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A B S T R A C T   

Memory forensics is a crucial part of digital forensics as it can be used to extract valuable information such as 
running processes, network connections, and encryption keys from memory. The last is especially important 
when considering the widely used Transport Layer Security (TLS) protocol used to secure internet communi-
cation, thus hampering network traffic analysis. Particularly in the context of cybercrime investigations (such as 
malware analysis), it is therefore paramount for investigators to decrypt TLS traffic. This can provide vital in-
sights into the methods and strategies employed by attackers. For this purpose, it is first and foremost necessary 
to identify and extract the corresponding TLS key material in memory. 

In this paper, we systematize and evaluate the current state of techniques, tools, and methodologies for 
identifying and extracting TLS key material in memory. We consider solutions from academia but also identify 
innovative and promising approaches used “in the wild” that are not considered by the academic literature. 
Furthermore, we identify the open research challenges and opportunities for future research in this domain. Our 
work provides a profound foundation for future research in this crucial area.   

1. Introduction 

With the advent of digital communication, the encryption of internet 
traffic has significantly increased. Around 85 % of internet traffic was 
encrypted in 2020, a significant increase from 55 % in 2017. This trend 
shows a substantial increase in data privacy and security. However, the 
same encryption that safeguards data from malicious actors also poses 
significant challenges in the realm of digital forensics (Gigamon, 2023; 
Pric, 2013). 

The importance of TLS decryption in digital forensics cannot be 
understated. With the increasing sophistication of cyber threats, forensic 
investigators frequently encounter encrypted network data in their an-
alyses (cf. (Papadogiannaki and Ioannidis, 2021)). This makes it 
necessary for investigators to be able to decrypt the encrypted network 
traffic in such scenarios. 

In recent years, obtaining decrypted network traffic for forensic 
purposes and analyses has become more and more challenging for 
forensic researchers and law enforcement agencies. In the context of live 
forensics, one of the most prominent techniques for TLS decryption in 
the past was a man-in-the-middle attack using a network proxy. 

However, this approach poses problems, such as certificate invalidation 
and detectability (Jarmoc and Unit, 2012). In the realm of malware 
analysis, this may not pose a significant issue; nevertheless, it is crucial 
to avoid detection by malicious actors during investigations. 

Despite the increasing prevalence of TLS 1.3 (cf. (Warburton and 
Vinberg, 2021)), research has predominantly focused on TLS 1.2 in 
memory forensics (cf. Chapter 3). This leads to a gap in the identification 
of key material in the memory of systems using the latest TLS standards. 
While current research is concentrated on live forensics and clustering 
TLS traffic (cf. (Chen et al., 2022; Kim et al., 2022; Xavier de Carné de 
Carnavalet and van Oorschot, 2023)), the fundamental challenges of 
digital forensic investigations in the field of network forensics remain 
underexplored. 

This paper evaluates and systematizes advanced techniques, tools, 
and methods for identifying and extracting TLS key material in system 
memory. We bridge the gap between academic research and practical, 
field-tested approaches, considering post-mortem and live forensic sce-
narios. Additionally, we identify open research challenges and oppor-
tunities for future exploration in this domain. By doing so, our study lays 
a comprehensive groundwork while also highlighting the challenges 
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involved in effectively identifying TLS keys in memory. In summary, this 
paper makes the following contributions.  

• A comprehensive overview of techniques, tools, and methodologies 
for identifying and extracting TLS key material in memory.  

• Insights into the challenges of decrypting TLS 1.2 and TLS 1.3 traffic.  
• Highlights areas where limited or no existing research has been 

conducted in TLS key material identification and extraction, out-
lining potential future research directions. 

2. TLS fundamentals 

The TLS protocol is the successor of SSL (Secure Sockets Layer). It is 
designed to secure the communication between two parties on the 
network by providing privacy and integrity (Allen and Dierks, 1999). 
The protocol consists of two separate protocols: the TLS Record Protocol 
and the TLS Handshake Protocol. 

One of the most prominent usages of the TLS Record Protocol is 
HTTPS (HTTP Over TLS (Eric Rescorla, 2000)), but the TLS Record 
Protocol can be used to encapsulate any other higher-level protocol. It 
provides privacy through encryption of the data with a symmetric cipher 
(like AES or 3DES) and integrity by appending a message authentication 
code (MAC) using a secure hash function (for example, SHA or MD5). 

The TLS Handshake Protocol, on the other hand, is used to initiate a 
connection and negotiate which cipher and hashing function should be 
used (cf. Section 2.1). A combination of those algorithms is called a ci-
pher suite. 

Nowadays, almost all websites support TLS version 1.2, and 66 % 
already support the latest version 1.3 (SSL Pulse). Moreover, according 
to a 2021 TLS Telemetry Report by F5 Labs, TLS 1.3 had become the 
preferred encryption protocol for 63 % of the top one million web 
servers (Warburton and Vinberg, 2021). 

However, since TLS 1.2 is still the most supported version (cf (SSL 
Pulse)) and all directly related methods explained in Chapter 3 are also 
based on this version, the following Sections 2.1-2.3 describe TLS based 
on version 1.2 according to RFC 5246 (Rescorla and Dierks, 2008). 

