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A B S T R A C T   

The proliferation of Internet of Things (IoT) devices across homes, businesses, and industrial landscapes has significantly increased our capability to gather data and 
automate tasks. Despite their ubiquity, these devices are notably resource-constrained and frequently lack robust security defenses, presenting a substantial risk of 
intrusion and cyber threats. To address these concerns, we propose a novel anomaly-based host intrusion detection system specifically designed for IoT devices, titled 
MARS (Memory Anomaly Recognition System). MARS is designed to function as a crucial component in the incident response framework, acting as an early detection 
system for potential security breaches within an organization’s network or systems. The fundamental architecture of MARS leverages the device’s memory as a key 
indicator for monitoring system-level events. To enhance its security and integrity, MARS is embedded within a Trusted Execution Environment—a secure, hardware- 
isolated region of a microcontroller protected from untrusted software. This design choice not only makes MARS tamper-proof but also ensures reliable monitoring of 
the device’s memory. Deviations from established memory baselines, indicative of a security compromise, are detected through an anomaly detection algorithm 
hosted on a remote server. Our evaluation of the MARS prototype on STM32L562QEI6QU showed our proposed architecture can achieve decent scalability while 
maintaining trust, accuracy, and robustness of memory changes.   

1. Introduction 

IoT devices are small pieces of hardware commonly embedded 
within larger systems. These devices consist of input and output devices 
connected to a small computing device known as a microcontroller 
(MCU). As the sensors gather information about the surroundings, the 
MCU instructs the outputs to act on the environment accordingly. Since 
these devices are extremely small and resource constrained, they 
commonly communicate with control servers which perform additional 
processing and issue commands. Although IoT technology is widely 
recognized for its domestic applications, it also plays a crucial role in 
Industrial Control Systems (ICS), where it is used to monitor equipment 
and directly modify its functioning. Like traditional computers, these 
systems are susceptible to malware infections, which can lead to the 
destruction of equipment or even physical catastrophes. 

ICS malware is often in the form of worms, and it is designed to 
spread strategically through industrial networks. These threats typically 
begin by exploiting vulnerable peripheral devices and gradually prog
ress toward more critical components, such as devices that manage 

Programmable Logic Controllers (PLCs). The integration of Information 
Technology (IT) and Operational Technology (OT) in ICS introduces 
vulnerabilities that enable these worms to wreck havoc. A classic 
example is the Stuxnet worm, an infamous malware that severely 
impacted Iran’s nuclear infrastructure. Intrusion detection systems (IDS) 
can serve as a first line of defense for such attacks. Despite the preva
lence of IDS for conventional computing environments, little work has 
been done to create solutions for IoT devices. Given that attacks on ICS 
frequently exploit security flaws on peripheral devices, deploying 
intrusion detection systems on such devices is critical for establishing a 
first line of defense. 

To advance this area of research, we proposed MARS: a host-based 
IDS that uses device memory to detect anomalous activity. MARS is 
implemented partially through the firmware on the IoT device. The 
component of the IDS residing on the MCU lives within a Trusted 
Execution Environment (TEE) to make the system tamper-proof in the 
event of a malware infection. MARS contains a memory acquisition 
component built into the TEE that routinely captures memory dumps of 
the Rich Execution Environment (REE). These dumps get sent over the 
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network to a classification server where a machine learning algorithm is 
used to classify the dump as benign or anomalous. Once the classifica
tion is computed, it is sent back to the MCU so that the device can be 
reset and securely booted if needed. In addition to creating a system 
design around TEEs, we implemented a prototype on an STM32-based 
MCU commonly used for prototyping IoT solutions. The design, imple
mentation, and evaluation of this system are discussed in the following 
sections. 

In summary, the contributions of our research are as follows:  

• Trust and Integrity - The use of a TEE provides hardware isolation 
which protects the IDS from potential tampering or deactivation by 
malware, ensuring the system’s integrity.  

• Accuracy - The anomaly-based approach leverages machine 
learning algorithms to dynamically identify deviations from normal 
operational patterns, facilitating the accurate and early detection of 
novel and sophisticated malware variants.  

• Robustness - By monitoring memory footprint, the IDS is capable of 
detecting a wide range of anomalous behaviors, from subtle ma
nipulations and changes by malware to overt attempts at disrupting 
device operations. 

The remainder of this paper is organized as follows: Section 2 dis
cusses relevant background information; Section 3 discusses the overall 
design which can be generalized to other MCUs; Section 4 discusses the 
implementation of the prototype; Section 5 includes an evaluation of the 
prototype; Section 6 discusses related work in IoT intrusion detection 
systems and how they compare to ours; and finally, Section 7 ends with a 
conclusion. 

2. Background 

Before discussing the design of MARS, we will introduce a back
ground of intrusion detection systems. These include the types of 
intrusion detection systems and details on how TEEs work. We then 
briefly introduce our proposed approach and explain how it could 
swiftly halt attacks such as Stuxnet. 

2.1. Network-based IDS (NIDS) vs. host-based IDS (HIDS) 

NIDS monitor network activity to detect threats. These systems 
impose less load on devices since they only monitor traffic. However, 
their limitations include the inability to monitor encrypted network 
traffic and access host–level activities. To this end, they can be cir
cumvented by malware that leverages encrypted communication or 
leaves minimal footprint on the network. 

