
Forensic Science International: Digital Investigation 49 (2024) 301755

Available online 5 July 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS USA 2024 - Selected Papers from the 24th Annual Digital Forensics Research Conference USA

Beyond timestamps: Integrating implicit timing information into digital
forensic timelines

Lisa Marie Dreier a,*, Céline Vanini b, Christopher J. Hargreaves c, Frank Breitinger b,
Felix Freiling a,**

a Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
b School of Criminal Justice, University of Lausanne, 1015, Lausanne, Switzerland
c Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom

A R T I C L E I N F O

Keywords:
Timelining
Relative ordering
Implicit timing information
Logical clocks

A B S T R A C T

Generating timelines, i.e., sorting events by their respective timestamps, is an essential technique commonly used
in digital forensic investigations. But timestamps are not the only source of timing information. For example,
sequence numbers embedded in databases or positional information, such as the line numbers in log files, often
contain implicit information about the order of events without directly referencing a timestamp. We present a
method that can integrate such timing information into digital forensic timelines by separating sources of timing
information into distinct time domains, each with its own timeline, and then connecting these timelines based on
relations observed within digital evidence. The classical “flat” timeline is thereby extended into a “rich” partial
order, which we call hyper timeline. Our technique allows ordering of events without timestamps and opens a rich
set of possibilities to identify and characterize timestamp inconsistencies, e.g., those that arise from timestamp
tampering.

1. Introduction

Generating timelines (an activity often called timelining) is an
essential technique commonly used in digital forensic investigations.
When sorting events by their respective timestamp, the approach
heavily depends on the existence of such timestamps within digital data
used as evidence. The technique is rather fragile since different time-
stamps might come from different sources or have different granularity
so they are in general hard to compare. Their integration into a classical
(flat) timeline therefore involves considerable thought and effort (Metz,
2021). Given sufficient effort, timestamps can — at least in principle —
be aligned across different timezones, clock granularities and clock
skews.

However, timestamps are not the only source of timing information
embedded in digital evidence. For example, positional information in
file systems (such as the position of file metadata in the MFT of NTFS) or
within files (such as the line numbers of entries in the syslog log file) is

often related to the order in which its content was created. Moreover,
sequence numbers convey time-related ordering information, e.g., the
primary keys in SQLite databases are generated incrementally by default
so they can potentially be used to order table entries regarding their
creation time. In contrast to explicit timing information (as expressed by
classical timestamps) that is based on some idealized notion of metrical
time, implicit timing information is based on any information not
expressed as a classical timestamp.

1.1. Implicit Timing Information and its Relevance

The possibility to extend the information provided by timestamps by
taking implicit timing information into account has been observed in
digital forensic analysis, for example by Gladyshev and Patel (2005) and
Marrington et al., 2011, but its connection to the creation of timelines is
largely unclear (see also the discussion of other related work in Section
2). Since implicit timing information does not necessarily contain any

* Corresponding author.
** Corresponding author.

E-mail addresses: lisa.dreier@fau.de (L.M. Dreier), celine.vanini@unil.ch (C. Vanini), christopher.hargreaves@cs.ox.ac.uk (C.J. Hargreaves), frank.breitinger@
unil.ch (F. Breitinger), felix.freiling@fau.de (F. Freiling).

URL: https://FBreitinger.de (F. Freiling).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301755

mailto:lisa.dreier@fau.de
mailto:celine.vanini@unil.ch
mailto:christopher.hargreaves@cs.ox.ac.uk
mailto:frank.breitinger@unil.ch
mailto:frank.breitinger@unil.ch
mailto:felix.freiling@fau.de
https://FBreitinger.de
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2024.301755
https://doi.org/10.1016/j.fsidi.2024.301755
https://doi.org/10.1016/j.fsidi.2024.301755
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2024.301755&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 49 (2024) 301755

2

information about how much time has passed between two events or at
which time an event occurred, it can be regarded as a new class of timing
information that is hard to integrate into classical timelines. It is
therefore not surprising that information derived from such implicit
timestamps is absent from the timelines produced by current tools.

Implicit timing information is also relevant for another reason: If
perpetrators modify or delete timestamps to cover up illicit actions they
might not be aware of implicit timing information. Since implicit timing
information was often not created to keep track of time, its relation to
event ordering has to be understood before it can be reliably interpreted.
If it is overlooked by perpetrators, such information can therefore be
used to reveal timestamp tampering.

1.2. Contributions

This paper presents a method for creating timelines that can handle
both implicit timing information and conventional (explicit) timestamp
data. The method is based on formal concepts that are implemented
using a logical database able to infer further timing information from
data inserted by parsers for explicit and implicit timing information.

The central idea of our method is to separate different types of timing
information into distinct time domains. In general, a time domain is an
environment in which timing information of a specific type can be
compared. While the concept of time domain might appear abstract, it is
motivated by real-world needs as different time domains allow to
separate the concerns of different classes of timestamps, e.g., whether
they represent implicit or explicit timing information, the granularity of
a timestamp, the timezone used, or the interpretation details of a certain
form of implicit timing information. Each time domain defines a sepa-
rate “later-than” relation that is used to order events within that specific
time domain, generating an independent timeline per time domain.

To connect these independent timelines, we observe that certain
events have time information from different time domains. For example,
website visits in a Firefox History contain a sequence number of the
entry and a timestamp. Such events can be used to define special re-
lations that link events from different time domains, thus creating an
overall partial order of events which we call a hyper timeline. A hyper
timeline integrates multiple intra-time domain relations to a single inter-
time domain relation. Using a hyper timeline, global properties like
“event a happened after event b” or “event a happened between event b
and c” can now be automatically inferred by a logical reasoning mech-
anism incorporating all timing information extracted from the evidence.

Our approach has the potential to leverage any form of timing in-
formation for event reconstruction, be it explicit timestamps from
different clocks of different granularity or implicit timing information
like sequence numbers and positional information. As the latter kind of
data was mostly not created to explicitly keep track of time and often is
merely an inevitable consequence of an implementation, it is more
robust than explicit timing information and therefore harder to tamper
with such data, increasing the reliability of this type of source. So our
method can also be used to detect inconsistencies in the data, creating
opportunities for timestamp tamper detection.

To summarize, the contributions of this paper are:

• Based on a formal model, we present a general method to integrate
arbitrary sources of time-related information into a single (partially
ordered) digital forensic hyper timeline.

• Using several case studies, we argue that this method can be used to
complement traditional timeline analysis.

• We provide a tool that can integrate this information together with
timestamp-based information.

1.3. Outline

The paper is structured as follows: We begin by revisiting core con-
cepts and methods of existing timeline approaches and thereby

discussing related work in Section 2. In Section 3 we introduce and
define the concept of hyper timelines. Its usefulness is then demon-
strated in Section 4. Section 5 elaborates on tool support for hyper
timelines. Section 6 discusses the limitations of the work, while Section
7 provides conclusions.

2. A Brief Timeline of Digital Forensic Timelines

We now present related work that used explicit and implicit timing
information in digital forensic science.

2.1. Ideal Time

The common (and naïve, see below) understanding of time that also
underlies the concept of classical timelining in digital forensic science is
that of “standard time” (van Benthem, 1983), which we will call ideal
time to prevent misunderstandings with standard time zones. Ideal time
is understood to hold everywhere. Similarly, the passing of ideal time is
usually assumed to be the same everywhere. Furthermore, ideal time is
usually considered to be metric, i.e., measurable in metric time intervals
(like seconds).

2.2. Clocks and Timestamps

A clock is a mechanism that measures time and gives it a represen-
tation. The clock reading is often called a timestamp. A common
assumption is that there is a standard representation for ideal time,
which we call an ideal clock. This typically is a reference to Coordinated
Universal Time (UTC), the standard by which the world regulates clocks
and time. An example timestamp in UTC expressed in ISO 8601 format
is: 2024-01-04T18:52:28+00:00, and includes a record of the timezone.

