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A B S T R A C T   

Extracting compiler-provenance-related information (e.g., the source of a compiler, its version, its optimization 
settings, and compiler-related functions) is crucial for binary-analysis tasks such as function fingerprinting, 
detecting code clones, and determining authorship attribution. However, the presence of obfuscation techniques 
has complicated the efforts to automate such extraction. In this paper, we propose an efficient and resilient 
approach to provenance identification in obfuscated binaries using advanced pre-trained computer-vision 
models. To achieve this, we transform the program binaries into images and apply a two-layer approach for 
compiler and optimization prediction. Extensive results from experiments performed on a large-scale dataset 
show that the proposed method can achieve an accuracy of over 98 % for both obfuscated and deobfuscated 
binaries.   

1. Introduction 

Program provenance refers to the detailed aspects involved in the 
development of a target binary; this encompasses the tools and libraries 
used, along with their specific versions. A particular aspect of this, 
known as “compiler-provenance identification,” concentrates on 
extracting detailed information about the compiler itself, which includes 
its family, version, and level of optimization. This information is pivotal, 
for example, to understanding the origin and distinct characteristics of a 
malware binary. 

Existing approaches use different types of features to determine the 
compiler provenance. Syntactic features have been used to quantify the 
occurrence of a program’s attributes in an assembly such as idioms, N- 
grams, and N-perms. Conversely, semantic features are obtained 
through more sophisticated analyses, such as by extracting graph-based 
combined features and machine learning (ML)-based embedding rep
resentations. These include graphlets, control flow graphs (CFGs), 
compiler transformation profiles (CTPs), and compiler tags (CTs). 
Additionally, structural features encapsulate the control structures or 

data flows within a program, for example using annotated CFGs 
(ACFGs). A brief description of these features is shown in Table 1. 

After the feature-extraction process, various ML algorithms can be 
employed to ascertain compiler provenance based on the derived fea
tures. Feature selection also plays a crucial role, isolating the top-k 
salient features to enhance prediction accuracy. Despite the promising 
efficacy of ML-based approaches in compiler-provenance identification, 
their reliance on specialized, handcrafted features is noteworthy. The 
extraction of such features necessitates domain-specific expertise and 
problem-specific knowledge, presenting a significant challenge. More
over, feature-selection techniques are not without their subjective biases 
and inherent limitations [1, 2]. 

Deep-learning (DL) algorithms can facilitate the extraction of useful 
features with minimal preprocessing (LeCun et al., 2015; Li et al., 2021; 
Voulodimos et al., 2018; Zhao et al., 2019), but they rely on a significant 
amount of training data. Obtaining such data is, however, 
time-consuming and expensive. Moreover, the difficulty in generalizing 
DL models across different datasets—given the changing behavior of 
binaries—is a major limitation. Program binaries, which are represented 
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as strings of zeros and ones, can be transformed into matrices or images 
(Nataraj et al., 2011). An alternative and promising approach to 
compiler-provenance identification thus involves converting these bi
naries into images and treating the identification of their compilers as a 
computer-vision problem. 

In this paper, we focus on deep vision for the following reasons.  

• Dealing with obfuscated binaries. Previous studies have not 
generally sought to work with obfuscated binaries, and approaches 
designed for deobfuscated binaries experience a significant accuracy 
drop (He et al., 2022). However, this limitation can be mitigated 
when dealing with images, as they rely only on textural information, 
as demonstrated by (Nataraj et al., 2011).  

• Size of training datasets. DL models trained on large-scale datasets 
such as ImageNet (Deng et al., 2009; Krizhevsky et al., 2012) can be 
effectively fine-tuned for specific tasks with minimal additional 
training data. These pre-trained networks serve as powerful feature 
extractors that capture generalizable patterns. Multiple pre-trained 
models that have been validated on large-scale datasets demon
strate good performance across various image-recognition tasks 
(LeCun et al., 2015; Voulodimos et al., 2018) (Zhao et al., 2019). 
Additionally, the incorporation of data-augmentation techniques 
prevents overfitting and increases the available training data; this is 
particularly important when dealing with smaller datasets (Kriz
hevsky et al., 2012).  

• Multiple architectures. Previous approaches to compiler- 
provenance extraction have been designed to handle a particular 
architecture or to consider each architecture separately (Rosenblum 
et al., 2010, 2011; Rahimian et al., 2015; Alrabaee et al., 2020; He 
et al., 2022; Kim et al., 2023). However, we show that since binaries 
from different platforms transformed into images have similar 
textural information, the source of a program binary compiled with 
any target architecture can be identified using the same model with 
high accuracy.  

• Efficiency. Transformer models (Vaswani et al., 2017) have also 
been extended to vision transformer (ViT) architectures (Dosovitskiy 

et al., 2020), which use an attention mechanism to partition an 
image into patches and feed the resulting sequence of linear em
beddings of these patches into a transformer model. The performance 
of this approach surpasses that of conventional convolutional neural 
network (CNN) models in various computer-vision tasks (Dosovitskiy 
et al., 2020). Herein, we use ViT models for compiler-provenance 
identification. 