By contrast, HIDS monitors system-level activities, such as device 
logs and system calls. The use of detailed host information enhances 
detection accuracy which results in a system that cannot be circum
vented as easily. However, such detailed monitoring can place signifi
cant load on the device. Further, without proper isolation, malware 
could disable the HIDS. 

2.2. Signature-based vs. anomaly-based detection 

Signature-based detection uses known patterns to identify malware, 
offering ease of implementation and low resource consumption. How
ever, its effectiveness is limited to known malware variants, with new 
variants requiring manual pattern updates. This approach can be cir
cumvented through slight code modifications. 

Anomaly-based detection employs machine learning or statistical 
techniques to dynamically identify anomalous behavior based on base
line behaviors, offering resilience against unknown threats. However, it 
is complex and resource intensive. 

2.3. Trusted Execution Environments 

TEEs provide a hardware-isolated region for executing sensitive 
software. This region is separate from the main operating system, also 
known as the REE. This separation divides an MCU into a secure world 
and a non-secure world, allowing for the allocation of hardware re
sources to either world. TEEs ensure that the secure world remains 
protected despite compromises in the REE. Devices using this technol
ogy are loaded with two firmware binaries–one for the TEE and another 
for the REE. The TEE has control during device initialization before 
control is passed to the REE. After this shift in control, the TEE can be re- 
entered via secure-callable functions. Communication between the 
secure and non-secure worlds occurs via a secure communication 
channel, and both the hardware and device drivers enforce proper 
isolation when this channel is in use. Fig. 1 illustrates the TEE’s role in 
dividing the MCU into secure and non-secure worlds. Such hardware 
features are provided by chip manufacturers such as ARM, and they are 
paramount for managing sensitive data and processes. 

2.4. Proposed approach 

We will now introduce MARS, a host- and anomaly-based IDS that 
utilizes device memory for early intrusion detection. This system serves 
as the initial defense in an incident response life cycle. Our approach is 
structured around a client-server model and ensures isolation from po
tential malware threats. To achieve isolation, the memory acquisition 
will reside within the TEE on the IoT device. On the other hand, the 
anomaly detection will reside on an external server. 

2.4.1. Threat 
Imagine that a Stuxnet-like malware seeks to compromise a nuclear 

facility’s network, aiming to disrupt centrifuges. Malware authors 
discover that this plant uses special IoT devices connected to PLCs to 
manage and monitor the centrifuges—a scenario that is becoming 
increasingly common in ICS. This malware targets the vulnerable IoT 
device so that it can directly send commands to the connected PLC. Next, 
its goal is to damage the centrifuges by covertly increasing the rotational 
speed. Additionally, since the IoT device is responsible for sending 
readings to the control system for monitoring, the malware spoofs the 
readings to further camouflage its destructive activities. This stealthy 
behavior makes it virtually impossible for operators to notice any un
usual behavior until it is too late. 

Fig. 1. Hardware isolation achieved through the implementation of a trusted 
execution environment. 
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2.4.2. IDS integration 
Incorporating MARS within the IoT device could significantly alter 

the outcome of such an attack. If the infected IoT device could detect 
anomalous behavior, the malware could be stopped in its tracks before 
causing significant damage. 

3. Design 

Having established the motivation of MARS, we will now discuss its 
architecture. Our proposed IoT HIDS, depicted in Fig. 2, uses device 
memory for anomaly detection. The rationale behind using memory is 
that IoT device activities are routine. Thus, unlike traditional computing 
systems, IoT memory remains mostly static over time. For instance, a 
smart thermostat is specifically designed to monitor and regulate tem
perature. It would be unexpected and anomalous for such a device to 
engage in an unrelated task, such as recording ambient audio. Such 
deviations in functionality are indicative of anomalies and can be 
detected through analysis of runtime activities. 

With this understanding, MARS is designed to capture the IoT device 
memory at the client-side. It then transfers the device memory to a 
classification server that first performs preprocessing and then classifi
cation using a Convolutional Neural Network (CNN). The CNN model is 
trained to detect whether the memory patterns represent normal oper
ation or anomalies. 

In designing of the IDS components, we have identified some critical 
requirements essential for overcoming the challenges associated with 
developing HIDS:  

1. The IDS must be segmented into a client-server architecture given 
the resource limitations.  

2. The client portion of the IDS must be completely isolated from 
untrusted software to maintain integrity in the event of a 
compromise.  

3. The anomaly detection algorithm should be placed on a remote 
server to optimize performance. 

While the exact implementation for the proposed IDS will differ from 
chip to chip depending on the features, tools, and libraries offered by the 
MCU manufacturer, the overall proposed design discussed can be used as 
a blueprint when implementing the system on a new MCU. 

3.1. Client-side components 

Since MARS uses the device memory for classification, we must have 
a tool for extracting MCU memory. The memory acquisition component 
is coded directly into the TEE firmware. To create a TEE, part of the flash 
on the MCU is allocated to the secure region (corresponding to the TEE) 
while the remainder is allocated to the non-secure world (corresponding 
to the REE). The flash bank in the non-secure world houses the main 
device firmware, IoT process, as well as any other untrusted software 
that may be on the device. In addition to housing untrusted software, it 
may have various GPIO pins and serial communication interfaces allo
cated to it so that the main IoT process can use these during its 
operation. 

