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A B S T R A C T   

Memory Forensics (MF) is an essential aspect of digital investigations, but practitioners often face time- 
consuming challenges when using popular tools like the Volatility Framework (VF). VF, a widely-adopted Py-
thon-based memory forensics tool, presents difficulties for practitioners due to its slow performance. Thus, in this 
study, we evaluated methods to accelerate VF without modifying its code by testing four alternative Python Just 
In Time (JIT) interpreters - CPython, Pyston, PyPy, and Pyjion - using CPython as our baseline. Tests were 
conducted on 14 memory samples, totaling 173 GB, using a search-intensive VF plugin for Windows hosts. 
Employing our custom Framework for Advanced Monitoring and Execution (FAME), we deployed interpreters in 
Docker containers and monitored their real-time performance. A statistically significant difference was observed 
between the Python JIT interpreters and the standard interpreter. With PyPy emerging as the best interpreter, 
yielding a 15–20 % performance increase compared to the standard interpreter. Implementing PyPy has the 
potential to save significant time (many hours) when processing substantial memory samples. FAME enhances 
the efficiency of deploying and monitoring robust forensic tool testing, fostering reproducible research and 
yielding reliable results in both MF and the broader field of digital forensics.   

1. Introduction 

Memory Forensics (MF), a subdomain of Digital Forensics (DF), 
concentrates on acquiring (dumping or cloning) and analyzing volatile 
RAM (Case & Richard III 2017). This is particularly beneficial when 
investigating system intrusions involving stealthy malware that leaves 
no traces on a victim’s hard drive. Random Access Memory (RAM) 
analysis reveals information such as active processes, stored usernames 
and passwords, open files, and active network connections. The widely 
adopted tool for RAM analysis is the open-source Volatility Framework 
(VF), version 3 (Ligh et al., 2014; Duke 2021; Balaoura 2018; Graziano 
et al., 2013). Other popular tools for extracting information from 
memory dumps include WinDbg, Rekall, and Varc. However, our study 
focuses on accelerating the VF. 

One significant challenge in DF is the velocity, variety, and volume of 
digital evidence, resulting in substantial case backlogs for practitioners, 
sometimes up to three years (Scanlon 2016; van Baar et al., 2014; Baggili 
et al., 2014; McCullough et al., 2021; Sanchez et al., 2019). Solutions 
proposed include developing a robust DF talent pipeline and enhancing 
investigative technical solutions and processes. The exhaustive scans 

required for reconstructing memory artifacts necessitate faster VF pro-
cessing for large workloads. VF is implemented in Python (Foundation 
2023), which is typically slower than languages like C++ (Lion et al., 
2022). One potential approach for improving runtime efficiency is 
migrating VF to a different programming language. However, this task is 
both complex and expensive, and the benefits may not outweigh the 
advantages of Python’s extensibility and simplicity (Balreira et al., 2023; 
Tan et al., 2021). An alternative, cost-effective strategy is investigating 
whether VF’s runtime can be optimized using different Python 
interpreters. 

The standard Python implementation is CPython (interpreter +
compiler). However, several interpreters and implementations have 
been developed throughout the years by the research community to 
overcome the shortcomings of the Python language. Our work studies 
four of these interpreters to determine if they have an effect on VF’s 
performance. Specifically, we examined CPython, Pyston (Modzelewski 
2023), PyPy (Team, 2019), and Pyjion (Pyjion - A Python JIT Compiler, 
2022). To extensively test these interpreters, in a controlled and scalable 
setting, we had to devise a generalizable testing and monitoring 
framework that meets specific criteria outlined in our work. 
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In DF, the ongoing challenge lies in robust testing forensic tools for 
scientific validity, error rates, and forensic soundness. This is vital not 
only for scientific integrity but also for the admissibility of digital evi-
dence in the United States, following the Daubert Process and the Frye 
Test (Pan and Batten 2009; Horsman 2018, 2019; Mohamed et al., 2014; 
Baggili et al., 2007). 

Thus, our work makes the following contributions.  

⋅ We propose a novel approach to enhance the performance of MF by 
accelerating VF in a cost-effective manner, without necessitating any 
code changes to the complex and widely-adopted software.  

⋅ We introduce Framework for Advanced Monitoring and Execution 
(FAME),1 an open-source tool that facilitates real-time deployment 
and monitoring of Docker containers. FAME enables software 
deployment and monitoring experiments, enhancing continuous and 
robust testing of DF tools.  

⋅ In response to the lack of publicly available DF datasets (Grajeda 
et al., 2017), we contribute a public dataset consisting of over 173 GB 
of RAM samples and more than 750,000 data monitoring records 
obtained from our experiments2,3. 

In this paper, we explore accelerating VF by examining and 
substituting the Python Just-In-Time (JIT) interpreter with alternatives. 
We present background information on MF and VF, addressing our 
study’s limitations. Our methodology involves demonstrating the 
problem, defining criteria, and guiding our research in identifying and 
constructing a solution. We then review related work, emphasizing the 
relevance, and importance of our research. We analyze the performance 
of Python JIT interpreters and highlight our approach’s soundness. We 
discuss our findings, conclude our study, and suggest future research 
directions. 

2. Background 

This section includes background information about MF and how it 
relates to the VF, as well as the limitations and research questions. 

2.1. Memory forensics 

MF is a relatively young domain in the field of digital forensics. 
Vömel and Freiling (2012) explained that the main requirements for a 
forensically sound memory acquisition involve correctness, atomicity, 
and integrity. Atomicity is the concept that a single operation in mem-
ory, such as a read or write, is executed in one indivisible action without 
interruption. This ensures that the memory state maintains its correct-
ness and integrity without corruption. 