This study focused on only the GCC and Clang compilers because 
they are the most commonly used cross-platform compilers (He et al., 
2022); other compilers are only compatible with a few target architec
tures (Kim et al., 2022). Specifically, we propose a novel method to 
predict the compiler family and optimization level using 8 pre-trained 
networks and state-of-the-art transformer models. The compiler family 
and optimization level is predicted using multiple pre-trained DL and 
transformer models from the largest publicly available dataset. 

This is one of the first attempts to employ pre-trained and ViT-based 
models for identifying compiler provenance from mixed-architecture 
binaries. We show that the proposed approach achieves promising 
performance for both obfuscated and deobfuscated binaries. 

2. Related approaches 

Multiple studies have examined the issue of compiler provenance. 
One of the first works was that of (Rosenblum et al., 2010), who focused 
on identifying the source of the compiler. Their work was then extended 
to predicting toolchain provenance (e.g., compiler family, source lan
guage, and compilation options), with promising results (Rosenblum 
et al., 2011). The approach outlined by (Rahimian et al., 2015) showed 
that extracting different types of features—syntactic, semantic, and 
structural—improves the predictive performance of 
compiler-provenance identification. The authors then proposed an 
ML-based approach to predict compiler version and optimization level, 
which was found to achieve good results. Although these works repre
sent some of the leading approaches to compiler-provenance identifi
cation, they nonetheless rely on handcrafted features. 

(Pizzolotto and Inoue, 2020) evaluated two DL-based models—a 
CNN model and long short-term memory (LSTM) model—to predict the 
compiler (GCC or Clang) and its optimization settings from a dataset of 
76,000 binaries. Their experimental results showed that the CNN ach
ieved an F-score of 0.99 for binary optimization and 0.98 for the 
compiler used. The authors also showed that the CNN model was better 
than the LSTM model because the former provided better accuracy and 
was easy to train (Otsubo et al., 2020a). proposed the “o-glasses” 
approach to visualize the x86 native code (program-code vs non-code) 
using a 1D CNN model, which was found to perform well. An exten
sion of o-glasses, o-glassesX (Otsubo et al., 2020b), uses an attention 
mechanism for identifying compiler provenance, and this was also found 
to produce promising results, with an accuracy of more than 0.98 in 
identifying compiler family, optimization, and architecture (Benoit 
et al., 2021). introduced a graph-neural-network approach for identi
fying toolchain provenance that was also found to have good perfor
mance (Tian et al., 2021). applied a neural-modeling-based 
compiler-identification approach using CNN and recurrent neural 
network (RNN) models with an attention mechanism. The authors used 
a dataset of over 854,858 functions (4810 binaries) and achieved ac
curacy levels of 98.6 %, 95.3 %, and 88.7 % in identifying the compiler 
family, optimization level, and compiler version, respectively (He et al., 
2022). proposed BinProv, which uses Bidirectional Encoder Represen
tations from Transformers (BERT)-based embedding for compiler and 
optimization prediction. The authors used a subset of the BinKit dataset 
(Kim et al., 2022) for evaluation. A summary of the studies conducted in 
relation to identifying compiler and optimization provenance is pre
sented in Table 2. 

Table 1 
Features used for determining compiler provenance. CTP: compiler trans
formation profile; CFG: control flow graph; CCT: compiler constructor termi
nator; CT: compiler tag; CF: compiler function; ACFG: annotated CFG.  

Feature 
name 

Feature 
type 

Brief description 

Idiom Syntactic Idioms are instruction sequences in assembly code 
signifying specific programming constructs, helping to 
reveal the code’s high-level structure. 

N-gram Syntactic N-grams represent sequences of N instructions in the 
binary code. They capture local patterns and 
dependencies between instructions. 

N-perm Syntactic N-perms involve considering permutations of N 
instructions. They capture the ordering of instructions 
without enforcing strict adjacency. 

Graphlet Semantic Graphlets are small subgraphs within the CFG or data 
flow graph. 

CTP Semantic CTPs are related to the transformations applied by the 
compiler during the compilation process. 

CFG Semantic CFGs represent the flow of control between basic 
blocks in the binary. 

CCT Semantic CCTs show the relationships between constructor and 
terminator functions added by the compiler. 

CT Semantic CTs are annotations embedded into the binary code by 
the compiler. 

CF Semantic CFs refer to specific functions or routines added by the 
compiler during the compilation process. These 
functions may serve various purposes, including 
runtime support or implementing certain 
optimizations. 

ACFG Structural ACFGs are an extension of traditional CFGs in which 
additional annotations, such as compiler-related 
details, are included.  
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3. Proposed methodology 

A flowchart of the proposed methodology is shown in Fig. 1. This 
consists of four different modules: the dataset of program binaries, 
image construction from the program binaries, DL models, and the re
sults of compiler and optimization-level prediction (see Table 3). 

3.1. Program binaries dataset 

We used BinKit (Kim et al., 2022), a large-scale binary-code simi
larity analysis benchmark consisting of over 200,000 binaries compiled 
from 51 GNU software packages. This contains 1351 combinations of 
compilers, compilation options, and target architectures. The binaries 
are compiled for eight different architectures from nine different 
compiler versions, including GCC and Clang, with five optimization 
levels (O0 to O3, Os). Details about the dataset can be found in the report 
of (Kim et al., 2022). 