As shown in Fig. 2, the secure flash partition houses all client-side 
functions of the IDS, including the memory acquisition and network 
code that sends memory blocks to the server. The trusted environment 
also has a watchdog timer, which forces a device reset once it fully 
counts down. These timers are commonly used to monitor software 
execution and detect system faults. Precisely, an MCU can be made to 
reset if an important software component has failed to execute in time by 
embedding the code that resets the watchdog timer inside of that soft
ware component. We use a watchdog timer to enforce the timely capture 
of memory samples within the system. 

3.1.1. Memory acquisition module 
This module is tasked with collecting features for the CNN classifi

cation. Since ensuring the integrity of the memory image is vital for the 
effectiveness of the model, this module operates entirely within the TEE. 

The memory acquisition component occurs in two steps. First, it 
transfers memory blocks from the REE to the TEE. Next, it transfers the 
memory from the TEE to the classification server. Recall that IoT 
memory tends to remain mostly static over time. Because of this, we 
minimize unnecessary memory transfer by analyzing each memory 
block for alterations before sending memory. This is accomplished by 
hashing each block and comparing it to its previous hash. These hashes 
are stored in an array within the TEE, indexed by block number. The TEE 
first computes and stores these hashes during device initialization. The 
array is then updated continuously during device operation if any 
block’s hash changes. 

For any blocks that have been modified, the module records the 

Fig. 2. Generalized system architecture of a host-based intrusion detection system for IoT devices.  
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block number in a list and keeps a tally of the total number of altered 
blocks. After all blocks are checked, memory transfer occurs only for 
blocks that have been modified. The first step involving the transfer of 
memory from the REE to the TEE can be accomplished via an on-chip 
Direct Memory Access (DMA) or interrupt-driven I/O. The second step 
involving sending memory to the server is accomplished by formatting 
an encrypted TCP stream. This stream includes the count of changed 
blocks, the list of block numbers, and the actual memory blocks. 

3.1.2. Client-side network module 
Once the data stream is properly formatted, it is transmitted through 

a network interface dedicated to the secure world. The transmission of 
data and the reception of the classification are managed by the client- 
side network code on the IoT device. The efficiency of this entire pro
cess partly depends on the hardware. Many contemporary MCUs are 
equipped with features like DMA or Serial Peripheral Interface (SPI), 
which greatly accelerate memory transfer. However, the network 
hardware’s speed could be a significant limiting factor, particularly if it 
is integrated into the MCU itself. 

Sending memory data over the network could disrupt the IoT de
vice’s normal operations if not handled properly. We propose that 
memory acquisition should be done in a blocking manner whenever 
possible to promote stability and to capture a precise snapshot of the 
memory at a given time. However, the process of transmitting this data 
over the network should be non-blocking, using parallel or concurrent 
programming techniques. This approach requires buffering the changed 
memory blocks within the secure-world before transmission. To this 
end, the memory devices must be partitioned to allow the secure-world 
to store both the trusted firmware and the changed memory from the 
REE. We believe this is a viable approach, given the typically simple 
nature of most IoT processes in the non-secure world. 

3.1.3. Watchdog timer 
The watchdog timer plays a key role in enforcing the routine 

capturing of memory. Recall that the TEE can only regain control when 
the IoT process sends a request through a secure interface. To ensure that 
this occurs, the code to reset the watchdog timer is embedded within the 
memory acquisition code. If the REE neglects to activate memory 
acquisition, possibly due to malware infection or system errors, the 
timer will count down completely, causing the device to reset. Resetting 
can eliminate some malware, like the Mirai Botnet (Antonakakis et al., 
2017). However, more sophisticated malware might persist in 
non-volatile memory by altering firmware. For these scenarios, a secure 
boot mechanism that verifies the device firmware is needed. Such a 
mechanism could reside in the TEE. Upon receiving the classification, if 
the secure world identifies the latest memory dump as anomalous, the 
watchdog timer will be allowed to count down fully, triggering a device 
reset. If no anomaly is detected, the device continues normal operations. 
This process repeats periodically, governed by an interrupt, and con
tinues during the device’s operation. 

3.2. Server-side components 

The server-side of MARS employs an anomaly detection algorithm 
that analyzes the memory of the non-secure world and categorizes it as 
either benign or anomalous. Therefore, this component is made up of the 
client-server-side communication module, the preprocessing module, 
the training module, and the classification module. 

3.2.1. Client-server communication 
On the server side, the communication module manages the recep

tion of the memory images from the client. Some of its functions include 
decrypting the data stream, parsing the received information, extracting 
the changed memory blocks, and integrating these blocks into the most 
recent memory dump. After the dump is fully reassembled, the memory 
is then passed to the preprocessing module. 

3.2.2. Feature preprocessing 
In any machine learning-based system, effective anomaly classifica

tion depends on (1) meticulous feature selection and extraction, (2) 
robust preprocessing, and (3) an accurate training and detection 
algorithm. 

