
Forensic Science International: Digital Investigation 49 (2024) 301757

Available online 5 July 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS USA 2024 - Selected Papers from the 24th Annual Digital Forensics Research Conference USA

On enhancing memory forensics with FAME: Framework for advanced
monitoring and execution

Taha Gharaibeh a,b,*, Ibrahim Baggili a,b, Anas Mahmoud b

a Baggili(i) Truth (BiT) Lab, Center of Computation & Technology, Baton Rouge, LA, USA
b Division of Computer Science & Engineering, Louisiana State University, Baton Rouge, LA, USA

A R T I C L E I N F O

Keywords:
Memory forensics
Memory forensics tool testing
Interpreters (jitters)
Performance analysis
Tool speed testing framework

A B S T R A C T

Memory Forensics (MF) is an essential aspect of digital investigations, but practitioners often face time-
consuming challenges when using popular tools like the Volatility Framework (VF). VF, a widely-adopted Py-
thon-based memory forensics tool, presents difficulties for practitioners due to its slow performance. Thus, in this
study, we evaluated methods to accelerate VF without modifying its code by testing four alternative Python Just
In Time (JIT) interpreters - CPython, Pyston, PyPy, and Pyjion - using CPython as our baseline. Tests were
conducted on 14 memory samples, totaling 173 GB, using a search-intensive VF plugin for Windows hosts.
Employing our custom Framework for Advanced Monitoring and Execution (FAME), we deployed interpreters in
Docker containers and monitored their real-time performance. A statistically significant difference was observed
between the Python JIT interpreters and the standard interpreter. With PyPy emerging as the best interpreter,
yielding a 15–20 % performance increase compared to the standard interpreter. Implementing PyPy has the
potential to save significant time (many hours) when processing substantial memory samples. FAME enhances
the efficiency of deploying and monitoring robust forensic tool testing, fostering reproducible research and
yielding reliable results in both MF and the broader field of digital forensics.

1. Introduction

Memory Forensics (MF), a subdomain of Digital Forensics (DF),
concentrates on acquiring (dumping or cloning) and analyzing volatile
RAM (Case & Richard III 2017). This is particularly beneficial when
investigating system intrusions involving stealthy malware that leaves
no traces on a victim’s hard drive. Random Access Memory (RAM)
analysis reveals information such as active processes, stored usernames
and passwords, open files, and active network connections. The widely
adopted tool for RAM analysis is the open-source Volatility Framework
(VF), version 3 (Ligh et al., 2014; Duke 2021; Balaoura 2018; Graziano
et al., 2013). Other popular tools for extracting information from
memory dumps include WinDbg, Rekall, and Varc. However, our study
focuses on accelerating the VF.

One significant challenge in DF is the velocity, variety, and volume of
digital evidence, resulting in substantial case backlogs for practitioners,
sometimes up to three years (Scanlon 2016; van Baar et al., 2014; Baggili
et al., 2014; McCullough et al., 2021; Sanchez et al., 2019). Solutions
proposed include developing a robust DF talent pipeline and enhancing
investigative technical solutions and processes. The exhaustive scans

required for reconstructing memory artifacts necessitate faster VF pro-
cessing for large workloads. VF is implemented in Python (Foundation
2023), which is typically slower than languages like C++ (Lion et al.,
2022). One potential approach for improving runtime efficiency is
migrating VF to a different programming language. However, this task is
both complex and expensive, and the benefits may not outweigh the
advantages of Python’s extensibility and simplicity (Balreira et al., 2023;
Tan et al., 2021). An alternative, cost-effective strategy is investigating
whether VF’s runtime can be optimized using different Python
interpreters.

The standard Python implementation is CPython (interpreter +
compiler). However, several interpreters and implementations have
been developed throughout the years by the research community to
overcome the shortcomings of the Python language. Our work studies
four of these interpreters to determine if they have an effect on VF’s
performance. Specifically, we examined CPython, Pyston (Modzelewski
2023), PyPy (Team, 2019), and Pyjion (Pyjion - A Python JIT Compiler,
2022). To extensively test these interpreters, in a controlled and scalable
setting, we had to devise a generalizable testing and monitoring
framework that meets specific criteria outlined in our work.

* Corresponding author.
E-mail addresses: tahatlal@gmail.com (T. Gharaibeh), baggili@gmail.com (I. Baggili), amahmo4@lsu.edu (A. Mahmoud).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301757

mailto:tahatlal@gmail.com
mailto:baggili@gmail.com
mailto:amahmo4@lsu.edu
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2024.301757
https://doi.org/10.1016/j.fsidi.2024.301757
https://doi.org/10.1016/j.fsidi.2024.301757
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2024.301757&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 49 (2024) 301757

2

In DF, the ongoing challenge lies in robust testing forensic tools for
scientific validity, error rates, and forensic soundness. This is vital not
only for scientific integrity but also for the admissibility of digital evi-
dence in the United States, following the Daubert Process and the Frye
Test (Pan and Batten 2009; Horsman 2018, 2019; Mohamed et al., 2014;
Baggili et al., 2007).

Thus, our work makes the following contributions.

⋅ We propose a novel approach to enhance the performance of MF by
accelerating VF in a cost-effective manner, without necessitating any
code changes to the complex and widely-adopted software.

⋅ We introduce Framework for Advanced Monitoring and Execution
(FAME),1 an open-source tool that facilitates real-time deployment
and monitoring of Docker containers. FAME enables software
deployment and monitoring experiments, enhancing continuous and
robust testing of DF tools.

⋅ In response to the lack of publicly available DF datasets (Grajeda
et al., 2017), we contribute a public dataset consisting of over 173 GB
of RAM samples and more than 750,000 data monitoring records
obtained from our experiments2,3.

In this paper, we explore accelerating VF by examining and
substituting the Python Just-In-Time (JIT) interpreter with alternatives.
We present background information on MF and VF, addressing our
study’s limitations. Our methodology involves demonstrating the
problem, defining criteria, and guiding our research in identifying and
constructing a solution. We then review related work, emphasizing the
relevance, and importance of our research. We analyze the performance
of Python JIT interpreters and highlight our approach’s soundness. We
discuss our findings, conclude our study, and suggest future research
directions.

2. Background

This section includes background information about MF and how it
relates to the VF, as well as the limitations and research questions.

2.1. Memory forensics

MF is a relatively young domain in the field of digital forensics.
Vömel and Freiling (2012) explained that the main requirements for a
forensically sound memory acquisition involve correctness, atomicity,
and integrity. Atomicity is the concept that a single operation in mem-
ory, such as a read or write, is executed in one indivisible action without
interruption. This ensures that the memory state maintains its correct-
ness and integrity without corruption.

MF plays a crucial role in legal investigations, as it can yield evidence
that is indispensable for substantiating or refuting a case. This type of
analysis allows investigators to uncover valuable evidence that might be
inaccessible through conventional forensic techniques, such as exam-
ining a device’s hard drive. In many instances, a digital device’s RAM
can store crucial information unobtainable through other methods (e.g.,
searching the hard disk). For example, a suspect might have erased
incriminating files from their hard drive, but remnants of those files
could still linger in RAM. Moreover, the RAM can hold data about
processes and activities occurring on the device during a crime (or at
some point in time), such as the utilization of specific software or
accessing particular websites.