3.2. Obfuscated binaries dataset 

In addition to the normal dataset, we included the obfuscated bi
naries of the BinKit dataset. The obfuscation was conducted with the 
commonly applied Obfuscator-LLVM system (Junod et al., 2015), using 
its latest version with four obfuscation options: instruction substitution 
(SUB), bogus control flow (BCF), control flow flattening (FLA), and a 
combination of all options. Each obfuscation method was treated as a 
distinct compiler during evaluation, and obfuscation was applied only 
once to prevent significant increases in binary size, which might make it 
challenging to process them using tools such as IDA Pro.1 For instance, 
applying obfuscation twice on the a2ps binary with all three options 

results in a file that is 30 times larger when compared to the original 
binary (Kim et al., 2022). 

3.3. Problem formulation and image dataset 

Traditional methods often rely on static analysis, which may not 
capture the inherent complexities of binary executables. To address this, 
our approach involves transforming binary files into visual representa
tions, which can be analyzed using advanced DL models. 

Consider a binary file F consisting of a sequence of bytes b1, b2, …, bn, 
where each byte bi (for 1 ≤ i ≤ n) is an integer value in the range [0, 
255]. The bytes in F are grouped into triplets to form RGB values. Each 
triplet (bi, bi+1, bi+2) is mapped to a pixel P in the RGB image, where P–– 
(R, G, B) and R = bi, G = bi+1, and B = bi+2. This process can be math
ematically represented as: 

Pj = (b3j− 2, b3j− 1, b3j)

for 1 ≤ j ≤
⌈n

3
⌉
. 

The dimensions of the resulting image are a function of the total 
number of bytes in F. Let W and H represent the width and height of the 
image, respectively. The value of W is determined based on the file size, 
and H is adjusted accordingly. This is represented as: 

W = f (size(F)), H =

⌈
n
3

⌉

W
,

where f is a function that determines the width based on the file size(F). 
Each RGB triplet is mapped to a pixel in the image. This mapping can 

be represented as a function M from the set of triplets to a set of pixels in 
the image grid: 

M : {Pj}→Image Grid.

After creating the image dataset, it will be used to train and validate 
several state-of-the-art DL models, which are described in the next 
subsections. 

3.4. DL models 

In this section, we describe several pre-trained models that were used 
in this study for compiler-provenance identification. All the pre-trained 
DL models are based on CNNs, which provide a backbone of DL archi
tectures. The basic structure of a CNN consists of several layers that 
automatically extract features from input data. These layers include 
convolutional layers, max-pooling layers, and fully connected layers. A 
brief explanation of CNNs is now presented. 

Table 2 
Comparative summary of the compiler and optimization provenance literature (Syn): Syntactic (Sem): Semantic (Str): Structural (Auto): Automatic.  

Work Features Algorithm Analysis Compilers Target Architecture 

Syn Sem Str Autoa ML DL Static Dynamic 

Rosenblum et al. (2010) ✓ ⨯ ⨯ ⨯ ✓ ⨯ ✓ ⨯ GCC, ICC, MSVS Intel IA-32 
Rosenblum et al. (2011) ✓ ✓ ⨯ ⨯ ✓ ⨯ ✓ ⨯ GCC, ICC, MSVS Intel IA-32 
Rahimian et al. (2015) ✓ ✓ ✓ ⨯ ✓ ⨯ ✓ ⨯ GCC, ICC, MVS, Clang Intel x86/x86-64 
Chaki et al. (2011) ✓ ✓ ⨯ ⨯ ✓ ⨯ ✓ ⨯ VS – 
Otsubo et al. (2020a) ⨯ ⨯ ⨯ ✓ ⨯ ✓ ✓ ⨯ GCC x86 
Otsubo et al. (2020b) ⨯ ⨯ ⨯ ✓ ⨯ ✓ ✓ ⨯ VS, GCC, Clang, ICC x86/x86-64 
Benoit et al. (2021) ⨯ ✓ ⨯ ⨯ ⨯ ✓ ✓ ⨯ GCC, ICC, MVS, Clang, MinGW Ubuntu, x64 
Pizzolotto and Inoue (2020) ⨯ ⨯ ⨯ ✓ ⨯ ✓ ✓ ⨯ GCC, Clang x86 64 
Lin and Gao (2021) ⨯ ✓ ⨯ ⨯ – – ✓ ⨯ Clang, GCC x86-64 
He et al. (2022) ⨯ ⨯ ⨯ ✓ ⨯ ✓ ✓ ⨯ GCC, Clang x86/64 
Otsubo et al. (2022) ⨯ ⨯ ⨯ ✓ ⨯ ✓ ✓ ⨯ VC, ICC, GCC, Clang x86/x86-64 
Pei et al. (2021) ⨯ ⨯ ⨯ ✓ ⨯ ✓ ✓ ⨯ GCC, Clang ARM, MIPS, x86, x64 
Kim et al. (2023) ✓ ✓ ⨯ ⨯ ✓ ⨯ ✓ ⨯ GCC, Clang ARM 
Du et al. (2022) ⨯ ✓ ⨯ ⨯ ✓ ⨯ ✓ ✓ GCC, ICC, Clang Linux  

a Does not require feature extraction such as DL-based algorithms. 

Table 3 
Architecture details of the selected DL models.  

