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A B S T R A C T   

Generating timelines, i.e., sorting events by their respective timestamps, is an essential technique commonly used 
in digital forensic investigations. But timestamps are not the only source of timing information. For example, 
sequence numbers embedded in databases or positional information, such as the line numbers in log files, often 
contain implicit information about the order of events without directly referencing a timestamp. We present a 
method that can integrate such timing information into digital forensic timelines by separating sources of timing 
information into distinct time domains, each with its own timeline, and then connecting these timelines based on 
relations observed within digital evidence. The classical “flat” timeline is thereby extended into a “rich” partial 
order, which we call hyper timeline. Our technique allows ordering of events without timestamps and opens a rich 
set of possibilities to identify and characterize timestamp inconsistencies, e.g., those that arise from timestamp 
tampering.   

1. Introduction 

Generating timelines (an activity often called timelining) is an 
essential technique commonly used in digital forensic investigations. 
When sorting events by their respective timestamp, the approach 
heavily depends on the existence of such timestamps within digital data 
used as evidence. The technique is rather fragile since different time-
stamps might come from different sources or have different granularity 
so they are in general hard to compare. Their integration into a classical 
(flat) timeline therefore involves considerable thought and effort (Metz, 
2021). Given sufficient effort, timestamps can — at least in principle — 
be aligned across different timezones, clock granularities and clock 
skews. 

However, timestamps are not the only source of timing information 
embedded in digital evidence. For example, positional information in 
file systems (such as the position of file metadata in the MFT of NTFS) or 
within files (such as the line numbers of entries in the syslog log file) is 

often related to the order in which its content was created. Moreover, 
sequence numbers convey time-related ordering information, e.g., the 
primary keys in SQLite databases are generated incrementally by default 
so they can potentially be used to order table entries regarding their 
creation time. In contrast to explicit timing information (as expressed by 
classical timestamps) that is based on some idealized notion of metrical 
time, implicit timing information is based on any information not 
expressed as a classical timestamp. 

1.1. Implicit Timing Information and its Relevance 

The possibility to extend the information provided by timestamps by 
taking implicit timing information into account has been observed in 
digital forensic analysis, for example by Gladyshev and Patel (2005) and 
Marrington et al., 2011, but its connection to the creation of timelines is 
largely unclear (see also the discussion of other related work in Section 
2). Since implicit timing information does not necessarily contain any 
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information about how much time has passed between two events or at 
which time an event occurred, it can be regarded as a new class of timing 
information that is hard to integrate into classical timelines. It is 
therefore not surprising that information derived from such implicit 
timestamps is absent from the timelines produced by current tools. 

Implicit timing information is also relevant for another reason: If 
perpetrators modify or delete timestamps to cover up illicit actions they 
might not be aware of implicit timing information. Since implicit timing 
information was often not created to keep track of time, its relation to 
event ordering has to be understood before it can be reliably interpreted. 
If it is overlooked by perpetrators, such information can therefore be 
used to reveal timestamp tampering. 

1.2. Contributions 

This paper presents a method for creating timelines that can handle 
both implicit timing information and conventional (explicit) timestamp 
data. The method is based on formal concepts that are implemented 
using a logical database able to infer further timing information from 
data inserted by parsers for explicit and implicit timing information. 

The central idea of our method is to separate different types of timing 
information into distinct time domains. In general, a time domain is an 
environment in which timing information of a specific type can be 
compared. While the concept of time domain might appear abstract, it is 
motivated by real-world needs as different time domains allow to 
separate the concerns of different classes of timestamps, e.g., whether 
they represent implicit or explicit timing information, the granularity of 
a timestamp, the timezone used, or the interpretation details of a certain 
form of implicit timing information. Each time domain defines a sepa-
rate “later-than” relation that is used to order events within that specific 
time domain, generating an independent timeline per time domain. 

To connect these independent timelines, we observe that certain 
events have time information from different time domains. For example, 
website visits in a Firefox History contain a sequence number of the 
entry and a timestamp. Such events can be used to define special re-
lations that link events from different time domains, thus creating an 
overall partial order of events which we call a hyper timeline. A hyper 
timeline integrates multiple intra-time domain relations to a single inter- 
time domain relation. Using a hyper timeline, global properties like 
“event a happened after event b” or “event a happened between event b 
and c” can now be automatically inferred by a logical reasoning mech-
anism incorporating all timing information extracted from the evidence. 

Our approach has the potential to leverage any form of timing in-
formation for event reconstruction, be it explicit timestamps from 
different clocks of different granularity or implicit timing information 
like sequence numbers and positional information. As the latter kind of 
data was mostly not created to explicitly keep track of time and often is 
merely an inevitable consequence of an implementation, it is more 
robust than explicit timing information and therefore harder to tamper 
with such data, increasing the reliability of this type of source. So our 
method can also be used to detect inconsistencies in the data, creating 
opportunities for timestamp tamper detection. 

To summarize, the contributions of this paper are:  

• Based on a formal model, we present a general method to integrate 
arbitrary sources of time-related information into a single (partially 
ordered) digital forensic hyper timeline.  

• Using several case studies, we argue that this method can be used to 
complement traditional timeline analysis.  

• We provide a tool that can integrate this information together with 
timestamp-based information. 