After cloning a memory dump of RAM from the scene, it must be
analyzed (Nyholm et al., 2022). Though the primary tool for RAM

analysis is VF, alternative methods like string searches and pattern
searches in memory using YARA signatures have also been employed
(Cohen 2017). MF can be applied to any device containing RAM (Thing
et al., 2010; Casey et al., 2019; Thomas et al., 2020, 2021; Wang et al.,
2022; Manna et al., 2022). However, practitioners, such as DF in-
vestigators, must be mindful of the risks and legal aspects associated
with handling digital evidence to ensure its admissibility in court.

Previous research has applied MF analysis to various devices,
including mobile devices (Thing et al., 2010), Virtual Reality (VR) de-
vices (Casey et al., 2019), cryptocurrency hardware wallets (Thomas
et al., 2020), Universal Serial Bus (USB) attack platforms (Thomas et al.,
2021), the V8 JavaScript (JS) engine (Wang et al., 2022), and. NET core
applications (Manna et al., 2022). The efficiency and significance of MF
are undeniable; however, the need for faster tools to address the growing
DF backlog remains. Accelerating the tasks of incident responders
engaged in investigative procedures is crucial, especially for those
examining a machine following a discreet malware intrusion.

2.2. Volatility Framework

VF is an open-source MF framework initially developed by Aaron
Walters, whose components are grounded in his academic research
(Petroni et al., 2006; Walters and Petroni 2007). It is extensively utilized
by various organizations, including the military, law enforcement, and
incident response teams across all sectors (Case & Richard III 2017). VF
is a robust MF tool that reconstructs information about a system’s
running processes and network connections while aiding in the identi-
fication of malicious processes. This extensible framework allows the
use of built-in features and the integration of custom plugins. It enables
human analysts to examine RAM dumps without requiring knowledge of
low-level data reconstruction procedures. VF is regarded as the primary
tool for system analysis. The framework can be used to extract infor-
mation such as login credentials, IP addresses, and system configura-
tions from the memory of a device (Wang et al., 2022; Lewis et al.,
2018), recovering deleted files, identifying malware and rootkits, and
reconstructing network activity (Sylve et al., 2012, Ligh et al., 2014).

2.3. Limitations & research questions

Our work was limited to a specific set of memory samples, which
may not be fully representative of the complete spectrum of MF sce-
narios. Factors such as hardware specifications and Operating System
(OS) may also impact Python interpreters’ performance, aspects that
may not have been thoroughly examined in our investigation. However,
our scenarios were all deployed on the same hardware and with the
same Docker image in a controlled environment. Our work did not take
into account the effects of interpreter-specific optimizations and
configuration alternatives, which may influence performance outcomes.
We opted for the default settings across all deployments. Lastly, we
investigated Python interpreters on a local cluster and batch containers
and we aimed to answer the following research questions.

⋅ RQ1: How does the replacement of Python JIT interpreters with the
proposed framework impact the performance of VF in conducting
MF?

⋅ RQ2: How can the proposed FAME tool be integrated into repro-
ducible research and experimental workflows to support memory
forensics across various scenarios?

3. Methodology

In this section, we present the architecture of FAME and discuss how
our objectives influenced the decision-making process. We demonstrate
how a controlled testing environment can be employed to collect per-
formance data for Python JIT interpreters. Moreover, we explain the
process of memory sample curation. Furthermore, we describe the

1 Code: https://lsu.box.com/s/w67xhdwa6mz9f2bbzof9sm2udbzilsql.
2 Data samples link: https://bit.ly/3w60Fc4.
3 Docker Excel sheet, Pypy3 & the volatility3: https://lsu.box.com/s/x54

or67d0oa450gzwlon1mpom6cauu40.

T. Gharaibeh et al.

https://lsu.box.com/s/w67xhdwa6mz9f2bbzof9sm2udbzilsql
https://bit.ly/3w60Fc4
https://lsu.box.com/s/x54or67d0oa450gzwlon1mpom6cauu40
https://lsu.box.com/s/x54or67d0oa450gzwlon1mpom6cauu40

Forensic Science International: Digital Investigation 49 (2024) 301757

3

comprehensive deploying and monitoring framework methodology.
This section concludes by showcasing the framework in action, to
analyze the data collected and evaluate the chosen Python JIT
interpreters.

3.1. Problem generalization

We present the selection criteria for tested Python JIT interpreters
and an overview of the methodology.

3.1.1. Python selection criteria
Previous research benchmarked Python JIT interpreters using syn-

thetic data or simple queries, not reflecting real-world scenarios, espe-
cially for a full system (Roghult 2016; Juneau et al., 2010; Behnel et al.,
2010). We tested Python JIT interpreters against the VF using realistic
scenarios while considering the following criteria.

⋅ JIT Compiler Compatibility: The tested software (VF) must run on
Python and other Python JIT compilers. Compatibility implies no
code changes, special tags, or metadata for guiding JIT compiler code
compilation.

⋅ Zero Code Change: No code changes, special tags, or metadata al-
terations needed for VF.

⋅ Extensible Testing Framework: The framework should test time
efficiency and forensic soundness, accommodating updates to JIT
compilers and VF code.

We identified three Python JIT interpreters meeting our criteria:
Pyston, PyPy, and Pyjion. These interpreters required minimal or no
code changes. Note that initially, PyPy was incompatible (see Section
4.3).

3.1.2. Software framework specification
We aimed to develop a framework for scalable deployment and

monitoring. Thus, we created FAME, designed based on the following
criteria.

C1: Commands Deployment: Allows command deployment in iso-
lated runtimes using containerization for controlled testing
environments.
C2: Lightweight: Ensures efficient resource utilization, e.g., minimal
Central Computing Unit (CPU) usage.
C3: Monitoring Data Persistence: Offers real-time container
monitoring and access to historical performance data.
C4: Easy to Customize: Supports customization for extensibility,
such as comparing output hash values for forensic soundness.

Our goal was a streamlined test deployment process and container
scheduling for continuous, unattended operation, allowing researchers
to focus on other tasks.

3.1.3. Methodology overview
The framework employed Docker containers as nodes. Each

container executed a Python JIT interpreter with user-sourced com-
mands, such as VF operations. Data was logged to measure runtime and
other metrics. Timestamps were taken during tests, with the ability to
measure completion time. Tests were conducted on a single machine, an
MSI Katana GF66 11UE, with the following specifications:

Processor: MSI Intel ® Core ™ i7-11800H @ 2.30Ghz
Cores: 8.
L1 Cache: 640 KB.
L2 Cache: 10 MB.
L3 Cache: 24 MB.
Memory: 16 GB (2 × 8 GB) 3200Mhz DDR4.

3.2. FAME development

In this section, we discuss the development of the FAME framework.
FAME was designed with the following objectives in mind.

⋅ Ensuring consistent hardware and OS components to treat them as
Independent Variable (IV)s. By maintaining a dockerized, stateless
baseline without any resource manipulation, FAME produces more
accurate results. In simpler terms, it enables a fair comparison be-
tween the different interpreters.

⋅ Prioritizing portability and extensibility.
⋅ Monitoring generalized performance metrics.