Model Size 
(MB) 

GFLOPSa Parameters Convolution 
layers 

Fully 
connected 
layers 

AlexNet 233.1 0.71 62M 5 3 
VGG16 527.8 15.47 138M 13 3 
ResNet 44.7 1.81 25M 34 1 
GoogleNet 49.7 1.50 6M 22 1 
DenseNet 30.8 2.83 8M 4b 1 
MobileNet 13.6 0.30 3.5M 32 1  

a GFLOPS: giga floating-point operations per second. 
b Dense blocks. 

1 https://hex-rays.com/ida-pro/. 

W. Khan et al.                                                                                                                                                                                                                                   

https://hex-rays.com/ida-pro/


Forensic Science International: Digital Investigation 49 (2024) 301764

4

3.4.1. CNNs 
CNNs are DL models that are widely used for image-related tasks, 

such as image classification, object detection, and segmentation. They 
are designed to automatically and adaptively learn hierarchical repre
sentations from raw input data. 

3.4.1.1. Convolutional layers. Convolutional layers convolve image 
pixels with learnable filters to capture local patterns in the image data 
and extract useful features from the input layer: 

y(x) = f

(
∑

i=1
nwi*xi + b

)

, (1)  

where x is the input, wi represents the learnable weights, b is the bias 
term, * denotes the convolution operation, and f is the activation 
function. 

3.4.1.2. Activation function. The activation function introduces non- 
linearity to the model and enhances the usability of the feature maps 
obtained from the convolution layers. The rectified linear unit (ReLU) is 
a commonly used activation function that aids the capture of complex 
relationships and increases the speed of convergence during training. It 
can be defined as: 

ReLU(x) = max(0, x). (2)  

3.4.1.3. Pooling layers. A pooling layer downsamples the spatial di
mensions, thus reducing computational complexity. For instance, max- 
pooling operates by selecting the maximum value within a local re
gion and forwarding it to the next layer. 

3.4.1.4. Fully connected layers. In a fully connected layer, the features 
obtained from previous layers are flattened to a 1D feature vector, which 
is then used for classification. 

3.4.1.5. Softmax layer. A softmax layer is a final layer that is used to 
classify the instances based on the features obtained from the fully 
connected layer. For K classes, the softmax function is given by: 

P(classi) =
ezi

∑
j=1Kezj

, (3)  

where P(classi) is the probability of the input belonging to class i, zi is the 
raw output for class i, and K is the total number of classes. 

3.4.1.6. Dropout regularization. Dropout is a regularization technique in 
which a fraction of input units are set to zero during training. This re
duces the co-dependency between neurons and avoids overfitting. It can 
be represented as: 

output =
input

1 − dropout_rate
. (4)  

Since all the pre-trained models are based on CNN architecture, we now 
briefly explain the DL models used in this study. 

3.4.2. AlexNet 
AlexNet was one of the first DL models to be trained on the large- 

scale ImageNet dataset, which contains more than 15 million (M) im
ages with 1000 classes from 22,000 categories. The architecture of 
AlexNet contains five convolution layers, three fully connected layers, 
and 60M parameters. 

3.4.3. VGG16 
Visual geometry group 16 (VGG16) (Simonyan and Zisserman, 2014) 

consists of small receptive fields (3 × 3) with 16 layers—13 convolution 
layers and three fully connected layers—and it contains 138M 
parameters. 

3.4.4. ResNet 
(He et al., 2016) demonstrated the challenges associated with 

training deeper neural networks. Therefore, the residual network 
(ResNet) architecture was introduced, incorporating residual learning 
blocks with skip connections. These blocks enable the flow of informa
tion from one layer directly to another, skipping one or more interme
diate layers. ResNet is computationally cheaper than other models such 
as VGG16, and it achieves better classification performance. 

3.4.5. GoogleNet 
For GoogleNet (Szegedy et al., 2015), incorporated an inception 

module into a CNN; this employs multiple parallel convolutional filters 
of different sizes within the same layer. 

3.5. Transformers 

(Vaswani et al., 2017) originally developed transformers for 
sequence modeling, and they show significant advances in natural lan
guage processing (NLP) tasks. Transformers address the key limitation of 
RNNs, which is that they process inputs sequentially. Transformers use 
an attention mechanism that is capable of processing sequences in 
parallel, making them more efficient and also faster. After the success of 
transformers, they were then extended to the computer-vision domain, 
also resulting in significant improvements. We now briefly explain the 
transformer used in our study. 

3.5.1. ViTs 
ViTs (Dosovitskiy et al., 2020) convert an image into patches 

(treating them as tokens) and input a sequence of linear embeddings 

Fig. 1. Schematic flowchart of the proposed framework.  
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from these patches into a transformer. A ViT processes 2D images by 
reshaping them into flattened 2D patches, which are linearly projected 
to embeddings: 

z0 = [xclass; x1pE ; x2pE;…; xNpE] + Epos, (5)  

where xclass is the learnable embedding, xipE are the flattened patches, 
and Epos are the position embeddings. The sequence is then input to a 
transformer encoder, which consists of multiheaded self-attention 
(MSA) and multilayer perceptron (MLP) blocks. CNN models work 
under the assumption that image features such as 2D neighborhood 
structure, locality, and translation equivariance are embedded in every 
layer across the model. However, in ViT, MLP blocks exhibit local and 
translational equivariance, while MSA blocks operate globally. 