An ideal clock measures the passing of ideal time and can be used to
assign (ideal) timestamps to events. Real-time clocks that have milli-
second precision and are synchronized with official sources of time (like
those given by atomic clocks) support the idealized view that the passing
of time is the same and comparable everywhere and that the readings of
such clocks can always be totally ordered.

2.3. Logical Clocks

Clocks commonly are seen as a mechanism to measure time in metric
intervals like seconds. While modern technology gives the illusion of
ideal time, the time-space continuum may not be standard
(Minkowski, 1909), i.e., time may not be the same everywhere. But also
for various other reasons, there may be bounds on the precision that
globally synchronized clocks can have. For example, given the practical
difficulty of clock synchronization especially in globally distributed
systems, methods have been developed that capture the passing of time
in a relativistic way. In this view, any clock that respects the succession
of events can be used to represent time.

This was observed by Lamport (1978) who introduced the notion of
logical clocks. Using a logical clock, a timestamp is a sequence number
that can be used to order events according to potential causality: if event
a may have influenced event b, then the timestamp of a must be less than
the timestamp of b. Logical clocks therefore give indications of event
orderings that Lamport denoted as the global happened-before relation.
This shows that clocks and timestamps must not necessarily use the
metric system to measure time.

2.4. Existing Timeline Approaches

Early timeline approaches have included extraction of timestamps
from file systems, for example in The Coroner’s Toolkit (Farmer and
Venema, 2004) or The Sleuth Kit (Carrier), followed by more recent
work that integrates timestamps from within files such as OS files, SQLite
databases, and log files, rather than using only file system times. Notable

L.M. Dreier et al.

Forensic Science International: Digital Investigation 49 (2024) 301755

3

examples include the CyberForensic TimeLab (Olsson and Boldt, 2009)
and Zeitline (Buchholz and Falk, 2005).

This approach of extracting as many timestamps as possible and
integrating them into a single timeline has been coined as a “super
timeline” based on (Guðjónsson, 2010), and is core to the mainstream
digital forensic timeline tool log2timeline/plaso, and is an approach
used in many forensic tools, including Autopsy (Carrier, 2021), Axiom
(Magnet Forensics), and Cellebrite Physical Analyzer (Mahalik, 2021).
While this is a powerful, well-developed, and widely accepted tech-
nique, there are many challenges to this approach.

The extraction of timestamps from a large number of digital forensic
artefacts is challenging since correct parsing is required for each file
format. This complexity is generally handled using software engineering
approaches, e.g., use of plugin-based architectures (Plaso documenta-
tion), allowing new formats to be integrated by the community once a
new timestamp source is identified.

The normalisation of timestamps during the integration into a super
timeline is also a challenge (Metz, 2021), particularly with regard to
timezones. More specifically, some times may be recorded as UTC (e.g.,
the MFT and many Windows OS timestamps) while others use local time
(e.g., setupapi.dev.log). This challenge is also addressed pro-
grammatically, i.e., based on the specific plugin that is parsing the
specific source but relies on the timezone being known.

There are also challenges associated with the analysis of these
timelines since the volume of timestamps extracted is substantial
(Chabot et al., 2014). Approaches have included heuristic-based ap-
proaches to extract “high-level” events (e.g., the connection of a USB
stick) (Hargreaves and Patterson, 2012; Bhandari and Jusas, 2020a,
2020b), as well as the application of colour coding rules to highlight
specific entries associated with these events (Lee, 2012; Debinski et al.,
2019). More recent approaches use machine or deep learning techniques
to detect certain events of interest in timelines (Studiawan et al., 2020;
Studiawan and Sohel, 2021; Dusane and Sujatha, 2022), visualize ar-
tefacts relationships (Henseler and Hyde, 2019), or rank artefacts ac-
cording to their context-based relevance (Du et al., 2020).

Regarding the source timestamps, on which any analysis is based,
locally stored timestamps are only as accurate as the system clock at the
point in time at which that timestamp was retrieved. This is mostly
handled with a broad approach of applying a “skew” to the timeline,
usually based on any difference between the system clock and a trusted
time source at the time of acquisition. Tools allow the application of this
skew to the entire timeline (e.g., using a –skew parameter in plaso).
However, this approach does not consider previous points in time where
the system clock may have been incorrect but has been subsequently
corrected, either through natural clock drift or through system clock
tampering. There is some work describing specific approaches for
incorrect clock detection (Weil, 2002; Schatz et al., 2006; Kaart and
Laraghy), but no generalised approach is currently available in research
or tools.

It is also possible for timelines to be generated and visualized using
multiple sources of digital evidence (Patterson and Hargreaves, 2012;
Berggren, 2018). This requires normalisation of time skew on multiple
sources of digital evidence, assuming clock skew is known for them all.

2.5. Timestamp Granularity

Different timestamps often have different granularity, meaning that
different timestamp fields may have different resolutions. This has two
implications. First, when comparing timestamps of different resolutions,
they have to be adjusted to the lower granularity (e.g., remove nano-
seconds). Second, the lower granularity is less precise which means two
events could be different in a higher resolution but seem identical in a
lower resolution.

The precise order in which to place these events in a super timeline is
undefined. Hargreaves and Patterson (2012) handle this issue using
intervals, i.e., with each “low-level” (extracted) timestamp having a min

and a max field, allowing the uncertainty of extracted lower resolution
timestamps to be captured. Such approaches, however, create additional
complexity that is hard to visualize and handle, so it is still absent from
the mainstream tools.

2.6. Using non-timestamp based information

The focus on explicit timestamps appears to be a trait specific to
digital forensic science, presumably because explicit timestamps are in
excessive supply. It is well-known from other scientific areas that the
ordering of events can be inferred using implicit timing information, i.e.,
without having explicit timestamps. Some examples are the study of
sedimentation for dating purposes in archaeological stratigraphy (Har-
ris, 1989) or ordering a complete set of grave goods based on the sta-
tistical occurrence of temporary fashion trends (Renfrew and Bahn,
1991). While these fields appear detached from digital forensic science,
similar observations can be made for digital data. For example, sequence
numbers associated with events represent logical ordering information
similar to the statistical occurrence of fashion trends in a set of grave
goods, and positional information such as line numbers in logfiles
contain positional ordering information similar to stratigraphy (Casey,
2018).

There has been some work attempting to extract logical relations
from digital evidence to aid event reconstruction. For example, Glady-
shev and Patel (2005) (later extended by James and Gladyshev (2015))
propose the method of event time bounding by inferring the execution
time of an event (without explicit timestamp) from events with time-
stamps that happened before and after that event. Based on Lamport’s
happened-before relation, Willassen (2008a) and later Levett et al., 2010
generalize this approach by observing that causal dependencies in data
can be used to check the validity of assumptions, e.g., those on the ac-
curacy of clocks (see also some refinements by Willassen (2008e,c,d,b,
2009)). Based on these ideas, Marrington et al., 2011 provided tool
support for detecting such inconsistencies in digital forensic timelines.
The tool can, for example, detect that logon/logoff events are in the
wrong order or have been removed.

Overall, these ideas have been frequently re-invented in the litera-
ture, mostly in the context of file systems (Lee et al., 2019; Bahjat and
Jones, 2019; Tse, 2011; Li et al., 2016). They are mainly concerned with
consistency checking of timelines using hard-coded self-implemented
rules rather than integrating such information in digital forensic
timelines.

2.7. Summary

Timelines are an important analysis approach in digital forensics,
and both research and practical implementations have resulted in an
approach of extraction, normalisation, integration, and ordering of
timestamps into a single timeline representing a digital device’s history.
Many of the challenges that result from this approach have been
considered by the research community, but they commonly fall into one
of two categories: (1) the practical and tool-oriented approaches based
on a common “flat” timeline, and (2) the more formal and largely
impractical approaches that extend flat timelines with additional in-
formation derived from the input. In this work, we propose a novel
approach that reconciles both approaches, yielding a generic method to
integrate implicit timing information into practical digital forensic
timelines supported by tools.