MF plays a crucial role in legal investigations, as it can yield evidence 
that is indispensable for substantiating or refuting a case. This type of 
analysis allows investigators to uncover valuable evidence that might be 
inaccessible through conventional forensic techniques, such as exam-
ining a device’s hard drive. In many instances, a digital device’s RAM 
can store crucial information unobtainable through other methods (e.g., 
searching the hard disk). For example, a suspect might have erased 
incriminating files from their hard drive, but remnants of those files 
could still linger in RAM. Moreover, the RAM can hold data about 
processes and activities occurring on the device during a crime (or at 
some point in time), such as the utilization of specific software or 
accessing particular websites. 

After cloning a memory dump of RAM from the scene, it must be 
analyzed (Nyholm et al., 2022). Though the primary tool for RAM 

analysis is VF, alternative methods like string searches and pattern 
searches in memory using YARA signatures have also been employed 
(Cohen 2017). MF can be applied to any device containing RAM (Thing 
et al., 2010; Casey et al., 2019; Thomas et al., 2020, 2021; Wang et al., 
2022; Manna et al., 2022). However, practitioners, such as DF in-
vestigators, must be mindful of the risks and legal aspects associated 
with handling digital evidence to ensure its admissibility in court. 

Previous research has applied MF analysis to various devices, 
including mobile devices (Thing et al., 2010), Virtual Reality (VR) de-
vices (Casey et al., 2019), cryptocurrency hardware wallets (Thomas 
et al., 2020), Universal Serial Bus (USB) attack platforms (Thomas et al., 
2021), the V8 JavaScript (JS) engine (Wang et al., 2022), and. NET core 
applications (Manna et al., 2022). The efficiency and significance of MF 
are undeniable; however, the need for faster tools to address the growing 
DF backlog remains. Accelerating the tasks of incident responders 
engaged in investigative procedures is crucial, especially for those 
examining a machine following a discreet malware intrusion. 

2.2. Volatility Framework 

VF is an open-source MF framework initially developed by Aaron 
Walters, whose components are grounded in his academic research 
(Petroni et al., 2006; Walters and Petroni 2007). It is extensively utilized 
by various organizations, including the military, law enforcement, and 
incident response teams across all sectors (Case & Richard III 2017). VF 
is a robust MF tool that reconstructs information about a system’s 
running processes and network connections while aiding in the identi-
fication of malicious processes. This extensible framework allows the 
use of built-in features and the integration of custom plugins. It enables 
human analysts to examine RAM dumps without requiring knowledge of 
low-level data reconstruction procedures. VF is regarded as the primary 
tool for system analysis. The framework can be used to extract infor-
mation such as login credentials, IP addresses, and system configura-
tions from the memory of a device (Wang et al., 2022; Lewis et al., 
2018), recovering deleted files, identifying malware and rootkits, and 
reconstructing network activity (Sylve et al., 2012, Ligh et al., 2014). 

2.3. Limitations & research questions 

Our work was limited to a specific set of memory samples, which 
may not be fully representative of the complete spectrum of MF sce-
narios. Factors such as hardware specifications and Operating System 
(OS) may also impact Python interpreters’ performance, aspects that 
may not have been thoroughly examined in our investigation. However, 
our scenarios were all deployed on the same hardware and with the 
same Docker image in a controlled environment. Our work did not take 
into account the effects of interpreter-specific optimizations and 
configuration alternatives, which may influence performance outcomes. 
We opted for the default settings across all deployments. Lastly, we 
investigated Python interpreters on a local cluster and batch containers 
and we aimed to answer the following research questions.  

⋅ RQ1: How does the replacement of Python JIT interpreters with the 
proposed framework impact the performance of VF in conducting 
MF? 

⋅ RQ2: How can the proposed FAME tool be integrated into repro-
ducible research and experimental workflows to support memory 
forensics across various scenarios? 

3. Methodology 

In this section, we present the architecture of FAME and discuss how 
our objectives influenced the decision-making process. We demonstrate 
how a controlled testing environment can be employed to collect per-
formance data for Python JIT interpreters. Moreover, we explain the 
process of memory sample curation. Furthermore, we describe the 

1 Code: https://lsu.box.com/s/w67xhdwa6mz9f2bbzof9sm2udbzilsql.  
2 Data samples link: https://bit.ly/3w60Fc4.  
3 Docker Excel sheet, Pypy3 & the volatility3: https://lsu.box.com/s/x54 

or67d0oa450gzwlon1mpom6cauu40. 
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comprehensive deploying and monitoring framework methodology. 
This section concludes by showcasing the framework in action, to 
analyze the data collected and evaluate the chosen Python JIT 
interpreters. 

3.1. Problem generalization 

We present the selection criteria for tested Python JIT interpreters 
and an overview of the methodology. 

3.1.1. Python selection criteria 
Previous research benchmarked Python JIT interpreters using syn-

thetic data or simple queries, not reflecting real-world scenarios, espe-
cially for a full system (Roghult 2016; Juneau et al., 2010; Behnel et al., 
2010). We tested Python JIT interpreters against the VF using realistic 
scenarios while considering the following criteria.  

⋅ JIT Compiler Compatibility: The tested software (VF) must run on 
Python and other Python JIT compilers. Compatibility implies no 
code changes, special tags, or metadata for guiding JIT compiler code 
compilation. 

⋅ Zero Code Change: No code changes, special tags, or metadata al-
terations needed for VF.  

⋅ Extensible Testing Framework: The framework should test time 
efficiency and forensic soundness, accommodating updates to JIT 
compilers and VF code. 

