
Forensic Science International: Digital Investigation 49 (2024) 301766

Available online 5 July 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS USA 2024 - Selected Papers from the 24th Annual Digital Forensics Research Conference USA

TLS key material identification and extraction in memory: Current state and
future challenges

Daniel Baier a,*, Alexander Basse b, Jan-Niclas Hilgert a, Martin Lambertz a

a Fraunhofer FKIE, Germany
b Institute of Computer Science, University of Bonn, Germany

A R T I C L E I N F O

Keywords:
TLS
Transport layer security
Memory forensics
Network forensics
Live forensics
Malware analysis

A B S T R A C T

Memory forensics is a crucial part of digital forensics as it can be used to extract valuable information such as
running processes, network connections, and encryption keys from memory. The last is especially important
when considering the widely used Transport Layer Security (TLS) protocol used to secure internet communi-
cation, thus hampering network traffic analysis. Particularly in the context of cybercrime investigations (such as
malware analysis), it is therefore paramount for investigators to decrypt TLS traffic. This can provide vital in-
sights into the methods and strategies employed by attackers. For this purpose, it is first and foremost necessary
to identify and extract the corresponding TLS key material in memory.

In this paper, we systematize and evaluate the current state of techniques, tools, and methodologies for
identifying and extracting TLS key material in memory. We consider solutions from academia but also identify
innovative and promising approaches used “in the wild” that are not considered by the academic literature.
Furthermore, we identify the open research challenges and opportunities for future research in this domain. Our
work provides a profound foundation for future research in this crucial area.

1. Introduction

With the advent of digital communication, the encryption of internet
traffic has significantly increased. Around 85 % of internet traffic was
encrypted in 2020, a significant increase from 55 % in 2017. This trend
shows a substantial increase in data privacy and security. However, the
same encryption that safeguards data from malicious actors also poses
significant challenges in the realm of digital forensics (Gigamon, 2023;
Pric, 2013).

The importance of TLS decryption in digital forensics cannot be
understated. With the increasing sophistication of cyber threats, forensic
investigators frequently encounter encrypted network data in their an-
alyses (cf. (Papadogiannaki and Ioannidis, 2021)). This makes it
necessary for investigators to be able to decrypt the encrypted network
traffic in such scenarios.

In recent years, obtaining decrypted network traffic for forensic
purposes and analyses has become more and more challenging for
forensic researchers and law enforcement agencies. In the context of live
forensics, one of the most prominent techniques for TLS decryption in
the past was a man-in-the-middle attack using a network proxy.

However, this approach poses problems, such as certificate invalidation
and detectability (Jarmoc and Unit, 2012). In the realm of malware
analysis, this may not pose a significant issue; nevertheless, it is crucial
to avoid detection by malicious actors during investigations.

Despite the increasing prevalence of TLS 1.3 (cf. (Warburton and
Vinberg, 2021)), research has predominantly focused on TLS 1.2 in
memory forensics (cf. Chapter 3). This leads to a gap in the identification
of key material in the memory of systems using the latest TLS standards.
While current research is concentrated on live forensics and clustering
TLS traffic (cf. (Chen et al., 2022; Kim et al., 2022; Xavier de Carné de
Carnavalet and van Oorschot, 2023)), the fundamental challenges of
digital forensic investigations in the field of network forensics remain
underexplored.

This paper evaluates and systematizes advanced techniques, tools,
and methods for identifying and extracting TLS key material in system
memory. We bridge the gap between academic research and practical,
field-tested approaches, considering post-mortem and live forensic sce-
narios. Additionally, we identify open research challenges and oppor-
tunities for future exploration in this domain. By doing so, our study lays
a comprehensive groundwork while also highlighting the challenges

* Corresponding author.
E-mail addresses: daniel.baier@fkie.fraunhofer.de (D. Baier), s6albass@uni-bonn.de (A. Basse), jan-niclas.hilgert@fkie.fraunhofer.de (J.-N. Hilgert), martin.

lambertz@fkie.fraunhofer.de (M. Lambertz).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301766

mailto:daniel.baier@fkie.fraunhofer.de
mailto:s6albass@uni-bonn.de
mailto:jan-niclas.hilgert@fkie.fraunhofer.de
mailto:martin.lambertz@fkie.fraunhofer.de
mailto:martin.lambertz@fkie.fraunhofer.de
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2024.301766
https://doi.org/10.1016/j.fsidi.2024.301766
https://doi.org/10.1016/j.fsidi.2024.301766
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2024.301766&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 49 (2024) 301766

2

involved in effectively identifying TLS keys in memory. In summary, this
paper makes the following contributions.