3. Integrating Implicit Timing Information into Digital Forensic
Timelines

While the time domain of ideal time is, as mentioned above, a
reference to UTC, not all timestamps can be readily compared. For
example, the readings of different (unsynchronized) clocks cannot be
compared if the clock skew is unknown. A comparison to the reading of a

L.M. Dreier et al.

Forensic Science International: Digital Investigation 49 (2024) 301755

4

logical clock appears similarly futile without a common reference point.
We resolve this issue by separating these different clock readings into
different time domains.

3.1. Time Domains and Time Domain Entries

A time domain D is a set of time values paired together with a context
in which they can be compared. The values from D are those extracted
from some piece(s) of evidence.

Example 1. For example, all the ‘file creation’ timestamps within an
NTFS file system are stored as 64-bit values representing the number of
one hundred nanoseconds since January 1, 1601 UTC (Carrier, 2005).
On a single computer, they are assumed to be comparable and therefore
belong to one time domain D1.

Example 2. The lines of the Linux logfile syslog begin with a time-
stamp expressed in local time. Therefore, without knowing the time-
zone, they cannot be directly compared to the UTC timestamps in D1, so
we assign a different time domain to them which we denote D2. Aside
from the timezone difference, the contrasting time resolution (recorded
to the second rather than one hundred nanoseconds) would cause an
assignment to a different time domain.

Example 3. In SQLite databases, the primary key in a table (stored in
the column ID) is a 64-bit signed integer that uniquely identifies the row
in the table. When a new value is inserted, by default the new primary
key is one more than the largest primary key currently in use (Kreibich,
2010). Primary keys therefore resemble the readings of a logical clock
and can be collected in a (per table) time domain D3.

Example 4. Even though each line in syslog begins with a local time-
stamp, the line number of every entry implicitly carries information
about the order in which the entry was added to the file. For each such
log file, these numbers are comparable in their time domain D4 but
incomparable with entries in the other time domains. Note that while it
may appear that time domain D2 expresses the same order as time
domain D4, the entries in both time domains are created through
different mechanisms. Separating these time domains opens the possi-
bility to check that D2 and D4 in fact contain the same order.

Since the value v from a time domain does not make sense in isola-
tion, we call the pair (v, D) a time domain entry. In practice, D may merely
be a reference to a specific time domain from a set of identified domains
in the data.

For each time domain D, we assume an intra-time domain ordering
relation <D exists for the values of D. Hence, given two time domain
entries (v, D) and (v′, D), we can order them by comparing v and v′ using
<D. To be useful, the ordering relation must at least be transitive, i.e., if
a<Db and b<Dc, then it must hold that also a<Dc.

Example 5. Some time domain entries for Examples 1 to 4 above are:

1. (133,485,408,000,000,000, D1) refers to the number of one hundred
nanoseconds since January 1st, 1601 UTC (Carrier, 2005) and D1
refers to an NTFS file system on a disk volume.

2. (Jan 28 15:51:50, D2) is a time domain entry in the file /var/log/
syslog on a computer.

3. (15, D3) is a time domain entry in a table of an SQLite file on a
computer.

4. (3577, D4) is a time domain entry for line number 3577 in the file
/var/log/syslog on a computer.

While the ordering relations <D1 , <D2 , <D3 and <D4 within the time
domains D1 to D4 in the above examples are obvious, i.e., 1st Jan 2024 is
less than 2nd Jan 2024, and row 42 is less than row 100, in contrast,
entries from different time domains like (Jan 28 15:51:50, D2) and
(3577, D4) cannot be compared, at least not directly.

3.2. Connecting Time Domains

Using multiple time domains prevents incorrect comparisons be-
tween timestamps. However, it introduces the necessity to make seem-
ingly incomparable time domain entries comparable. This can be done
by defining relations for the time domain entries extracted from the
evidence.

Let D be the set of all time domains and V be the set of all possible
values that any time domain D ∈ D can have. Then V × D describes the
set of all possible time domain entries. Using the local precedence re-
lations and additional observations, we want to derive a global ordering
relation < and a global equality relation = on time domain entries.
Formally, < and = are subsets of (V × D)× (V × D).

Let (v, D) and (v′, D′) be two time domain entries from different time
domains. There are now two possible relations that can be observed in
the evidence:

1. Coincidence: (v, D) and (v′, D′) refer to the same point in time. This
happens when the two time domain entries were created at the same
point in time (e.g., as part of an assumed atomic transaction) or were
intended to express the “same time”.

2. Precendence: (v, D) is witnessed by (v′, D′), i.e., (v, D) existed before
(v′, D′) was created.

Intuitively, Precedence is a very similar concept to Lamport’s
happened-before relation (Lamport, 1978) only that it is derived from the
context of the evidence instead of specially constructed timestamps. In a
sense, Precedence is also more generic than Coincidence because Coin-
cidence can be regarded as mutual Precedence, i.e., where (v, D) wit-
nesses (v′, D′) and vice versa.

We give some examples and thereby argue that Precedence and
Coincidence can be observed almost ubiquitously in digital data.

Example 6. (Coincidence) Syslog is used in many Linux systems to
record general system information into the file /var/log/syslog.
This is a text file in which each log message is separated by a line
separator. The entry format per line consists of a timestamp (month, day
and local time) with a precision of one second. Fig. 1 shows a sample on
a computer running Ubuntu Desktop 20.04.

The explicit timestamps at the beginning of each line define entries in
time domain D2 whereas the line numbers1 of that file are entries in time
domain D4. Since the line number implicitly is “created” when the
timestamp is written to the file, the timestamp is in Coincidence with the
line number. For example, in the file depicted in Fig. 1, the time domain
entry (348, D4) is in Coincidence with time domain entry (Jan 28
15:51:52, D2) and (350, D4) is in Coincidence to (Jan 28 15:51:53, D2).

Precedence occurs regularly if two time domain entries are associ-
ated with the send and receipt of messages. In contrast to the use of
logical clocks, Precedence here spans different time domains.

Example 7. (Precedence) The Firefox history and the Firefox cache
are used to temporarily store data about visited websites locally for an
improved usage experience of the browser. The Firefox history is stored
in an SQLite file called places.sqlite in the user’s Firefox profile,
whereas the Firefox cache (version 2) stores one cache file for each
cached website in the cache2/entries (Metz, 2018). Within each
cache file, a copy of the HTTP response header returned by the server is
stored, including the timestamp when the server generated its response
in an RFC 7231 compliant representation. The Firefox history contains a
column visit_date supposedly recording the time that a specific
website was visited (as a Unix timestamp taken from the local clock of
the computer). While it may be expected that the (local) timestamp in

1 The original file does not have line numbers. We added them here for
illustration purposes.

L.M. Dreier et al.

Forensic Science International: Digital Investigation 49 (2024) 301755

5

the history and server timestamp refer to the same point in time, it has
been observed that entries to the history should not be made before the
request is issued to the server (Groß et al., 2020), so overall we observe
Precedence, i.e., the visit date in the history is a witness of the server
timestamp.

We assume that observations of Coincidence and Precedence have
been extracted from a set of digital evidence according to a set of
generally accepted (or at least documented) rules. We can now define
the two global relations < and = on the set of all possible time domain
entries as follows:

• (v, D) < (v′, D′) if and only if v<Dv′ in case D = D′ or (v, D) is observed
to be in Predence of (v′, D′) in case D ∕= D′.

• (v, D) = (v′, D′) if and only if there is an observed Coincidence of (v, D)
and (v′, D′).

• The union of < and = is transitive, e.g., if (v, D) < (v′, D′) and (v′, D′) =
(v″, D″) then (v, D) < (v″, D″).