Preprocessing is a critical step in machine learning, because it pre
pares and transforms raw data into a suitable format for machine 
learning models. Our approach uses a binary blob of memory which can 
be preprocessed in a variety of ways. For unstructured binary data, one 
can extract features such as byte frequency distribution, n-gram 
sequence, or string analysis. Alternatively, it can be encoded into an 
alternative form such as audio or image to provide even more robust 
features, as was shown in the work of (Vijayakanthan et al., 2023a, 
2023b). For our proposed feature preprocessing, we tested the two ap
proaches below:  

• Binary Blob Analysis: Memory dumps are processed to generate n- 
gram sequences: contiguous sequences of n items from a given data 
stream. This method aids in intrusion detection by analyzing the 
patterns and frequency of these n-grams, providing a set of features 
that represent specific byte patterns in the memory.  

• Audio Spectrum Transformation: Memory dumps are converted 
into audio spectrums. Key features that are extracted include MFCCs, 
Mel spectrograms, and chroma variants (chroma_stft, chroma_cqt, 
and chroma_cens). 

As we detail in Section 4, we found that audio spectrum transformation 
provided robust features as well as the best performance. 

3.2.3. Training and classification module 
This module hosts the training and anomaly detection component of 

the IDS. It takes the extracted audio spectrum features above and passes 
them into a CNN model which is trained to differentiate between normal 
and abnormal (or unknown) memory instances. We chose CNN for its 
effectiveness in extracting complex patterns in high-dimensional, intri
cate datasets—an area where other machine-learning approaches fall 
short. CNN models are particularly effective in identifying local pat
terns, such as frequency, amplitude, and duration—all of which are 
crucial for audio classification. The proposed CNN model features a 
sequential architecture with fully connected layers—including three sets 
of convolutional layers, each paired with max-pooling layers, followed 
by a flattening step and then another three sets of dense layers. Learn
able filters in the convolutional layers create feature maps highlighting 
specific patterns, which are then processed through activation functions 
like ReLU to add non-linearity. Pooling layers help in learning more 
complex representations of the input data. The model iteratively im
proves its understanding of the complex data through these layers. 
Finally, the features are flattened and passed through fully connected 
layers for the binary classification task. In our model, a class label ’1′ 
denotes normal memory and ’0’ indicates a potentially abnormal 
memory image. 

Thus, the interaction between the server and client in this proposed 
HIDS architecture unfolds as follows: The client first acquires and 
transmits the memory data to the server. Upon receipt, the server pre
processes and extracts features from this memory image. These features 
are then input into the anomaly detection algorithm for binary classi
fication. After analyzing the data, the algorithm determines whether it is 
benign or anomalous and sends this classification result back to the MCU 
via the server-side communication. Subsequently, the MCU is enabled to 
act accordingly using the watchdog timer. 

4. System implementation 

This section details the implementation of a proof-of-concept for 
MARS using the STM32L562QEI6QU MCU, henceforth referred to as 
”STM32”. The STM32 is an ARM TrustZone-enabled device, selected for 
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its relevance in prototyping IoT solutions. To meet the hardware isola
tion requirements essential for the IDS, we leveraged a TEE provided by 
ARM TrustZone which partitioned the system into secure and non-secure 
realms. This setup provides an environment that simulates a real-world 
IoT device. Although our implementation is specific to this board, the 
principal design can be adapted across different MCUs. 

4.1. Client implementation 

The client component of the IDS has three functions: (1) secure 
acquisition of device memory, (2) transfer of memory to the server, and 
(3) the handling server responses. Prior to discussing these functions, we 
will explain how we chose to partition the STM32 device.The STM32 
device is equipped with two 256 KB flash banks. In our implementation, 
the entirety of one flash bank is allocated to the REE, while the second is 
dedicated to the ARM TrustZone. This allocation strategy simplified the 
configuration bits that needed to be loaded into the STM32 registers. In 
addition to having 256 KB of flash from the STM32 allocated to Trust
Zone, we had all 4 MB of flash from the ESP32 chip, which we leveraged 
for memory buffering. The STM32’s SRAM, which serves as the device’s 
runtime memory, was allocated exclusively to TrustZone, preventing 
modification by the REE. For data transfer, we allocated several pe
ripherals, including a DMA and SPI interface to TrustZone. The DMA 
facilitates secure communication and data transfer from the non-secure 
to the secure environment, while the SPI, connected to an external 
ESP32 board, enables memory transfer over the network. This setup 
leverages the ESP32’s Wi-Fi capabilities to transmit memory images to 
the classification server since the STM32 does not have integrated Wi-Fi. 
It is important to note that since the ESP32 is wired to a secured SPI 
interface, it is considered as belonging to TrustZone in its entirety, thus 
is our ability to use it within the IDS design without violating our need 
for isolation. 

4.1.1. Memory acquisition process 
The memory acquisition process is shown in Fig. 3. The component 

of the memory acquisition residing on the STM32 is built directly into 
the TEE firmware in approximately 3000 lines of C using device drivers. 
It is initiated by a secure-callable function from the REE, triggering the 
DMA to snapshot memory in blocks. These blocks are securely trans
ferred 1024 bytes at a time to the secure world before being sent through 
TCP. At the initial setup of a target device, our design mandates a full 
memory dump to be executed n number of times, where n is determined 
by the user. These initial memory images are crucial for server-side 
model training, tailored specifically to the target device. 