We identified three Python JIT interpreters meeting our criteria: 
Pyston, PyPy, and Pyjion. These interpreters required minimal or no 
code changes. Note that initially, PyPy was incompatible (see Section 
4.3). 

3.1.2. Software framework specification 
We aimed to develop a framework for scalable deployment and 

monitoring. Thus, we created FAME, designed based on the following 
criteria. 

C1: Commands Deployment: Allows command deployment in iso-
lated runtimes using containerization for controlled testing 
environments. 
C2: Lightweight: Ensures efficient resource utilization, e.g., minimal 
Central Computing Unit (CPU) usage. 
C3: Monitoring Data Persistence: Offers real-time container 
monitoring and access to historical performance data. 
C4: Easy to Customize: Supports customization for extensibility, 
such as comparing output hash values for forensic soundness. 

Our goal was a streamlined test deployment process and container 
scheduling for continuous, unattended operation, allowing researchers 
to focus on other tasks. 

3.1.3. Methodology overview 
The framework employed Docker containers as nodes. Each 

container executed a Python JIT interpreter with user-sourced com-
mands, such as VF operations. Data was logged to measure runtime and 
other metrics. Timestamps were taken during tests, with the ability to 
measure completion time. Tests were conducted on a single machine, an 
MSI Katana GF66 11UE, with the following specifications: 

Processor: MSI Intel ® Core ™ i7-11800H @ 2.30Ghz 
Cores: 8. 
L1 Cache: 640 KB. 
L2 Cache: 10 MB. 
L3 Cache: 24 MB. 
Memory: 16 GB (2 × 8 GB) 3200Mhz DDR4. 

3.2. FAME development 

In this section, we discuss the development of the FAME framework. 
FAME was designed with the following objectives in mind.  

⋅ Ensuring consistent hardware and OS components to treat them as 
Independent Variable (IV)s. By maintaining a dockerized, stateless 
baseline without any resource manipulation, FAME produces more 
accurate results. In simpler terms, it enables a fair comparison be-
tween the different interpreters.  

⋅ Prioritizing portability and extensibility.  
⋅ Monitoring generalized performance metrics. 

Our aim was to conduct tests in a noise-free, replicable environment. 
In the following sections, we elaborate on how these objectives were 
achieved. 

3.2.1. FAME architecture 
The architecture for monitoring Docker containers consists of three 

components: Main, Observer, and Publisher. Fig. 1 illustrates the layout 
of our monitoring and testing approach, showing the four tested Python 
JIT interpreters and the command execution within the container. FAME 
can be containerized or run on bare metal. The Main component, similar 
to the main-node architecture (see Fig. 2), serves as the coordinator and 
interface between the client and other components. 

Listing 1. : JSON Data for Docker Container Configuration: Payload 
Sent in Each Deployment. 

3.2.2. FAME deployment and monitoring 
The Main component comprises two core libraries: (1) the open- 

source docker-java library, which builds the Docker client, and (2) 
spring-boot-starter-webflux, which enables the creation of non-blocking 
Application Programming Interface (API)s and reactive streams. User 
commands are processed and forwarded to the appropriate component. 
To run containers, users send an HTTP POST request to the Main 
component endpoint (see Fig. 2) specifying the payload (see Listing 1, 
POST endpoint payload). The Main component instructs Docker daemon 
(also known as Docker Engine API) to create the defined container (see 
Fig. 1) and informs the Observer component about the new container to 
monitor (see Fig. 2). The Main will schedule the containers in batches, 
with the ability to configure the time and the number of containers to 
run at once from the given commands that will be sent along in the HTTP 
POST payload (see Listing 1). 

The Observer component (see Fig. 2) is a daemon actively collecting 
statistics and logs from the Docker daemon. It pushes the collected data 
to a non-relational database, MongoDB. The use of distributed 
messaging system (e.g., Kafka) was going to be implemented, however, 
the existing spring-boot-starter-data-mongodb-reactive library, enabled us 
to use and listen to changes (in collections) in real-time. These reactive 
streams simplified the architecture. The Publisher component, another 
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daemon, listens for changes in collections in real time and pushes data to 
active subscribers, as shown in Fig. 2. This systematic approach allows 
for efficient container monitoring at scale. Historical data can be 
retrieved or exported via the Publisher API, and readings are time-
stamped and tagged with the container ID for clarity and time series 
chart visualization. 

After building the deployment and monitoring backbone (see Fig. 2), 
a user is able to modify or add custom endpoints on both ends, the 
Publisher and Observer. FAME offers a lightweight protocol that does 
not require the opening of a new connection every time there is new 
data, when the connection is opened, all data will be sent on the same 
connection. It provides two data retrieval modes from the Publisher: 
sending duplicate data (active data retrieval) to be more efficient or 
sending data only when there are changes (e.g., the readings change) 
with that adding overhead of sending data and ensuring consistent 
connection from the Publisher. 

3.2.3. Data output 
As we mentioned earlier, data is retrieved via the Publisher after the 

subscriber’s subscription. Additionally, subscribers may be required to 
develop a custom plugin that accommodates reactive streams. Data can 
be acquired in JSON format through MongoDB connectors and exported 
using the command line tool mongoexport, or alternatively, exported via 
the Publisher as JSON using previously stated modes. The statistics 
retrieved from a Publisher summary API are shown in the Listing 2. 

Listing 2. : Java Class for Docker Statistics Summary Data. 

3.2.4. FAME validation 
Apart from this, the data were directly acquired from the Docker 

daemon, utilizing the docker-java library. In order to verify the accuracy 
of FAME, code unit tests and visual inspection, a comparison test was 
conducted between the FAME statistics and the Docker stats, evaluating 
the congruence of the data. This comparison substantiated the correct-
ness and reliability of the performance metrics and monitoring processes 
incorporated within FAME. Subsequently, multiple tests were carried 
out to confirm the consistency of the output and the framework’s 
dependability. The design of FAME facilitates the replication of the test 
environment across a variety of systems and settings, thus enhancing the 
validity of the performance evaluation for different Python JIT 
compilers. 