Our aim was to conduct tests in a noise-free, replicable environment.
In the following sections, we elaborate on how these objectives were
achieved.

3.2.1. FAME architecture
The architecture for monitoring Docker containers consists of three

components: Main, Observer, and Publisher. Fig. 1 illustrates the layout
of our monitoring and testing approach, showing the four tested Python
JIT interpreters and the command execution within the container. FAME
can be containerized or run on bare metal. The Main component, similar
to the main-node architecture (see Fig. 2), serves as the coordinator and
interface between the client and other components.

Listing 1. : JSON Data for Docker Container Configuration: Payload
Sent in Each Deployment.

3.2.2. FAME deployment and monitoring
The Main component comprises two core libraries: (1) the open-

source docker-java library, which builds the Docker client, and (2)
spring-boot-starter-webflux, which enables the creation of non-blocking
Application Programming Interface (API)s and reactive streams. User
commands are processed and forwarded to the appropriate component.
To run containers, users send an HTTP POST request to the Main
component endpoint (see Fig. 2) specifying the payload (see Listing 1,
POST endpoint payload). The Main component instructs Docker daemon
(also known as Docker Engine API) to create the defined container (see
Fig. 1) and informs the Observer component about the new container to
monitor (see Fig. 2). The Main will schedule the containers in batches,
with the ability to configure the time and the number of containers to
run at once from the given commands that will be sent along in the HTTP
POST payload (see Listing 1).

The Observer component (see Fig. 2) is a daemon actively collecting
statistics and logs from the Docker daemon. It pushes the collected data
to a non-relational database, MongoDB. The use of distributed
messaging system (e.g., Kafka) was going to be implemented, however,
the existing spring-boot-starter-data-mongodb-reactive library, enabled us
to use and listen to changes (in collections) in real-time. These reactive
streams simplified the architecture. The Publisher component, another

T. Gharaibeh et al.

Forensic Science International: Digital Investigation 49 (2024) 301757

4

daemon, listens for changes in collections in real time and pushes data to
active subscribers, as shown in Fig. 2. This systematic approach allows
for efficient container monitoring at scale. Historical data can be
retrieved or exported via the Publisher API, and readings are time-
stamped and tagged with the container ID for clarity and time series
chart visualization.

After building the deployment and monitoring backbone (see Fig. 2),
a user is able to modify or add custom endpoints on both ends, the
Publisher and Observer. FAME offers a lightweight protocol that does
not require the opening of a new connection every time there is new
data, when the connection is opened, all data will be sent on the same
connection. It provides two data retrieval modes from the Publisher:
sending duplicate data (active data retrieval) to be more efficient or
sending data only when there are changes (e.g., the readings change)
with that adding overhead of sending data and ensuring consistent
connection from the Publisher.

3.2.3. Data output
As we mentioned earlier, data is retrieved via the Publisher after the

subscriber’s subscription. Additionally, subscribers may be required to
develop a custom plugin that accommodates reactive streams. Data can
be acquired in JSON format through MongoDB connectors and exported
using the command line tool mongoexport, or alternatively, exported via
the Publisher as JSON using previously stated modes. The statistics
retrieved from a Publisher summary API are shown in the Listing 2.

Listing 2. : Java Class for Docker Statistics Summary Data.

3.2.4. FAME validation
Apart from this, the data were directly acquired from the Docker

daemon, utilizing the docker-java library. In order to verify the accuracy
of FAME, code unit tests and visual inspection, a comparison test was
conducted between the FAME statistics and the Docker stats, evaluating
the congruence of the data. This comparison substantiated the correct-
ness and reliability of the performance metrics and monitoring processes
incorporated within FAME. Subsequently, multiple tests were carried
out to confirm the consistency of the output and the framework’s
dependability. The design of FAME facilitates the replication of the test
environment across a variety of systems and settings, thus enhancing the
validity of the performance evaluation for different Python JIT
compilers.

3.3. Tests

Before running performance tests on a system, it is critical to remove
all user processes. User processes can interfere with the tests and pro-
duce inaccurate results, which can compromise the validity of the
analysis. The test employed one scenario to be replicated on containers.
The System UTC clock will be queried to obtain the current instant in
Java, to timestamp the statistics and logs, accompanied by saving and
publishing them in real time.

VF is a very rich framework and comprises plugins such as Pool Tag
Scanning (PTS) that examine the memory dump for predefined patterns
of bytes known as pool tags. The OS uses pool tags to manage memory
allocation. The PTS process is time-consuming, as it involves an
exhaustive search of the physical memory of a Windows system. This can
take a significant amount of time to complete, depending on the size and
complexity of the memory pool. It’s a core plugin for other plugins (e.g.,
netscan that output network connections). In this paper, we use PTS, as
the baseline test since it requires a lot of time to finish (a test on a single
sample), as well as being a primitive building block. Typically, exam-
iners will have to process multiple memory samples, so every minute
counts.

Fig. 1. High-level methodology: Comparing traditional vs. Our approach to deployment & execution of volatility code, containerized python JIT interpreters, and
output result file hashing for soundness verification.

Fig. 2. FAME System Architecture: Deployment, Observation, and Publishing -
User Commands Deploy Containers via Main Component & Performance Data is
Accessed through Subscribers.

T. Gharaibeh et al.

Forensic Science International: Digital Investigation 49 (2024) 301757

5

Our tests will employ PTS, to test and find the median time needed to
finish a run (end to end on all samples) (see Section 3.5), the CPU, and
memory usages. However, to make use of the raw data acquired from the
Docker daemon, we had to transform them (see Section 3.4). The median
doesn’t filter the data, rather, it is a robust representation of central
tendency and less sensitive to outliers. The use of isolated runtimes,
Docker containers, enables us to replicate the tests across all containers
and to scale out the test on multiple containers at once while being
efficient in resource usage (containers share the same OS resources).
Finally, the tests can be replicated on other machines by just sharing the
Docker image and having the Docker daemon running on the host.

The real-time reactive stream allowed us to examine how Docker
containers behaved while the tests were running. This can assist re-
searchers in identifying bottlenecks, making informed decisions, and
identifying trends in order to enhance and optimize the tool being
examined.

3.4. Metrics

In this section, we examine the raw data acquired from Docker
daemon using Observer (see Fig. 2), the equations employed for data
transformation and the presentation of the data. The Statistics class
presents the raw data from Docker containers, implementing a serial-
izable object containing multiple performance metrics like CPU usage,
memory usage, network usage, and others. These metrics facilitate the
analysis of Python JIT interpreters performance and their effect when
used with the VF. Memory usage includes cache usage.4 The get-
StatsSummary endpoint in Publisher is utilized to transform the raw data,
taking the raw Statistics object along with supplementary information
such as container ID, timestamp, name, and ID (see Listing 2). Several
performance metrics are computed, including.

⋅ CPU Usage Percentage: The difference between the current and
previous total CPU usage is divided by the time interval and multi-
plied by 100 to derive the percentage of CPU usage.

⋅ Memory Usage (MB): Memory usage is divided by the constant MB
SIZE to convert the value to megabytes.

⋅ Network Received Data (MB): Received bytes on the network are
divided by the constant MB SIZE to compute the network received
data in megabytes.