• A comprehensive overview of techniques, tools, and methodologies
for identifying and extracting TLS key material in memory.

• Insights into the challenges of decrypting TLS 1.2 and TLS 1.3 traffic.
• Highlights areas where limited or no existing research has been

conducted in TLS key material identification and extraction, out-
lining potential future research directions.

2. TLS fundamentals

The TLS protocol is the successor of SSL (Secure Sockets Layer). It is
designed to secure the communication between two parties on the
network by providing privacy and integrity (Allen and Dierks, 1999).
The protocol consists of two separate protocols: the TLS Record Protocol
and the TLS Handshake Protocol.

One of the most prominent usages of the TLS Record Protocol is
HTTPS (HTTP Over TLS (Eric Rescorla, 2000)), but the TLS Record
Protocol can be used to encapsulate any other higher-level protocol. It
provides privacy through encryption of the data with a symmetric cipher
(like AES or 3DES) and integrity by appending a message authentication
code (MAC) using a secure hash function (for example, SHA or MD5).

The TLS Handshake Protocol, on the other hand, is used to initiate a
connection and negotiate which cipher and hashing function should be
used (cf. Section 2.1). A combination of those algorithms is called a ci-
pher suite.

Nowadays, almost all websites support TLS version 1.2, and 66 %
already support the latest version 1.3 (SSL Pulse). Moreover, according
to a 2021 TLS Telemetry Report by F5 Labs, TLS 1.3 had become the
preferred encryption protocol for 63 % of the top one million web
servers (Warburton and Vinberg, 2021).

However, since TLS 1.2 is still the most supported version (cf (SSL
Pulse)) and all directly related methods explained in Chapter 3 are also
based on this version, the following Sections 2.1-2.3 describe TLS based
on version 1.2 according to RFC 5246 (Rescorla and Dierks, 2008).

In the remainder of this paper, we will use TLS to refer to all versions
from SSL 1.0 to TLS 1.3.

2.1. Handshake

A general overview of the handshake and the corresponding client/

server key derivation can be seen in Fig. 1. The client initiates the
connection with a ClientHello message (1 in Fig. 1).

This message contains the highest version of the protocol, all cipher
suites, and all compression methods supported by the client. Addition-
ally, it can include a session ID if the client wants to resume a previous
session (cf. Section 2.3). Most importantly, this message also contains
the client random, which is later used for the key derivation. The server
now decides which algorithms to use and responds with the Server-
Hello message (2). It contains the highest version of the protocol
supported by both parties and the choice of cipher suite and compression
algorithm. Beyond that, this message also includes the server random.

If the server does not find a set of algorithms supported by both
parties, it aborts the handshake with a handshake failure alert.

The server will send its certificate if the selected key exchange
method is RSA. Otherwise, it will send its public Diffie-Hellman values
with the ServerKeyExchange message.

The server can also request a certificate for client authentication with
a CertificateRequest message. In the end, the server will finish the
initialization phase with the ServerHelloDone message (3). After-
ward, the client responds with its certificate if requested.

Then, the client sends the ClientKeyExchange message (4). This
message contains either the premaster secret (PMS) encrypted with the
server certificate or, in the case of Diffie-Hellman, the public client
values. If the client has transmitted a digitally signed certificate, it sends
a CertificateVerify message to verify its certificate.

In the end, both parties will send the ChangeCipherSpec message
(5) followed by the Finished message. The Finished message is the
first one encrypted with the just negotiated algorithms, keys, and secrets
to verify that the handshake process was not tampered with.

This indicates that both parties are ready for encrypted communi-
cation, and the handshake is complete. All subsequent traffic is also
encrypted, and both parties can start transferring the application data.