In the remainder of this paper, we will use TLS to refer to all versions 
from SSL 1.0 to TLS 1.3. 

2.1. Handshake 

A general overview of the handshake and the corresponding client/ 

server key derivation can be seen in Fig. 1. The client initiates the 
connection with a ClientHello message (1 in Fig. 1). 

This message contains the highest version of the protocol, all cipher 
suites, and all compression methods supported by the client. Addition-
ally, it can include a session ID if the client wants to resume a previous 
session (cf. Section 2.3). Most importantly, this message also contains 
the client random, which is later used for the key derivation. The server 
now decides which algorithms to use and responds with the Server-
Hello message (2). It contains the highest version of the protocol 
supported by both parties and the choice of cipher suite and compression 
algorithm. Beyond that, this message also includes the server random. 

If the server does not find a set of algorithms supported by both 
parties, it aborts the handshake with a handshake failure alert. 

The server will send its certificate if the selected key exchange 
method is RSA. Otherwise, it will send its public Diffie-Hellman values 
with the ServerKeyExchange message. 

The server can also request a certificate for client authentication with 
a CertificateRequest message. In the end, the server will finish the 
initialization phase with the ServerHelloDone message (3). After-
ward, the client responds with its certificate if requested. 

Then, the client sends the ClientKeyExchange message (4). This 
message contains either the premaster secret (PMS) encrypted with the 
server certificate or, in the case of Diffie-Hellman, the public client 
values. If the client has transmitted a digitally signed certificate, it sends 
a CertificateVerify message to verify its certificate. 

In the end, both parties will send the ChangeCipherSpec message 
(5) followed by the Finished message. The Finished message is the 
first one encrypted with the just negotiated algorithms, keys, and secrets 
to verify that the handshake process was not tampered with. 

This indicates that both parties are ready for encrypted communi-
cation, and the handshake is complete. All subsequent traffic is also 
encrypted, and both parties can start transferring the application data. 

2.2. Key derivation 

The TLS key derivation is based on a pseudorandom function (PRF) 
that generates outputs of arbitrary length. This PRF comprises the 
hashing function utilized in generating the Hash-based message 
authentication code (HMAC), characterized by three key parameters: 
secret, label, and seed. Internally, the label and seed are concatenated 
and used together as a seed for the hashing function to compute a hash 
over the secret. 

The general key derivation process can be seen in Fig. 2. The master 
secret is computed using the PRF with the PMS and the client and server 
random. If RSA was chosen for the key exchange, the PMS is a 48-byte 
value generated by the client; otherwise, it is the negotiated key from 
the Diffie-Hellman key exchange and can be of different lengths. 

The PMS is used as the secret for the PRF, the “master secret” as the 
label, and the concatenation of client and server random as the seed. 

The resulting master secret is always 48 bytes long. At this point, the 
PMS is no longer needed and can be discarded. 

The master secret is then used to derive the symmetric keys. This is 
done using the PRF to expand the master secret into a sequence of secure 
bytes called key block. Afterward, the key block is split into the 
following parts, where the initialization vector (IV) is only needed for 
implicit nonce ciphers: Client/Server write key, IV, MAC. 

In this paper, the term session keys will be employed as a general 
descriptor to collectively refer to all keys utilized within a TLS session, as 
detailed above. 

2.3. Session resumption 

TLS supports session resumption by reusing negotiated secrets, 
thereby shortening the handshake. 

The client can request resumption of a previous session by including 
the session ID in the ClientHello message. This is only possible if the 

Fig. 1. Overview of the full TLS handshake (based on (Lee and Wal-
lach, 2018)). 
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selected cipher suite parameters and compression method match the old 
session. 

If the server still stores the corresponding session, it responds with 
the same session ID in the ServerHello message. Otherwise, this field 
is set to zero, indicating to the client that a new connection should be 
established. 

Resuming an older session leads to a reuse of the master secret. 
Therefore, the key exchange in the handshake can be skipped. However, 
the client and server random are taken from the new handshake. Thus, 
the session keys differ in a resumed session and still need to be derived. 

2.4. Differences in version 1.3 

The latest TLS version 1.3, specified in RFC 8446 (Rescorla, 2018), 
introduces some major changes; the most important ones for analysis are 
briefly described below. 

Firstly, the handshake protocol was revised and shortened from the 
4-way handshake to a 3-way handshake. All messages in the handshake 
after the ServerHello message are now encrypted. Moreover, all 
supported cipher suites must now provide perfect forward secrecy, 
resulting in the removal of all RSA and static Diffie-Hellman cipher 
suites. 

As of TLS 1.3, the protocol has moved exclusively to using AEAD 
(Authenticated Encryption with Associated Data) ciphers. In AEAD ci-
phers, a single key is used for both encryption and authentication. When 
a message is encrypted, the AEAD algorithm also generates a MAC as 
part of the encryption process. 

Furthermore, the key derivation process has been revised: the pre-
viously explained PRF has been replaced by an HMAC-based Extract- 
and-Expand Key Derivation Function (HKDF). As a result, it is no longer 
sufficient to retrieve the master secret for traffic decryption. Many other 
secrets have been added and are necessary to reveal the entire 
communication: client/server_handshake_traffic_secret and 
client/server_traffic_secret_N. 