After establishing a baseline, the module will then periodically 
analyze the non-secure flash memory for any modifications, rather than 
acquiring a full dump. Each memory block is subjected to MD5 hashing 
to identify any changes. Blocks with hashes that differ from their pre
viously stored values are earmarked for transfer. This selective transfer 
process efficiently minimizes the data sent to the ESP32 for network 
transmission, thereby reducing unnecessary memory transfer and 
enhancing the system’s overall efficiency. 

4.1.2. Memory transfer 
The entire memory or the identified blocks are then transferred to the 

SPI interface, connected to the ESP32, for network transmission. This 
stage involves re-computing the memory address of each modified block 
for direct transfer to the SPI, optimizing the process by bypassing 
additional buffering in the secure world. The ESP32’s DMA facilitates 
the buffering of incoming data, ensuring efficient network transmission 
through TCP to the classification server. 

4.1.3. Watchdog timer 
The system employs an independent watchdog timer allocated to the 

TrustZone to ensure timely memory acquisition. If the non-secure world 
fails to trigger the memory acquisition process within a predetermined 
interval (possibly due to intrusion), the watchdog timer resets the de
vice. This mechanism enforces regular memory checks. 

4.1.4. Handling server response 
The server, upon receiving and analyzing memory dumps or modi

fied blocks from the IoT device with the developed model, will generate 
a classification indicating the security status of the device. Namely, ’1′ 
denotes that the device is operating within expected parameters and a 
’0’ indicates the detection of potential anomalous activity that could 
suggest a security threat or intrusion. 

Once the client receives the server’s response, it will decide how to 
respond. If a ’0′ signal is received, the IDS will respond by not resetting 
the watchdog timer. This deliberate inaction would lead to a system 
reset, part of the predefined security protocols mentioned above. 

4.2. Server-side implementation 

The server-side architecture of our IDS plays a pivotal role in 
analyzing memory dumps transmitted from the IoT device to detect 
anomalies. Developed in about 200 lines of Python, this component le
verages the extensive library support of the language to facilitate 
network communication and integrate with machine learning models. 
The server–side processes include memory image preprocessing, feature 
extraction, CNN model development, and client communication mod
ule–each critical for the nuanced analysis required to classify memory as 
benign or potentially malicious. 

4.2.1. Memory image preprocessing 
Preprocessing of memory images is the initial step in the server’s 

analysis, transforming raw memory dumps into a more analyzable 
format. Developed in about 130 lines of Python, this transformation is 
crucial to detecting underlying patterns or anomalies in the runtime 
memory which may not be discernible in its original binary form. It is 
these features that get passed to the model for classification. As stated in 
Section 3, we considered two transformative approaches: memory to 
binary using n-gram and memory to audio transformation. We will 
explain these two approaches in detail and illustrate why the memory to 
audio transformation is the best. 

Memory to Binary Using N-Gram - In this transformation, each 

Fig. 3. Memory acquisition process from MCU to classification server.  
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blob of memory is transformed into a set of n-gram sequences. To 
analyze a memory blob of 256 KB using n-gram analysis for various sizes 
of n-gram (1-byte, 2-byte, 3-byte, 4-byte, and 5-byte grams), we first 
compute the number of n-grams and then multiply the number of n- 
grams by the size of the n-gram to determine the total bytes represented 
by each set of n-grams. This computation is represted in equation 1, 
where size_data represents the total bytes, n represents the number of n- 
grams, and size_n_gram represents the size of the n-gram.  

sizedata = n × sizen gram Equation 1 

The computation in Table 1 shows that as the size of n-grams in
creases, the total bytes represented by each set of n-grams exhibits an 
approximate fold increase directly proportional to the n-gram size. A 
lower n means less number of bytes to process, and hence, reduction in 
the computational complexity. However, a lower value of n is often less 
informative in understanding context. Particularly, in binary analysis, 
the chosen n should be large enough to capture relevant patterns or 
anomalies in the data without diluting the analysis with excessive noise. 
Therefore, given that efficiency is one of the overarching objective of 
this IDS, this transformation method is not ideal. 

Memory to Audio Transformation - This conversion employs audio 
spectrum transformation techniques, facilitating a richer analysis by 
highlighting unique characteristics inherent in the memory data. Our 
transformation goal here had two fundamental requirements:  

1. The converted audio spectrum cannot be significantly larger 
than the original memory file size. If the converted audio spec
trum is too large, it will be too computationally expensive and time- 
intensive for the server to process, thus hindering the system’s 
efficiency.  

2. The transformation must be lossless. The audio spectrum needs to 
be a complete and accurate representation of the memory image so 
that no information is lost or compromised and analysis is accurate 
and undiminished. 

To achieve these requirements, we wrote scripts using four libraries 
for audio spectrum processing: Librosa (librosa/librosa: 0, 2023), Wave 
(Python Software Foundation), SoX (Chris Bagwell, 2015), and FFmpeg 
(Developers, 2023). These conversion methods are tested on a 1 KB 
memory image. 