2.2. Key derivation

The TLS key derivation is based on a pseudorandom function (PRF)
that generates outputs of arbitrary length. This PRF comprises the
hashing function utilized in generating the Hash-based message
authentication code (HMAC), characterized by three key parameters:
secret, label, and seed. Internally, the label and seed are concatenated
and used together as a seed for the hashing function to compute a hash
over the secret.

The general key derivation process can be seen in Fig. 2. The master
secret is computed using the PRF with the PMS and the client and server
random. If RSA was chosen for the key exchange, the PMS is a 48-byte
value generated by the client; otherwise, it is the negotiated key from
the Diffie-Hellman key exchange and can be of different lengths.

The PMS is used as the secret for the PRF, the “master secret” as the
label, and the concatenation of client and server random as the seed.

The resulting master secret is always 48 bytes long. At this point, the
PMS is no longer needed and can be discarded.

The master secret is then used to derive the symmetric keys. This is
done using the PRF to expand the master secret into a sequence of secure
bytes called key block. Afterward, the key block is split into the
following parts, where the initialization vector (IV) is only needed for
implicit nonce ciphers: Client/Server write key, IV, MAC.

In this paper, the term session keys will be employed as a general
descriptor to collectively refer to all keys utilized within a TLS session, as
detailed above.

2.3. Session resumption

TLS supports session resumption by reusing negotiated secrets,
thereby shortening the handshake.

The client can request resumption of a previous session by including
the session ID in the ClientHello message. This is only possible if the

Fig. 1. Overview of the full TLS handshake (based on (Lee and Wal-
lach, 2018)).

D. Baier et al.

Forensic Science International: Digital Investigation 49 (2024) 301766

3

selected cipher suite parameters and compression method match the old
session.

If the server still stores the corresponding session, it responds with
the same session ID in the ServerHello message. Otherwise, this field
is set to zero, indicating to the client that a new connection should be
established.

Resuming an older session leads to a reuse of the master secret.
Therefore, the key exchange in the handshake can be skipped. However,
the client and server random are taken from the new handshake. Thus,
the session keys differ in a resumed session and still need to be derived.

2.4. Differences in version 1.3

The latest TLS version 1.3, specified in RFC 8446 (Rescorla, 2018),
introduces some major changes; the most important ones for analysis are
briefly described below.

Firstly, the handshake protocol was revised and shortened from the
4-way handshake to a 3-way handshake. All messages in the handshake
after the ServerHello message are now encrypted. Moreover, all
supported cipher suites must now provide perfect forward secrecy,
resulting in the removal of all RSA and static Diffie-Hellman cipher
suites.

As of TLS 1.3, the protocol has moved exclusively to using AEAD
(Authenticated Encryption with Associated Data) ciphers. In AEAD ci-
phers, a single key is used for both encryption and authentication. When
a message is encrypted, the AEAD algorithm also generates a MAC as
part of the encryption process.

Furthermore, the key derivation process has been revised: the pre-
viously explained PRF has been replaced by an HMAC-based Extract-
and-Expand Key Derivation Function (HKDF). As a result, it is no longer
sufficient to retrieve the master secret for traffic decryption. Many other
secrets have been added and are necessary to reveal the entire
communication: client/server_handshake_traffic_secret and
client/server_traffic_secret_N.

In addition to this, the capability to update traffic encryption keys
during an ongoing communication has now been realized.

Finally, the session resumption mechanism has been replaced with a
pre-shared key (PSK) exchange which is required for the Zero Round
Trip Time (0-RTT) feature of TLS 1.3. In 0-RTT, the client can send data
to the server in its first message, and this data is protected using keys
derived from the client_early_traffic_secret. This secret is
derived from an early secret which, in turn, is based on a PSK established
in a previous TLS session.

Further differences can be found in RFC 8446.

2.5. Traffic decryption keys

In TLS 1.2, as explained in Section 2.2, the master secret, along with
the client random and server random, is used to derive all the necessary
key material for encryption and decryption (refer to the right part of
Fig. 2). This means that by identifying the master secret, one can gain
access to the information needed to decrypt the recorded TLS traffic.

