilisation, the file operations are weighted higher than the directory operations, but the choice of operation is still random.

95p_del_50p In the 95p_del_50p experiments, the deletion of files is now added as an operation for the first time, whereas the directory operations
are omitted. These experiments are intended to depict a scenario in which files are constantly written to the storage medium until its usage reaches
95 %. From this point onwards, the most recently created files are deleted until a utilisation of 50 % is reached again. For example, this can occur if a
camera’s SD card is full and the user has to free up memory to take new pictures. In the XML file actually used, 118 files are initially created, 52 of
which are deleted again.

80p_del In the experiments labelled 80p_del, the file operations create and delete are selected at random, whereby a weighting is also selected here
to create files more frequently than delete them. Furthermore, directory operations are not used. The resulting XML for the given parameters and a
final file system utilisation of approx. 80 % comprised 207 operations, and a total of 152 files were created.

60p_dir_del The final experiments 60p_dir_del include the file and directory operations create and delete. As directories can also be deleted in these
experiments, it can happen that large memory areas are released for later use in an operation. This is because when a directory is marked as deleted, all
subdirectories and files in it are also marked as deleted. To counteract the resulting drastic increase in the number of operations, a final file system
usage of only 60 % is aimed for. For the specific XML file used, this results in 157 operations with a total of 105 files created.

Formatting Depending on the operating and file system, there are either two formatting options (‘quick’ and ‘normal’) or only one (‘quick’). In
cases where quick formatting is undesirable but unavoidable, the hard drive is zeroed out before formatting. If it should be examined whether old data
can be observed after quick formatting, the hard drive is overwritten with a fixed pattern (‘this is old data’) before formatting. A regular expression can
be used to search for the pattern.

Creation of evaluation scenario one (Section 7)

This scenario represents the situation where the files of interest were on a previous file system that has been subsequently formatted. A 100 MB
FAT32 VHD was created in Windows 10. The following sequence of events was carried out: A dataset of bird images and a dataset of weather images
was obtained from Kaggle.3 A rhino picture was also obtained from Wikipedia, and the EXIF data was removed.

● The device was formatted with FAT32
● Pictures from the ‘rain’ subfolder were copied from the weather dataset
● The rhino image was copied to the root directory
● Pictures from the ‘snow’ subfolder were copied from the weather dataset
● the partition was formatted, again to FAT32 using the quick format option
● A set of folders and files were copied from the birds dataset

3 https://www.kaggle.com/datasets/jehanbhathena/weather-dataset.

J. Schneider et al.

https://www.kaggle.com/datasets/jehanbhathena/weather-dataset

Forensic Science International: Digital Investigation 49 (2024) 301761

11

Creation of evaluation scenario two (Section 7)

This scenario represents the situation where the files of interest were located within the current file system, but deleted, and circumstances mean
that connecting this deleted data to the current file system is difficult. A 100 MB MBR FAT32 VHD was created in Windows 10. The following sequence
of events was applied: A dataset of bird images from Kaggle4 was created, with selected files interspersed in the dataset from Wikipedia.

● Copied folders ALBERTROSS-HORNED LARK
● Created folder for IVORY GULL
● Copied files 1.jpg-5.jpg individually to IVORY GULL.
● Copied _tempfile1.txt - _tempfile25.txt (0bytes files) to fill up the directory entries.
● Copied folders JACK SNIPE - WALL CREAPER
● Deleted files (shift deleted so no recycle bin): BALD EAGLE/1–5.jpg, CALIFORNIA GULL/3.jpg, EGYPTION GOOSE/3.jpg, IVORY GULL/3.jpg
● Copied _temp26.txt to IVORY GULL top overwrite directory entry for 3.jpg
● Copied folders YELLOW HEADED BLACKBIRD, and ZEBRA DOVE

References

Bahjat, A., Jones, J., 2023. File allocation chronology and its impact on digital forensics.
In: 2023 IEEE 13th Annual Computing and Communication Workshop and
Conference (CCWC). IEEE, pp. 612–618. https://doi.org/10.1109/
CCWC57344.2023.10099265.

Bahjat, A.A., Jones, J., 2019. Deleted file fragment dating by analysis of allocated
neighbors. Digit. Invest. 28, S60–S67. https://doi.org/10.1016/j.diin.2019.01.015.
URL: https://www.sciencedirect.com/science/article/pii/S1742287619300258.

Bojic, N., Lambertz, M., Hilgert, J.N., 2022. Fsstratify: A Framework to Generate Used
File Systems. Poster presented at dfrws eu. URL: https://dfrws.org/wp-content/up
loads/2022/03/poster_Lambertz_20220307_1.pdf.

Casey, E., 2004. Section 9.6.4: digital stratigraphy. In: Digital Evidence and Computer
Crime: Forensic Science, Computers, and the Internet. Academic press, pp. 247–249.