⋅ Network Transmitted Data (MB): The transmitted bytes on the
network are divided by the constant MB SIZE to compute the network
transmitted data in megabytes.

Metrics, formatted to two decimal places for clarity, are encapsulated
in a DockerStatsSummaryDto object (see Listing 2), detailing a con-
tainer’s performance metrics, including container ID, timestamp, and
name. In case of errors, an error is logged, and an empty Optional object
is returned. The data, which can be visualized as tables or charts, pro-
vides insights into Python JIT interpreters performance with the VF,
aiding in the selection of the most efficient interpreter for specific use
cases.

3.5. Test data

In our experiment, we generated and acquired memory dumps for
testing, using VMware Workstation Pro for data acquisition and curation.
We first defined a Virtual Machine (VM) with a specific configuration,
deployed on a Windows 10 operating system image. Memory samples of
varying sizes were determined using Equation (1). Table 1 lists the
memory dumps tested with Python JIT interpreters and the VF. Samples
one to eleven were calculated by incrementing N, while the last three

covered larger memory samples to assess interpreter performance with
different sample sizes. The virtual machine had the following
specifications.

⋅ Number of Virtual CPUs: Two virtual CPUs were employed.
⋅ Amount of Allocated Memory RAM: This is where we change the

sample size, we used this Equation (1) to calculate the memory
sample size.

⋅ Disk Type and Size: NVMe hard disk type was used along with 60
GB memory size.

⋅ Network Settings: Network Address Translation (NAT).

A custom Docker image was made to contain all the necessary de-
pendencies to perform the tests, to assure constant system variables and
dependencies across all containers. These dependencies include all the
needed software (see Table A4) to perform the experiments, Python JIT
interpreters and the needed modules for them to work.

memorySampleSize = N × 210 (1)

Where: N ∈ Z

4. Findings and evaluation

In this section, we present metrics and results of four Python JIT
interpreters and their benchmarks. Task completion time depends on
memory dump size, system complexity, and Python JIT interpreter op-
erations. Larger memory dumps and complex systems may require more
time using the VF. We validated each interpreter’s output against the
default interpreter using SHA256 for forensic soundness. Statistical
analysis was performed on data from multiple runs, totaling 60 h of
processing.

4.1. Performance results

After we carried out the tests, more than 750, 000 thousand docu-
ments were collected and saved in the database, that’s only the perfor-
mance raw data. The logs, on the other hand, will be fetched all at once
to generate the hashes, asynchronously on demand.

scipy, a Python library, was used to import the stats package to
explore the distribution of data for normality. We tested the null hy-
pothesis that a sample comes from a normal distribution. From the test,
the α-value is typically at 0.05, which means that there is a 5 % chance of
rejecting the null hypothesis when it is true. Our test showed that the
data is not normally distributed; skewness and kurtosis were calculated
for each Python JIT interpreter, along with their standard errors (SE) as
depicted in Table A5.

These findings (shown in Table A5) shed light on the data distribu-
tion for each interpreter. The skewness and kurtosis ranges aid in

Table 1
Acquired memory dump dataset.

Sample Name Size [GB] Operating System

S1 2 Windows 10
S2 3 Windows 10
S3 4 Windows 10
S4 5 Windows 10
S5 6 Windows 10
S6 7 Windows 10
S7 8 Windows 10
S8 9 Windows 10
S9 10 Windows 10
S10 11 Windows 10
S11 12 Windows 10
S12 16 Windows 10
S13 32 Windows 10
S14 48 Windows 10

4 https://github.com/docker-archive/libcontainer/pull/518#issue
-32985796.

T. Gharaibeh et al.

https://github.com/docker-archive/libcontainer/pull/518#issue-32985796
https://github.com/docker-archive/libcontainer/pull/518#issue-32985796

Forensic Science International: Digital Investigation 49 (2024) 301757

6

understanding the shape of the data distribution, which can be used for
additional statistical analysis (e.g., determining the significance of the
result). However, further study is needed to determine whether there is a
significant difference between each group of data (e.g., CPU percent-
ages), therefore we utilized Kruskal–Wallis test that is similar to ANOVA,
data analysis, and non-parametric to evaluate and formulate the
following hypothesis.

⋅ Data: CPU usage for Python3, Pyston, Pyjion, PyPy3; not normally
distributed.

⋅ Test: Kruskal–Wallis.
⋅ Hypotheses:

– CPU Usage: H0: Equal mean ranks.
– Memory Usage: H0: Equal mean ranks.
– Completion Time: H0: Equal mean ranks.

Table 2, indicates the statistics of each group on each Python JIT
interpreter, is employed to depict the differences between each group.
The significance of the data for each group can be observed. This com-
parison is made after determining that the data does not follow a normal
distribution, which is established through the skewness and kurtosis in
Table A5. Consequently, non-parametric statistical tests are utilized.

For each group, data was grouped by interpreter name and sample
name, and then we calculated the median for CPU, memory usage and
runtime. The grouped data object represents for each row within a
unique combination of interpreter name and sample name, with median
values computed over all rows belonging to that group. These values to
be used and fed to the ggbetweenstats from the ggstatsplot package in R
software. As a result, the median of medians will be retrieved, as
depicted in Table 2.

A Kruskal–Wallis test (see Table 2) showed that the mean ranks of
Python JIT interpreters are not the same. There is a significant difference
between the CPU usage mean ranks Chi square H(3) ¼ 24.99, ρ<
0.001, thereby rejecting the null hypothesis. Moreover, a significant
difference is observed between the memory usage mean ranks Chi
square H(3) ¼ 46.47, ρ< 0.001, thereby rejecting the null hypothesis.
Finally, a significant difference is found between the completion time
mean ranks Chi square H(3) ¼ 10.72, ρ¼ 0.01, thereby rejecting the
null hypothesis. As a result, there is a significant difference in each group
for the Python interpreters. The Kruskal–Wallis test was conducted to
examine if there was a significant difference between the groups; how-
ever, it does not reveal the magnitude of the difference between sub-
groups (e.g., between Python and Pyston). To determine if a significant
difference exists, Table 2 depicts the differences between each subgroup
using the Dunn pairwise test, a post-hoc test and a Holm adjustment.

The results indicate a significant difference between PyPy3 and Py-
thon in CPU usage (since ρHolm-adj < 0.001). There is also a significant
difference between Pyston and Python in CPU usage (since ρHolm-adj <
0.001). Moreover, a significant difference is observed between PyPy3
and Python in the duration of the tests (since ρHolm-adj = 0.01).
Similarly, a significant difference exists between PyPy3 and Python (see
Table 2) in memory usage (since ρHolm-adj < 0.001), as well as between
Pyjion and Python in memory usage (since ρHolm-adj < 0.001).

difference =
interpreter_durations[i] − python3_duration[i]

python3_duration[i]
× 100

(2)

Where: i. ∈ Z

python3_duration[i] = denotes the duration of the Python 3 baseline
interpreter for the i-th run of the experiment, serving as a reference
point for comparisons with the durations of other interpreters.
interpreter_durations[i] = signifies the duration of the i-th run of the
experiment for a given interpreter, excluding Python 3. This value

facilitates the assessment of the alternative interpreter’s perfor-
mance in relation to the baseline Python 3 interpreter.