1.3. Outline 

The paper is structured as follows: We begin by revisiting core con-
cepts and methods of existing timeline approaches and thereby 

discussing related work in Section 2. In Section 3 we introduce and 
define the concept of hyper timelines. Its usefulness is then demon-
strated in Section 4. Section 5 elaborates on tool support for hyper 
timelines. Section 6 discusses the limitations of the work, while Section 
7 provides conclusions. 

2. A Brief Timeline of Digital Forensic Timelines 

We now present related work that used explicit and implicit timing 
information in digital forensic science. 

2.1. Ideal Time 

The common (and naïve, see below) understanding of time that also 
underlies the concept of classical timelining in digital forensic science is 
that of “standard time” (van Benthem, 1983), which we will call ideal 
time to prevent misunderstandings with standard time zones. Ideal time 
is understood to hold everywhere. Similarly, the passing of ideal time is 
usually assumed to be the same everywhere. Furthermore, ideal time is 
usually considered to be metric, i.e., measurable in metric time intervals 
(like seconds). 

2.2. Clocks and Timestamps 

A clock is a mechanism that measures time and gives it a represen-
tation. The clock reading is often called a timestamp. A common 
assumption is that there is a standard representation for ideal time, 
which we call an ideal clock. This typically is a reference to Coordinated 
Universal Time (UTC), the standard by which the world regulates clocks 
and time. An example timestamp in UTC expressed in ISO 8601 format 
is: 2024-01-04T18:52:28+00:00, and includes a record of the timezone. 

An ideal clock measures the passing of ideal time and can be used to 
assign (ideal) timestamps to events. Real-time clocks that have milli-
second precision and are synchronized with official sources of time (like 
those given by atomic clocks) support the idealized view that the passing 
of time is the same and comparable everywhere and that the readings of 
such clocks can always be totally ordered. 

2.3. Logical Clocks 

Clocks commonly are seen as a mechanism to measure time in metric 
intervals like seconds. While modern technology gives the illusion of 
ideal time, the time-space continuum may not be standard 
(Minkowski, 1909), i.e., time may not be the same everywhere. But also 
for various other reasons, there may be bounds on the precision that 
globally synchronized clocks can have. For example, given the practical 
difficulty of clock synchronization especially in globally distributed 
systems, methods have been developed that capture the passing of time 
in a relativistic way. In this view, any clock that respects the succession 
of events can be used to represent time. 

This was observed by Lamport (1978) who introduced the notion of 
logical clocks. Using a logical clock, a timestamp is a sequence number 
that can be used to order events according to potential causality: if event 
a may have influenced event b, then the timestamp of a must be less than 
the timestamp of b. Logical clocks therefore give indications of event 
orderings that Lamport denoted as the global happened-before relation. 
This shows that clocks and timestamps must not necessarily use the 
metric system to measure time. 

2.4. Existing Timeline Approaches 

Early timeline approaches have included extraction of timestamps 
from file systems, for example in The Coroner’s Toolkit (Farmer and 
Venema, 2004) or The Sleuth Kit (Carrier), followed by more recent 
work that integrates timestamps from within files such as OS files, SQLite 
databases, and log files, rather than using only file system times. Notable 
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examples include the CyberForensic TimeLab (Olsson and Boldt, 2009) 
and Zeitline (Buchholz and Falk, 2005). 

This approach of extracting as many timestamps as possible and 
integrating them into a single timeline has been coined as a “super 
timeline” based on (Guðjónsson, 2010), and is core to the mainstream 
digital forensic timeline tool log2timeline/plaso, and is an approach 
used in many forensic tools, including Autopsy (Carrier, 2021), Axiom 
(Magnet Forensics), and Cellebrite Physical Analyzer (Mahalik, 2021). 
While this is a powerful, well-developed, and widely accepted tech-
nique, there are many challenges to this approach. 

The extraction of timestamps from a large number of digital forensic 
artefacts is challenging since correct parsing is required for each file 
format. This complexity is generally handled using software engineering 
approaches, e.g., use of plugin-based architectures (Plaso documenta-
tion), allowing new formats to be integrated by the community once a 
new timestamp source is identified. 

The normalisation of timestamps during the integration into a super 
timeline is also a challenge (Metz, 2021), particularly with regard to 
timezones. More specifically, some times may be recorded as UTC (e.g., 
the MFT and many Windows OS timestamps) while others use local time 
(e.g., setupapi.dev.log). This challenge is also addressed pro-
grammatically, i.e., based on the specific plugin that is parsing the 
specific source but relies on the timezone being known. 

There are also challenges associated with the analysis of these 
timelines since the volume of timestamps extracted is substantial 
(Chabot et al., 2014). Approaches have included heuristic-based ap-
proaches to extract “high-level” events (e.g., the connection of a USB 
stick) (Hargreaves and Patterson, 2012; Bhandari and Jusas, 2020a, 
2020b), as well as the application of colour coding rules to highlight 
specific entries associated with these events (Lee, 2012; Debinski et al., 
2019). More recent approaches use machine or deep learning techniques 
to detect certain events of interest in timelines (Studiawan et al., 2020; 
Studiawan and Sohel, 2021; Dusane and Sujatha, 2022), visualize ar-
tefacts relationships (Henseler and Hyde, 2019), or rank artefacts ac-
cording to their context-based relevance (Du et al., 2020). 