In addition to this, the capability to update traffic encryption keys 
during an ongoing communication has now been realized. 

Finally, the session resumption mechanism has been replaced with a 
pre-shared key (PSK) exchange which is required for the Zero Round 
Trip Time (0-RTT) feature of TLS 1.3. In 0-RTT, the client can send data 
to the server in its first message, and this data is protected using keys 
derived from the client_early_traffic_secret. This secret is 
derived from an early secret which, in turn, is based on a PSK established 
in a previous TLS session. 

Further differences can be found in RFC 8446. 

2.5. Traffic decryption keys 

In TLS 1.2, as explained in Section 2.2, the master secret, along with 
the client random and server random, is used to derive all the necessary 
key material for encryption and decryption (refer to the right part of 
Fig. 2). This means that by identifying the master secret, one can gain 
access to the information needed to decrypt the recorded TLS traffic. 

In TLS 1.3, however, it is necessary to identify either the application 
traffic keys or the client/server handshake secrets in addition to the 
master secret to decrypt the application traffic. The application traffic 
keys enable decryption exclusively for the specific data stream where 
these keys are applied. In contrast, possessing the client/server hand-
shake secrets allows for the decryption of the handshake messages, 
followed by the computation of necessary keys with the master secret to 
decrypt all subsequent traffic. 

Fig. 2 (on the left side) provides an overview of how the individual 
keys are derived. The process begins by using the PSK in the HKDF to 
extract the early secret. This early secret is used in the HKDF to derive 
the binder_key, client_early_traffic_secret, and ear-

ly_exporter_master_secret. For the first two secrets, the HKDF 
requires the ClientHello message and the early secret for key derivation. 
This initial step is only performed if a PSK is present; otherwise, the key 
derivation begins with the next step. 

If present, the early secret is combined with the exchanged secret 
from (elliptic curve) Diffie-Hellman in the HKDF. If not, only the 
exchanged secret is used in the HKDF to extract the handshake secret. 

This handshake secret is then used in the HKDF to derive the cli-
ent_handshake_traffic_secret and server_handshake_ 

traffic_secret. The HKDF requires both the ClientHello and 
ServerHello messages for this step. 

Additionally, the master secret is derived from the handshake secret 
in the HKDF. Finally, the master secret is used in the HKDF to derive the 
final set of secrets, as shown in Fig. 2, bottom left. 

In this last step, the HKDF utilizes all handshake messages from the 
ClientHello to ServerFinished. These derived secrets are then 
employed in the HKDF to obtain the write key, IV, and other necessary 
components for encryption and decryption. 

Therefore, to decrypt the traffic, it is essential to identify not only the 
master secret but also the appropriate handshake secrets. Alternatively, 
the application data can at least be decrypted using the application 
traffic keys. 

3. TLS key identification in memory dumps 

Whenever a memory dump and its associated encrypted network 
traffic are available, dead forensic methodologies can be employed to 
extract TLS key material from the dump. The key advantage of this 
approach is the ability to conduct analysis independent of time 
constraints. 

This section provides an overview of the various approaches that 
have been proposed to identify and extract TLS key material in memory 
dumps so far. 

3.1. Brute force search 

In cases where there is no prior knowledge of an application’s 
memory structure and its implementation, brute force searching is a 

Fig. 2. TLS key derivation in version 1.2 and 1.3 (simplified) as outlined in RFC 
5246 and RFC 8446 (Rescorla and Dierks, 2008; Rescorla, 2018). 
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viable method for extracting key material from memory dumps. Taub-
mann et al. introduced TLSkex (Taubmann et al., 2016), a brute force 
approach to extract the master key to TLS connections at runtime from 
virtual machine memory, thus enabling the decryption of associated 
application data. 

For this approach, the only requirement is a recording of the TLS 
connection that should be decrypted. The idea is to move a 48-byte 
sliding window over the memory dump and test every sequence as a 
master secret. 

The drawback of this approach lies in its computationally intensive 
nature, particularly regarding decryption and the required key deriva-
tion. Therefore, Taubmann et al. present three different heuristics to 
decrease the search space as much as possible without eliminating too 
many potential keys. The first assumption is that secrets are 4-byte 
aligned, which already quarters the total search space. Furthermore, 
all secrets are generated by a PRF and should contain roughly the same 
amount of ones and zeroes. This allows to check if the amount of one bits 
in a byte sequence is within a certain range. The last heuristic imple-
mented in TLSkex is to check whether an eight-byte sequence contains 
either only one bits or only zero bits. Combining all these heuristics 
should, in theory, be satisfied for 87.7 % of all master secrets (cf. 
(Taubmann et al., 2016)). 

If the heuristics result in a secret missing, they can be disabled. Real- 
world experiments on memory dumps from Apache2, curl, Wget, and 
s_client from OpenSSL show that these heuristics can already reduce the 
search space to about 1.5–3.5 % of the total memory (cf. (Taubmann 
et al., 2016)). In their research, Sentanoe et al. (Stewart et al., 2022) 
developed another heuristic-based brute force approach to efficiently 
reduce the size of the heap being analyzed. This involves filtering the 
heap to remove irrelevant eight-byte segments based on simple criteria 
and then applying an entropy-based threshold to further refine the data. 
This results in a filtered heap that is more manageable for locating 
session keys. 