3.3. Tests 

Before running performance tests on a system, it is critical to remove 
all user processes. User processes can interfere with the tests and pro-
duce inaccurate results, which can compromise the validity of the 
analysis. The test employed one scenario to be replicated on containers. 
The System UTC clock will be queried to obtain the current instant in 
Java, to timestamp the statistics and logs, accompanied by saving and 
publishing them in real time. 

VF is a very rich framework and comprises plugins such as Pool Tag 
Scanning (PTS) that examine the memory dump for predefined patterns 
of bytes known as pool tags. The OS uses pool tags to manage memory 
allocation. The PTS process is time-consuming, as it involves an 
exhaustive search of the physical memory of a Windows system. This can 
take a significant amount of time to complete, depending on the size and 
complexity of the memory pool. It’s a core plugin for other plugins (e.g., 
netscan that output network connections). In this paper, we use PTS, as 
the baseline test since it requires a lot of time to finish (a test on a single 
sample), as well as being a primitive building block. Typically, exam-
iners will have to process multiple memory samples, so every minute 
counts. 

Fig. 1. High-level methodology: Comparing traditional vs. Our approach to deployment & execution of volatility code, containerized python JIT interpreters, and 
output result file hashing for soundness verification. 

Fig. 2. FAME System Architecture: Deployment, Observation, and Publishing - 
User Commands Deploy Containers via Main Component & Performance Data is 
Accessed through Subscribers. 
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Our tests will employ PTS, to test and find the median time needed to 
finish a run (end to end on all samples) (see Section 3.5), the CPU, and 
memory usages. However, to make use of the raw data acquired from the 
Docker daemon, we had to transform them (see Section 3.4). The median 
doesn’t filter the data, rather, it is a robust representation of central 
tendency and less sensitive to outliers. The use of isolated runtimes, 
Docker containers, enables us to replicate the tests across all containers 
and to scale out the test on multiple containers at once while being 
efficient in resource usage (containers share the same OS resources). 
Finally, the tests can be replicated on other machines by just sharing the 
Docker image and having the Docker daemon running on the host. 

The real-time reactive stream allowed us to examine how Docker 
containers behaved while the tests were running. This can assist re-
searchers in identifying bottlenecks, making informed decisions, and 
identifying trends in order to enhance and optimize the tool being 
examined. 

3.4. Metrics 

In this section, we examine the raw data acquired from Docker 
daemon using Observer (see Fig. 2), the equations employed for data 
transformation and the presentation of the data. The Statistics class 
presents the raw data from Docker containers, implementing a serial-
izable object containing multiple performance metrics like CPU usage, 
memory usage, network usage, and others. These metrics facilitate the 
analysis of Python JIT interpreters performance and their effect when 
used with the VF. Memory usage includes cache usage.4 The get-
StatsSummary endpoint in Publisher is utilized to transform the raw data, 
taking the raw Statistics object along with supplementary information 
such as container ID, timestamp, name, and ID (see Listing 2). Several 
performance metrics are computed, including.  

⋅ CPU Usage Percentage: The difference between the current and 
previous total CPU usage is divided by the time interval and multi-
plied by 100 to derive the percentage of CPU usage.  

⋅ Memory Usage (MB): Memory usage is divided by the constant MB 
SIZE to convert the value to megabytes.  

⋅ Network Received Data (MB): Received bytes on the network are 
divided by the constant MB SIZE to compute the network received 
data in megabytes.  

⋅ Network Transmitted Data (MB): The transmitted bytes on the 
network are divided by the constant MB SIZE to compute the network 
transmitted data in megabytes. 

Metrics, formatted to two decimal places for clarity, are encapsulated 
in a DockerStatsSummaryDto object (see Listing 2), detailing a con-
tainer’s performance metrics, including container ID, timestamp, and 
name. In case of errors, an error is logged, and an empty Optional object 
is returned. The data, which can be visualized as tables or charts, pro-
vides insights into Python JIT interpreters performance with the VF, 
aiding in the selection of the most efficient interpreter for specific use 
cases. 

3.5. Test data 

In our experiment, we generated and acquired memory dumps for 
testing, using VMware Workstation Pro for data acquisition and curation. 
We first defined a Virtual Machine (VM) with a specific configuration, 
deployed on a Windows 10 operating system image. Memory samples of 
varying sizes were determined using Equation (1). Table 1 lists the 
memory dumps tested with Python JIT interpreters and the VF. Samples 
one to eleven were calculated by incrementing N, while the last three 

covered larger memory samples to assess interpreter performance with 
different sample sizes. The virtual machine had the following 
specifications.  

⋅ Number of Virtual CPUs: Two virtual CPUs were employed.  
⋅ Amount of Allocated Memory RAM: This is where we change the 

sample size, we used this Equation (1) to calculate the memory 
sample size.  

⋅ Disk Type and Size: NVMe hard disk type was used along with 60 
GB memory size.  

⋅ Network Settings: Network Address Translation (NAT). 

A custom Docker image was made to contain all the necessary de-
pendencies to perform the tests, to assure constant system variables and 
dependencies across all containers. These dependencies include all the 
needed software (see Table A4) to perform the experiments, Python JIT 
interpreters and the needed modules for them to work. 

memorySampleSize = N × 210 (1)  

Where: N ∈ Z 

4. Findings and evaluation 

In this section, we present metrics and results of four Python JIT 
interpreters and their benchmarks. Task completion time depends on 
memory dump size, system complexity, and Python JIT interpreter op-
erations. Larger memory dumps and complex systems may require more 
time using the VF. We validated each interpreter’s output against the 
default interpreter using SHA256 for forensic soundness. Statistical 
analysis was performed on data from multiple runs, totaling 60 h of 
processing. 