3.5.2. Swin transformer 
Transformers use fixed-scale word tokens for NLP tasks. However, 

vision tasks vary in scale; therefore, fixed-scale tokens are not suitable 
for vision tasks. Furthermore, the high pixel resolution in images poses 
computational-complexity challenges for the self-attention mechanism 
of a ViT; hence, its challenging to adopt ViT in tasks requiring pixel-level 
dense predictions. Swin transformer (SViT) was proposed to address 
these challenges (Liu et al., 2021). SViT constructs hierarchical feature 
maps from smaller patches and then merges these patches with neigh
bors in the deep layers. The image is then converted into 
non-overlapping patches (tokens) with a feature dimension (denoted as 
C) of 48 (4 × 4 × 3) after a linear embedding layer. The SViT blocks are 
applied on the patch token. 

The network employs patch merging in deeper layers to create a 
hierarchical representation, reducing the number of tokens through 
concatenation and linear-layer application. For instance, initially, it is 
( H

4 ×
W
4
)
; then it becomes 

( H
8 ×

W
8
)
, 
( H

16 ×
W
16
)
, and 

( H
32 ×

W
32
)
. In SViT, the 

MSA is replaced with a shifted window-based MSA module represented 
as: 

Ω(W − MSA) = 4hwC2 + 2M2hwC,

where M is the window size and h × w are the patches of an image. We 
used ViT and SViT and their variants, as shown in Table 4. 

4. Experimental setup and results 

This section explains the experimental results of compiler- 
provenance identification. We first show the compiler-identification 
results, and this is followed by the optimization-identification results 
with different combinations. The dataset was divided into training 
(0.60), validation (0.20), and testing sets (0.20). All the results in the 
tables are shown for the testing set. The experiments were conducted 
with an NVIDIA Tesla V100 GPU with 32 GB RAM. 

4.1. Image dataset 

The conversion of images from program binaries is discussed in 
Section 3.1. A sample of each from each compiler and their respective 
optimizations is shown in Fig. 2. 

4.2. Compiler identification 

The experimental results shown in Table 5 show that ViT achieved 

the best classification performance, with accuracy, precision, recall, and 
F-score values all equal to 0.993; this was followed by VGG16, which 
had respective values of 0.987, 0.985, 0.986, and 0.985. It can be seen 
that other models also achieved comparable performance for compiler 
identification. 

4.3. Optimizations 

Once the origin compiler of the program binary is identified, we can 
then predict the optimization used for that binary. The results for pre
dicting the optimization associated with each binary are now presented. 
We first show the optimization levels for Clang and then for GCC. 

4.3.1. Clang 

4.3.1.1. Low and high optimization (O0 and O3). The experimental re
sults for classifying between optimization levels O0 and O3 are pre
sented in Table 6. This shows that VGG16 achieved the best 
classification performance, with accuracy, precision, recall, and F-score 
values of 0.945, 0.942, 0.948, and 0.945, respectively. ResNet, Goo
gleNet, DenseNet, and MobileNet also achieved similar performance. It 
can be seen that transformer models achieved inferior performance 
when compared to the pre-trained models, with the best performance 
achieved by the SViT model, which had an accuracy of 0.902. 

4.3.1.2. Low and high optimization (O3 and Os). The experimental re
sults for classifying between optimization levels O3 and Os are presented 
in Table 7. This shows that AlexNet, ResNet, and VGG16 exhibited 
relatively higher accuracy values: 0.607, 0.645, and 0.671, respectively. 
VGG16 showed higher precision, recall, and F-score values: 0.671, 
0.711, and 0.685, respectively. The recall of DenseNet was the best at 
0.840; however, the precision was only 0.629. The transformer models 
performed the worst in comparison to the pre-trained models. 

4.3.1.3. Low and high optimization (O0 and Os). The experimental re
sults in Table 8 show that none of the classifiers was able to achieve 
better classification performance in this case. The Swin transformer 
achieved the best performance, and this was slightly better than the 
random classifier. 

4.3.1.4. Multi-level optimization (O0, O1, and O2). Table 9 presents the 
results of a multi-class classification approach to distinguishing the O0, 
O1, and O2 optimization levels. This shows that VGG16 achieved the 
best classification performance, with accuracy, precision, recall, and F- 
score values of 0.811, 0.810, 0.811, and 0.811, respectively. Other pre- 
trained models also achieved comparable performance; however, 
transformer-based models remained the worst. 

4.3.1.5. Multi-level optimization for all cases (O0, O1, O2, O3, and Os). 
Table 10 presents the prediction results across all the optimization levels 
for the Clang compiler. This shows that ViT achieved the highest per
formance, with accuracy values of 0.659, 0.656, 0.662, and 0.659, 
respectively. 

4.3.2. GCC 
The experimental results to predict different optimization levels for 

the GCC compiler are now presented. 

4.3.2.1. Low and high optimization (O0 and O3). Table 11 shows the 
results of classification between the O0 and O3 optimization levels for 
the GCC compiler. It can be seen that VGG16 consistently achieved the 
best classification performance when compared to the other models, 
with an accuracy of 0.918. For the transformer-based model, SViT 
achieved better performance, with an accuracy of 0.869. 

Table 4 
Model specifications for ViT models.  