The aspect of key omission by these heuristics was not addressed in 
their study. 

Considering the focus on master secrets, these methods are limited to 
TLS versions up to 1.2 without further adjustments, as TLS 1.3 adopts a 
different key management approach. 

3.2. Pattern matching in unknown memory 

To find anything in large amounts of data, it is often helpful to 
identify characteristics of the searched-for data and locate data blocks 
that satisfy these characteristics. 

One of the first theoretical approaches to locate cryptographic key 
material by searching for high-entropy regions was proposed by Shamir 
et al. (Shamir and van Someren, 1999). Their idea is based on the fact 
that cryptographic keys are chosen randomly, while most code and data 
is not. Random data generally has higher entropy than structured in-
formation. Therefore, it should be possible to distinguish cryptographic 
keys from regular data and code by selecting regions with unusually 
high entropy values. 

Their experiments indicate that entropy, measured by counting 
unique byte values in data blocks, can effectively identify RSA secrets. It 
should be noted, however, that the success of this statistical method is 
highly dependent on the type of program and data analyzed. 

Klein (2006) presents an approach to find and extract RSA private 
keys based on the ASN.1 syntax. The basic idea is that some types of 
cryptographic keys are stored in a standardized format referred as 
storage format. These storage formats can be used to create a signature 
and perform a simple but efficient pattern matching method to locate 
them in large amounts of data such as memory dumps. 

Given that the employed signature comprises only seven bytes, its 
strength is limited, leading to a high incidence of false positives. 
Consequently, it is essential to verify the accuracy of the extracted keys 
in the final stage. 

As only RSA keys are taken into account, these approaches can only 
work up to and including TLS 1.2. 

3.3. Leveraging unique structure identifiers 

When recovering cryptographic keys from applications or libraries 
with known data structures, targeted searches for these structures can be 
effective. This method extends to TLS libraries, which typically store the 
master secret in predictable data structures, as shown by the research of 
Anderson et al. (2019). 

Listing 1: OpenSSL session structure with master secret (Anderson 
et al., 2019). 

For the example of OpenSSL, the ssl_session_st structure 
depicted in Listing 1 is used to store the master secret. 

It contains known values like the master_key_length, which is 
always 48, and the session_id_length, which is always 32. Addi-
tionally, the ssl_version used for the corresponding connection is 
present. This SSL/TLS version can be extracted directly from network 
traffic, as its value is transferred in plain text during the TLS handshake 
(cf. Chapter 2.1). In memory, the ssl_session_st is represented as 
shown in Fig. 3. The first two bytes 0x0303 indicate TLS version 1.2. 
Following, on the second line, the byte 0x30 defines the master secret 
length of 48. Afterward, an example of a master secret is highlighted and 
directly followed by a byte 0x20 representing the session ID length of 32. 

This combined information can be synthesized into a regular 
expression serving as a searchable pattern within memory. This enables 
the extraction of all OpenSSL master secrets from the entire memory in 
mere seconds, making it an extremely efficient technique for retrieving 
TLS key material from memory dumps. Additionally, Anderson et al. 
delineate analogous expressions for the TLS implementations in Bor-
ingSSL, NSS, and Schannel. 

Similarly, Kambic’s research (Jacob, 2016) targets the Schannel TLS 
implementation in Windows. He identified specific ‘magic values’ 
within the Local Security Authority Subsystem Service (LSASS), which is 
essentially responsible for the TLS handshake process in Schannel. These 
values help to identify a structure containing session keys and another 
structure for the master secret. Within these structures, the corre-
sponding keys are located at a specific offset. This insight led to the 
development of plugins for the Volatility and Rekall frameworks, 
enabling the extraction of these keys from memory dumps. 

Fig. 3. Memory representation of an OpenSSL session (Anderson et al., 2019).  
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Based on this knowledge, Anderson et al. show in their patent 
(Anderson et al., 2020) that in the TLS libraries OpenSSL, BoringSSL, 
Schannel, wolfSSL, CoreTLS, and GnuTLS, the master secret consistently 
resides within a predictable data structure at a specific offset. 

In their study, McLaren et al. (2019) adopted a methodology akin to 
Kambic’s, centering their search on the ASCII strings KSSM and 3lss 
within memory, for the TLS implementation Schannel. To allow for 
potential data structure changes, as may result from operating system 
upgrades, an entropy-based search is then carried out in a defined area 
of a few kilobytes to identify the master secret. 

The fact that these approaches solely rely on particular characteris-
tics that need to be present in memory could be disadvantageous. 
Missing these characteristics due to compiler optimization, etc., these 
expressions would not find any secrets. Further, these methods are 
limited to master secrets. Hence, they are only applicable up to TLS 
version 1.2 without adjustments. 

3.4. Machine learning 

Sentanoe et al. (Stewart et al., 2022) propose a machine learning 
approach to predict TLS 1.2 session keys based on patterns and features 
extracted from memory. To train their model, they utilize Virtual Ma-
chine Introspection (VMI) to extract the heap of a process using the TLS 
protocol. Additionally, they employ network monitoring tools to extract 
the necessary data. 