• = is also reflexive, i.e., for all (v, D) holds that (v, D) = (v, D).

Note the subtle difference between the definitions of < and = : While
the local precedence relation <D carries over to the global precedence
relation <, the local equality relation does not extend globally. Local
equality does not imply global equality, as exemplified by the case study
of poor granularity explained in Fig. 2.

3.3. From Super Timelines to Hyper Timelines

Overall we assume that some amount of digital evidence has been
acquired and that investigators have defined a set of time domains such
that the evidence contains numerous time domain entries from different
time domains. Assume we have extracted all time domain entries that
are contained in the evidence. We call the resulting set of time domain
entries the evidence set.

While the approach of a super timeline (Guðjónsson, 2010) integrates
all time domain entries from the evidence set into a normalized yet “flat”
linear sequence, we attempt to infer a global ordering of timestamps that
respects individual time domains. As a result, we determine the global
relations < and = that allow to compare timestamps across time do-
mains while respecting their individual (local) precedence relations per
time domain. In a sense, it creates a higher-order timeline which—in
accordance with higher order properties in distributed systems (hyper-
properties) (Clarkson and Schneider, 2008)—we call a hyper timeline.

In practice, it is essential to maintain provenance information of
observed relations. In classical timelines, tools like Plaso provide in-
formation about the source of a specific timestamp in the timeline. For
hyper timelines, tools should also maintain such provenance

information not only for time domain entries directly extracted from
evidence but also for the Coincidence and Precedence relations that are
extracted from it (e.g., which file or database table does the information
come from). While we have omitted such aspects from the formalization
above and from the tool to handle hyper timelines discussed below, both
can in principle (and will) be extended to handle additional provenance
information.

4. Case Studies

This section provides a series of examples that illustrate when
applying the concept of time domains is beneficial in digital forensics.

4.1. Ordering Events with Limited Granularity

Reasoning across time domains can be helpful if timestamps have
insufficient granularity. A particularly instructive case for timestamps of
different resolutions is the file system FAT, where the resolution of
created time is 10 ms, while write time has a resolution of 2 s and access
time has a resolution of 1 day (Carrier, 2005).

Imagine some file system had a created timestamp granularity which
is precise only to the day. If two files, FA and FB, are created on the same
day, timestamps cannot answer the question of which file was created
first. If the order in which files are created is also expressed in a different
time domain, this can be used to disambiguate the poor granularity of
the original time domain. So if file system metadata entries are created
incrementally (like MFT entries in NTFS or inode numbers in Ext), the
creation order of files FA and FB can in fact be derived (see Fig. 2).

4.2. Finding Indications of Tampering

Timestamp tampering comes in many different forms. One option is
to manually turn off time synchronization and then set the hardware
clock to a certain time. Local timestamps like those in file system met-
adata will then be taken from the modified time source. Such tampering
is notoriously difficult to detect when only considering one time domain.
Given Coincidence or Precedence relations to other time domains, such
tampering can be more easily detected, because timestamp readings may
contradict corresponding entries in other time domains.

As an example, consider the data given in Table 1. It is an excerpt
from the Firefox browser history in an educational case where a suspect
was accused of attempted homicide on the evening of May 26th, 2016.
The suspect had claimed that she had watched Youtube videos during
that time, thus creating an alibi. Superficial analysis of the Firefox
browser history on the suspect’s computer appears to indicate that there
had been browser activity during that time. However, taking the pri-
mary keys of the browser history entries as second time domain and
presuming Coincidence between the two time domain entries, an
inconsistency arises.

To see this, consider Fig. 3 where the data of Table 1 is visualized as a
hyper timeline. The upper time domain represents the sequence of

Fig. 1. Excerpt from /var/log/syslog from computer asterix. Each line has been prefixed with line number in the file for illustration.

Fig. 2. Reasoning across time domains can disambiguate timestamps of poor
granularity.

Table 1
Circular precedence relation after adjusting the system clock.

ID in moz_places visit_date in moz_places

338 2016-05-26 19:49:05
373 2016-05-26 19:47:26
378 2016-05-26 19:47:39

L.M. Dreier et al.

Forensic Science International: Digital Investigation 49 (2024) 301755

6

primary keys while the lower represents the sequence of visit time-
stamps. The Coincidence relations extracted from the table are indicated
as dotted-lined (equality) connections between time domain entries. We
can now see that the global precedence relation has a cycle (looking like
an hourglass, indicated by arrows): The value 338 precedes 373 in the
upper time domain, and the three values in the lower time domain also
precede each other. The Coincidence relations can be used to “jump”
from upper to lower time domain and back, resulting in the cycle. In the
end, value 338, for example, precedes itself, which cannot be true.

4.3. Determine Timezone without Explicit Value

Obtaining the timezone for a machine is performed early on in the
analysis process so that the correct timezone can be applied to the many
UTC timestamps recorded on a system. On Windows for example, this
can be obtained from the Windows Registry (Wilson, 2010), however,
this is the last recorded timezone for the machine before it was powered
off.

Time domains provide a convenient mechanism to determine the
timezone of the machine at other points in time. For example, if we
consider the connection of a USB mass storage device. This makes
multiple changes to a Windows system, including setupapi.dev.log,
Windows Event logs, and the Windows Registry (Carvey and Altheide,
2005; Deb and Chetry, 2015; Arshad et al., 2018).

Since entries in the Windows Event Logs and Last Written times for
keys in the Windows Registry are stored as UTC, and times in setu-
papi.dev.log are in local time, these would be stored in different
time domains. With knowledge applied from digital forensic artefact
research for the first connection time of a USB device, a Coincidence can
be derived for these events across time domains, i.e., they can be
considered to have happened at the same point in time (see Fig. 4). The
difference in the absolute values recorded across these different time
domains allows the calculation of the timezone of the machine at the
time of this event, rather than the final timezone setting of the machine

before imaging.

5. Tool Support for Hyper Timelines

Formally, a hyper timeline can be regarded as a graph where nodes
are time domain entries and edges are the relations between them. Some
relations are directly extracted from evidence while others are inferred
using a logical reasoning mechanism. A tool that supports the handling
of hyper timelines must therefore provide a database for time domain
entries and relations between them. Additionally, it must provide a
reasoning mechanism that is used to make inferences. Similar to estab-
lished tools like Plaso, we also need a library of modules that extract
specific time domain entries and relations from evidence and ingest
them into the database. The complete architecture is depicted in Fig. 5.

Based on it, we have implemented a prototype that demonstrates the
feasibility of our approach. We will now discuss the individual modules
of the prototype using the case study in Section 4.2 as running example.
There, a suspect had claimed to have watched videos on YouTube at the
time of crime and the task in this educational case was to investigate
whether this statement can be supported by the digital evidence.

5.1. Handling Input Variety

Above we have argued that our formalization can be utilized for a
variety of purposes, and thus, can process a wide range of data. As we do
not want to limit this range by selecting a certain parser for one kind of
data, we take a more general approach: For each example case, we used
an appropriate forensic tool, e.g., X-Ways Forensics or DB Browser for
SQLite, to identify different time domains and to extract data for each of
them into simple spreadsheet files (tab-separated-values, .tsv). This
file format is generic enough to represent a large variety of data, while
being supported by many tools. Thus we decided to use it as an input file
format for the ingest module.

In our example case, we used DB Browser for SQLite to extract data
from the Firefox History file places.sqlite for two relevant time
domains: (1) the timestamp of the entry and (2) the sequential identifier
of the entry. Similar to handling classical super timelines, it is possible to
restrict data extraction, e.g., to a particular time frame of interest. In our
case, the time of the crime is between 7 p.m. and 8 p.m. on May 26,
2016. So we created an appropriate query in DB Browser and extracted
the resulting view into a.tsv file, an excerpt of which can be seen in
Fig. 6.