Model Size (MB) GFLOPSa Parameters (M) Patch size 

ViT 330 15.38 86 224 × 224 
SViT 108.2 4.49 28 224 × 224  

a GFLOPS: giga floating-point operations per second. 
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4.3.2.2. Low and high optimization (O3 and Os). The experimental re
sults for classification between O3 and Os are presented in Table 12. 
These show that ResNet achieved higher performance across all metrics, 
with an accuracy of 0.869, precision of 0.871, recall of 0.869, and F- 
score of 0.870. VGG16 and DenseNet also achieved comparable per
formance; however, the transformer-based models performed the worst. 

4.3.2.3. Multi-level optimization (O0 and Os). For O0 and Os optimiza
tion prediction, VGG16 performed the best, as shown in Table 13. 

Fig. 2. Samples of images obtained from binaries: (a) GCC O0; (b) Clang O0; (c) GCC O1; (d) Clang O1; (e) GCC O2; (f) Clang O2; (g) GCC O3; (h) Clang O3; (i) 
GCC Os. 

Table 5 
GCC and Clang identification using DL models.  

Model Accuracy Precision Recall F-score 

AlexNet 0.961 0.957 0.957 0.957 
ResNet 0.978 0.975 0.974 0.975 
VGG16 0.987 0.985 0.986 0.985 
GoogleNet 0.980 0.979 0.975 0.977 
ViT 0.993 0.993 0.993 0.993 
Swin T 0.969 0.970 0.969 0.969  

Table 6 
Clang optimization O0 and O3.  

Model Accuracy Precision Recall F-score 

AlexNet 0.896 0.900 0.895 0.898 
ResNet 0.930 0.928 0.930 0.929 
VGG16 0.945 0.942 0.948 0.945 
GoogleNet 0.913 0.947 0.875 0.909 
DenseNet 0.925 0.937 0.915 0.926 
MobileNet 0.920 0.927 0.909 0.918 
ViT 0.814 0.823 0.790 0.806 
SViT 0.902 0.902 0.902 0.902  

Table 7 
Clang optimization O3 and Os.  

Model Accuracy Precision Recall F-score 

AlexNet 0.607 0.602 0.675 0.636 
ResNet 0.645 0.654 0.620 0.637 
VGG16 0.671 0.661 0.711 0.685 
GoogleNet 0.631 0.608 0.730 0.664 
DenseNet 0.631 0.629 0.629 0.629 
MobileNet 0.600 0.564 0.840 0.675 
ViT 0.492 0.454 0.061 0.108 
SViT 0.522 0.545 0.522 0.533  

Table 8 
Clang optimization O0 and Os.  

Model Accuracy Precision Recall F-score 

AlexNet 0.491 0.494 0.322 0.390 
ResNet 0.495 0.499 0.507 0.503 
VGG16 0.491 0.500 0.434 0.464 
GoogleNet 0.498 0.483 0.434 0.457 
DenseNet 0.500 0.507 0.167 0.252 
MobileNet 0.495 0.492 0.817 0.614 
ViT 0.500 0.50 0.50 0.50 
SViT 0.506 0.517 0.506 0.511  

Table 9 
Clang optimization O0, O1, and O2.  

Model Accuracy Precision Recall F-score 

AlexNet 0.725 0.723 0.725 0.724 
ResNet 0.779 0.777 0.779 0.778 
VGG16 0.811 0.810 0.811 0.811 
GoogleNet 0.753 0.754 0.753 0.754 
DenseNet 0.768 0.774 0.768 0.771 
MobileNet 0.746 0.758 0.746 0.752 
ViT 0.538 0.525 0.538 0.532 
SViT 0.674 0.671 0.674 0.672  
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4.3.2.4. Multi-level optimization (O0, O1, and O2). The performance for 
multi-level optimization is presented in Table 14. This shows a drop in 
the accuracy, with the maximum accuracy of 0.741 achieved by VGG16. 

4.3.2.5. Multi-level optimization for all cases (O0, O1, O2, O3, and Os). 
The performance for all optimization levels is represented in Table 15. 

4.3.3. Obfuscated binaries 
We conducted a comprehensive evaluation of our proposed model 

using obfuscated binaries sourced from the BinKit dataset. The BinKit 
dataset provides the obfuscated binaries for Clang only; therefore, we 
performed various experiments to identify multiple optimization levels 
ranging from O0 to Os. 

4.3.3.1. Low and high optimization (O0 and O3). The experimental re
sults evaluating the performance of multiple DL models for identifica
tion between O0 and O3 in obfuscated binaries are shown in Table 16. 
These show that the proposed technique achieved promising perfor
mance even for obfuscated binaries. The best result was achieved by ViT, 
which had accuracy, precision, recall, and F-score values all equal to 
0.971. 

4.3.3.2. Low and high optimization (O0 and Os). The experimental re
sults for predicting O0 bs Os are presented in Table 17. This shows that 
the best performance was achieved by ViT, with an accuracy of 0.971. 

4.3.3.3. Low and high optimization (O3 and Os). In differentiating be
tween O3 and Os (Table 18), the best performance was achieved by 
VGG16, with accuracy, precision, recall, and F-score values of 0.638, 

0.641, 0.638, and 0.639, respectively. Comparable performance was 
achieved by ViT. 