Regarding the source timestamps, on which any analysis is based, 
locally stored timestamps are only as accurate as the system clock at the 
point in time at which that timestamp was retrieved. This is mostly 
handled with a broad approach of applying a “skew” to the timeline, 
usually based on any difference between the system clock and a trusted 
time source at the time of acquisition. Tools allow the application of this 
skew to the entire timeline (e.g., using a –skew parameter in plaso). 
However, this approach does not consider previous points in time where 
the system clock may have been incorrect but has been subsequently 
corrected, either through natural clock drift or through system clock 
tampering. There is some work describing specific approaches for 
incorrect clock detection (Weil, 2002; Schatz et al., 2006; Kaart and 
Laraghy), but no generalised approach is currently available in research 
or tools. 

It is also possible for timelines to be generated and visualized using 
multiple sources of digital evidence (Patterson and Hargreaves, 2012; 
Berggren, 2018). This requires normalisation of time skew on multiple 
sources of digital evidence, assuming clock skew is known for them all. 

2.5. Timestamp Granularity 

Different timestamps often have different granularity, meaning that 
different timestamp fields may have different resolutions. This has two 
implications. First, when comparing timestamps of different resolutions, 
they have to be adjusted to the lower granularity (e.g., remove nano-
seconds). Second, the lower granularity is less precise which means two 
events could be different in a higher resolution but seem identical in a 
lower resolution. 

The precise order in which to place these events in a super timeline is 
undefined. Hargreaves and Patterson (2012) handle this issue using 
intervals, i.e., with each “low-level” (extracted) timestamp having a min 

and a max field, allowing the uncertainty of extracted lower resolution 
timestamps to be captured. Such approaches, however, create additional 
complexity that is hard to visualize and handle, so it is still absent from 
the mainstream tools. 

2.6. Using non-timestamp based information 

The focus on explicit timestamps appears to be a trait specific to 
digital forensic science, presumably because explicit timestamps are in 
excessive supply. It is well-known from other scientific areas that the 
ordering of events can be inferred using implicit timing information, i.e., 
without having explicit timestamps. Some examples are the study of 
sedimentation for dating purposes in archaeological stratigraphy (Har-
ris, 1989) or ordering a complete set of grave goods based on the sta-
tistical occurrence of temporary fashion trends (Renfrew and Bahn, 
1991). While these fields appear detached from digital forensic science, 
similar observations can be made for digital data. For example, sequence 
numbers associated with events represent logical ordering information 
similar to the statistical occurrence of fashion trends in a set of grave 
goods, and positional information such as line numbers in logfiles 
contain positional ordering information similar to stratigraphy (Casey, 
2018). 

There has been some work attempting to extract logical relations 
from digital evidence to aid event reconstruction. For example, Glady-
shev and Patel (2005) (later extended by James and Gladyshev (2015)) 
propose the method of event time bounding by inferring the execution 
time of an event (without explicit timestamp) from events with time-
stamps that happened before and after that event. Based on Lamport’s 
happened-before relation, Willassen (2008a) and later Levett et al., 2010 
generalize this approach by observing that causal dependencies in data 
can be used to check the validity of assumptions, e.g., those on the ac-
curacy of clocks (see also some refinements by Willassen (2008e,c,d,b, 
2009)). Based on these ideas, Marrington et al., 2011 provided tool 
support for detecting such inconsistencies in digital forensic timelines. 
The tool can, for example, detect that logon/logoff events are in the 
wrong order or have been removed. 

Overall, these ideas have been frequently re-invented in the litera-
ture, mostly in the context of file systems (Lee et al., 2019; Bahjat and 
Jones, 2019; Tse, 2011; Li et al., 2016). They are mainly concerned with 
consistency checking of timelines using hard-coded self-implemented 
rules rather than integrating such information in digital forensic 
timelines. 

2.7. Summary 

Timelines are an important analysis approach in digital forensics, 
and both research and practical implementations have resulted in an 
approach of extraction, normalisation, integration, and ordering of 
timestamps into a single timeline representing a digital device’s history. 
Many of the challenges that result from this approach have been 
considered by the research community, but they commonly fall into one 
of two categories: (1) the practical and tool-oriented approaches based 
on a common “flat” timeline, and (2) the more formal and largely 
impractical approaches that extend flat timelines with additional in-
formation derived from the input. In this work, we propose a novel 
approach that reconciles both approaches, yielding a generic method to 
integrate implicit timing information into practical digital forensic 
timelines supported by tools. 

3. Integrating Implicit Timing Information into Digital Forensic 
Timelines 

While the time domain of ideal time is, as mentioned above, a 
reference to UTC, not all timestamps can be readily compared. For 
example, the readings of different (unsynchronized) clocks cannot be 
compared if the clock skew is unknown. A comparison to the reading of a 
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logical clock appears similarly futile without a common reference point. 
We resolve this issue by separating these different clock readings into 
different time domains. 

3.1. Time Domains and Time Domain Entries 

A time domain D is a set of time values paired together with a context 
in which they can be compared. The values from D are those extracted 
from some piece(s) of evidence. 