Fig. 3 depicts the performance improvement achieved compared to
the Python3 interpreter, with lower values indicating faster completion
times. This comprehensive evaluation covers all samples (refer to
Table 1). The “difference” variable, calculated using Equation (2), de-
termines the percentage difference between the execution time of the
baseline Python interpreter and other interpreters, enabling a perfor-
mance comparison between them. By applying Equation (2) to every
row in Fig. 3, the average performance improvements for PyPy, Pyston,
and Pyjion are found to be 15.21 %, 10.93 %, and 7.43 %, respectively.

Performance variations may originate from both VF and system
caching influences, as hinted in Fig. 4. This figure presents the test
completion time rankings for all Python interpreters, suggesting the
potential impact of caching behavior on performance. Similar observa-
tions have been reported in previous research (Roghult 2016). Although
our study maintains constant hardware (described in Section 3.2), in-
consistencies in performance are still noticeable, indicating unstable
behavior. Nevertheless, the results ultimately converge, which may be
attributed to the variability of processes with changing completion
times. In summary, these findings underscore the importance of care-
fully selecting interpreters to achieve optimal performance in memory
forensics.

4.2. Forensic soundness

Inherently, FAME ensures soundness by verifying the output integ-
rity when using different Python JIT interpreters. A simple string
compare method is insufficient to guarantee valid proof (i.e., Hashes)
without properly running FAME. To formally establish the soundness
property of FAME, we implement a procedure-based approach that en-
sures consistency in execution, yielding reliable and repeatable results.
To achieve this, users must configure the containers and run FAME
without interruptions. We define soundness results by hashing the out-
puts (e.g., process logs) from Section 3.2.3 using the SHA256 function.
The objective is for each Python JIT interpreter to execute the same
procedure (see Fig. 1) and compare its results with those of the other
interpreters. The Publisher component’s hash string values, generated
from the strings, match for all interpreters when running PTS. This in-
dicates that the integrity of the data is preserved even after changing the
Python JIT interpreter. The digests obtained from our experiments using
the same sample align with those from other interpreters for that sam-
ple. Overall, these results confirm the forensic soundness of switching
from one interpreter to another.

4.3. Encountered roadblocks

During our search for Python interpreters, we discovered that PyPy
can not execute the most recent version of VF. According to the PyPy
development team, the problem arises because Python performs less
string compatibility tests if a C-written class does not include struct
fields in comparison to its parent class (see Figure A5). As a result, it will
not be considered as a solid class and will not work with PyPy since it
does not support multiple class inheritance (PyPy is based on RPython).5

We also encountered problems with Java string conversions and hashing
libraries (e.g., Apache Commons Codec), causing incorrect hash values
(completely wrong digest when compared to the standard imple-
mentation) in our unit tests. To resolve this, we implemented the SHA-
256 algorithm using Java security library and processed raw bytes
from Docker container logs as input, ensuring accurate results.

5 https://foss.heptapod.net/PyPy/PyPy/-/issues/3821.

T. Gharaibeh et al.

https://foss.heptapod.net/PyPy/PyPy/-/issues/3821

Forensic Science International: Digital Investigation 49 (2024) 301757

7

5. Related work

In this section, we show the related work on speeding up memory
forensics, benchmarking the Python JIT interpreters, and tools that were
developed to monitor Docker containers.

5.1. Speeding up memory analysis

Little work has been conducted on speeding up memory analysis.

Memory analysis is a trade-off between time and accuracy. To improve
accuracy and reduce time needed to analyze, the use of Intezer Analyze
CLI was proposed (Holtzman 2020). It uses VF modules, such as proc-
dump and malfind, to dump a process’s executable and aid in the
detection of possible memory injections and other code items that may
be used to assess if a file is malicious or trusted. To speed up kernel
memory allocations (Sylve et al., 2016), proposes a novel approach by
scanning the memory pages that are associated with pool allocations,
while maintaining a high level of accuracy.

Developing and testing new VF plugins can be time-consuming.
Therefore, it’s crucial to conduct tests for each new plugin to ensure
accuracy. Researchers have found that creating a virtual volatile mem-
ory disk to hold memory dumps during tests and outputs can boost
performance, claiming up to four times the speed of a regular hard drive
when running VF plugins, though performance may vary depending on
the plugin used (Tomchop 2014). However, the use of Ramdisks (Kind
2011) carries the risk of data loss due to their volatile nature.

5.2. Python JIT interpreters evaluation

To address the Python language execution speed, during the last
decade, we have seen many Python JIT interpreter implementations. At
the time of writing, there were more than twelve JIT Python compilers
with different specifications. Some require code changes (Stefan Behnel,
n.d.), and others perform better on specific problems (Roghult 2016),
such as being more efficient in sorting a list. Past work developed a test’s
suite to measure the performance of four Python JIT interpreters and
found that PyPy and Jython (Juneau et al., 2010) were the fastest for the
majority of tests when running code using only Python syntax and data
types (Roghult 2016). Then comes Cython (Behnel et al., 2010), which
may require code modifications depending on the mode used. A scien-
tifically reproducible method for testing different Python interpreters is
to explore their runtime efficiency by running them in Docker containers
and monitoring their behavior.

5.3. Docker monitoring tools

Monitoring assists DevOps teams in detecting and resolving issues,
such as identifying the main causes of poor application performance by
utilizing various crucial system resource metrics (e.g. CPU usage) and
exploring Docker container artifacts (Boettiger 2015; Henkel et al.,
2020; Hussain et al., 2017). Monitoring tools are vital not just for
observability, but for also identifying resource bottlenecks and health
system issues in an application (Cai and Kazman 2016). There are
several trusted performance profilers in the research community
(Casalicchio and Perciballi 2017) and tools available, including docker

Table 2
Statistics of CPU, memory usage, and duration for python interpreters.

Measure Dunn Test (Pairwise) Kruskal–Wallis Test n Mean Rank Median

Python3 Pyston PyPy3 Pyjion
CPU (%) Median χ2 (3) = 24.99, p < 0.001, ϵ2

ordinal = 0.45 56
Python3 – 9.31e-4* 1.96e-4* 0.65 14 42.18 88.76
Pyston 9.31e-4* – 0.68 0.02* 14 19.14 86.88
PyPy3 1.96e-4* 0.68 – 6.12e-3* 14 16.57 86.34
Pyjion 0.65 0.02* 6.12e-3* – 14 36.11 88.44
Memory Usage (MB) Median χ2 (3) = 46.47, p < 0.001, ϵ2

ordinal = 0.84 56
Python3 – 0.82 4.13e-8* 1.71e-3* 14 13.79 106.03
Pyston 0.82 – 1.33e-7* 3.00e-3* 14 15.21 106.22
PyPy3 4.13e-8* 1.33e-7* – 0.05* 14 49.50 274.86
Pyjion 1.71e-3* 3.00e-3* 0.05* – 14 35.50 149.33
Duration (Seconds) Median χ2 (3) = 10.72, p = .01, ϵ2

ordinal = 0.19 56
Python3 – 0.08 0.01* 0.50 14 39.07 1547.10
Pyston 0.08 – 0.59 0.59 14 24.14 1304.38
PyPy3 0.01* 0.59 – 0.37 14 20.21 1306.16
Pyjion 0.50 0.59 0.37 – 14 30.57 1453.07

Where: *p < 0.05.