4.3.4. Model convergence and t-SNE visualization for obfuscated binaries 
This section presents an example of the proposed approach, in which 

we show the training and validation accuracies as well as losses for 
multiple models. Additionally, we incorporate t-distributed stochastic 
neighbor embedding (t-SNE) visualizations to examine the separation of 
data points. The training and validation accuracies shown in Fig. 3(a) 
reveal that nearly all the models converge after the eighth epoch, indi
cating their proficiency in learning patterns and distinguishing between 
various optimizations. Similarly, the training and validation losses 
exhibit consistent patterns. 

Example t-SNE plots for optimization prediction (O0 and O3) with 
obfuscated binaries are presented in Fig. 4. It can be seen that ViT and 
the Swin transformer (Fig. 4(g) and (h)) show better performance, 
accurately identifying and segregating the binaries. While the separation 
of data points achieved by VGG16 and ResNet is also better, the ViT and 
SViT models exhibit superior performance, as can be seen from the 
cluster separation. 

5. Discussion 

This work highlights the effectiveness of vision models for compiler- 
provenance identification. The transformation of binaries into images 
shows promising results for both the obfuscated and deobfuscated cases. 
It can be seen that each compiler and their respective optimization levels 
have distinctive textures; therefore, the DL models obtained encour
aging results. We showed that our approach achieved an accuracy of 99 

Table 10 
Clang optimization for all levels.  

Model Accuracy Precision Recall F-score 

AlexNet 0.483 0.469 0.483 0.476 
ResNet 0.533 0.515 0.533 0.524 
VGG16 0.575 0.566 0.575 0.571 
GoogleNet 0.516 0.500 0.516 0.508 
DenseNet 0.508 0.530 0.508 0.519 
MobileNet 0.495 0.545 0.495 0.519 
ViT 0.659 0.656 0.662 0.659 
SViT 0.479 0.460 0.479 0.469  

Table 11 
Optimizations for GCC: O0 and O3.  

Model Accuracy Precision Recall F-score 

AlexNet 0.866 0.866 0.866 0.866 
ResNet 0.905 0.905 0.905 0.905 
VGG16 0.918 0.918 0.918 0.918 
GoogleNet 0.887 0.889 0.887 0.888 
DenseNet 0.896 0.897 0.896 0.897 
MobileNet 0.899 0.900 0.899 0.900 
ViT 0.848 0.848 0.848 0.848 
SViT 0.922 0.922 0.922 0.922  

Table 12 
Optimizations for GCC: O3 and Os.  

Model Accuracy Precision Recall F-score 

AlexNet 0.718 0.719 0.718 0.718 
ResNet 0.869 0.871 0.869 0.870 
VGG16 0.780 0.781 0.780 0.780 
GoogleNet 0.736 0.754 0.736 0.745 
DenseNet 0.758 0.771 0.758 0.764 
MobileNet 0.727 0.744 0.727 0.735 
ViT 0.727 0.728 0.727 0.728 
SViT 0.661 0.670 0.661 0.665  

Table 13 
Optimizations for GCC: O0 and Os.  

Model Accuracy Precision Recall F-score 

AlexNet 0.852 0.854 0.852 0.853 
ResNet 0.869 0.871 0.869 0.870 
VGG16 0.911 0.911 0.911 0.911 
GoogleNet 0.876 0.876 0.876 0.876 
DenseNet 0.861 0.864 0.861 0.863 
MobileNet 0.869 0.876 0.869 0.873 
ViT 0.957 0.957 0.957 0.957 
SViT 0.887 0.889 0.887 0.887  

Table 14 
Optimizations for GCC: O0, O1, and O2.  

Model Accuracy Precision Recall F-score 

AlexNet 0.667 0.671 0.667 0.669 
ResNet 0.698 0.698 0.698 0.698 
VGG16 0.742 0.741 0.742 0.742 
GoogleNet 0.697 0.696 0.697 0.697 
DenseNet 0.712 0.714 0.712 0.713 
MobileNet 0.697 0.708 0.697 0.702 
ViT 0.852 0.852 0.852 0.852 
SViT 0.718 0.718 0.718 0.718  

Table 15 
GCC: optimizations at all levels.  

Model Accuracy Precision Recall F-score 

AlexNet 0.493 0.490 0.493 0.491 
ResNet 0.507 0.501 0.507 0.504 
VGG16 0.547 0.545 0.547 0.546 
GoogleNet 0.420 0.406 0.420 0.413 
DenseNet 0.518 0.516 0.518 0.517 
MobileNet 0.514 0.510 0.514 0.512 
ViT 0.717 0.718 0.717 0.718 
SViT 0.397 0.374 0.397 0.385  
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% for compiler identification. It can be seen from Table 5 that ViT 
achieved the best performance, with an accuracy of 0.993; this was 
followed by VGG16, with an accuracy of 0.987. The models’ results are 
comparable, showing that any pre-trained models can be adopted for 
compiler identification. 

Several studies conducted considering compiler-provenance identi
fication have demonstrated similar performance (Rosenblum et al., 
2010, 2011; Chaki et al., 2011; Otsubo et al., 2020a; He et al., 2022). 
However, our approach predicts the compiler in an 
architecture-agnostic way, i.e., regardless of the source architecture. For 
instance (He et al., 2022), evaluated their method only on the x64-86 
target architecture. Furthermore, we used the latest version of the BinKit 
dataset (version 2.0),2 which is the largest publicly available dataset. In 
contrast, some works only used a subset of the BinKit dataset for eval
uation (He et al., 2022). 