Example 1. For example, all the ‘file creation’ timestamps within an 
NTFS file system are stored as 64-bit values representing the number of 
one hundred nanoseconds since January 1, 1601 UTC (Carrier, 2005). 
On a single computer, they are assumed to be comparable and therefore 
belong to one time domain D1. 

Example 2. The lines of the Linux logfile syslog begin with a time-
stamp expressed in local time. Therefore, without knowing the time-
zone, they cannot be directly compared to the UTC timestamps in D1, so 
we assign a different time domain to them which we denote D2. Aside 
from the timezone difference, the contrasting time resolution (recorded 
to the second rather than one hundred nanoseconds) would cause an 
assignment to a different time domain. 

Example 3. In SQLite databases, the primary key in a table (stored in 
the column ID) is a 64-bit signed integer that uniquely identifies the row 
in the table. When a new value is inserted, by default the new primary 
key is one more than the largest primary key currently in use (Kreibich, 
2010). Primary keys therefore resemble the readings of a logical clock 
and can be collected in a (per table) time domain D3. 

Example 4. Even though each line in syslog begins with a local time-
stamp, the line number of every entry implicitly carries information 
about the order in which the entry was added to the file. For each such 
log file, these numbers are comparable in their time domain D4 but 
incomparable with entries in the other time domains. Note that while it 
may appear that time domain D2 expresses the same order as time 
domain D4, the entries in both time domains are created through 
different mechanisms. Separating these time domains opens the possi-
bility to check that D2 and D4 in fact contain the same order. 

Since the value v from a time domain does not make sense in isola-
tion, we call the pair (v, D) a time domain entry. In practice, D may merely 
be a reference to a specific time domain from a set of identified domains 
in the data. 

For each time domain D, we assume an intra-time domain ordering 
relation <D exists for the values of D. Hence, given two time domain 
entries (v, D) and (v′, D), we can order them by comparing v and v′ using 
<D. To be useful, the ordering relation must at least be transitive, i.e., if 
a<Db and b<Dc, then it must hold that also a<Dc. 

Example 5. Some time domain entries for Examples 1 to 4 above are:  

1. (133,485,408,000,000,000, D1) refers to the number of one hundred 
nanoseconds since January 1st, 1601 UTC (Carrier, 2005) and D1 
refers to an NTFS file system on a disk volume.  

2. (Jan 28 15:51:50, D2) is a time domain entry in the file /var/log/ 
syslog on a computer.  

3. (15, D3) is a time domain entry in a table of an SQLite file on a 
computer.  

4. (3577, D4) is a time domain entry for line number 3577 in the file 
/var/log/syslog on a computer. 

While the ordering relations <D1 , <D2 , <D3 and <D4 within the time 
domains D1 to D4 in the above examples are obvious, i.e., 1st Jan 2024 is 
less than 2nd Jan 2024, and row 42 is less than row 100, in contrast, 
entries from different time domains like (Jan 28 15:51:50, D2) and 
(3577, D4) cannot be compared, at least not directly. 

3.2. Connecting Time Domains 

Using multiple time domains prevents incorrect comparisons be-
tween timestamps. However, it introduces the necessity to make seem-
ingly incomparable time domain entries comparable. This can be done 
by defining relations for the time domain entries extracted from the 
evidence. 

Let D be the set of all time domains and V be the set of all possible 
values that any time domain D ∈ D can have. Then V × D describes the 
set of all possible time domain entries. Using the local precedence re-
lations and additional observations, we want to derive a global ordering 
relation < and a global equality relation = on time domain entries. 
Formally, < and = are subsets of (V × D)× (V × D). 

Let (v, D) and (v′, D′) be two time domain entries from different time 
domains. There are now two possible relations that can be observed in 
the evidence:  

1. Coincidence: (v, D) and (v′, D′) refer to the same point in time. This 
happens when the two time domain entries were created at the same 
point in time (e.g., as part of an assumed atomic transaction) or were 
intended to express the “same time”.  

2. Precendence: (v, D) is witnessed by (v′, D′), i.e., (v, D) existed before 
(v′, D′) was created. 

Intuitively, Precedence is a very similar concept to Lamport’s 
happened-before relation (Lamport, 1978) only that it is derived from the 
context of the evidence instead of specially constructed timestamps. In a 
sense, Precedence is also more generic than Coincidence because Coin-
cidence can be regarded as mutual Precedence, i.e., where (v, D) wit-
nesses (v′, D′) and vice versa. 

We give some examples and thereby argue that Precedence and 
Coincidence can be observed almost ubiquitously in digital data. 

Example 6. (Coincidence) Syslog is used in many Linux systems to 
record general system information into the file /var/log/syslog. 
This is a text file in which each log message is separated by a line 
separator. The entry format per line consists of a timestamp (month, day 
and local time) with a precision of one second. Fig. 1 shows a sample on 
a computer running Ubuntu Desktop 20.04. 

The explicit timestamps at the beginning of each line define entries in 
time domain D2 whereas the line numbers1 of that file are entries in time 
domain D4. Since the line number implicitly is “created” when the 
timestamp is written to the file, the timestamp is in Coincidence with the 
line number. For example, in the file depicted in Fig. 1, the time domain 
entry (348, D4) is in Coincidence with time domain entry (Jan 28 
15:51:52, D2) and (350, D4) is in Coincidence to (Jan 28 15:51:53, D2). 