The results as shown in Table 2 indicate that while the output from 
the Librosa conversion doubles the size of the original memory, the 
outputs from the three alternative approaches Wave, SoX and FFmeg 
have almost the exact size of the original memory, with few bytes 
overhead for the header. Even at higher sampling rates—which allow for 
greater precision in extracting key features from memory—the file size 
stays the same for the Wave and SoX library as it changes sampling rates. 
The FFmpeg library only increases audio spectrum file size by 24 bytes at 
sampling rates beyond 48 kHz. Applying this result to our 256 KB 
memory, the audio transformation using Wave and SoX will indeed not 
result in a size much larger than the original memory, thus satisfying the 
first requirement. 

To test the second requirement that these transformations are indeed 
lossless, we re-transform the output audio in Table 2 above back into 
binary. The hashes of the original input were then compared to the 

hashes of this output and the result shows they are identical, indicative 
that the transformation is indeed lossless. 

Therefore, given these test results, our feature preprocessing adopted 
the memory to audio transformation technique. 

4.2.2. Feature extraction 
Following preprocessing, the server extracts critical features from 

the transformed memory images to facilitate effective anomaly detec
tion. This step is crucial for reducing the dimensionality of the data 
while retaining important information that the CNN model can analyze. 
Key features extracted from the audio spectrum representation of 
memory data include Mel-frequency cepstral coefficients (MFCCs), Mel 
spectrograms, and chroma features such as chroma_stft, chroma_cqt, and 
chroma_cens. These features provide a comprehensive profile of the 
memory, capturing its unique characteristics and patterns. The extrac
tion process employs various digital signal processing techniques to 
isolate and quantify these features, preparing them for input into the 
CNN model. This meticulous approach ensures that the most informative 
aspects of the memory-encoded audio spectrum are highlighted for 
analysis. 

4.2.3. CNN model development 
Model Architecture: Our CNN model, implemented using Tensor

Flow’s Keras API, adopts a sequential architecture comprising three 
convolutional layers, followed by max pooling and dropout layers, a 
flattening layer, and three dense layers. Developed in about 150 lines of 
Python, the model’s architecture is strategically designed to incremen
tally capture and analyze the complex patterns present in the input 
features. 

Convolutional Layers: These layers utilize 32, 64, and 128 filters, 
respectively, to detect various patterns within the input features. Max 
pooling layers follow each convolutional layer to reduce the dimen
sionality of the data while retaining essential information. Dropout 
layers are incorporated to prevent overfitting by randomly omitting a 
subset of neurons during training. 

Dense Layers and Output: The network is built with three dense 
layers, with the final layer consisting of two neurons and a sigmoid 
activation function, classifying the input as benign or anomalous. This 
configuration allows the model to learn and identify complex feature 
patterns indicative of potential security threats. 

Training and Optimization: The model is compiled with the Adam 
optimizer and binary cross-entropy loss function, chosen for their effi
ciency and effectiveness in binary classification tasks. The Adam opti
mizer is particularly suited for this application due to its adaptive 
estimation capabilities and minimal memory requirements, while binary 
cross-entropy accurately evaluates the divergence between predicted 
and actual binary labels. 

Fig. 4 summarizes the overall classification process including pre
processing. By the time preprocessing is complete, the raw memory 
dump is converted to an audio spectrum on which feature extraction 
occurs. The features are passed to the trained CNN model, and based on 
these, the memory dump is classified as benign or anomalous. 

Table 1 
Output of memory to binary conversion using N-gram.  

n-gram size n-gram bytes 

1-byte gram 262,144 262,144 
2-byte gram 262,143 524,286 
3-byte gram 262,142 786,426 
4-byte gram 262,141 1,048,564 
5-byte gram 262,140 1,310,700  

Table 2 
Output of memory to audio signal transformation.  

Sampling Rate 
(Hz) 

Librosa 
(bytes) 

Wave 
(bytes) 

SoX 
(bytes) 

FFmpeg 
(bytes) 

42,000 2044 1044 1044 1078 
44,000 2044 1044 1044 1078 
48,000 2044 1044 1044 1078 
50,000 2044 1044 1044 1102 
88,200 2044 1044 1044 1102 
96,000 2044 1044 1044 1102 
176,400 2044 1044 1044 1102 
192,000 2044 1044 1044 1102  
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4.2.4. Network communication 
The server communication module has two main functions: (1) it 

receives the memory data from the client and (2) sends the classification 
back to the client after the anomaly detection classifies the memory. In 
the first function, when the server receives the initial setup n-memory 
dumps, it is designed to forward those images to the memory to audio 
transformation component. On the other hand, when the server receives 
modified blocks, it integrates the changed blocks into the previous 
memory before passing it to the transformation function. 

For its second function, the server’s response is encapsulated in a 
TCP packet so that the device can respond appropriately. 

5. Testing and evaluation 

The primary goal of our approach is to use device memory to 
distinguish between normal and anomalous activities. As outlined in 
Section 1, we focus on achieving three key objectives. This section aims 
to evaluate MARS ’s proof of concept against these objectives. To ach
ieve this, we developed test beds: 

1. Infrared Motion-Sensing Application: This application detects mo
tion and transmits signals to a server. It serves as a hypothetical 
example for monitoring purposes, such as detecting unauthorized 
entry into restricted areas of a centrifuge facility.  

2. Blinking LED Application: This application is designed to alter its 
LED color in response to changes in system status, providing a visual 
indicator of different operational states. 