4.1. Performance results 

After we carried out the tests, more than 750, 000 thousand docu-
ments were collected and saved in the database, that’s only the perfor-
mance raw data. The logs, on the other hand, will be fetched all at once 
to generate the hashes, asynchronously on demand. 

scipy, a Python library, was used to import the stats package to 
explore the distribution of data for normality. We tested the null hy-
pothesis that a sample comes from a normal distribution. From the test, 
the α-value is typically at 0.05, which means that there is a 5 % chance of 
rejecting the null hypothesis when it is true. Our test showed that the 
data is not normally distributed; skewness and kurtosis were calculated 
for each Python JIT interpreter, along with their standard errors (SE) as 
depicted in Table A5. 

These findings (shown in Table A5) shed light on the data distribu-
tion for each interpreter. The skewness and kurtosis ranges aid in 

Table 1 
Acquired memory dump dataset.  

Sample Name Size [GB] Operating System 

S1 2 Windows 10 
S2 3 Windows 10 
S3 4 Windows 10 
S4 5 Windows 10 
S5 6 Windows 10 
S6 7 Windows 10 
S7 8 Windows 10 
S8 9 Windows 10 
S9 10 Windows 10 
S10 11 Windows 10 
S11 12 Windows 10 
S12 16 Windows 10 
S13 32 Windows 10 
S14 48 Windows 10  

4 https://github.com/docker-archive/libcontainer/pull/518#issue 
-32985796. 
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understanding the shape of the data distribution, which can be used for 
additional statistical analysis (e.g., determining the significance of the 
result). However, further study is needed to determine whether there is a 
significant difference between each group of data (e.g., CPU percent-
ages), therefore we utilized Kruskal–Wallis test that is similar to ANOVA, 
data analysis, and non-parametric to evaluate and formulate the 
following hypothesis.  

⋅ Data: CPU usage for Python3, Pyston, Pyjion, PyPy3; not normally 
distributed.  

⋅ Test: Kruskal–Wallis.  
⋅ Hypotheses:  

– CPU Usage: H0: Equal mean ranks.  
– Memory Usage: H0: Equal mean ranks.  
– Completion Time: H0: Equal mean ranks. 

Table 2, indicates the statistics of each group on each Python JIT 
interpreter, is employed to depict the differences between each group. 
The significance of the data for each group can be observed. This com-
parison is made after determining that the data does not follow a normal 
distribution, which is established through the skewness and kurtosis in 
Table A5. Consequently, non-parametric statistical tests are utilized. 

For each group, data was grouped by interpreter name and sample 
name, and then we calculated the median for CPU, memory usage and 
runtime. The grouped data object represents for each row within a 
unique combination of interpreter name and sample name, with median 
values computed over all rows belonging to that group. These values to 
be used and fed to the ggbetweenstats from the ggstatsplot package in R 
software. As a result, the median of medians will be retrieved, as 
depicted in Table 2. 

A Kruskal–Wallis test (see Table 2) showed that the mean ranks of 
Python JIT interpreters are not the same. There is a significant difference 
between the CPU usage mean ranks Chi square H(3) ¼ 24.99, ρ<
0.001, thereby rejecting the null hypothesis. Moreover, a significant 
difference is observed between the memory usage mean ranks Chi 
square H(3) ¼ 46.47, ρ< 0.001, thereby rejecting the null hypothesis. 
Finally, a significant difference is found between the completion time 
mean ranks Chi square H(3) ¼ 10.72, ρ¼ 0.01, thereby rejecting the 
null hypothesis. As a result, there is a significant difference in each group 
for the Python interpreters. The Kruskal–Wallis test was conducted to 
examine if there was a significant difference between the groups; how-
ever, it does not reveal the magnitude of the difference between sub-
groups (e.g., between Python and Pyston). To determine if a significant 
difference exists, Table 2 depicts the differences between each subgroup 
using the Dunn pairwise test, a post-hoc test and a Holm adjustment. 

The results indicate a significant difference between PyPy3 and Py-
thon in CPU usage (since ρHolm-adj < 0.001). There is also a significant 
difference between Pyston and Python in CPU usage (since ρHolm-adj <
0.001). Moreover, a significant difference is observed between PyPy3 
and Python in the duration of the tests (since ρHolm-adj = 0.01). 
Similarly, a significant difference exists between PyPy3 and Python (see 
Table 2) in memory usage (since ρHolm-adj < 0.001), as well as between 
Pyjion and Python in memory usage (since ρHolm-adj < 0.001). 

difference =
interpreter_durations[i]  −  python3_duration[i]

python3_duration[i]
× 100

(2)  

Where: i. ∈ Z 

python3_duration[i] = denotes the duration of the Python 3 baseline 
interpreter for the i-th run of the experiment, serving as a reference 
point for comparisons with the durations of other interpreters. 
interpreter_durations[i] = signifies the duration of the i-th run of the 
experiment for a given interpreter, excluding Python 3. This value 

facilitates the assessment of the alternative interpreter’s perfor-
mance in relation to the baseline Python 3 interpreter. 