Precedence occurs regularly if two time domain entries are associ-
ated with the send and receipt of messages. In contrast to the use of 
logical clocks, Precedence here spans different time domains. 

Example 7. (Precedence) The Firefox history and the Firefox cache 
are used to temporarily store data about visited websites locally for an 
improved usage experience of the browser. The Firefox history is stored 
in an SQLite file called places.sqlite in the user’s Firefox profile, 
whereas the Firefox cache (version 2) stores one cache file for each 
cached website in the cache2/entries (Metz, 2018). Within each 
cache file, a copy of the HTTP response header returned by the server is 
stored, including the timestamp when the server generated its response 
in an RFC 7231 compliant representation. The Firefox history contains a 
column visit_date supposedly recording the time that a specific 
website was visited (as a Unix timestamp taken from the local clock of 
the computer). While it may be expected that the (local) timestamp in 

1 The original file does not have line numbers. We added them here for 
illustration purposes. 
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the history and server timestamp refer to the same point in time, it has 
been observed that entries to the history should not be made before the 
request is issued to the server (Groß et al., 2020), so overall we observe 
Precedence, i.e., the visit date in the history is a witness of the server 
timestamp. 

We assume that observations of Coincidence and Precedence have 
been extracted from a set of digital evidence according to a set of 
generally accepted (or at least documented) rules. We can now define 
the two global relations < and = on the set of all possible time domain 
entries as follows:  

• (v, D) < (v′, D′) if and only if v<Dv′ in case D = D′ or (v, D) is observed 
to be in Predence of (v′, D′) in case D ∕= D′.  

• (v, D) = (v′, D′) if and only if there is an observed Coincidence of (v, D) 
and (v′, D′).  

• The union of < and = is transitive, e.g., if (v, D) < (v′, D′) and (v′, D′) =
(v″, D″) then (v, D) < (v″, D″).  

• = is also reflexive, i.e., for all (v, D) holds that (v, D) = (v, D). 

Note the subtle difference between the definitions of < and = : While 
the local precedence relation <D carries over to the global precedence 
relation <, the local equality relation does not extend globally. Local 
equality does not imply global equality, as exemplified by the case study 
of poor granularity explained in Fig. 2. 

3.3. From Super Timelines to Hyper Timelines 

Overall we assume that some amount of digital evidence has been 
acquired and that investigators have defined a set of time domains such 
that the evidence contains numerous time domain entries from different 
time domains. Assume we have extracted all time domain entries that 
are contained in the evidence. We call the resulting set of time domain 
entries the evidence set. 

While the approach of a super timeline (Guðjónsson, 2010) integrates 
all time domain entries from the evidence set into a normalized yet “flat” 
linear sequence, we attempt to infer a global ordering of timestamps that 
respects individual time domains. As a result, we determine the global 
relations < and = that allow to compare timestamps across time do-
mains while respecting their individual (local) precedence relations per 
time domain. In a sense, it creates a higher-order timeline which—in 
accordance with higher order properties in distributed systems (hyper-
properties) (Clarkson and Schneider, 2008)—we call a hyper timeline. 

In practice, it is essential to maintain provenance information of 
observed relations. In classical timelines, tools like Plaso provide in-
formation about the source of a specific timestamp in the timeline. For 
hyper timelines, tools should also maintain such provenance 

information not only for time domain entries directly extracted from 
evidence but also for the Coincidence and Precedence relations that are 
extracted from it (e.g., which file or database table does the information 
come from). While we have omitted such aspects from the formalization 
above and from the tool to handle hyper timelines discussed below, both 
can in principle (and will) be extended to handle additional provenance 
information. 

4. Case Studies 

This section provides a series of examples that illustrate when 
applying the concept of time domains is beneficial in digital forensics. 

4.1. Ordering Events with Limited Granularity 

Reasoning across time domains can be helpful if timestamps have 
insufficient granularity. A particularly instructive case for timestamps of 
different resolutions is the file system FAT, where the resolution of 
created time is 10 ms, while write time has a resolution of 2 s and access 
time has a resolution of 1 day (Carrier, 2005). 

Imagine some file system had a created timestamp granularity which 
is precise only to the day. If two files, FA and FB, are created on the same 
day, timestamps cannot answer the question of which file was created 
first. If the order in which files are created is also expressed in a different 
time domain, this can be used to disambiguate the poor granularity of 
the original time domain. So if file system metadata entries are created 
incrementally (like MFT entries in NTFS or inode numbers in Ext), the 
creation order of files FA and FB can in fact be derived (see Fig. 2). 

4.2. Finding Indications of Tampering 

Timestamp tampering comes in many different forms. One option is 
to manually turn off time synchronization and then set the hardware 
clock to a certain time. Local timestamps like those in file system met-
adata will then be taken from the modified time source. Such tampering 
is notoriously difficult to detect when only considering one time domain. 
Given Coincidence or Precedence relations to other time domains, such 
tampering can be more easily detected, because timestamp readings may 
contradict corresponding entries in other time domains. 

As an example, consider the data given in Table 1. It is an excerpt 
from the Firefox browser history in an educational case where a suspect 
was accused of attempted homicide on the evening of May 26th, 2016. 
The suspect had claimed that she had watched Youtube videos during 
that time, thus creating an alibi. Superficial analysis of the Firefox 
browser history on the suspect’s computer appears to indicate that there 
had been browser activity during that time. However, taking the pri-
mary keys of the browser history entries as second time domain and 
presuming Coincidence between the two time domain entries, an 
inconsistency arises. 