In TLS 1.3, however, it is necessary to identify either the application
traffic keys or the client/server handshake secrets in addition to the
master secret to decrypt the application traffic. The application traffic
keys enable decryption exclusively for the specific data stream where
these keys are applied. In contrast, possessing the client/server hand-
shake secrets allows for the decryption of the handshake messages,
followed by the computation of necessary keys with the master secret to
decrypt all subsequent traffic.

Fig. 2 (on the left side) provides an overview of how the individual
keys are derived. The process begins by using the PSK in the HKDF to
extract the early secret. This early secret is used in the HKDF to derive
the binder_key, client_early_traffic_secret, and ear-

ly_exporter_master_secret. For the first two secrets, the HKDF
requires the ClientHello message and the early secret for key derivation.
This initial step is only performed if a PSK is present; otherwise, the key
derivation begins with the next step.

If present, the early secret is combined with the exchanged secret
from (elliptic curve) Diffie-Hellman in the HKDF. If not, only the
exchanged secret is used in the HKDF to extract the handshake secret.

This handshake secret is then used in the HKDF to derive the cli-
ent_handshake_traffic_secret and server_handshake_

traffic_secret. The HKDF requires both the ClientHello and
ServerHello messages for this step.

Additionally, the master secret is derived from the handshake secret
in the HKDF. Finally, the master secret is used in the HKDF to derive the
final set of secrets, as shown in Fig. 2, bottom left.

In this last step, the HKDF utilizes all handshake messages from the
ClientHello to ServerFinished. These derived secrets are then
employed in the HKDF to obtain the write key, IV, and other necessary
components for encryption and decryption.

Therefore, to decrypt the traffic, it is essential to identify not only the
master secret but also the appropriate handshake secrets. Alternatively,
the application data can at least be decrypted using the application
traffic keys.

3. TLS key identification in memory dumps

Whenever a memory dump and its associated encrypted network
traffic are available, dead forensic methodologies can be employed to
extract TLS key material from the dump. The key advantage of this
approach is the ability to conduct analysis independent of time
constraints.

This section provides an overview of the various approaches that
have been proposed to identify and extract TLS key material in memory
dumps so far.

3.1. Brute force search

In cases where there is no prior knowledge of an application’s
memory structure and its implementation, brute force searching is a

Fig. 2. TLS key derivation in version 1.2 and 1.3 (simplified) as outlined in RFC
5246 and RFC 8446 (Rescorla and Dierks, 2008; Rescorla, 2018).

D. Baier et al.

Forensic Science International: Digital Investigation 49 (2024) 301766

4

viable method for extracting key material from memory dumps. Taub-
mann et al. introduced TLSkex (Taubmann et al., 2016), a brute force
approach to extract the master key to TLS connections at runtime from
virtual machine memory, thus enabling the decryption of associated
application data.

For this approach, the only requirement is a recording of the TLS
connection that should be decrypted. The idea is to move a 48-byte
sliding window over the memory dump and test every sequence as a
master secret.

The drawback of this approach lies in its computationally intensive
nature, particularly regarding decryption and the required key deriva-
tion. Therefore, Taubmann et al. present three different heuristics to
decrease the search space as much as possible without eliminating too
many potential keys. The first assumption is that secrets are 4-byte
aligned, which already quarters the total search space. Furthermore,
all secrets are generated by a PRF and should contain roughly the same
amount of ones and zeroes. This allows to check if the amount of one bits
in a byte sequence is within a certain range. The last heuristic imple-
mented in TLSkex is to check whether an eight-byte sequence contains
either only one bits or only zero bits. Combining all these heuristics
should, in theory, be satisfied for 87.7 % of all master secrets (cf.
(Taubmann et al., 2016)).

If the heuristics result in a secret missing, they can be disabled. Real-
world experiments on memory dumps from Apache2, curl, Wget, and
s_client from OpenSSL show that these heuristics can already reduce the
search space to about 1.5–3.5 % of the total memory (cf. (Taubmann
et al., 2016)). In their research, Sentanoe et al. (Stewart et al., 2022)
developed another heuristic-based brute force approach to efficiently
reduce the size of the heap being analyzed. This involves filtering the
heap to remove irrelevant eight-byte segments based on simple criteria
and then applying an entropy-based threshold to further refine the data.
This results in a filtered heap that is more manageable for locating
session keys.