To reduce the search space in the heap, the authors leverage the high 
entropy property of encryption keys by removing low-entropy data 
segments. This is achieved by reshaping the heap data into an 8-column 
matrix, as described in detail in (Stewart et al., 2022). 

During the testing phase, the authors predict memory slices con-
taining encryption keys. Furthermore, they predict the offsets within 
these slices to precisely locate the keys. This method enables the pre-
diction of probable memory slices containing encryption keys and the 
corresponding offsets. However, it should be noted that the machine 
learning method can only determine if a key exists within a slice of data. 
Therefore, a brute force method (cf. Section 3.1) is employed to find the 
offsets within the probable slices. 

Finally, the authors rank the slices based on the probability of the 
predictions and execute the most probable memory slices first. For the 
evaluation, the programs lynx and curl were employed. Their method-
ology successfully identified 99 % of all keys in memory. 

4. TLS key identification in live sessions 

A significant drawback of dead forensic approaches is that their re-
sults depend on the lifetime of the corresponding key material. When 
memory dumps are not readily practical (e.g., because the key material 
does not persist in memory) during a forensic investigation, live foren-
sics approaches come into play. 

Although live forensic approaches are more invasive than dead 
forensic approaches, we must remember that even a full memory dump 
is invasive to some extent due to the memory acquisition process. 

This chapter overviews current methods for identifying and 
extracting TLS key material in live sessions. 

4.1. SSLKEYLOGFILE 

The simplest way is the SSLKEYLOGFILE supported by widely used 
cryptographic libraries such as OpenSSL and NSS (NSS Key Log For-
matN). If enabled, the libraries write the TLS master secrets and the 
corresponding client random to the file specified in an environment 
variable. This approach works independently of the TLS version used. 
Although this approach is easy to deploy, nowadays, the default 
compilation process of some libraries deactivates the resulting callback 
functions (cf. (Mozilla Inc, 2023)). Furthermore, even if the used library 
supports this feature, it ultimately depends on the application whether it 

is passed to the library or not. 

4.2. Debugging 

When the target TLS library is compiled with debugging symbols, it is 
possible to parse the TLS structures with the debugger. The basic idea is 
to enable breakpoints in all TLS-related functions, and whenever a 
breakpoint is reached, the TLS object of these functions is parsed to 
retrieve the key material (cf. (Wu, 2023)). The lack of debug information 
in production builds significantly hampers the feasibility of these ap-
proaches, rendering them impractical in real-world scenarios. 

4.3. Commencement-based structure traversal 

Although popular libraries are often used to handle TLS connections, 
the concrete data structure and alignments in memory can still vary 
based on the compiler and its settings. An effective strategy to overcome 
these variations involves tracing paths from a known starting point 
directly to the precise location of the secret (e.g., master secret, appli-
cation traffic secret, etc.). 

Taubmann et al. (2018) developed DroidKex, a method tailored for 
the Android OS that leverages this principle to extract TLS keys. 

In a training phase, a memory snapshot is created for a single 
application, and a path for extracting its master secret is then calculated. 

The effectiveness of this approach hinges on a consistent memory 
layout for each memory snapshot. To achieve this consistency, hooking 
techniques are employed to intercept specific function calls (hooking- 
based approaches are further described in Section 4.5). These serve as 
triggers, utilizing pointers on the stack linked to function arguments as 
the foundation for path calculations. 

Building on this, the method operates under the premise that cryp-
tographic libraries invariably invoke certain network-related system 
functions for communication. Thus, functions are targeted for hooking, 
employing the stack as an initial reference point. 

After intercepting the listed function calls, the path calculation works 
as follows. If a function from a cryptographic library like SSL_read 
calls the network function read, its stack frame must be somewhere 
above on the stack. Therefore, the first step is to find this stack frame and 
store the offset from which the path can be calculated. This defines the 
starting point. 

The path calculation is iterative, involving a depth search from 
identified start points to the master secret, and uses a heuristic approach 
for path selection. An illustration of this is shown in Fig. 4. 

Experiments conducted on 86 applications show that once all unique 
paths are identified for an application, they can be used to extract master 
secrets during run-time if one of the networking functions is intercepted 
without interrupting the execution of the application itself for more than 
1 s. 

Following the same principle, Pan et al. introduce a method called 
hyper TLS traffic analysis (HTTA) (Pan et al., 2019) evaluated on the 
Windows OS. Instead of using the stack content as a starting point, they 
choose a global variable. 

For this, their approach leverages a feature in modern web browsers, 
where session structures are linked and cached in a specific memory 
region during session resumption. These linked structures are then 
referenced by global variables, a characteristic shared by various 
browsers. Consequently, if the addresses of the target global variables 
can be located, the session information can be extracted by traversing 
the hierarchical structures. This session information includes the key 
and parameters necessary for decrypting the traffic, which are stored in 
the memory space of the target process and referred as TLS session in-
formation (TSI) in (Pan et al., 2019). 

Owing to the observed pattern, specifically that various structures 
are associated with a particular global variable in memory, the appli-
cability of their approach is primarily confined to browsers and similar 
software applications. 
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4.4. Memory diffing techniques 

The following methods leverage the TLS handshake to time memory 
dumps, specifically capturing only writable (dirty) pages. This reduces 
the memory dump size to pages modified during the handshake. 