Casey, E., 2018. Digital stratigraphy: contextual analysis of file system traces in forensic.
Science 63, 1383–1391. https://doi.org/10.1111/1556-4029.13722. URL: https://o
nlinelibrary.wiley.com/doi/abs/10.1111/1556-4029.13722.

Casey, E., Nelson, A., Hyde, J., 2019. Standardization of file recovery classification and
authentication. Digit. Invest. 31, 100873.

Freiling, F.C., Holz, T., Mink, M., 2008. Reconstructing people’s lives: a case study in
teaching forensic computing. In: Proceedings of the 4th International Conference on
IT Incident Management & IT Forensics (IMF 2008). Gesellschaft für Informatik e.V.

Garfinkel, S., Shelat, A., 2003. Remembrance of Data Passed: A Study of Disk Sanitization
Practices 1, pp. 17–27. https://doi.org/10.1109/MSECP.2003.1176992.

Hargreaves, C., Chivers, H., 2010. Detecting hidden encrypted volumes. In:
Communications and Multimedia Security: 11th IFIP TC 6/TC 11 International
Conference, CMS 2010, Linz, Austria, May 31–June 2, 2010. Proceedings 11.
Springer, pp. 233–244.

Hargreaves, C.J., 2013. Visualisation of allocated and unallocated data blocks in digital
forensics. In: EISMC, pp. 133–143.

Harris, E.C., 1987. Principles of Archaeological Stratigraphy. Academic Press.
Karresand, M., Axelsson, S., Dyrkolbotn, G.O., 2019. Using NTFS cluster allocation

behavior to find the location of user data. Digit. Invest. 29, S51–S60. https://doi.
org/10.1016/j.diin.2019.04.018. URL: https://www.sciencedirect.com/science/
article/pii/S1742287619301690.

Karresand, M., Axelsson, S., Dyrkolbotn, G.O., 2020a. Disk cluster allocation behavior in
windows and NTFS. Mobile Network. Appl. 25, 248–258. https://doi.org/10.1007/
s11036-019-01441-1.

Karresand, M., Dyrkolbotn, G.O., Axelsson, S., 2020b. An Empirical study of the NTFS
cluster allocation behavior over time. Forensic Sci. Int.: Digit. Invest. 33, 301008

https://doi.org/10.1016/j.fsidi.2020.301008. URL: https://www.sciencedirect.co
m/science/article/pii/S2666281720302572.

Karresand, N.M.M., 2023. Digital Forensic Usage of the Inherent Structures in NTFS.
NTNU.

Lee, W.Y., Kwon, H., Lee, H., 2015. Comments on the Linux FAT32 allocator and file
creation order reconstruction [Digit Investig 11(4), 224–233]. Digit. Invest. 15,
119–123. Special Issue: Big Data and Intelligent Data Analysis.

Li, Q., Zhang, Q., Tan, Y.a., Li, Y., Zheng, J., 2016. Research on allocator strategy of fat32
file system based on linux & windows. In: 2016 International Conference on
Intelligent Control and Computer Application (ICCA 2016). Atlantis Press,
pp. 248–252.

Lyell, C., 1872. Principles of Geology. Univ. of Chicago Pr.
Minnaard, W., 2014. The Linux FAT32 allocator and file creation order reconstruction.

Digit. Invest. 11, 224–233. Special Issue: Embedded Forensics.
Moch, C., Freiling, F.C., 2009. The forensic image generator generator (forensig2). In:

2009 Fifth International Conference on IT Security Incident Management and IT
Forensics. IEEE, pp. 78–93. https://doi.org/10.1109/IMF.2009.8.

Nordvik, R., Toolan, F., Axelsson, S., 2019. Using the object id index as an investigative
approach for ntfs file systems. Digit. Invest. 28, S30–S39.

Pal, A., Memon, N., 2009. The evolution of file carving. IEEE Signal Process. Mag. 26,
59–71. https://doi.org/10.1109/MSP.2008.931081.

Patterson, J., Hargreaves, C., 2012. The Potential for Cross-Drive Analysis Using
Automated Digital Forensic Timelines.

Schneider, J., Lautner, I., Moussa, D., Wolf, J., Scheler, N., Freiling, F., Haasnoot, J.,
Henseler, H., Malik, S., Morgenstern, H., Westman, M., 2021. In search of lost data: a
study of flash sanitization practices. In: Proceedings of the Digital Forensics Research
Conference Europe (DFRWS EU) 2021.

Tse, W.H.K., 2011. Forensic Analysis Using FAT32 File Cluster Allocation Patterns.
Master’s thesis. University of Hong Kong. URL: http://hdl.handle.net/107
22/143258.