The aspect of key omission by these heuristics was not addressed in
their study.

Considering the focus on master secrets, these methods are limited to
TLS versions up to 1.2 without further adjustments, as TLS 1.3 adopts a
different key management approach.

3.2. Pattern matching in unknown memory

To find anything in large amounts of data, it is often helpful to
identify characteristics of the searched-for data and locate data blocks
that satisfy these characteristics.

One of the first theoretical approaches to locate cryptographic key
material by searching for high-entropy regions was proposed by Shamir
et al. (Shamir and van Someren, 1999). Their idea is based on the fact
that cryptographic keys are chosen randomly, while most code and data
is not. Random data generally has higher entropy than structured in-
formation. Therefore, it should be possible to distinguish cryptographic
keys from regular data and code by selecting regions with unusually
high entropy values.

Their experiments indicate that entropy, measured by counting
unique byte values in data blocks, can effectively identify RSA secrets. It
should be noted, however, that the success of this statistical method is
highly dependent on the type of program and data analyzed.

Klein (2006) presents an approach to find and extract RSA private
keys based on the ASN.1 syntax. The basic idea is that some types of
cryptographic keys are stored in a standardized format referred as
storage format. These storage formats can be used to create a signature
and perform a simple but efficient pattern matching method to locate
them in large amounts of data such as memory dumps.

Given that the employed signature comprises only seven bytes, its
strength is limited, leading to a high incidence of false positives.
Consequently, it is essential to verify the accuracy of the extracted keys
in the final stage.

As only RSA keys are taken into account, these approaches can only
work up to and including TLS 1.2.

3.3. Leveraging unique structure identifiers

When recovering cryptographic keys from applications or libraries
with known data structures, targeted searches for these structures can be
effective. This method extends to TLS libraries, which typically store the
master secret in predictable data structures, as shown by the research of
Anderson et al. (2019).

Listing 1: OpenSSL session structure with master secret (Anderson
et al., 2019).

For the example of OpenSSL, the ssl_session_st structure
depicted in Listing 1 is used to store the master secret.

It contains known values like the master_key_length, which is
always 48, and the session_id_length, which is always 32. Addi-
tionally, the ssl_version used for the corresponding connection is
present. This SSL/TLS version can be extracted directly from network
traffic, as its value is transferred in plain text during the TLS handshake
(cf. Chapter 2.1). In memory, the ssl_session_st is represented as
shown in Fig. 3. The first two bytes 0x0303 indicate TLS version 1.2.
Following, on the second line, the byte 0x30 defines the master secret
length of 48. Afterward, an example of a master secret is highlighted and
directly followed by a byte 0x20 representing the session ID length of 32.

This combined information can be synthesized into a regular
expression serving as a searchable pattern within memory. This enables
the extraction of all OpenSSL master secrets from the entire memory in
mere seconds, making it an extremely efficient technique for retrieving
TLS key material from memory dumps. Additionally, Anderson et al.
delineate analogous expressions for the TLS implementations in Bor-
ingSSL, NSS, and Schannel.

Similarly, Kambic’s research (Jacob, 2016) targets the Schannel TLS
implementation in Windows. He identified specific ‘magic values’
within the Local Security Authority Subsystem Service (LSASS), which is
essentially responsible for the TLS handshake process in Schannel. These
values help to identify a structure containing session keys and another
structure for the master secret. Within these structures, the corre-
sponding keys are located at a specific offset. This insight led to the
development of plugins for the Volatility and Rekall frameworks,
enabling the extraction of these keys from memory dumps.

Fig. 3. Memory representation of an OpenSSL session (Anderson et al., 2019).

D. Baier et al.

Forensic Science International: Digital Investigation 49 (2024) 301766

5

Based on this knowledge, Anderson et al. show in their patent
(Anderson et al., 2020) that in the TLS libraries OpenSSL, BoringSSL,
Schannel, wolfSSL, CoreTLS, and GnuTLS, the master secret consistently
resides within a predictable data structure at a specific offset.