We also performed extensive experiments to identify the optimiza
tion level used during the compilation process. Our approach showed 
high performance in predicting between low (O0) and high (O3) opti
mization levels, with over 95 % accuracy for both GCC and Clang. We 
also experimented with distinguishing between various optimization 
levels, such as O0 vs Os, O3 vs Os, and multi-level classification (O0, O1, 
and O2, and O0, O1, O2, O3, and Os) for both GCC and Clang. Our 
analysis showed that distinguishing between low (O0) and high (O3) 
had the best performance; however, other optimization levels also 
achieved comparable performance. For instance, for GCC optimizations, 
the accuracy for O0 vs O3 was encouraging, with the highest accuracy 

achieved by ViT, at 0.962. Furthermore, the performance for O0 vs Os 
was also good, with an accuracy of 0.957. However, for O3 vs Os, the 
performance was slightly reduced to 0.869. For multi-level optimiza
tion, for distinguishing between O0, O1, and O2, the accuracy was 
0.742; for distinguishing between all optimization levels, the accuracy 
was only 0.71, and this was achieved by ViT. 

The experimental results for obfuscated binaries demonstrated the 
efficacy of the proposed approach, which has an accuracy as high as 
0.971 using ViT for distinguishing between low (O0) and high (O3) 
optimization levels (see Table 16). In contrast to various existing tech
niques, which often struggle with obfuscated binaries, our approach 
exhibits resilience, achieving performance similar to deobfuscated bi
naries. This shows the robustness and effectiveness of vision-based 
models for compiler-provenance identification in both obfuscated and 
deobfuscated binaries. 

We have also presented an illustration of model convergence and t- 
SNE visualizations to analyze the behavior of the DL models. The results 
show that all models exhibit convergence, demonstrating their potential 
to be effectively trained even up to 20 epochs. Moreover, the t-SNE vi
sualizations highlight the ability to cluster data points, particularly in 
transformer models (Fig. 4). This shows the ability of the DL models to 
reveal complex patterns within the image-based program binaries. 

The experimental results show that the proposed approach is archi
tecture agnostic and does not rely on handcrafted features. Furthermore, 
it uses pre-trained networks without the need for extensive fine-tuning. 
Therefore, this approach can be adopted with minimal fine-tuning. 

6. Conclusions and future work 

Herein, we have proposed a novel approach to predicting the 
compiler family and optimization level by transforming a binary into an 
images and using state-of-the-art DL models. We have shown that our 
approach achieved over 98 % accuracy for compiler identification and 
over 95 % accuracy for optimization-level identification. The proposed 
method is simple yet efficient, and it can be used for compiler- 
provenance identification in an architecture-agnostic manner. 

Although our approach demonstrated promising performance, we 
now also highlight the potential for future work. All the algorithms were 
used with their default parameters without any hyperparameter tuning. 
The performance could be further improved with extensive hyper
parameter optimization. In the future, we also aim to include more 
compilers in addition to GCC and Clang. Furthermore, we aim to use 
external validation, i.e., training our model on BinKit and testing it on 
multiple datasets available for compiler-provenance identification to 
evaluate the generalizability of the proposed approach. 

Data availability 

We used publicly available datasets and publicly available Pytorch 

Table 16 
Performance on obfuscated binaries (O650 and 03).  

Model Accuracy Precision Recall F-score 

AlexNet 0.848 0.848 0.848 0.848 
ResNet 0.893 0.894 0.893 0.893 
VGG16 0.928 0.928 0.928 0.928 
GoogleNet 0.886 0.886 0.886 0.886 
DenseNet 0.745 0.745 0.745 0.745 
MobileNet 0.736 0.736 0.736 0.736 
ViT 0.971 0.971 0.971 0.971 
SViT 0.959 0.959 0.959 0.959  

Table 17 
Performance on obfuscated binaries (O0 and Os).  

Model Accuracy Precision Recall F-score 

AlexNet 0.850 0.850 0.850 0.850 
ResNet 0.878 0.879 0.878 0.878 
VGG16 0.927 0.928 0.927 0.928 
GoogleNet 0.868 0.869 0.868 0.869 
DenseNet 0.750 0.752 0.750 0.751 
MobileNet 0.742 0.742 0.742 0.742 
ViT 0.971 0.971 0.971 0.971 
SViT 0.963 0.963 0.963 0.963  

Table 18 
Performance on obfuscated binaries (O3 and Os).  

Model Accuracy Precision Recall F-score 

AlexNet 0.584 0.586 0.584 0.585 
ResNet 0.599 0.601 0.599 0.600 
VGG16 0.638 0.641 0.638 0.639 
GoogleNet 0.588 0.588 0.588 0.588 
DenseNet 0.515 0.516 0.515 0.516 
MobileNet 0.530 0.529 0.530 0.529 
ViT 0.633 0.633 0.633 0.633 
SViT 0.620 0.621 0.620 0.620  

Fig. 3. Sample of training and validation accuracies and loss. T Acc: Training 
Accuracy, V Acc: Validation accuracy, T Loss: Training Loss, V Loss: Valida
tion loss. 

2 https://github.com/SoftSec-KAIST/BinKit. 
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