Fig. 3. Percentage Increase For Each Run Compared to the baseline Interpreter,
Python3, Lower Values Indicate Better Performance.

Fig. 4. The average time needed for a python JIT Interpreter to complete
processing sample.

T. Gharaibeh et al.

Forensic Science International: Digital Investigation 49 (2024) 301757

8

stats, cAdvisor, Prometheus, Netdata, Datadog agent, ELK, and many
others.

We describe and list past container monitoring solutions and
compare them to FAME in Table 3: (i) docker stats: a command-line
tool within Docker that provides a live stream of container resource
usage statistics (ii) cAdvisor (Container Advisor): is an open-source
solution that exposes container data through an agent actively collect-
ing performance data from a Docker daemon (iii) Prometheus: a widely
used open-source monitoring and alerting system, features a dimen-
sional data model, flexible query language, an efficient time series
database, and modern alerting approach (iv) Datadog Agent: another
open-source agent-based monitoring tool for Docker containers that is
installed as a node within the host where the Docker platform is oper-
ating. It is a Software as a Service (SaaS) that was developed by Datadog
Inc to collect data from cloud-scale applications (v) Netdata: an open-
source monitoring tool designed to collect real-time data, such as CPU
usage and other useful metrics and (vi) The ELK stack (Elasticsearch,
Logstash, and Kibana): an open-source tool focusing on logs, providing
analytics and search functionalities via HTTP endpoints. Logstash pulls
logs from Docker containers and applies custom filters, while Elas-
ticsearch serves as the core search engine and Kibana offers
visualization.

5.4. Related work summary & discussion

The literature lacks rigorous research on Python interpreters. To
address this, we propose key steps for a comprehensive assessment.
Firstly, testing on real-world systems ensures practicality. Secondly,
employing extensive datasets covers diverse scenarios. Thirdly, using a
reproducible research framework like FAME ensures consistency. Lastly,
evaluating forensic soundness confirms result consistency across in-
terpreters. This approach will enhance the robustness and relevance of
Python interpreter evaluation research.

For our research to materialize, we had to abide by the FAME criteria
presented in Table 3, and discussed in Section 3.1.2. With respect to the
aforementioned monitoring tools (Section 5.3), FAME overcomes their
shortcomings. It offers several distinct advantages over existing solu-
tions by providing a lightweight, easy-to-use, and tailor-made solution.
Moreover, the unique capability of testing the forensic soundness of logs
from different Docker containers sets it apart from existing solutions,
thereby making it suitable for reproducible research purposes (e.g.
testing various Python JIT interpreters and their soundness). In sum-
mary, Table 3 shows our proposed FAME monitoring solution that ad-
dresses all four criteria (C1, C2, C3 and C4), whereas other tools either
partially meet the criteria or do not meet them at all. Overall, our
approach fills major gaps in the literature and monitoring tools that is
both useful to the DF and forensic tools testing.

6. Discussion

Prior research by Casalicchio and Perciballi (2017) has investigated
the overhead introduced by Docker containers concerning CPU usage in
comparison to native execution. The findings suggested that the impact

of containerization on CPU performance may be more significant at
moderate utilization levels and decrease as computational resource de-
mand increases. Notably, when CPU utilization lies between 65 % and
75 %, there is approximately a 10 % overhead compared to native CPU
load. Interestingly, as CPU utilization exceeds 80 %, the overhead falls
below 5 % (Casalicchio and Perciballi 2017).

All tests in our study were conducted on Docker containers, ensuring
consistency in our results. We accounted for a 5 % performance margin
when any interpreter’s CPU usage exceeds 80 %, and a 10 % margin
when CPU utilization lies between 65 % and 75 %. As seen in Table 3,
Python3 exhibited the highest CPU utilization median, with a tendency
to be higher, followed by Pyjion, Pyston, and PyPy. Conversely, as
anticipated, PyPy demonstrated the worst memory usage among the
Python JIT interpreters (see Table 3). PyPy is known for its higher
baseline memory consumption compared to Python, and this value tends
to increase as the JIT generates more machine code over time. However,
it is expected to converge, indicating that memory usage should grow
during program execution but only up to a certain maximum.

Our results are consistent with previous literature, which shows that
PyPy outperforms other interpreters in terms of execution speed (Crapé
and Eeckhout 2020; Roghult 2016). To illustrate the practical impact of
these findings, consider a typical organization that needs to process a 1
TB memory sample using the VF. Based on the observed performance
improvements with our apparatus, the organization can significantly
reduce processing time by using PyPy instead of the standard Python
interpreter.

For instance, in a typical organization with 1 TB of memory samples,
if the standard Python interpreter takes 36 min per run for a 173 GB
memory sample, PyPy could reduce the processing time to around 30
min per sample, saving 6 min per run. With 1 TB memory samples
divided into roughly 5.78 collections of 178 GB samples (1000

178 ≈ 5.78),
the total time savings would be approximately 34 min or 18.4 %. We
note that this is a conservative estimate, and that in certain instances,
the improvement can reach up to 40 %. This has the potential to save
several hours of work when handling cases that involve a significant
number of memory samples.

FAME significantly improves the efficiency of deploying and moni-
toring forensic tool testing on a large scale, ensuring experiment integ-
rity through its forensic soundness. This study shows FAME’s role in
facilitating reproducible research within DF, emphasizing its potential
to influence real-world memory analysis, especially when using tools
like the VF in organizational setups.

7. Conclusions & future work

In this paper, we introduced a tool designed for the research com-
munity to explore and monitor containerized tools. We applied our tool
to the use case of “towards faster memory forensics” and found that PyPy
is the best-performing interpreter, being 15.2 % faster in completing a
full run and exhibiting better CPU usage than standard Python. How-
ever, it comes with a higher memory usage cost, exceeding Python by
100 megabytes in our case (see RQ1). Our work streamlines the process
of configuring, deploying, and monitoring Docker containers for re-
searchers conducting stress tests or assessing tool performance (see
RQ2).

In this paper, we investigated the acceleration of VF by replacing
Python JIT interpreters. Our future work will explore building VF core
plugins using C++ and injecting them as modules (extending Python
with C or C++).6 Additionally, we plan to integrate a messaging system
into the FAME architecture to enhance scalability and improve the
signaling protocols between the Main, Observer, and Publisher
components.

Table 3
Docker monitoring tools vs. FAME criteria.

Tool C1 C2 C3 C4

docker stats × ✔ Limited ×

cAdvisor × ✔ Real-time only Difficult
Prometheus × Moderate ✔ Difficult
Netdata × ✔ Real-time only Limited
Datadog agent × Moderate ✔ Limited
ELK × × ✔ Moderate
FAME ✔ ✔ ✔ ✔

Legend: C1 = Command Deployment, C2 = Lightweight, C3 = Monitoring Data
Persistence, C4: Easily Customized.

6 https://docs.python.org/3/extending/extending.html.