Fig. 3 depicts the performance improvement achieved compared to 
the Python3 interpreter, with lower values indicating faster completion 
times. This comprehensive evaluation covers all samples (refer to 
Table 1). The “difference” variable, calculated using Equation (2), de-
termines the percentage difference between the execution time of the 
baseline Python interpreter and other interpreters, enabling a perfor-
mance comparison between them. By applying Equation (2) to every 
row in Fig. 3, the average performance improvements for PyPy, Pyston, 
and Pyjion are found to be 15.21 %, 10.93 %, and 7.43 %, respectively. 

Performance variations may originate from both VF and system 
caching influences, as hinted in Fig. 4. This figure presents the test 
completion time rankings for all Python interpreters, suggesting the 
potential impact of caching behavior on performance. Similar observa-
tions have been reported in previous research (Roghult 2016). Although 
our study maintains constant hardware (described in Section 3.2), in-
consistencies in performance are still noticeable, indicating unstable 
behavior. Nevertheless, the results ultimately converge, which may be 
attributed to the variability of processes with changing completion 
times. In summary, these findings underscore the importance of care-
fully selecting interpreters to achieve optimal performance in memory 
forensics. 

4.2. Forensic soundness 

Inherently, FAME ensures soundness by verifying the output integ-
rity when using different Python JIT interpreters. A simple string 
compare method is insufficient to guarantee valid proof (i.e., Hashes) 
without properly running FAME. To formally establish the soundness 
property of FAME, we implement a procedure-based approach that en-
sures consistency in execution, yielding reliable and repeatable results. 
To achieve this, users must configure the containers and run FAME 
without interruptions. We define soundness results by hashing the out-
puts (e.g., process logs) from Section 3.2.3 using the SHA256 function. 
The objective is for each Python JIT interpreter to execute the same 
procedure (see Fig. 1) and compare its results with those of the other 
interpreters. The Publisher component’s hash string values, generated 
from the strings, match for all interpreters when running PTS. This in-
dicates that the integrity of the data is preserved even after changing the 
Python JIT interpreter. The digests obtained from our experiments using 
the same sample align with those from other interpreters for that sam-
ple. Overall, these results confirm the forensic soundness of switching 
from one interpreter to another. 

4.3. Encountered roadblocks 

During our search for Python interpreters, we discovered that PyPy 
can not execute the most recent version of VF. According to the PyPy 
development team, the problem arises because Python performs less 
string compatibility tests if a C-written class does not include struct 
fields in comparison to its parent class (see Figure A5). As a result, it will 
not be considered as a solid class and will not work with PyPy since it 
does not support multiple class inheritance (PyPy is based on RPython).5 

We also encountered problems with Java string conversions and hashing 
libraries (e.g., Apache Commons Codec), causing incorrect hash values 
(completely wrong digest when compared to the standard imple-
mentation) in our unit tests. To resolve this, we implemented the SHA- 
256 algorithm using Java security library and processed raw bytes 
from Docker container logs as input, ensuring accurate results. 

5 https://foss.heptapod.net/PyPy/PyPy/-/issues/3821. 
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5. Related work 

In this section, we show the related work on speeding up memory 
forensics, benchmarking the Python JIT interpreters, and tools that were 
developed to monitor Docker containers. 

5.1. Speeding up memory analysis 

Little work has been conducted on speeding up memory analysis. 

Memory analysis is a trade-off between time and accuracy. To improve 
accuracy and reduce time needed to analyze, the use of Intezer Analyze 
CLI was proposed (Holtzman 2020). It uses VF modules, such as proc-
dump and malfind, to dump a process’s executable and aid in the 
detection of possible memory injections and other code items that may 
be used to assess if a file is malicious or trusted. To speed up kernel 
memory allocations (Sylve et al., 2016), proposes a novel approach by 
scanning the memory pages that are associated with pool allocations, 
while maintaining a high level of accuracy. 

Developing and testing new VF plugins can be time-consuming. 
Therefore, it’s crucial to conduct tests for each new plugin to ensure 
accuracy. Researchers have found that creating a virtual volatile mem-
ory disk to hold memory dumps during tests and outputs can boost 
performance, claiming up to four times the speed of a regular hard drive 
when running VF plugins, though performance may vary depending on 
the plugin used (Tomchop 2014). However, the use of Ramdisks (Kind 
2011) carries the risk of data loss due to their volatile nature. 

5.2. Python JIT interpreters evaluation 

To address the Python language execution speed, during the last 
decade, we have seen many Python JIT interpreter implementations. At 
the time of writing, there were more than twelve JIT Python compilers 
with different specifications. Some require code changes (Stefan Behnel, 
n.d.), and others perform better on specific problems (Roghult 2016), 
such as being more efficient in sorting a list. Past work developed a test’s 
suite to measure the performance of four Python JIT interpreters and 
found that PyPy and Jython (Juneau et al., 2010) were the fastest for the 
majority of tests when running code using only Python syntax and data 
types (Roghult 2016). Then comes Cython (Behnel et al., 2010), which 
may require code modifications depending on the mode used. A scien-
tifically reproducible method for testing different Python interpreters is 
to explore their runtime efficiency by running them in Docker containers 
and monitoring their behavior. 

5.3. Docker monitoring tools 

Monitoring assists DevOps teams in detecting and resolving issues, 
such as identifying the main causes of poor application performance by 
utilizing various crucial system resource metrics (e.g. CPU usage) and 
exploring Docker container artifacts (Boettiger 2015; Henkel et al., 
2020; Hussain et al., 2017). Monitoring tools are vital not just for 
observability, but for also identifying resource bottlenecks and health 
system issues in an application (Cai and Kazman 2016). There are 
several trusted performance profilers in the research community 
(Casalicchio and Perciballi 2017) and tools available, including docker 

Table 2 
Statistics of CPU, memory usage, and duration for python interpreters.  