Caragea (2016) only targets TLS 1.2, beginning dumps at the 
ServerHello receipt and stopping after the client’s Finished mes-
sage. His method relies on live virtual machine migration to track dirty 
pages, making it suitable only for virtual environments. Nevertheless, it 
is OS and crypto-library agnostic. In order to identify the master secret, 
he utilized specialized known-plaintext attacks for current ciphers (cf. 
(Caragea, 2016)). 

Similarly, Moriconi et al.‘s X-Ray-TLS (Moriconi et al., 2024) targets 
TLS 1.2 and 1.3. It employs eBPF to monitor TLS connections and takes 
memory snapshots between the ClientHello and the first Appli-
cationData message. Utilizing a Linux kernel feature introduced into 
kernel v3.9 (cf. (Moriconi et al., 2024)), they track dirty pages and 
analyze snapshot differences to extract the secret keys. Then, they use a 
brute-force search for the TLS 1.3 handshake/application traffic secrets 
and the TLS 1.2 master secrets. This method is crypto-library agnostic 
but relies on Linux’s memory tracking. 

4.5. Hooking 

Hooking is a technique used to intercept function calls of applica-
tions or libraries (Lopez et al., 2017). It allows injecting custom code to 
be executed before or after a certain function is called (Brubacher, 
1999). Although this technique is not directly related to memory fo-
rensics, it can still be used as part of live forensics to extract TLS key 
material by hooking the functions used to generate the key material. 

Various methods, such as Frida and LD_PRELOAD, are available for 
intercepting and manipulating software processes. This paper shifts 
focus from the hooking methods to the strategic considerations of what 
elements within a system to hook. This aspect is crucial as the effec-
tiveness of function hooking for key extraction is not solely dependent 
on the how but significantly on the what. 

4.5.1. Hooking of key generation and deriving functions 
As described in Section 2.2, the PRF is used to generate the master 

secret and later derive the symmetric session keys. Curran et al. (Curran 
and van Bockhaven, 2016) present an approach of hooking the PRF 
tls_handshake_internal_prf in CoreTLS to extract TLS session 
keys from iOS devices. Through this process, the master secret and the 
client/server random are extracted by evaluating the arguments 
provided. 

As the PRF has been replaced by an HKDF in TLS 1.3 (cf. Chapter 
2.4), this approach is only applicable for TLS version 1.2. Furthermore, 

their approach was only developed for CoreTLS; therefore, it will not 
work without adjustments on other TLS implementations. 

Choi and Lee (2016) retrieve the master secret by hooking the key 
derivation function of LSASS. Their method focuses solely on extracting 
the master secret, limiting its applicability to TLS 1.2. Additionally, the 
approach is specifically designed for Windows 32-bit systems. 

The work from Noseevich follows a similar approach but also targets 
TLS 1.3 in hooking the different key generation functions of Schannel 
(George, 2022). As Schannel is used only in Windows, this approach 
only works for this platform. 

4.5.2. SSL_read and SSL_write hooking 
Each TLS library implements functions for the decryption/encryp-

tion of the payload and calls the corresponding read and write func-
tions for this purpose. In OpenSSL, for example, such functions are called 
SSL_read and SSL_write. FriTap (Baier and Egner, 2022) imple-
ments hooks for these functions to extract plain text communication 
from applications using common TLS libraries. These functions gener-
ally have the same calling parameters, with the pointer to a TLS object as 
the first argument. 

As shown in Fig. 4, this TLS object also contains the master secret in 
substructures. This should theoretically allow TLS secret extraction 
based on SSL_read and SSL_write function hooking by taking 
memory dumps of the TLS object and all further substructures. FriTap, 
for example, uses parsing of these structures to extract the TLS-key 
material from NSS (cf. (Baier, 2023)). 

4.5.3. Installing keylog callback functions 
The underlying mechanism of the SSLKEYLOGFILE (cf. Section 4.1) 

essentially operates through keylog callback functions. Thus, an alter-
native method involves setting up these keylog callback functions that 
are available in most TLS libraries. By doing so, it becomes possible to 
extract key material (cf. (Baier and Egner, 2022; Tunius, 2023; Valadon, 
2022)). 

The procedure involves hooking the function designated for initi-
ating new TLS/SSL connections. Subsequently, the pertinent keylog 
callback functions are installed through this established hook. All these 
hooking approaches work for both TLS 1.2 and TLS 1.3, but in many 
cases, they are implemented only for TLS 1.2 (cf. Table 1). 

5. Discussion and future challenges 

Many methods exist to identify and extract TLS key material from 
memory dumps (cf. Chapter 3). What all methods have in common is 
that they consider only selected TLS implementations. Furthermore, the 
procedures are carried out exclusively up to TLS 1.2. 

A brute force method (see Section 3.1), effective for data discovery 

Fig. 4. Stack content when read is invoked and the corresponding path from the stack to the master secret located in the ssl_session_st struct (based on 
(Taubmann et al., 2018)). 
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without prior knowledge, methodically examines every byte sequence in 
memory for potential matches. While this ensures the location of the 
targeted data, such as TLS 1.2 master secrets, it is highly inefficient due 
to the need to test every possible 48-byte sequence in a memory dump. 
The complexity escalates notably for TLS 1.3, as it necessitates identi-
fying multiple secrets (handshake and traffic secrets for both server and 
client), increasing the search challenge tremendously due to unknown 
memory order and offsets. Hence, this technique is better reserved for 
situations without viable alternative methods. 