To see this, consider Fig. 3 where the data of Table 1 is visualized as a 
hyper timeline. The upper time domain represents the sequence of 

Fig. 1. Excerpt from /var/log/syslog from computer asterix. Each line has been prefixed with line number in the file for illustration.  

Fig. 2. Reasoning across time domains can disambiguate timestamps of poor 
granularity. 

Table 1 
Circular precedence relation after adjusting the system clock.  

ID in moz_places visit_date in moz_places 

338 2016-05-26 19:49:05 
373 2016-05-26 19:47:26 
378 2016-05-26 19:47:39  
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primary keys while the lower represents the sequence of visit time-
stamps. The Coincidence relations extracted from the table are indicated 
as dotted-lined (equality) connections between time domain entries. We 
can now see that the global precedence relation has a cycle (looking like 
an hourglass, indicated by arrows): The value 338 precedes 373 in the 
upper time domain, and the three values in the lower time domain also 
precede each other. The Coincidence relations can be used to “jump” 
from upper to lower time domain and back, resulting in the cycle. In the 
end, value 338, for example, precedes itself, which cannot be true. 

4.3. Determine Timezone without Explicit Value 

Obtaining the timezone for a machine is performed early on in the 
analysis process so that the correct timezone can be applied to the many 
UTC timestamps recorded on a system. On Windows for example, this 
can be obtained from the Windows Registry (Wilson, 2010), however, 
this is the last recorded timezone for the machine before it was powered 
off. 

Time domains provide a convenient mechanism to determine the 
timezone of the machine at other points in time. For example, if we 
consider the connection of a USB mass storage device. This makes 
multiple changes to a Windows system, including setupapi.dev.log, 
Windows Event logs, and the Windows Registry (Carvey and Altheide, 
2005; Deb and Chetry, 2015; Arshad et al., 2018). 

Since entries in the Windows Event Logs and Last Written times for 
keys in the Windows Registry are stored as UTC, and times in setu-
papi.dev.log are in local time, these would be stored in different 
time domains. With knowledge applied from digital forensic artefact 
research for the first connection time of a USB device, a Coincidence can 
be derived for these events across time domains, i.e., they can be 
considered to have happened at the same point in time (see Fig. 4). The 
difference in the absolute values recorded across these different time 
domains allows the calculation of the timezone of the machine at the 
time of this event, rather than the final timezone setting of the machine 

before imaging. 

5. Tool Support for Hyper Timelines 

Formally, a hyper timeline can be regarded as a graph where nodes 
are time domain entries and edges are the relations between them. Some 
relations are directly extracted from evidence while others are inferred 
using a logical reasoning mechanism. A tool that supports the handling 
of hyper timelines must therefore provide a database for time domain 
entries and relations between them. Additionally, it must provide a 
reasoning mechanism that is used to make inferences. Similar to estab-
lished tools like Plaso, we also need a library of modules that extract 
specific time domain entries and relations from evidence and ingest 
them into the database. The complete architecture is depicted in Fig. 5. 

Based on it, we have implemented a prototype that demonstrates the 
feasibility of our approach. We will now discuss the individual modules 
of the prototype using the case study in Section 4.2 as running example. 
There, a suspect had claimed to have watched videos on YouTube at the 
time of crime and the task in this educational case was to investigate 
whether this statement can be supported by the digital evidence. 

5.1. Handling Input Variety 

Above we have argued that our formalization can be utilized for a 
variety of purposes, and thus, can process a wide range of data. As we do 
not want to limit this range by selecting a certain parser for one kind of 
data, we take a more general approach: For each example case, we used 
an appropriate forensic tool, e.g., X-Ways Forensics or DB Browser for 
SQLite, to identify different time domains and to extract data for each of 
them into simple spreadsheet files (tab-separated-values, .tsv). This 
file format is generic enough to represent a large variety of data, while 
being supported by many tools. Thus we decided to use it as an input file 
format for the ingest module. 

In our example case, we used DB Browser for SQLite to extract data 
from the Firefox History file places.sqlite for two relevant time 
domains: (1) the timestamp of the entry and (2) the sequential identifier 
of the entry. Similar to handling classical super timelines, it is possible to 
restrict data extraction, e.g., to a particular time frame of interest. In our 
case, the time of the crime is between 7 p.m. and 8 p.m. on May 26, 
2016. So we created an appropriate query in DB Browser and extracted 
the resulting view into a.tsv file, an excerpt of which can be seen in 
Fig. 6. 

5.2. Ingest Module 

The.tsv files are used as input for a Python script, which extracts 
the central entities of our formalization scheme. It interprets columns as 
potential time domains, their header lines as time domain references and 
all other column entries as possible time domain entries. The selection of 
time domains must be performed by the analyst by passing the column 
numbers and data types of the time domains together with the relations 
(Coincidence or Precedence) between them to the script. Based on this 
information, the script parses the.tsv file, extracts time domains as 
well as time domain entries and inserts them together with their cor-
responding relations into a database. 