5.2. Ingest Module

The.tsv files are used as input for a Python script, which extracts
the central entities of our formalization scheme. It interprets columns as
potential time domains, their header lines as time domain references and
all other column entries as possible time domain entries. The selection of
time domains must be performed by the analyst by passing the column
numbers and data types of the time domains together with the relations
(Coincidence or Precedence) between them to the script. Based on this
information, the script parses the.tsv file, extracts time domains as
well as time domain entries and inserts them together with their cor-
responding relations into a database.

This process is illustrated in our example data in Fig. 6: from the
context of the case, one is able to specify that columns two and three are
time domains containing a long and a datetime value, respectively, with
their time domain entries being connected by a Coincidence relation.
Based on this information, the script is able to extract the time domains
visit_date and ID together with 27 time domain entries for each of
them. It inserts all of this into the database and adds one global equality
relation between each pair of time domain entries corresponding to
table entries on the same line of the.tsv file.

Fig. 3. Inconsistency arising from changing the local clock: circular precedence
relation (expressed as arrows) indicates that either the order in the time domain
ID or in the time domain visit_date of the Firefox history must be wrong.
The dotted lines represent Coincidence relation.

Fig. 4. Coincidence between time domain entries in local time (below) and
UTC (above) allow continuous automated timezone estimation.

L.M. Dreier et al.

Forensic Science International: Digital Investigation 49 (2024) 301755

7

5.3. Database with Reasoning Engine

The core of our tool is a database: The schema is based on our
formalization, written in a high-level abstract language for defining
formal concepts as entities, attributes and relations. This allows the
database not only to typecheck its content but also to infer new infor-
mation based on its content and on rules given by the schema.

Out of the possible database candidates, we selected TypeDB (Vaticle
Ltd., 2024b) because of its flexibility and personal familiarity. TypeDB is
an experimental database with a conceptual data model, a strong sub-
typing system and a symbolic reasoning engine released under the GNU
Affero General Public License (version 3). It offers a declarative query
language called TypeQL, in which schemas can be declared and queries
can be formulated. We note that any other database with an inference
engine can be used.

Fig. 7 shows the TypeQL declarations of the concepts time domain and

time domain entry as entities with attributes (owns) involved in relations
(plays). While TypeDB offers powerful abstractions, it is still experi-
mental, so we need to explain the peculiarities of the code: First, an
attribute can be added arbitrarily often to an object, but the cardinality
cannot be restricted in TypeQL. Hence, we cannot represent the fact that
one time domain entry can only have one value. Second, an attribute
needs to have a defined data type and cannot have a purely abstract data
type defined only in the subtype. According to the developers (Vaticle
Ltd., 2024a) this feature should be added in the next major release. For
the time being, we decided to use one attribute per data type for the
value of the time domain entry and add an additional relation between
the time domain entry and its value to easily retrieve the corresponding
value.

As a third peculiarity, the connection between time domain and time
domain entry is noteworthy: They are connected using a relation, but the
entry also has an attribute containing the time domain reference. This is
because entities are defined by their attributes, but not by their re-
lations, and so omitting the extra attribute would turn two time domain
entries with the same value but different interpretations into the same
object.

After having defined the main entities, we also need to define the
main relations: The global equality relation = , the global ordering
relation < and precedence are defined directly as relations. As the
coincidence relation would exactly match the global equality relation =
, we decided to skip defining the coincidence relation. Instead, the ingest
module directly inserts the global equality relation = and precedence. As
by definition, the ordering relation < is inferred by two inference rules:
each precedence relation leads to a global ordering relation < (as
exemplified in Fig. 8) and each intra-domain-ordering as well. Addi-
tionally, properties such as transitivity are modelled as inference rules as
well.

Applying this to our example case means that the database infers
intra-domain ordering based on the values of the time domain entries: In
the visit_date time domain, the time domain entry with value 337 is
earlier than the one with value 338, which is transitively earlier than, e.
g., the time domain entry with value 378. The same applies to the time
domain visit_date: The time domain entry with value 2016-05-26
19:47:39 is earlier than the one with value 2016-05-26 19:49:05 and

Fig. 5. Architecture of tool support for hyper timelines.

Fig. 6. Excerpt of the data extracted from places.sqlite with two different time domains.

Fig. 7. Declarations of time domain and time domain entries as
TypeDB schemas.

L.M. Dreier et al.

Forensic Science International: Digital Investigation 49 (2024) 301755

8

so on.
Through the global equality relations between the time domain entry

with value 338 in time domain ID and the one with value 2016-05-26
19:49:05 in visit_date and between the time domain entries with
value 378 in time domain ID and the one with value 2016-05-26
19:47:39 in visit_date, the database will also infer further informa-
tion: the time domain entry with value 2016-05-26 19:49:05 is later than
the one with value 2016-05-26 19:47:39 and thus later than the one that
happened at equal time: the one with value 378.

Furthermore, the time domain entry with value 378 is later than the
one with value 338, which is equal in time to the one with value 2016-
05-26 19:49:05. As a result, the time domain entry with value 378 is
both, earlier and later than the one with value 2016-05-26 19:49:05,
which can be regarded as an inconsistency. Note that inference rules
only get applied as soon as a query requires them to be computed.

5.4. Query Interface

To use this formalization, an examiner has to query the database
using the inference feature. For our work, we assume that an investi-
gator mainly queries the database to show all global ordering relations
between time domain entries A and B. Such a query can either be created
directly by the investigator as formulated in Fig. 9 or hidden in a script to
increase usability. For our case studies, the execution time in a Virtual
Machine ranged from seconds up to 2 min for around 800 time domain
entries, which is quite acceptable for a proof-of-concept
implementation.

The answer is shown in Fig. 10 using the “Graph View” of TypeDB,
but it could also be retrieved as machine-readable data, e.g., JSON or
TypeQL. Looking at the result of the query, we can see one time domain
entry that is both, earlier as well as later in time, compared to the other.
This manifests the inconsistency mentioned above. Such inconsistencies
should then be examined closely, either manually or by tracing the
inference steps the database made using a special “explainable” feature
of TypeDB. Doing so in our example, an investigator could find that the
inconsistency was caused by a change of the local clock by the suspect,
who wanted to antedate the video session to create an alibi for the time
of the crime. Note that such inconsistencies (namely cycles in the pre-
cedence relation) can also be explicitly queried using TypeQL.

6. Discussion

While being more flexible than classical timeline, hyper timelines
require careful consideration before being applied.

The first and foremost difficulty when creating a hyper timeline is the
choice of time domains. This is a delicate issue since it considerably
affects the possibilities of analysis. To increase or optimize the precision
of analysis, one may opt for many time domains. For example, if the
clock of a computer has been set back at some point in time, the time
domain of all created timestamps of files in a file system may be split into
multiple time domains to keep timestamps comparable within each
fragment. Any observed inconsistency (detected as cycle in the global
precedence relation, see Section 4) can be “fixed” by fragmenting time
domains. This method can also be applied if the ordering relation in one
time domain may be uncertain, e.g., due to a wraparound of sequence
numbers or file system allocation positions when the end of the alloca-
tion area is reached.

However, having too many time domains causes fragmentation of
the hyper timeline, resulting in sub-timelines that have no connection.
Too few time domains make analysis simpler but also less precise in the
sense that inconsistencies may remain unnoticed. This is exemplified by
the fact that a classical timeline can be regarded as a hyper timeline with
a minimum number of time domains, namely one.

Intertwined with the problem of choosing an appropriate number of
time domains is the problem of correctly interpreting them. Even though
explicit time domains are designed to express time, issues such as un-
specified time zones or clock shifts in practice may hamper their in-
terpretations. But with implicit timing information not being designed to
express time, this issue severely aggravates: to be able to interpret im-
plicit timing information, an investigator must thoroughly analyze the
program or driver, which creates new time domain entries, to learn its
behavior. Knowing how it handles the reuse of deleted entries and other
details of the allocation strategy enables the investigator to determine
suitable time domains and fragment them properly. In practice, this
remains a highly intricate topic—especially for positional
information—as driver behavior is not necessarily deterministic and
may vary between different versions of a driver. Thus, further research
in this area is needed.