Both applications are configured to relay their findings to a server via 
Netcat, listening on specific ports dedicated to each application. This 
setup allows us to evaluate the practicality and effectiveness of our 
approach in real-world scenarios, measuring its performance across the 
aforementioned objectives. 

5.1. Testing for Trust and Integrity 

The goal of this testing is to ensure that memory images are complete 
and valid during acquisition and after transfer. The apps’ non-secure 
memory transferred to TrustZone was authenticated by routing it to a 
UART port connected to the embedded programmer. Next, selected 
memory blocks (including the first and last) were scrutinized against the 
original content in the non-secure flash bank using a hardware-based 
memory inspection feature available in STM32CubeProgrammer. It is 
important to note that this inspection capability, while valuable for 
validation, is not feasible for inclusion in the IDS for a production IoT 
device due to its reliance on an embedded debugger that would be ab
sent in the final product. Additionally, the overall size of the memory 
dumps was confirmed to be precisely 256 KB. Finally, to validate the 
integrity of the data received server-side, the memory dumps trans
mitted to the server were cross-referenced with the comprehensive 
dumps extracted via UART, employing a diff program to ensure a 
complete match. 

5.2. Testing for accuracy 

To evaluate the server-side classification engine’s accuracy, we 
compiled a dataset comprising 20 memory images from the Infrared 

app–representing normal operational data–and 20 memory images from 
the Blinking LED app–categorized as anomalous data. This dataset range 
is balanced and does not create inefficiency that would occur if one had 
to wait on, for example, 100 memory samples to train upon server 
initialization. This collection of 40 memory images was allocated for 
training and testing purposes, adhering to a 70:30 split, respectively. 
Our choice of using a CNN model focuses on training the model to 
recognize patterns of known images, going beyond surface-level differ
ences to understand each segment’s underlying structure and context. 

The outcomes of our training, as shown in Table 3, indicate the 
model’s performance metrics, including a 100 % test accuracy rate, 
along with Loss, F1-Score, Recall, and Precision values. Notably, the 
entire process—from memory-to-audio preprocessing through to the 
execution of training and testing phases—was completed in approxi
mately 43 s, underscoring the system’s efficiency. 

It is crucial to highlight that MARS ’s design is inherently flexible, 
accommodating the integration of various types of classification models 
as per user or organizational requirements. Implementing a new engine 
merely involves replacing the existing classification component with the 
desired alternative, illustrating the system’s plug-and-play capability. 

5.3. Testing for robustness 

To assess the accuracy of our classification system in identifying 
memory alterations, we implemented a stress testing methodology. This 
method involves deliberately inducing random bitflips (Antoine Gron
din, 2020) within the memory image to simulate byte changes at varying 
levels: 0.1 %, 0.2 %, 0.5 %, and 1.0 %. The goal of this approach is to 
determine the extent of changes required for the classification engine to 
accurately identify the memory as anomalous. Our evaluation results as 
shown in Table 4 show that our model is able to correctly classify, with 
100 % accuracy, changes in memory starting at 1.0 % bytes changed. 
The discrepancies associated with percentages lower than 1.0 % likely 
have to do with the regions of memory that were randomly chosen to be 
bitflipped, as some memory regions are less susceptible to detection due 
to their lower importance in overall system behavior. These results are 
very promising considering that the average IoT malware, like Mirai 
(size = 68 KB), will occupy ~27 % of a 256 KB memory. Our method’s 
ability to detect as little as a 1 % change is significant and suggests it 
could effectively detect threats with even smaller footprints. 

5.4. Testing for performance overhead 

Although, performance was not a key objective of this prototype, 
nonetheless, evaluating overhead is always crucial in system design. In 
this test, we evaluated MARS ’s performance overhead during execution. 
First, we computed the average time it takes to capture the initial n- 
memory images at the system setup. It is important to note that the 

Fig. 4. Overview of memory-based anomaly detection algorithm.  

Table 3 
Performance metrics of server-side classification engine.  

Accuracy 1.0 

Loss 7.892257417552173 ×10− 5 

F1_Score 1.0 
Recall 1.0 
Precision 1.0  
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overhead for gathering n-memory dumps is non-disruptive and will only 
be completed once. Our evaluation on the Infrared app shows the 
acquisition process for one full dump (including sending over TCP) takes 
about 5 min to complete. By contrast, the amount of time it takes to 
acquire and buffer one full dump using the on-chip DMA (without 
sending over the network) takes 500 ms. While acquiring memory via 
the on-chip DMA is fast, we found that it takes much longer to transmit 
this data over the network. Notably, the transfer rate for sending data to 
the server using the integrated Wi-Fi within the ESP32 was about 1 kB/s, 
making it an obvious bottleneck in this process. We chose to use inte
grated Wi-Fi within the ESP32 to workaround the lack of a network 
interface on the STM32 board. However, faster networking hardware 
would help minimize or perhaps even eliminate this bottleneck. 

Next we computed the average time it takes to identify modified 
memory blocks, acquire them and then transfer them. Our test indicate it 
takes 8 s for all the three steps to complete for changes in 1 block. 
Although acquiring and buffering one block takes 2 ms and sending over 
the network takes 1 s, there is some overhead involved in synchronizing 
communication between the STM32 and ESP32 development boards. 
We also found that we had to implement a message protocol on top of 
SPI to ensure reliable transfer of data between the two boards. The 
higher-than-expected transfer time is attributed to the work that must be 
done to synchronize the two chips and transfer and parse communica
tion signals between them. Thus, the higher overhead is once again 
caused by the STM32 development board’s lack of an on-board network 
interface. This overhead could be eliminated on a board with integrated 
networking. 