This process is illustrated in our example data in Fig. 6: from the 
context of the case, one is able to specify that columns two and three are 
time domains containing a long and a datetime value, respectively, with 
their time domain entries being connected by a Coincidence relation. 
Based on this information, the script is able to extract the time domains 
visit_date and ID together with 27 time domain entries for each of 
them. It inserts all of this into the database and adds one global equality 
relation between each pair of time domain entries corresponding to 
table entries on the same line of the.tsv file. 

Fig. 3. Inconsistency arising from changing the local clock: circular precedence 
relation (expressed as arrows) indicates that either the order in the time domain 
ID or in the time domain visit_date of the Firefox history must be wrong. 
The dotted lines represent Coincidence relation. 

Fig. 4. Coincidence between time domain entries in local time (below) and 
UTC (above) allow continuous automated timezone estimation. 
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5.3. Database with Reasoning Engine 

The core of our tool is a database: The schema is based on our 
formalization, written in a high-level abstract language for defining 
formal concepts as entities, attributes and relations. This allows the 
database not only to typecheck its content but also to infer new infor-
mation based on its content and on rules given by the schema. 

Out of the possible database candidates, we selected TypeDB (Vaticle 
Ltd., 2024b) because of its flexibility and personal familiarity. TypeDB is 
an experimental database with a conceptual data model, a strong sub-
typing system and a symbolic reasoning engine released under the GNU 
Affero General Public License (version 3). It offers a declarative query 
language called TypeQL, in which schemas can be declared and queries 
can be formulated. We note that any other database with an inference 
engine can be used. 

Fig. 7 shows the TypeQL declarations of the concepts time domain and 

time domain entry as entities with attributes (owns) involved in relations 
(plays). While TypeDB offers powerful abstractions, it is still experi-
mental, so we need to explain the peculiarities of the code: First, an 
attribute can be added arbitrarily often to an object, but the cardinality 
cannot be restricted in TypeQL. Hence, we cannot represent the fact that 
one time domain entry can only have one value. Second, an attribute 
needs to have a defined data type and cannot have a purely abstract data 
type defined only in the subtype. According to the developers (Vaticle 
Ltd., 2024a) this feature should be added in the next major release. For 
the time being, we decided to use one attribute per data type for the 
value of the time domain entry and add an additional relation between 
the time domain entry and its value to easily retrieve the corresponding 
value. 

As a third peculiarity, the connection between time domain and time 
domain entry is noteworthy: They are connected using a relation, but the 
entry also has an attribute containing the time domain reference. This is 
because entities are defined by their attributes, but not by their re-
lations, and so omitting the extra attribute would turn two time domain 
entries with the same value but different interpretations into the same 
object. 

After having defined the main entities, we also need to define the 
main relations: The global equality relation = , the global ordering 
relation < and precedence are defined directly as relations. As the 
coincidence relation would exactly match the global equality relation =
, we decided to skip defining the coincidence relation. Instead, the ingest 
module directly inserts the global equality relation = and precedence. As 
by definition, the ordering relation < is inferred by two inference rules: 
each precedence relation leads to a global ordering relation < (as 
exemplified in Fig. 8) and each intra-domain-ordering as well. Addi-
tionally, properties such as transitivity are modelled as inference rules as 
well. 

Applying this to our example case means that the database infers 
intra-domain ordering based on the values of the time domain entries: In 
the visit_date time domain, the time domain entry with value 337 is 
earlier than the one with value 338, which is transitively earlier than, e. 
g., the time domain entry with value 378. The same applies to the time 
domain visit_date: The time domain entry with value 2016-05-26 
19:47:39 is earlier than the one with value 2016-05-26 19:49:05 and 

Fig. 5. Architecture of tool support for hyper timelines.  

Fig. 6. Excerpt of the data extracted from places.sqlite with two different time domains.  

Fig. 7. Declarations of time domain and time domain entries as 
TypeDB schemas. 
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so on. 
Through the global equality relations between the time domain entry 

with value 338 in time domain ID and the one with value 2016-05-26 
19:49:05 in visit_date and between the time domain entries with 
value 378 in time domain ID and the one with value 2016-05-26 
19:47:39 in visit_date, the database will also infer further informa-
tion: the time domain entry with value 2016-05-26 19:49:05 is later than 
the one with value 2016-05-26 19:47:39 and thus later than the one that 
happened at equal time: the one with value 378. 

Furthermore, the time domain entry with value 378 is later than the 
one with value 338, which is equal in time to the one with value 2016- 
05-26 19:49:05. As a result, the time domain entry with value 378 is 
both, earlier and later than the one with value 2016-05-26 19:49:05, 
which can be regarded as an inconsistency. Note that inference rules 
only get applied as soon as a query requires them to be computed. 

5.4. Query Interface 

To use this formalization, an examiner has to query the database 
using the inference feature. For our work, we assume that an investi-
gator mainly queries the database to show all global ordering relations 
between time domain entries A and B. Such a query can either be created 
directly by the investigator as formulated in Fig. 9 or hidden in a script to 
increase usability. For our case studies, the execution time in a Virtual 
Machine ranged from seconds up to 2 min for around 800 time domain 
entries, which is quite acceptable for a proof-of-concept 
implementation. 