The machine learning approach to identify TLS session keys from 
memory has a high success rate in identifying keys (cf. Section 3.4). A 
limitation is its inability to pinpoint exact key locations within data 
slices, requiring an additional brute force method for precise key 
localization. 

Pattern matching, as described in Section 3.2, looks for specific 
patterns in memory, such as high entropy or standardized storage for-
mats. Since all TLS secrets are generated randomly, entropy might be a 
good measure to narrow down the search to certain regions. An addi-
tional method, like a brute force search, remains necessary to locate the 
secrets within these regions. Integrating this with the initial approach 
can significantly reduce the complexity of the brute force search. 
However, it should be noted that searching for storage formats is not 
suitable for TLS keys when they are not generated via RSA, as they do 
not follow a strict, standardized storage definition. 

Memory pattern search methods show potential, yet their effective-
ness for identifying TLS key material in non-RSA contexts still needs to 
be investigated. One advantage of this approach is that the key material 
should be independent of the TLS implementation. 

Finally, there is the search for program structures (cf. Section 3.3), 
which requires prior knowledge of the structures and certain known 
values or patterns within those structures to locate them. This approach 
is similar to a brute force search, with the advantage that matches must 
be validated only if the entire pattern matches the data. Depending on 
the quality of the patterns, there may be only a single match, making 
validation irrelevant since that single match should be the correct one. 

Live session approaches, as discussed in Chapter 4, typically support 
a broader spectrum of TLS libraries and have started integrating TLS 1.3, 
marking a significant advancement. Nevertheless, the number of sup-
ported libraries and the support for TLS 1.3 still needs to be increased. 
Additionally, most live session methods focus on a single operating 
system, limiting their applicability across diverse environments. 

Approaches like debugging or using the SSLKEYLOGFILE are often 
not feasible due to challenges like missing debug symbols or the inability 
to specify an SSLKEYLOGFILE. The HTTA method (cf. Section 4.3) re-
quires additional research for identifying global variables in non- 
browser applications. This also applies to using the stack content as a 

starting pointer to traverse structures to identify the appropriate secrets. 
On the other hand, hooking techniques, particularly those that install 

keylog callback functions, appear promising in various TLS imple-
mentations (cf. Section 4.5.3). The same applies to memory diffing 
techniques (cf. Section 4.4), enabling TLS library agnostic secret key 
extraction. The only disadvantage could be the applicability in mobile 
environments as they are more difficult to virtualize, and their distinct 
architecture and operating constraints can impede efficient memory 
analysis. 

This results in the following unresolved challenges. 

5.1. Challenge: limited TLS library support 

Although the principles of previous work discussed in Chapter 3 
should generally be applicable across different TLS libraries, the eval-
uation of these approaches against various TLS implementations is still 
necessary, as most of the prior work has been evaluated against specific 
TLS libraries only. Table 2 lists various approaches, indicating the spe-
cific TLS libraries used in the evaluation. It clarifies whether these ap-
proaches are tested for TLS 1.2 exclusively or if their applicability 
extends to TLS 1.2 and TLS 1.3. The table excludes work concentrating 
on pattern matching for RSA key material identification in memory 
dumps in light of the removal of RSA in TLS 1.3. 

As shown in Table 2, none of the listed approaches was evaluated 
with all of the most common TLS implementations. An evaluation of the 
effectiveness of these methods is most informative when applied to 
prevalent TLS implementations. 

The y-axis of Table 2 provides an overview of the common TLS li-
braries based on Wikipedia (Wikipedia contributors, 2024). While not 
exhaustive, this overview focuses on widely used, actively developed, 
and publicly available TLS implementations. It is extended by 
language-specific libraries like Rustls. 

5.2. Challenge: TLS 1.3 key identification and extraction 

Identifying TLS keys in memory dumps presents different challenges 
between TLS 1.2 and TLS 1.3, primarily due to the differences in the keys 
required for decrypting the traffic as described in Section 2.5. 

To our knowledge, no research has been conducted on identifying 
TLS key material for TLS 1.3 in the context of dead forensics. Therefore, 
future research should investigate whether and how the presented 
methods can be used for TLS 1.3 and its generation of distinct keys and 
different memory structures. 

In live forensics, there are already methods for identifying and 
extracting key material, which can also be applied to TLS 1.3. However, 
there is a notable gap in the comprehensive evaluation of these 

Table 1 
Overview of supported TLS libraries and its support for TLS 1.3 in different hooking approaches.   

SSL libraries OpenSSL BoringSSL NSS GnuTLS wolfSSL CoreTLS Schannel other 

Hooking approach 
eBPF based hooking (Valadon, 2022)  

friTap (Baier and Egner, 2022; Baier, 2023)  

PRF Hooking (Curran and van Bockhaven, 2016)  

TLS keylogger (Tunius, 2023)  

Choi and Lee (Choi and Lee, 2016)  

lsasslkeylog-easy (George, 2022)  

= supported TLS 1.2 and TLS 1.3; = supported only TLS 1.2; = library not supported.  
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techniques across all TLS libraries, as shown in Table 2. This highlights a 
critical area for further research, emphasizing the need for a more 
exhaustive analysis encompassing a broader range of TLS 
implementations. 