Measure Dunn Test (Pairwise) Kruskal–Wallis Test n Mean Rank Median  

Python3 Pyston PyPy3 Pyjion     
CPU (%) Median     χ2 (3) = 24.99, p < 0.001, ϵ2

ordinal = 0.45 56   
Python3 – 9.31e-4* 1.96e-4* 0.65  14 42.18 88.76 
Pyston 9.31e-4* – 0.68 0.02*  14 19.14 86.88 
PyPy3 1.96e-4* 0.68 – 6.12e-3*  14 16.57 86.34 
Pyjion 0.65 0.02* 6.12e-3* –  14 36.11 88.44 
Memory Usage (MB) Median     χ2 (3) = 46.47, p < 0.001, ϵ2

ordinal = 0.84 56   
Python3 – 0.82 4.13e-8* 1.71e-3*  14 13.79 106.03 
Pyston 0.82 – 1.33e-7* 3.00e-3*  14 15.21 106.22 
PyPy3 4.13e-8* 1.33e-7* – 0.05*  14 49.50 274.86 
Pyjion 1.71e-3* 3.00e-3* 0.05* –  14 35.50 149.33 
Duration (Seconds) Median     χ2 (3) = 10.72, p = .01, ϵ2

ordinal = 0.19 56   
Python3 – 0.08 0.01* 0.50  14 39.07 1547.10 
Pyston 0.08 – 0.59 0.59  14 24.14 1304.38 
PyPy3 0.01* 0.59 – 0.37  14 20.21 1306.16 
Pyjion 0.50 0.59 0.37 –  14 30.57 1453.07 

Where: *p < 0.05. 

Fig. 3. Percentage Increase For Each Run Compared to the baseline Interpreter, 
Python3, Lower Values Indicate Better Performance. 

Fig. 4. The average time needed for a python JIT Interpreter to complete 
processing sample. 
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stats, cAdvisor, Prometheus, Netdata, Datadog agent, ELK, and many 
others. 

We describe and list past container monitoring solutions and 
compare them to FAME in Table 3: (i) docker stats: a command-line 
tool within Docker that provides a live stream of container resource 
usage statistics (ii) cAdvisor (Container Advisor): is an open-source 
solution that exposes container data through an agent actively collect-
ing performance data from a Docker daemon (iii) Prometheus: a widely 
used open-source monitoring and alerting system, features a dimen-
sional data model, flexible query language, an efficient time series 
database, and modern alerting approach (iv) Datadog Agent: another 
open-source agent-based monitoring tool for Docker containers that is 
installed as a node within the host where the Docker platform is oper-
ating. It is a Software as a Service (SaaS) that was developed by Datadog 
Inc to collect data from cloud-scale applications (v) Netdata: an open- 
source monitoring tool designed to collect real-time data, such as CPU 
usage and other useful metrics and (vi) The ELK stack (Elasticsearch, 
Logstash, and Kibana): an open-source tool focusing on logs, providing 
analytics and search functionalities via HTTP endpoints. Logstash pulls 
logs from Docker containers and applies custom filters, while Elas-
ticsearch serves as the core search engine and Kibana offers 
visualization. 

5.4. Related work summary & discussion 

The literature lacks rigorous research on Python interpreters. To 
address this, we propose key steps for a comprehensive assessment. 
Firstly, testing on real-world systems ensures practicality. Secondly, 
employing extensive datasets covers diverse scenarios. Thirdly, using a 
reproducible research framework like FAME ensures consistency. Lastly, 
evaluating forensic soundness confirms result consistency across in-
terpreters. This approach will enhance the robustness and relevance of 
Python interpreter evaluation research. 

For our research to materialize, we had to abide by the FAME criteria 
presented in Table 3, and discussed in Section 3.1.2. With respect to the 
aforementioned monitoring tools (Section 5.3), FAME overcomes their 
shortcomings. It offers several distinct advantages over existing solu-
tions by providing a lightweight, easy-to-use, and tailor-made solution. 
Moreover, the unique capability of testing the forensic soundness of logs 
from different Docker containers sets it apart from existing solutions, 
thereby making it suitable for reproducible research purposes (e.g. 
testing various Python JIT interpreters and their soundness). In sum-
mary, Table 3 shows our proposed FAME monitoring solution that ad-
dresses all four criteria (C1, C2, C3 and C4), whereas other tools either 
partially meet the criteria or do not meet them at all. Overall, our 
approach fills major gaps in the literature and monitoring tools that is 
both useful to the DF and forensic tools testing. 

6. Discussion 

Prior research by Casalicchio and Perciballi (2017) has investigated 
the overhead introduced by Docker containers concerning CPU usage in 
comparison to native execution. The findings suggested that the impact 

of containerization on CPU performance may be more significant at 
moderate utilization levels and decrease as computational resource de-
mand increases. Notably, when CPU utilization lies between 65 % and 
75 %, there is approximately a 10 % overhead compared to native CPU 
load. Interestingly, as CPU utilization exceeds 80 %, the overhead falls 
below 5 % (Casalicchio and Perciballi 2017). 

All tests in our study were conducted on Docker containers, ensuring 
consistency in our results. We accounted for a 5 % performance margin 
when any interpreter’s CPU usage exceeds 80 %, and a 10 % margin 
when CPU utilization lies between 65 % and 75 %. As seen in Table 3, 
Python3 exhibited the highest CPU utilization median, with a tendency 
to be higher, followed by Pyjion, Pyston, and PyPy. Conversely, as 
anticipated, PyPy demonstrated the worst memory usage among the 
Python JIT interpreters (see Table 3). PyPy is known for its higher 
baseline memory consumption compared to Python, and this value tends 
to increase as the JIT generates more machine code over time. However, 
it is expected to converge, indicating that memory usage should grow 
during program execution but only up to a certain maximum. 