In their study, McLaren et al. (2019) adopted a methodology akin to
Kambic’s, centering their search on the ASCII strings KSSM and 3lss
within memory, for the TLS implementation Schannel. To allow for
potential data structure changes, as may result from operating system
upgrades, an entropy-based search is then carried out in a defined area
of a few kilobytes to identify the master secret.

The fact that these approaches solely rely on particular characteris-
tics that need to be present in memory could be disadvantageous.
Missing these characteristics due to compiler optimization, etc., these
expressions would not find any secrets. Further, these methods are
limited to master secrets. Hence, they are only applicable up to TLS
version 1.2 without adjustments.

3.4. Machine learning

Sentanoe et al. (Stewart et al., 2022) propose a machine learning
approach to predict TLS 1.2 session keys based on patterns and features
extracted from memory. To train their model, they utilize Virtual Ma-
chine Introspection (VMI) to extract the heap of a process using the TLS
protocol. Additionally, they employ network monitoring tools to extract
the necessary data.

To reduce the search space in the heap, the authors leverage the high
entropy property of encryption keys by removing low-entropy data
segments. This is achieved by reshaping the heap data into an 8-column
matrix, as described in detail in (Stewart et al., 2022).

During the testing phase, the authors predict memory slices con-
taining encryption keys. Furthermore, they predict the offsets within
these slices to precisely locate the keys. This method enables the pre-
diction of probable memory slices containing encryption keys and the
corresponding offsets. However, it should be noted that the machine
learning method can only determine if a key exists within a slice of data.
Therefore, a brute force method (cf. Section 3.1) is employed to find the
offsets within the probable slices.

Finally, the authors rank the slices based on the probability of the
predictions and execute the most probable memory slices first. For the
evaluation, the programs lynx and curl were employed. Their method-
ology successfully identified 99 % of all keys in memory.

4. TLS key identification in live sessions

A significant drawback of dead forensic approaches is that their re-
sults depend on the lifetime of the corresponding key material. When
memory dumps are not readily practical (e.g., because the key material
does not persist in memory) during a forensic investigation, live foren-
sics approaches come into play.

Although live forensic approaches are more invasive than dead
forensic approaches, we must remember that even a full memory dump
is invasive to some extent due to the memory acquisition process.

This chapter overviews current methods for identifying and
extracting TLS key material in live sessions.

4.1. SSLKEYLOGFILE

The simplest way is the SSLKEYLOGFILE supported by widely used
cryptographic libraries such as OpenSSL and NSS (NSS Key Log For-
matN). If enabled, the libraries write the TLS master secrets and the
corresponding client random to the file specified in an environment
variable. This approach works independently of the TLS version used.
Although this approach is easy to deploy, nowadays, the default
compilation process of some libraries deactivates the resulting callback
functions (cf. (Mozilla Inc, 2023)). Furthermore, even if the used library
supports this feature, it ultimately depends on the application whether it

is passed to the library or not.

4.2. Debugging

When the target TLS library is compiled with debugging symbols, it is
possible to parse the TLS structures with the debugger. The basic idea is
to enable breakpoints in all TLS-related functions, and whenever a
breakpoint is reached, the TLS object of these functions is parsed to
retrieve the key material (cf. (Wu, 2023)). The lack of debug information
in production builds significantly hampers the feasibility of these ap-
proaches, rendering them impractical in real-world scenarios.

4.3. Commencement-based structure traversal

Although popular libraries are often used to handle TLS connections,
the concrete data structure and alignments in memory can still vary
based on the compiler and its settings. An effective strategy to overcome
these variations involves tracing paths from a known starting point
directly to the precise location of the secret (e.g., master secret, appli-
cation traffic secret, etc.).

Taubmann et al. (2018) developed DroidKex, a method tailored for
the Android OS that leverages this principle to extract TLS keys.

In a training phase, a memory snapshot is created for a single
application, and a path for extracting its master secret is then calculated.

The effectiveness of this approach hinges on a consistent memory
layout for each memory snapshot. To achieve this consistency, hooking
techniques are employed to intercept specific function calls (hooking-
based approaches are further described in Section 4.5). These serve as
triggers, utilizing pointers on the stack linked to function arguments as
the foundation for path calculations.