Another aspect is to adopt procedures specific to TLS 1.2 to the 
changed properties of TLS 1.3. As discussed in Section 4.5.1, the PRF of 
the TLS library is hooked to retrieve the master secret. As TLS 1.3 re-
places the PRF with the HKDF, it is necessary to analyze whether this 
approach is still applicable to TLS 1.3. 

5.3. Challenge: decrypting TLS 1.3 application traffic 

Finally, currently available tools such as Wireshark only support the 
decryption of TLS 1.3 traffic when all key material is available. There-
fore, there is a need for an implementation that can decrypt these parts 
of the traffic for which the secrets are available. 

5.4. Challenge: key lifespan 

In TLS key material identification, the timing and duration of secrets 
in memory are crucial. Fig. 5 illustrates the minimal lifespan of these 

secrets in TLS 1.2. 
Essential base values, such as client random, server random, and the 

PMS, are needed only during the handshake, with the PMS being 
required only in the early phase to compute the master secret. Session 
keys, generated at the handshake’s conclusion, remain in memory for 
the duration of the connection as they encrypt/decrypt application data. 

Table 2 
Overview of evaluated TLS libraries from previous work.   

Procedures 

Brute force search Leveraging unique structure identifiers Machine learning ( 
Stewart et al., 
2022) TLSkex ( 

Taubmann et al., 
2016) 

Entropy-based BF 
(Stewart et al., 
2022) 

Anderson research ( 
Anderson et al., 
2019) 

Anderson patent ( 
Anderson et al., 
2020) 

Kambic ( 
Jacob, 
2016) 

McLaren ( 
McLaren et al., 
2019) 

TLS libraries 
Botan (Botan SSL, 2023) 

BoringSSL (BoringSSL. 
Computer software, 2023) 

Bouncy Castle (Bouncy 
castle, 2023) 

Secure Transport(CoreTLS) ( 
Apple Inc, 2024a, 2024b) 

GnuTLS (GnuTLS. Computer 
software, 2023) 

Golang crypto/tls (The Go 
Authors, 2024) 

Java Secure Socket Extension 
(Java Secure Socket 
Extension, 2023) 

LibreSSL (LibreSSL. 
Computer software, 2023) 

MatrixSSL (now Rambus 
TLS) (MatrixSSL, 2023) 

Mbed TLS (Mbed TLS, 2023) 

Network Security Services 
(NSS) (NSS. Computer 
software, 2023) 

OpenSSL (OpenSSL. 
Computer software, 2023) 

Rustls (Birr-Pixton et al., 
2024) 

s2n (s2n-TLS. Computer 
software, 2023) 

Schannel (Schannel SSP, 
2023) 

wolfSSL (wolfSSL. Computer 
software, 2023) 

= evaluated TLS 1.2 and TLS 1.3; = evaluated only TLS 1.2; = not evaluated.  

Fig. 5. Theoretical lifespan of TLS secrets (based on (Lee and Wallach, 2018)).  
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The master secret, potentially used for multiple sessions through session 
resumption, has the longest lifespan. Following RFC 5246 (Rescorla and 
Dierks, 2008), session IDs, and thus master secrets, should not be stored 
beyond 24 h. 

Therefore, the different lifetimes of the respective keys in the 
memory must be considered in future research for TLS 1.2 and TLS 1.3 
with its corresponding TLS implementations. 

6. Conclusion 

Our study on identifying and extracting TLS key material in memory 
has revealed several critical insights and directions for future research. 
Firstly, there is a notable void in research on TLS 1.3 within the realm of 
dead forensics. This gap is significant, as TLS 1.3 handles and derives key 
material differently than TLS 1.2. Because of this, approaches working 
for TLS 1.2 will likely only work for TLS 1.3 with further adjustments. 

Furthermore, our study highlights the substantial influence of TLS 
implementations on the storage and management of key material in 
memory. We compiled a list of common TLS implementations that 
should be prioritized in future research endeavors. This focus is crucial, 
given the diversity in how different TLS implementations handle key 
material within memory structures and patterns. 

Another critical aspect of our findings relates to the lifespan of TLS 
keys in memory in the context of dead forensics. As our study reveals, 
there has been minimal exploration into the duration of these keys 
remaining accessible in memory after their initial use, especially for 
various TLS implementations. Investigating the duration that these keys 
persist in memory for the various TLS implementations, especially for 
both TLS 1.2 and TLS 1.3, thus emerges as a pivotal area for future 
studies. 

Lastly, our research presents a structured classification of existing 
TLS key material identification and extraction methodologies. This 
categorization not only aids in understanding the current landscape but 
also serves as a foundational framework for future research, highlighting 
areas ripe for exploration and improvement. 

In essence, this study not only elucidates the current state of TLS key 
material identification and extraction in memory but also underscores 
the emerging challenges and opportunities in this dynamic field. 
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