T. Gharaibeh et al.

https://docs.python.org/3/extending/extending.html

Forensic Science International: Digital Investigation 49 (2024) 301757

9

FAME empowers researchers to replicate and share their work within
the community using Docker images for experiments. This approach
promotes exploration and builds upon artifacts while ensuring

consistent setup across machines. Our work benefits both the DF and
forensic tool testing by promoting accessibility and reproducibility.

Appendix A. Tables & Figures

Table A.4
Software Utilized in the Experiments.

Software Version

Operating System (MSI) Windows 10
Operating System (Docker Container) Ubuntu 20.04.5
CPython 3.7.5
Pyston 2.3.5
PyPy 3.9.0
Pyjion 2.0.0
Docker 4.3.0

Table A.5
Skewness and Kurtosis Ranges for Duration, CPU Percent, and Memory Usage.

Interpreter Metric Range

PyPy3 Duration Skewness: 0.01–0.81 (SE = 0.20), Kurtosis: − 0.35 – 1.25 (SE = 0.41)
CPU Percent Skewness: − 0.95 to − 0.93 (SE = 0.01), Kurtosis: − 0.95 to − 0.90 (SE = 0.01)
Memory Usage Skewness: 5.22–5.24 (SE = 0.01), Kurtosis: 78.61–78.65 (SE = 0.01)

Python3 Duration Skewness: 0.33–1.13 (SE = 0.20), Kurtosis: 0.10–1.70 (SE = 0.41)
CPU Percent Skewness: − 1.29 to − 1.27 (SE = 0.01), Kurtosis: − 0.17 to − 0.13 (SE = 0.01)
Memory Usage Skewness: 3.46–3.48 (SE = 0.01), Kurtosis: 23.00–23.04 (SE = 0.01)

Pyjion Duration Skewness: 0.28–1.08 (SE = 0.20), Kurtosis: − 0.17 – 1.42 (SE = 0.41)
CPU Percent Skewness: − 1.26 to − 1.24 (SE = 0.01), Kurtosis: − 0.26 to − 0.22 (SE = 0.01)
Memory Usage Skewness: 5.26–5.28 (SE = 0.01), Kurtosis: 66.29–66.34 (SE = 0.01)

Pyston Duration Skewness: 0.36–1.16 (SE = 0.20), Kurtosis: − 0.85 – 0.75 (SE = 0.41)
CPU Percent Skewness: − 1.02 to − 1.00 (SE = 0.01), Kurtosis: − 0.85 to − 0.80 (SE = 0.01)
Memory Usage Skewness: 4.21–4.24 (SE = 0.01), Kurtosis: 41.38–41.42 (SE = 0.01)

Figure A.5. Inheritance Conflicts in Instance Layout.

References

Baggili, I.M., Mislan, R., Rogers, M., 2007. Mobile phone forensics tool testing: a
database driven approach. International Journal of Digital Evidence 6 (2), 168–178.

Baggili, I., Marrington, A., Jafar, Y., 2014. Performance of a logical, five-phase,
multithreaded, bootable triage tool. In: Advances in Digital Forensics X: 10th IFIP
WG 11.9 International Conference, Vienna, Austria, January 8-10, 2014, Revised
Selected Papers 10’. Springer, pp. 279–295.

Balaoura, S., 2018. Process Injection Techniques and Detection Using the Volatility
Framework. University of Piraeus, Greece. PhD thesis.

Balreira, D.G., Silveira, T.L.d., Wickboldt, J.A., 2023. Investigating the impact of
adopting python and c languages for introductory engineering programming
courses. Comput. Appl. Eng. Educ. 31 (1), 47–62.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K., 2010. Cython:
the best of both worlds. Comput. Sci. Eng. 13 (2), 31–39.

Boettiger, C., 2015. An introduction to docker for reproducible research. SIGOPS Oper.
Syst. Rev. 49 (1), 71–79.

Cai, Y., Kazman, R., 2016. Software architecture health monitor. In: Proceedings of the
1st International Workshop on Bringing Architectural Design Thinking into
Developers’ Daily Activities’, BRIDGE, vol. 16, pp. 18–21.

Casalicchio, E., Perciballi, V., 2017. Measuring docker performance: what a mess. In:
Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering Companion’, pp. 11–16.

Case, A., Richard III, G.G., 2017. Memory forensics: the path forward. Digit. Invest. 20,
23–33.

Casey, P., Lindsay-Decusati, R., Baggili, I., Breitinger, F., 2019. Inception: virtual space in
memory space in real space–memory forensics of immersive virtual reality with the
htc vive. Digit. Invest. 29, S13–S21.

Cohen, M., 2017. Scanning memory with yara. Digit. Invest. 20, 34–43.
Crapé, A., Eeckhout, L., 2020. A rigorous benchmarking and performance analysis

methodology for python workloads. In: 2020 IEEE International Symposium on
Workload Characterization (IISWC)’, pp. 83–93.

Duke, J.E., 2021. Memory Forensics Comparison of Apple M1 and Intel Architecture
Using Volatility Framework.

T. Gharaibeh et al.

http://refhub.elsevier.com/S2666-2817(24)00076-3/sref1
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref1
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref2
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref2
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref2
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref2
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref3
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref3
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref4
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref4
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref4
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref5
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref5
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref6
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref6
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref7
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref7
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref7
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref8
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref8
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref8
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref9
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref9
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref10
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref10
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref10
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref11
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref12
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref12
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref12
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref13
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref13

Forensic Science International: Digital Investigation 49 (2024) 301757

10

Foundation, P.S., 2023. Welcome to Python.org. https://www.python.org. (Accessed 1
February 2023).

Grajeda, C., Breitinger, F., Baggili, I., 2017. Availability of datasets for digital
forensics–and what is missing. Digit. Invest. 22, S94–S105.

Graziano, M., Lanzi, A., Balzarotti, D., 2013. Hypervisor memory forensics. In:
International Symposium on Recent Advances in Intrusion Detection’.

Henkel, J., Bird, C., Lahiri, S.K., Reps, T., 2020. Learning from, understanding, and
supporting devops artifacts for docker. In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering’. ICSE ’20, pp. 38–49.

Holtzman, S., 2020. Accelerate memory forensics with intezer analyze - intezer. https
://www.intezer.com/blog/malware-analysis/accelerate-memory-forensics/.
(Accessed 25 January 2023).

Horsman, G., 2018. “‘i couldn’t find it your honour, it mustn’t be there!”–tool errors, tool
limitations and user error in digital forensics’. Sci. Justice 58 (6), 433–440.

Horsman, G., 2019. Tool testing and reliability issues in the field of digital forensics.
Digit. Invest. 28, 163–175.

Hussain, W., Clear, T., MacDonell, S., 2017. Emerging trends for global devops: a New
Zealand perspective. In: Proceedings of the 12th International Conference on Global
Software Engineering. ICGSE ’17, pp. 21–30.

Juneau, J., Baker, J., Wierzbicki, F., Muoz, L.S., Ng, V., Ng, A., Baker, D.L., 2010. The
Definitive Guide to Jython: Python for the Java Platform.