The answer is shown in Fig. 10 using the “Graph View” of TypeDB, 
but it could also be retrieved as machine-readable data, e.g., JSON or 
TypeQL. Looking at the result of the query, we can see one time domain 
entry that is both, earlier as well as later in time, compared to the other. 
This manifests the inconsistency mentioned above. Such inconsistencies 
should then be examined closely, either manually or by tracing the 
inference steps the database made using a special “explainable” feature 
of TypeDB. Doing so in our example, an investigator could find that the 
inconsistency was caused by a change of the local clock by the suspect, 
who wanted to antedate the video session to create an alibi for the time 
of the crime. Note that such inconsistencies (namely cycles in the pre-
cedence relation) can also be explicitly queried using TypeQL. 

6. Discussion 

While being more flexible than classical timeline, hyper timelines 
require careful consideration before being applied. 

The first and foremost difficulty when creating a hyper timeline is the 
choice of time domains. This is a delicate issue since it considerably 
affects the possibilities of analysis. To increase or optimize the precision 
of analysis, one may opt for many time domains. For example, if the 
clock of a computer has been set back at some point in time, the time 
domain of all created timestamps of files in a file system may be split into 
multiple time domains to keep timestamps comparable within each 
fragment. Any observed inconsistency (detected as cycle in the global 
precedence relation, see Section 4) can be “fixed” by fragmenting time 
domains. This method can also be applied if the ordering relation in one 
time domain may be uncertain, e.g., due to a wraparound of sequence 
numbers or file system allocation positions when the end of the alloca-
tion area is reached. 

However, having too many time domains causes fragmentation of 
the hyper timeline, resulting in sub-timelines that have no connection. 
Too few time domains make analysis simpler but also less precise in the 
sense that inconsistencies may remain unnoticed. This is exemplified by 
the fact that a classical timeline can be regarded as a hyper timeline with 
a minimum number of time domains, namely one. 

Intertwined with the problem of choosing an appropriate number of 
time domains is the problem of correctly interpreting them. Even though 
explicit time domains are designed to express time, issues such as un-
specified time zones or clock shifts in practice may hamper their in-
terpretations. But with implicit timing information not being designed to 
express time, this issue severely aggravates: to be able to interpret im-
plicit timing information, an investigator must thoroughly analyze the 
program or driver, which creates new time domain entries, to learn its 
behavior. Knowing how it handles the reuse of deleted entries and other 
details of the allocation strategy enables the investigator to determine 
suitable time domains and fragment them properly. In practice, this 
remains a highly intricate topic—especially for positional 
information—as driver behavior is not necessarily deterministic and 
may vary between different versions of a driver. Thus, further research 
in this area is needed. 

Developing conclusive guidelines for the optimal choice of time 
domains is an open problem for future work. To make progress in this 
direction, hyper timeline construction and analysis tools should provide 
the possibility to dynamically select and deselect time domains from a 
library of well-chosen time domains during analysis. If an inconsistency 
vanishes after deselecting a particular time domain, a relation within 
that (deselected) time domain must be the cause of the inconsistency 
and can be investigated further. 

Ideally, one would like to combine the power and precision of hyper 
timeline analysis with the simplicity and intuitiveness of classical 
timelines. And under certain conditions, it may be possible to create 
better super timelines using hyper timelines. For example, timestamps 
from clocks with different skews are seamlessly processed within a hyper 
timeline (i.e., without any alignment calculations) and can then be 
“flattened” into a super timeline respecting the global order of time-
stamps. To do this, we would need the observation of sufficiently many 
Coincidence relations between the time domains such that the partial 
order is reduced to a total order. Without a sufficient number of syn-
chronization points, such automatic alignment will also be hard using 
hyper timelines. Similarly, implicit timing information also cannot be 
easily merged with classical timelines. It may, however, be possible to 
identify or choose one time domain and visualize implicit timing in-
formation as intervals which are spread over a classical timeline, 

Fig. 8. Definition of how to infer global ordering relation < from precedence 
relation in TypeQL. 

Fig. 9. Querying for all global ordering relations between two time domain entries A and B in TypeDB.  
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identifying the earliest and latest point in time of the classical timeline 
when an event might have occurred. 

7. Conclusions 

The article proposed the concept of hyper timelines. Hyper timelines 
are a flexible concept that allows the integration of implicit timing in-
formation into digital forensic timelines by separating sources into 
distinct time domains. Each time domain has its timeline, and these 
timelines are then connected based on relations observed within digital 
evidence. This concept enables the ordering of events without time-
stamps and thereby opens a rich set of possibilities to identify and 
characterize timestamp inconsistencies. Additionally, it allows to 
improve the precision of timestamp-based analyses, e.g., by ordering 
events with limited granularity or determining a timezone without an 
explicit value. But while the increased analysis flexibility of hyper 
timelines appears obvious, the usability of this concept in practice still 
needs to be explored. As first step in this direction, we wrote a proof-of- 
concept implementation and release it publicly.2 

The practicality of hyper timeline analysis rests on the amount and 
quality of Coincidence and Precedence links that have been identified in 
data and can be extracted from evidence. While we have presented a 
couple of examples for these relations in this paper, it is left to future 
work to identify and “decipher” other such ordering relations and 
thereby lift the treasure trove of implicit timing information that is 
currently still hidden in digital evidence sets. 
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