5.5. Limitation and future work 

In this paper, we introduce and demonstrate a proof-of-concept for 
MARS designed as a client-server architecture. Although the initial 
prototype demonstrates promising accuracy, robustness, and integrity, 
there are limitations in its design and evaluation that require future 
attention: (1) Real Malware Attack Evaluation: Future work should 
include testing the IDS against actual malware attacks to validate its 
effectiveness in real-world scenarios. (2) Complex IoT Application 
Testing: Both the client and server components of the system need to 
undergo testing with more complex IoT applications to ensure their 
compatibility and performance across diverse environments. (3) 
Secure-Boot: Sophisticated malware may have a way of surviving 
reboots. Thus future implementations should be extended with a secure- 
boot mechanism capable of re-flashing the device with clean firmware 
(4) SRAM collection: The current memory acquisition collects flash 
memory; however, future implementations should be extended to cap
ture SRAM as well to capture variable data. (5) Client Component 
Debugging: Some client components, notably the watchdog timer, have 
exhibited issues that necessitate further debugging to enhance system 
reliability and functionality. 

6. Related work 

There have been numerous design algorithms proposed in the liter
ature for both NIDS and HIDS. Anomaly-based NIDS, such as (Ullah Jan 
et al., 2019; Eskandari et al., 2020), show high accuracy in detecting 
network anomalies. However, they struggle with attacks that do not 

alter packet transmission rates and demonstrate inconsistent perfor
mance across different intrusion types. Similarly, Fatani et al.’s 
approach (Fatani et al., 2021) uses a CNN model for feature extraction 
and displays inconsistent results due to IoT network diversity. In 
contrast, signature-based NIDS, proposed by Lo et al. (Weng Lo et al., 
2022) and Altunay et al. (Altunay and Albayrak, 2023), demonstrate 
high accuracy using advanced models like GNNs, CNN, and LSTM but 
face challenges with new or evolving attack patterns. On the other hand, 
HIDS-based models like those proposed by Gassais et al. (2020) and 
Shobana et al. (Shobana and Poonkuzhali, 2020), which rely on system 
call traces, offer high accuracy but encounter limitations due to the 
heterogeneity of traces or system calls, affecting algorithm performance. 
The implementation of SEHIDS (Baz, 2022), a Self Evolving Host-based 
Intrusion Detection System for IoT networks, involved ARM Develop
ment Studio and lightweight ANN to adapt dynamically to threats and 
showed high accuracy with minimal resource consumption. However, 
the work focuses on specific datasets and a particular IoT device 
configuration (OpenMote-B) leaving practical deployment challenges 
and scalability in real-world IoT environments unexplored. Similarly, 
Mendonca, Robson V. et al. (Mendonca et al., 2022) deployed a Sparse 
Evolutionary Training (SET) model on Raspberry Pi for cybersecurity in 
Industry 4.0’s IIoT, achieving 99 % accuracy and improving attack 
detection by 6.25 %. However, the study’s focus on specific datasets and 
MCUs may limit generalizability and potential challenges in scalability 
and diverse IIoT environments are not extensively discussed. In contrast 
to existing literature, our proposed approach is not just an algorithm but 
an overall system design and implementation for IoT device host-based 
intrusion detection that leverages an effective CNN model for classifi
cation to detect changes in device memory. 

7. Conclusion 

In this paper, we proposed MARS: a client-server HIDS architecture 
that leverages device memory to detect anomalies in IoT operational 
functionalities. The memory samples which are collected through on- 
device module that resides in the MCU’s TEE are transformed to audio 
spectrum, from which distinguishing MFCC features are extracted and 
passed through a trained CNN model for anomaly detection. Our eval
uation shows MARS meets its goals of integrity, accuracy, and robust
ness, proving its viability. During tests, MARS had fairly minimal 
performance overhead–indicating its suitability for operational envi
ronments without hindering system performance. MARS ’s secure 
handling of memory images also ensures its reliability. The robust 
classification engine is exhibited by solid performance metrics (100 % 
test accuracy rate, F1-Score, Recall, and Precision) and demonstrates its 
ability to distinguish between normal and anomalous behaviors. Stress 
testing, which involved simulating memory alterations through random 
bit flips, provided further evidence of MARS ’s ability to detect anom
alies under varied conditions. Despite these positive outcomes, the 
MARS prototype has limitations that future work will address: including 
testing against real malware attacks, compatibility with complex IoT 
applications, and improving client-component reliability. 

Acknowledgements 

This work is supported by NSA Grant No. H98230-21-1-0166. 

Table 4 
Stress testing of System’s classification at different percent byte changes of memory.  

Bytes Changed Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

0.0 % Benign Benign Benign Benign Benign 
0.1 % Benign Benign Benign Benign Anomalous 
0.2 % Benign Benign Anomalous Benign Benign 
0.5 % Anomalous Benign Benign Anomalous Benign 
1.0 % Anomalous Anomalous Anomalous Anomalous Anomalous  
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