Developing conclusive guidelines for the optimal choice of time
domains is an open problem for future work. To make progress in this
direction, hyper timeline construction and analysis tools should provide
the possibility to dynamically select and deselect time domains from a
library of well-chosen time domains during analysis. If an inconsistency
vanishes after deselecting a particular time domain, a relation within
that (deselected) time domain must be the cause of the inconsistency
and can be investigated further.

Ideally, one would like to combine the power and precision of hyper
timeline analysis with the simplicity and intuitiveness of classical
timelines. And under certain conditions, it may be possible to create
better super timelines using hyper timelines. For example, timestamps
from clocks with different skews are seamlessly processed within a hyper
timeline (i.e., without any alignment calculations) and can then be
“flattened” into a super timeline respecting the global order of time-
stamps. To do this, we would need the observation of sufficiently many
Coincidence relations between the time domains such that the partial
order is reduced to a total order. Without a sufficient number of syn-
chronization points, such automatic alignment will also be hard using
hyper timelines. Similarly, implicit timing information also cannot be
easily merged with classical timelines. It may, however, be possible to
identify or choose one time domain and visualize implicit timing in-
formation as intervals which are spread over a classical timeline,

Fig. 8. Definition of how to infer global ordering relation < from precedence
relation in TypeQL.

Fig. 9. Querying for all global ordering relations between two time domain entries A and B in TypeDB.

L.M. Dreier et al.

Forensic Science International: Digital Investigation 49 (2024) 301755

9

identifying the earliest and latest point in time of the classical timeline
when an event might have occurred.

7. Conclusions

The article proposed the concept of hyper timelines. Hyper timelines
are a flexible concept that allows the integration of implicit timing in-
formation into digital forensic timelines by separating sources into
distinct time domains. Each time domain has its timeline, and these
timelines are then connected based on relations observed within digital
evidence. This concept enables the ordering of events without time-
stamps and thereby opens a rich set of possibilities to identify and
characterize timestamp inconsistencies. Additionally, it allows to
improve the precision of timestamp-based analyses, e.g., by ordering
events with limited granularity or determining a timezone without an
explicit value. But while the increased analysis flexibility of hyper
timelines appears obvious, the usability of this concept in practice still
needs to be explored. As first step in this direction, we wrote a proof-of-
concept implementation and release it publicly.2

The practicality of hyper timeline analysis rests on the amount and
quality of Coincidence and Precedence links that have been identified in
data and can be extracted from evidence. While we have presented a
couple of examples for these relations in this paper, it is left to future
work to identify and “decipher” other such ordering relations and
thereby lift the treasure trove of implicit timing information that is
currently still hidden in digital evidence sets.

CRediT authorship contribution statement

Lisa Marie Dreier: Conceptualization, Investigation, Methodology,
Software, Validation, Writing - Original Draft, Writing - Review and
Editing. Céline Vanini: Conceptualization, Methodology, Writing -
Original Draft, Writing - Review and Editing. Christopher J. Har-
greaves: Conceptualization, Investigation, Methodology, Resources,
Supervision, Writing - Original Draft, Writing - Review and Editing.
Frank Breitinger: Conceptualization, Supervision, Writing - Review
and Editing. Felix Freiling: Conceptualization, Methodology, Investi-
gation, Writing - Original Draft, Writing - Review and Editing,
Supervision.

Acknowledgments

Thanks to Florian Frank, Jan Gruber, Merlin Humml, Jenny Ott-
mann, Lutz Schröder, and Paul Wild for helpful discussions. Work was
supported by Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) as part of the Research and Training Group 2475
“Cybercrime and Forensic Computing” (grant number 393541319/
GRK2475/2-2024).

References

Arshad, A., Iqbal, W., Abbas, H., 2018. Usb storage device forensics for windows 10. J.
Forensic Sci. 63, 856–867.

Bahjat, A.A., Jones, J., 2019. In: Deleted File Fragment Dating by Analysis of Allocated
Neighbors, vol. 28 S60–S67. doi: 10.1016/j.diin.2019.01.015. URL: https://www.sci
encedirect.com/science/article/pii/S1742287619300258.

van Benthem, J.F.A.K., 1983. The Logic of Time. Springer.
Berggren, J., 2018. Timesketch. https://timesketch.org/.
Bhandari, S., Jusas, V., 2020a. An abstraction based approach for reconstruction of

TimeLine in digital forensics. Symmetry 12, 104. https://doi.org/10.3390/
sym12010104.

Bhandari, S., Jusas, V., 2020b. The phases based approach for regeneration of timeline in
digital forensics. In: 2020 International Conference on INnovations in Intelligent
SysTems and Applications (INISTA), pp. 1–6. https://doi.org/10.1109/
INISTA49547.2020.9194649.

Buchholz, F.P., Falk, C., 2005. Design and implementation of zeitline: a forensic timeline
editor. In: DFRWS.

Carrier, B., . Sleuthkitwiki - timelines. URL: http://wiki.sleuthkit.org/index.php?title=Ti
meline..

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley.
Carrier, B., 2021. Timeline Analysis. https://www.sleuthkit.org/autopsy/timeline.php,

Accessed: 2024-01-24.
Carvey, H., Altheide, C., 2005. Tracking usb storage: analysis of windows artifacts

generated by usb storage devices. Digit. Invest. 2, 94–100.
Casey, E., 2018. Digital Stratigraphy: Contextual Analysis of File System Traces in

Forensic Science. Journal of forensic sciences 63, 1383–1391. https://doi.org/
10.1111/1556-4029.13722.

Chabot, Y., Bertaux, A., Nicolle, C., Kechadi, M.T., 2014.A. Complete Formalized
Knowledge Representation Model for Advanced Digital Forensics Timeline Analysis.
In: Digital Investigation 11, S95–S105. https://doi.org/10.1016/j.diin.2014.05.009.

Clarkson, M.R., Schneider, F.B., 2008. Hyperproperties. In: Proceedings of the 21st IEEE
Computer Security Foundations Symposium, CSF 2008, Pittsburgh, Pennsylvania,
USA, 23-25 June 2008, IEEE Computer Society, pp. 51–65. https://doi.org/10.1109/
CSF.2008.7.

Deb, S.B., Chetry, A., 2015. Usb device forensics: Insertion and removal timestamps of
usb devices in windows 8. In: 2015 International Symposium on Advanced
Computing and Communication (ISACC), pp. 364–371. https://doi.org/10.1109/
ISACC.2015.7377371.

Debinski, M., Breitinger, F., Mohan, P., 2019. Timeline2gui: a log2timeline CSV parser
and training scenarios. Digit. Invest. 28, 34–43. https://doi.org/10.1016/j.
diin.2018.12.004. URL: https://www.sciencedirect.com/science/article/pii/S17
42287618303232.

Du, X., Le, Q., Scanlon, M., 2020. Automated artefact relevancy determination from
artefact metadata and associated timeline events. In: 2020 International Conference
on Cyber Security and Protection of Digital Services (Cyber Security), pp. 1–8.
https://doi.org/10.1109/CyberSecurity49315.2020.9138874.

Dusane, P., Sujatha, G., 2022. Events of interest extraction from forensic timeline using
natural language processing (nlp). In: Manogaran, G., Shanthini, A., Vadivu, G.
(Eds.), Proceedings of International Conference on Deep Learning, Computing and
Intelligence. Springer Nature Singapore, Singapore, pp. 83–94.

Farmer, D., Venema, W., 2004. Forensic Discovery. Addison-Wesley.
Gladyshev, P., Patel, A., 2005. Formalising event time bounding in digital investigations.