Vollebregt, Y., 2019. File Dating Based on the Physical Location of the File. Bachelor’s
Thesis. Open University of the Netherlands. URL: https://web.archive.org/web/
20220526192803/ https://www.open.ou.nl/hjo/supervision/2019-y.vollebregt
-bsc-thesis.pdf.

Willassen, S.Y., 2008. Finding evidence of antedating in digital investigations. In: 2008
Third International Conference on Availability, Reliability and Security. IEEE,
pp. 26–32. https://doi.org/10.1109/ARES.2008.149. URL: https://ieeexplore.ieee.
org/abstract/document/4529317.

4 https://www.kaggle.com/datasets/gpiosenka/100-bird-species.

J. Schneider et al.

https://doi.org/10.1109/CCWC57344.2023.10099265
https://doi.org/10.1109/CCWC57344.2023.10099265
https://doi.org/10.1016/j.diin.2019.01.015
https://www.sciencedirect.com/science/article/pii/S1742287619300258
https://dfrws.org/wp-content/uploads/2022/03/poster_Lambertz_20220307_1.pdf
https://dfrws.org/wp-content/uploads/2022/03/poster_Lambertz_20220307_1.pdf
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref4
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref4
https://doi.org/10.1111/1556-4029.13722
https://onlinelibrary.wiley.com/doi/abs/10.1111/1556-4029.13722
https://onlinelibrary.wiley.com/doi/abs/10.1111/1556-4029.13722
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref6
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref6
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref7
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref7
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref7
https://doi.org/10.1109/MSECP.2003.1176992
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref9
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref9
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref9
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref9
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref10
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref10
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref11
https://doi.org/10.1016/j.diin.2019.04.018
https://doi.org/10.1016/j.diin.2019.04.018
https://www.sciencedirect.com/science/article/pii/S1742287619301690
https://www.sciencedirect.com/science/article/pii/S1742287619301690
https://doi.org/10.1007/s11036-019-01441-1
https://doi.org/10.1007/s11036-019-01441-1
https://doi.org/10.1016/j.fsidi.2020.301008
https://www.sciencedirect.com/science/article/pii/S2666281720302572
https://www.sciencedirect.com/science/article/pii/S2666281720302572
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref15
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref15
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref16
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref16
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref16
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref17
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref17
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref17
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref17
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref18
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref19
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref19
https://doi.org/10.1109/IMF.2009.8
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref21
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref21
https://doi.org/10.1109/MSP.2008.931081
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref23
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref23
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref24
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref24
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref24
http://refhub.elsevier.com/S2666-2817(24)00080-5/sref24
http://hdl.handle.net/10722/143258
http://hdl.handle.net/10722/143258
https://web.archive.org/web/20220526192803/
https://web.archive.org/web/20220526192803/
https://www.open.ou.nl/hjo/supervision/2019-y.vollebregt-bsc-thesis.pdf
https://www.open.ou.nl/hjo/supervision/2019-y.vollebregt-bsc-thesis.pdf
https://doi.org/10.1109/ARES.2008.149
https://ieeexplore.ieee.org/abstract/document/4529317
https://ieeexplore.ieee.org/abstract/document/4529317
https://www.kaggle.com/datasets/gpiosenka/100-bird-species

	Applying digital stratigraphy to the problem of recycled storage media
	1 Introduction
	1.1 Existing approaches
	1.1.1 Recoverable metadata
	1.1.2 No file metadata
	1.1.3 The worst case?

	1.2 Research goals, contributions and paper structure

	2 Related work
	2.1 Stratigraphy in archaeology and geology
	2.2 Digital stratigraphy

	3 Methodology
	3.1 Aim
	3.2 Overall method

	4 Automation framework development
	4.1 Generating file system operations
	4.2 Executing file system operations
	4.3 Generating visualisations

	5 Experimental results
	5.1 Overview
	5.2 File system driver behaviour
	5.2.1 Sequential writes
	5.2.2 File deletion and block reuse

	5.3 File system specifics
	5.3.1 FAT32 specifics
	5.3.2 NTFS specifics

	5.4 File System Upper Bound (FSUB)
	5.4.1 Validating FSUB concept

	5.5 Investigating previous file system data prior to FSUB
	5.5.1 FAT32
	5.5.2 NTFS
	5.5.3 exFAT

	6 Discussion
	7 Demonstration
	8 Limitations and future work
	9 Conclusions
	CRediT authorship contribution statement
	Acknowledgments
	Appendix Acknowledgments
	Disk Formatting Behaviour (Section 3)
	Description of selected experiments conducted (Section 5)
	Creation of evaluation scenario one (Section 7)
	Creation of evaluation scenario two (Section 7)

	References