Kind, T., 2011. Ramdisk Benchmarks’, vol. 52. University of California.
Lewis, N., Case, A., Ali-Gombe, A., Richard III, G.G., 2018. Memory forensics and the

windows subsystem for linux. Digit. Invest. 26, S3–S11.
Ligh, M., Case, A., Levy, J., Walters, A., 2014. The Art of Memory Forensics: Detecting

Malware and Threats in Windows, Linux, and Mac Memory.
Lion, D., Chiu, A., Stumm, M., Yuan, D., 2022. Investigating managed language runtime

performance: why {JavaScript} and python are 8x and 29x slower than c++, yet
java and go can be faster?. In: 2022 USENIX Annual Technical Conference (USENIX
ATC 22), pp. 835–852.

Manna, M., Case, A., Ali-Gombe, A., Richard III, G.G., 2022. Memory analysis of. net and.
net core applications. Forensic Sci. Int.: Digit. Invest. 42, 301404.

McCullough, S., Abudu, S., Onwubuariri, E., Baggili, I., 2021. Another brick in the wall:
an exploratory analysis of digital forensics programs in the United States. Forensic
Sci. Int.: Digit. Invest. 37, 301187.

Modzelewski, K., 2023. The Pyston blog. https://blog.pyston.org. (Accessed 1 February
2023).

Mohamed, A.F.A.L., Marrington, A., Iqbal, F., Baggili, I., 2014. Testing the forensic
soundness of forensic examination environments on bootable media. Digit. Invest.
11, S22–S29.

Nyholm, H., Monteith, K., Lyles, S., Gallegos, M., DeSantis, M., Donaldson, J., Taylor, C.,
2022. The evolution of volatile memory forensics. Journal of Cybersecurity and
Privacy 2 (3), 556–572.

Pan, L., Batten, L.M., 2009. Robust performance testing for digital forensic tools. Digit.
Invest. 6 (1–2), 71–81.

Petroni, N.L., Walters, A., Fraser, T., Arbaugh, W.A., 2006. Fatkit: a framework for the
extraction and analysis of digital forensic data from volatile system memory. Digit.
Invest. 3 (4), 197–210.

Roghult, A., 2016. Benchmarking python Interpreters : Measuring Performance of
cpython, Cython, Jython and Pypy.

Sanchez, L., Grajeda, C., Baggili, I., Hall, C., 2019. A practitioner survey exploring the
value of forensic tools, ai, filtering, & safer presentation for investigating child
sexual abuse material (csam). Digit. Invest. 29, S124–S142.

Scanlon, M., 2016. Battling the digital forensic backlog through data deduplication. In:
2016 Sixth International Conference on Innovative Computing Technology
(INTECH)’, IEEE, pp. 10–14.

Stefan Behnel, R.B.. Cython: C-extensions for python. n.d. https://cython.org/. (Accessed
25 January 2023).

Sylve, J., Case, A., Marziale, L., Richard, G.G., 2012. Acquisition and analysis of volatile
memory from android devices. Digit. Invest. 8, 175–184.

Sylve, J.T., Marziale, V., Richard III, G.G., 2016. Pool tag quick scanning for windows
memory analysis. Digit. Invest. 16, S25–S32.

Tan, J., Chen, Y., Liu, Z., Ren, B., Song, S.L., Shen, X., Liu, X., 2021. Toward efficient
interactions between python and native libraries. In: Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering’, pp. 1117–1128.

Team, T., 2019. PyPy. PyPy. https://www.pypy.org.
Thing, V.L., Ng, K.-Y., Chang, E.-C., 2010. Live memory forensics of mobile phones. Digit.

Invest. 7, S74–S82.
Thomas, T., Piscitelli, M., Nahar, B.A., Baggili, I., 2021. Duck hunt: memory forensics of

usb attack platforms. Forensic Sci. Int.: Digit. Invest. 37, 301190.
Thomas, T., Piscitelli, M., Shavrov, I., Baggili, I., 2020. Memory foreshadow: memory

forensics of hardware cryptocurrency wallets–a tool and visualization framework.
Forensic Sci. Int.: Digit. Invest. 33, 301002.

Tomchop, 2014. Speeding up volatility with ramdisks ⋅ tomchop. http://tomchop.me
/2014/09/01/speeding-up-volatility-ramdisks/. (Accessed 26 January 2023).

van Baar, R.B., van Beek, H.M., Van Eijk, E., 2014. Digital forensics as a service: a game
changer. Digit. Invest. 11, S54–S62.

Vömel, S., Freiling, F.C., 2012. Correctness, atomicity, and integrity: defining criteria for
forensically-sound memory acquisition. Digit. Invest. 9 (2), 125–137.

Walters, A., Petroni, N.L., 2007. Volatools : Integrating Volatile Memory Forensics into
the Digital Investigation Process.

Wang, E., Zurowski, S., Duffy, O., Thomas, T., Baggili, I., 2022. Juicing v8: a primary
account for the memory forensics of the v8 javascript engine. Forensic Sci. Int.: Digit.
Invest. 42, 301400.

T. Gharaibeh et al.

https://www.python.org
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref15
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref15
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref16
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref16
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref17
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref17
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref17
https://www.intezer.com/blog/malware-analysis/accelerate-memory-forensics/
https://www.intezer.com/blog/malware-analysis/accelerate-memory-forensics/
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref19
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref19
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref20
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref20
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref21
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref21
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref21
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref22
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref22
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref23
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref24
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref24
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref25
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref25
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref27
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref27
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref27
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref27
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref28
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref28
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref29
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref29
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref29
https://blog.pyston.org
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref31
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref31
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref31
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref32
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref32
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref32
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref33
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref33
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref34
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref34
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref34
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref36
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref36
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref37
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref37
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref37
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref38
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref38
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref38
https://cython.org/
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref40
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref40
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref41
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref41
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref42
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref42
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref42
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref42
https://www.pypy.org
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref44
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref44
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref45
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref45
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref46
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref46
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref46
http://tomchop.me/2014/09/01/speeding-up-volatility-ramdisks/
http://tomchop.me/2014/09/01/speeding-up-volatility-ramdisks/
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref48
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref48
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref49
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref49
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref50
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref50
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref51
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref51
http://refhub.elsevier.com/S2666-2817(24)00076-3/sref51

	On enhancing memory forensics with FAME: Framework for advanced monitoring and execution
	1 Introduction
	2 Background
	2.1 Memory forensics
	2.2 Volatility Framework
	2.3 Limitations & research questions

	3 Methodology
	3.1 Problem generalization
	3.1.1 Python selection criteria
	3.1.2 Software framework specification
	3.1.3 Methodology overview

	3.2 FAME development
	3.2.1 FAME architecture
	3.2.2 FAME deployment and monitoring
	3.2.3 Data output
	3.2.4 FAME validation

	3.3 Tests
	3.4 Metrics
	3.5 Test data

	4 Findings and evaluation
	4.1 Performance results
	4.2 Forensic soundness
	4.3 Encountered roadblocks

	5 Related work
	5.1 Speeding up memory analysis
	5.2 Python JIT interpreters evaluation
	5.3 Docker monitoring tools
	5.4 Related work summary & discussion

	6 Discussion
	7 Conclusions & future work
	Appendix A Tables & Figures
	References