Int. J. Digit. EVid. 4. URL: http://www.utica.edu/academic/institutes/ecii/publicati
ons/articles/B4A90270-B5A9-6380-68863F61C2F7603D.pdf.

Guðjónsson, K., 2010. Mastering the Super Timeline with Log2timeline. URL:
https://www.sans.org/white-papers/33438/.

Groß, T., Dirauf, R., Freiling, F.C., 2020. Systematic analysis of browser history evidence.
In: 13th International Conference on Systematic Approaches to Digital Forensic
Engineering, SADFE 2020, New York, NY, USA, May 15, 2020, IEEE, pp. 1–12.
https://doi.org/10.1109/SADFE51007.2020.00010, 10.1109/
SADFE51007.2020.00010.

Hargreaves, C., Patterson, J., 2012. An automated timeline reconstruction approach for
digital forensic investigations. Digit. Invest. 9, S69–S79. https://doi.org/10.1016/j.
diin.2012.05.006. https://www.sciencedirect.com/science/article/pii/S1742287
61200031X. the Proceedings of the Twelfth Annual DFRWS Conference.

Harris, E.C., 1989. Principles of Archaeological Stratigraphy, second ed. Academic Press.
Henseler, H., Hyde, J., 2019. Technology assisted analysis of timeline and connections in

digital forensic investigations. In: Proceedings of the First International Workshop on

Fig. 10. Graph depicting the answer to the example query: Time domain entry A is both, earlier and later, than time domain entry B.

2 https://github.com/hypertimeline/hypertimeline.

L.M. Dreier et al.

http://refhub.elsevier.com/S2666-2817(24)00074-X/sref1
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref1
https://www.sciencedirect.com/science/article/pii/S1742287619300258
https://www.sciencedirect.com/science/article/pii/S1742287619300258
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref3
https://timesketch.org/
https://doi.org/10.3390/sym12010104
https://doi.org/10.3390/sym12010104
https://doi.org/10.1109/INISTA49547.2020.9194649
https://doi.org/10.1109/INISTA49547.2020.9194649
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref7
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref7
http://wiki.sleuthkit.org/index.php?title=Timeline
http://wiki.sleuthkit.org/index.php?title=Timeline
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref9
https://www.sleuthkit.org/autopsy/timeline.php
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref11
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref11
https://doi.org/10.1111/1556-4029.13722
https://doi.org/10.1111/1556-4029.13722
https://doi.org/10.1016/j.diin.2014.05.009
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/ISACC.2015.7377371
https://doi.org/10.1109/ISACC.2015.7377371
https://doi.org/10.1016/j.diin.2018.12.004
https://doi.org/10.1016/j.diin.2018.12.004
https://www.sciencedirect.com/science/article/pii/S1742287618303232
https://www.sciencedirect.com/science/article/pii/S1742287618303232
https://doi.org/10.1109/CyberSecurity49315.2020.9138874
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref18
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref18
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref18
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref18
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref19
http://www.utica.edu/academic/institutes/ecii/publications/articles/B4A90270-B5A9-6380-68863F61C2F7603D.pdf
http://www.utica.edu/academic/institutes/ecii/publications/articles/B4A90270-B5A9-6380-68863F61C2F7603D.pdf
https://www.sans.org/white-papers/33438/
https://doi.org/10.1109/SADFE51007.2020.00010
https://doi.org/10.1016/j.diin.2012.05.006
https://doi.org/10.1016/j.diin.2012.05.006
https://www.sciencedirect.com/science/article/pii/S174228761200031X
https://www.sciencedirect.com/science/article/pii/S174228761200031X
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref24
https://github.com/hypertimeline/hypertimeline

Forensic Science International: Digital Investigation 49 (2024) 301755

10

AI and Intelligent Assistance for Legal Professionals in the Digital Workplace
(LegalAIIA 2019), Hogeschool Leiden, Canada. URL: https://surfsharekit.nl/public/
f9e4cd16-0577-4bb9-a41c-359ebecbf344.

James, J.I., Gladyshev, P., 2015. Automated inference of past action instances in digital
investigations. In: Int. J. Inf. Secur. 14, 249–261. URL: 10.1007/s10207-014-0249-6
doi:10.1007/s10207-014-0249-6.

Kreibich, J.A., 2010. Using SQLite: small. Fast. Reliable. Choose Any Three. O’Reilly.
Lamport, L., 1978. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM 21, 558–565. URL:10.1145/359545.359563 doi:10.1145/
359545.359563.

Lee, R., 2012. Digital forensic sifting: colorized super timeline template for log2timeline
output files. URL:https://www.sans.org/blog/digital-forensic-sifting-colorized-
super-timeline-template-for-log2timeline-output-files/.

Lee, W.Y., Kim, K.H., Lee, H., 2019. Extraction of creation-time for recovered files on
windows FAT32 file system 9, 5522. doi:10.3390/ap.9245522. URL: https://www.
mdpi.com/2076-3417/9/24/5522.

Li, Q., Zhang, Q., Tan, Y.a., Li, Y., Zheng, J., 2016. Research on allocator strategy of
FAT32 file system based on linux & windows. Atlantis Press, pp. 248–252. URL: https
://www.atlantis-press.com/proceedings/icca-16/25847716. doi: 10.2991/icca-
16.2016.58. ISSN: 2352-538X.

Levett, C.P., Jhumka, A., Anand, S.S.. Towards event ordering in digital forensics. URL:
https://dl.acm.org/doi/10.1145/1854229.1854238.

Kaart, M., Laraghy, S., . Android forensics: Interpretation of timestamps 11, 234–248.
URL: https://www.sciencedirect.com/science/article/pii/S1742287614000449,
doi:10.1016/j.diin.2014.05.001..

Magnet Forensics, . How to use timeline in magnet axiom. https://www.magnetforensics.
com/resources/how-to-use-timeline-in-magnet-axiom/. Accessed: 2024-01-24..

Mahalik, H., 2021. How to use the timeline features in cellebrite physical analyzer. htt
ps://cellebrite.com/en/how-to-use-the-timeline-features-in-cellebrite-physical-anal
yzer/, 2024-01-24.

Marrington, A., Baggili, I., Mohay, G., Clark, A., 2011. Cat detect (computer activity
timeline detection): a tool for detecting inconsistency in computer activity timelines.
Digit. Invest. 8, S52–S61. https://doi.org/10.1016/j.diin.2011.05.007. URL: https://
www.sciencedirect.com/science/article/pii/S1742287611000314. the Proceedings
of the Eleventh Annual DFRWS Conference.

Metz, J., 2018. Firefox cache file format. https://github.com/libyal/dtformats/blob/m
ain/documentation/Firefox.

Metz, J., 2021. Pearls and pitfalls of timeline analysis. https://osdfir.blogspot.com/2021
/10/pearls-and-pitfalls-of-timeline-analysis.html.

Minkowski, H., 1909. Raum und Zeit. Phys. Z. 10, 75–88.
Olsson, J., Boldt, M., 2009. Computer forensic timeline visualization tool. Digit. Invest. 6,

S78–S87.
Patterson, J., Hargreaves, C., 2012. The Potential for Cross-Drive Analysis Using

Automated Digital Forensic Timelines.
Plaso documentation, . Parsers and plugins. URL: https://plaso.readthedocs.io/en/lates

t/sources/user/Parsers-and-plugins.html.
Renfrew, C., Bahn, P.G., 1991. Archaeology: Theories, Methods and Practice. Thames

and Hudson.

Schatz, B., Mohay, G., Clark, A., 2006. A correlation method for establishing provenance
of timestamps in digital evidence. Digit. Invest. 3, 98–107. https://doi.org/10.1016/
j.diin.2006.06.009.