Our results are consistent with previous literature, which shows that 
PyPy outperforms other interpreters in terms of execution speed (Crapé 
and Eeckhout 2020; Roghult 2016). To illustrate the practical impact of 
these findings, consider a typical organization that needs to process a 1 
TB memory sample using the VF. Based on the observed performance 
improvements with our apparatus, the organization can significantly 
reduce processing time by using PyPy instead of the standard Python 
interpreter. 

For instance, in a typical organization with 1 TB of memory samples, 
if the standard Python interpreter takes 36 min per run for a 173 GB 
memory sample, PyPy could reduce the processing time to around 30 
min per sample, saving 6 min per run. With 1 TB memory samples 
divided into roughly 5.78 collections of 178 GB samples (1000

178 ≈ 5.78), 
the total time savings would be approximately 34 min or 18.4 %. We 
note that this is a conservative estimate, and that in certain instances, 
the improvement can reach up to 40 %. This has the potential to save 
several hours of work when handling cases that involve a significant 
number of memory samples. 

FAME significantly improves the efficiency of deploying and moni-
toring forensic tool testing on a large scale, ensuring experiment integ-
rity through its forensic soundness. This study shows FAME’s role in 
facilitating reproducible research within DF, emphasizing its potential 
to influence real-world memory analysis, especially when using tools 
like the VF in organizational setups. 

7. Conclusions & future work 

In this paper, we introduced a tool designed for the research com-
munity to explore and monitor containerized tools. We applied our tool 
to the use case of “towards faster memory forensics” and found that PyPy 
is the best-performing interpreter, being 15.2 % faster in completing a 
full run and exhibiting better CPU usage than standard Python. How-
ever, it comes with a higher memory usage cost, exceeding Python by 
100 megabytes in our case (see RQ1). Our work streamlines the process 
of configuring, deploying, and monitoring Docker containers for re-
searchers conducting stress tests or assessing tool performance (see 
RQ2). 

In this paper, we investigated the acceleration of VF by replacing 
Python JIT interpreters. Our future work will explore building VF core 
plugins using C++ and injecting them as modules (extending Python 
with C or C++).6 Additionally, we plan to integrate a messaging system 
into the FAME architecture to enhance scalability and improve the 
signaling protocols between the Main, Observer, and Publisher 
components. 

Table 3 
Docker monitoring tools vs. FAME criteria.  

Tool C1 C2 C3 C4 

docker stats × ✔ Limited ×

cAdvisor × ✔ Real-time only Difficult 
Prometheus × Moderate ✔ Difficult 
Netdata × ✔ Real-time only Limited 
Datadog agent × Moderate ✔ Limited 
ELK × × ✔ Moderate 
FAME ✔ ✔ ✔ ✔ 

Legend: C1 = Command Deployment, C2 = Lightweight, C3 = Monitoring Data 
Persistence, C4: Easily Customized. 

6 https://docs.python.org/3/extending/extending.html. 
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FAME empowers researchers to replicate and share their work within 
the community using Docker images for experiments. This approach 
promotes exploration and builds upon artifacts while ensuring 

consistent setup across machines. Our work benefits both the DF and 
forensic tool testing by promoting accessibility and reproducibility.  

Appendix A. Tables & Figures  

Table A.4 
Software Utilized in the Experiments.  

Software Version 

Operating System (MSI) Windows 10 
Operating System (Docker Container) Ubuntu 20.04.5 
CPython 3.7.5 
Pyston 2.3.5 
PyPy 3.9.0 
Pyjion 2.0.0 
Docker 4.3.0   

Table A.5 
Skewness and Kurtosis Ranges for Duration, CPU Percent, and Memory Usage.  

Interpreter Metric Range 

PyPy3 Duration Skewness: 0.01–0.81 (SE = 0.20), Kurtosis: − 0.35 – 1.25 (SE = 0.41)  
CPU Percent Skewness: − 0.95 to − 0.93 (SE = 0.01), Kurtosis: − 0.95 to − 0.90 (SE = 0.01)  
Memory Usage Skewness: 5.22–5.24 (SE = 0.01), Kurtosis: 78.61–78.65 (SE = 0.01) 

Python3 Duration Skewness: 0.33–1.13 (SE = 0.20), Kurtosis: 0.10–1.70 (SE = 0.41)  
CPU Percent Skewness: − 1.29 to − 1.27 (SE = 0.01), Kurtosis: − 0.17 to − 0.13 (SE = 0.01)  
Memory Usage Skewness: 3.46–3.48 (SE = 0.01), Kurtosis: 23.00–23.04 (SE = 0.01) 

Pyjion Duration Skewness: 0.28–1.08 (SE = 0.20), Kurtosis: − 0.17 – 1.42 (SE = 0.41)  
CPU Percent Skewness: − 1.26 to − 1.24 (SE = 0.01), Kurtosis: − 0.26 to − 0.22 (SE = 0.01)  
Memory Usage Skewness: 5.26–5.28 (SE = 0.01), Kurtosis: 66.29–66.34 (SE = 0.01) 

Pyston Duration Skewness: 0.36–1.16 (SE = 0.20), Kurtosis: − 0.85 – 0.75 (SE = 0.41)  
CPU Percent Skewness: − 1.02 to − 1.00 (SE = 0.01), Kurtosis: − 0.85 to − 0.80 (SE = 0.01)  
Memory Usage Skewness: 4.21–4.24 (SE = 0.01), Kurtosis: 41.38–41.42 (SE = 0.01)  

Figure A.5. Inheritance Conflicts in Instance Layout.  
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