Studiawan, H., Sohel, F., 2021. Anomaly detection in a forensic timeline with deep
autoencoders. J. Inf. Secur. Appl. 63, 12. https://doi.org/10.1016/j.
jisa.2021.103002. URL: https://www.sciencedirect.com/science/article/pii/S22142
12621002076.

Studiawan, H., Sohel, F., Payne, C., 2020. Sentiment analysis in a forensic timeline with
deep learning. IEEE Access 8, 60664–60675. https://doi.org/10.1109/
ACCESS.2020.2983435.

Tse, K.W.h., 2011. Forensic analysis using FAT32 file cluster allocation patterns. pages
991032316259703414, b46605733. doi: 10.5353/th_b4660573. URL: https://hdl.
handle.net/10722/143258.

Vaticle Ltd, 2024a. Meet typedb and typeql. https://typedb.com/features.
Vaticle Ltd, 2024b. Typedb: the polymorphic database powered by types. https://github.

com/vaticle/typedb.
Weil, M.C., 2002. Dynamic time & date stamp analysis. International Journal of Digital.

Evidence URL: https://www.semanticscholar.org/paper/Dynamic-Time.
Willassen, S.Y., 2008a. Finding evidence of antedating in digital investigations. In: 2008

Third International Conference on Availability, Reliability and Security, pp. 26–32.
https://doi.org/10.1109/ARES.2008.149.

Willassen, S.Y., 2008b. Finding evidence of antedating in digital investigations. IEEE
Computer Society. In: Proceedings of the the Third International Conference on
Availability, Reliability and Security, ARES 2008, March 4-7, 2008. Technical
University of Catalonia, Barcelona , Spain, pp. 26–32. https://doi.org/10.1109/
ARES.2008.149, 10.1109/ARES.2008.149.

Willassen, S.Y., 2008c. Hypothesis-based investigation of digital timestamps. In: Ray, I.,
Shenoi, S. (Eds.), Advances in Digital Forensics IV, Fourth Annual IFIP WG 11.9
Conference on Digital Forensics, Kyoto University, Kyoto, Japan, January 28-30,
2008. Springer, pp. 75–86. https://doi.org/10.1007/978-0-387-84927-0_7,
10.1007/978-0-387-84927-0_7.

Willassen, S.Y., 2008d. Timestamp evidence correlation by model based clock hypothesis
testing. In: Sorell, M., White, L. (Eds.), 1st International ICST Conference on Forensic
Applications and Techniques in Telecommunications, Information and Multimedia,
E-FORENSICS 2008, Adelaide, Australia, January 21-23, 2008, ICST/ACM, p. 15.
https://doi.org/10.4108/e-forensics.2008.2637.

Willassen, S.Y., 2008e. Using simplified event calculus in digital investigation. In:
Wainwright, R.L., Haddad, H. (Eds.), Proceedings of the 2008 ACM Symposium on
Applied Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20, 2008. ACM,
pp. 1438–1442. https://doi.org/10.1145/1363686.1364020, 10.1145/
1363686.1364020.

Willassen, S.Y., 2009. A model based approach to timestamp evidence interpretation. Int.
J. Digital Crime Forensics (IJDCF) 1, 1–12. URL:. https://doi.org/10.4018/
jdcf.2009040101, 10.4018/jdcf.2009040101.

Wilson, C., 2010. Manual identifiaction of suspect computer time zone. https://www.digi
tal-detective.net/time-zone-identification/.

L.M. Dreier et al.

https://surfsharekit.nl/public/f9e4cd16-0577-4bb9-a41c-359ebecbf344
https://surfsharekit.nl/public/f9e4cd16-0577-4bb9-a41c-359ebecbf344
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref28
https://www.mdpi.com/2076-3417/9/24/5522
https://www.mdpi.com/2076-3417/9/24/5522
https://www.atlantis-press.com/proceedings/icca-16/25847716
https://www.atlantis-press.com/proceedings/icca-16/25847716
https://dl.acm.org/doi/10.1145/1854229.1854238
https://www.sciencedirect.com/science/article/pii/S1742287614000449
https://www.magnetforensics.com/resources/how-to-use-timeline-in-magnet-axiom/
https://www.magnetforensics.com/resources/how-to-use-timeline-in-magnet-axiom/
https://cellebrite.com/en/how-to-use-the-timeline-features-in-cellebrite-physical-analyzer/
https://cellebrite.com/en/how-to-use-the-timeline-features-in-cellebrite-physical-analyzer/
https://cellebrite.com/en/how-to-use-the-timeline-features-in-cellebrite-physical-analyzer/
https://doi.org/10.1016/j.diin.2011.05.007
https://www.sciencedirect.com/science/article/pii/S1742287611000314
https://www.sciencedirect.com/science/article/pii/S1742287611000314
https://github.com/libyal/dtformats/blob/main/documentation/Firefox
https://github.com/libyal/dtformats/blob/main/documentation/Firefox
https://osdfir.blogspot.com/2021/10/pearls-and-pitfalls-of-timeline-analysis.html
https://osdfir.blogspot.com/2021/10/pearls-and-pitfalls-of-timeline-analysis.html
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref39
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref40
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref40
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref41
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref41
https://plaso.readthedocs.io/en/latest/sources/user/Parsers-and-plugins.html
https://plaso.readthedocs.io/en/latest/sources/user/Parsers-and-plugins.html
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref43
http://refhub.elsevier.com/S2666-2817(24)00074-X/sref43
https://doi.org/10.1016/j.diin.2006.06.009
https://doi.org/10.1016/j.diin.2006.06.009
https://doi.org/10.1016/j.jisa.2021.103002
https://doi.org/10.1016/j.jisa.2021.103002
https://www.sciencedirect.com/science/article/pii/S2214212621002076
https://www.sciencedirect.com/science/article/pii/S2214212621002076
https://doi.org/10.1109/ACCESS.2020.2983435
https://doi.org/10.1109/ACCESS.2020.2983435
https://hdl.handle.net/10722/143258
https://hdl.handle.net/10722/143258
https://typedb.com/features
https://github.com/vaticle/typedb
https://github.com/vaticle/typedb
https://www.semanticscholar.org/paper/Dynamic-Time
https://doi.org/10.1109/ARES.2008.149
https://doi.org/10.1109/ARES.2008.149
https://doi.org/10.1109/ARES.2008.149
https://doi.org/10.1007/978-0-387-84927-0_7
https://doi.org/10.4108/e-forensics.2008.2637
https://doi.org/10.1145/1363686.1364020
https://doi.org/10.4018/jdcf.2009040101
https://doi.org/10.4018/jdcf.2009040101
https://www.digital-detective.net/time-zone-identification/
https://www.digital-detective.net/time-zone-identification/

	Beyond timestamps: Integrating implicit timing information into digital forensic timelines
	1 Introduction
	1.1 Implicit Timing Information and its Relevance
	1.2 Contributions
	1.3 Outline

	2 A Brief Timeline of Digital Forensic Timelines
	2.1 Ideal Time
	2.2 Clocks and Timestamps
	2.3 Logical Clocks
	2.4 Existing Timeline Approaches
	2.5 Timestamp Granularity
	2.6 Using non-timestamp based information
	2.7 Summary

	3 Integrating Implicit Timing Information into Digital Forensic Timelines
	3.1 Time Domains and Time Domain Entries
	3.2 Connecting Time Domains
	3.3 From Super Timelines to Hyper Timelines

	4 Case Studies
	4.1 Ordering Events with Limited Granularity
	4.2 Finding Indications of Tampering
	4.3 Determine Timezone without Explicit Value

	5 Tool Support for Hyper Timelines
	5.1 Handling Input Variety
	5.2 Ingest Module
	5.3 Database with Reasoning Engine
	5.4 Query Interface

	6 Discussion
	7 Conclusions
	CRediT authorship contribution statement
	Acknowledgments
	References