Building on this, the method operates under the premise that cryp-
tographic libraries invariably invoke certain network-related system
functions for communication. Thus, functions are targeted for hooking,
employing the stack as an initial reference point.

After intercepting the listed function calls, the path calculation works
as follows. If a function from a cryptographic library like SSL_read
calls the network function read, its stack frame must be somewhere
above on the stack. Therefore, the first step is to find this stack frame and
store the offset from which the path can be calculated. This defines the
starting point.

The path calculation is iterative, involving a depth search from
identified start points to the master secret, and uses a heuristic approach
for path selection. An illustration of this is shown in Fig. 4.

Experiments conducted on 86 applications show that once all unique
paths are identified for an application, they can be used to extract master
secrets during run-time if one of the networking functions is intercepted
without interrupting the execution of the application itself for more than
1 s.

Following the same principle, Pan et al. introduce a method called
hyper TLS traffic analysis (HTTA) (Pan et al., 2019) evaluated on the
Windows OS. Instead of using the stack content as a starting point, they
choose a global variable.

For this, their approach leverages a feature in modern web browsers,
where session structures are linked and cached in a specific memory
region during session resumption. These linked structures are then
referenced by global variables, a characteristic shared by various
browsers. Consequently, if the addresses of the target global variables
can be located, the session information can be extracted by traversing
the hierarchical structures. This session information includes the key
and parameters necessary for decrypting the traffic, which are stored in
the memory space of the target process and referred as TLS session in-
formation (TSI) in (Pan et al., 2019).

Owing to the observed pattern, specifically that various structures
are associated with a particular global variable in memory, the appli-
cability of their approach is primarily confined to browsers and similar
software applications.

D. Baier et al.

Forensic Science International: Digital Investigation 49 (2024) 301766

6

4.4. Memory diffing techniques

The following methods leverage the TLS handshake to time memory
dumps, specifically capturing only writable (dirty) pages. This reduces
the memory dump size to pages modified during the handshake.

Caragea (2016) only targets TLS 1.2, beginning dumps at the
ServerHello receipt and stopping after the client’s Finished mes-
sage. His method relies on live virtual machine migration to track dirty
pages, making it suitable only for virtual environments. Nevertheless, it
is OS and crypto-library agnostic. In order to identify the master secret,
he utilized specialized known-plaintext attacks for current ciphers (cf.
(Caragea, 2016)).

Similarly, Moriconi et al.‘s X-Ray-TLS (Moriconi et al., 2024) targets
TLS 1.2 and 1.3. It employs eBPF to monitor TLS connections and takes
memory snapshots between the ClientHello and the first Appli-
cationData message. Utilizing a Linux kernel feature introduced into
kernel v3.9 (cf. (Moriconi et al., 2024)), they track dirty pages and
analyze snapshot differences to extract the secret keys. Then, they use a
brute-force search for the TLS 1.3 handshake/application traffic secrets
and the TLS 1.2 master secrets. This method is crypto-library agnostic
but relies on Linux’s memory tracking.

4.5. Hooking

Hooking is a technique used to intercept function calls of applica-
tions or libraries (Lopez et al., 2017). It allows injecting custom code to
be executed before or after a certain function is called (Brubacher,
1999). Although this technique is not directly related to memory fo-
rensics, it can still be used as part of live forensics to extract TLS key
material by hooking the functions used to generate the key material.

Various methods, such as Frida and LD_PRELOAD, are available for
intercepting and manipulating software processes. This paper shifts
focus from the hooking methods to the strategic considerations of what
elements within a system to hook. This aspect is crucial as the effec-
tiveness of function hooking for key extraction is not solely dependent
on the how but significantly on the what.

4.5.1. Hooking of key generation and deriving functions
As described in Section 2.2, the PRF is used to generate the master

secret and later derive the symmetric session keys. Curran et al. (Curran
and van Bockhaven, 2016) present an approach of hooking the PRF
tls_handshake_internal_prf in CoreTLS to extract TLS session
keys from iOS devices. Through this process, the master secret and the
client/server random are extracted by evaluating the arguments
provided.

As the PRF has been replaced by an HKDF in TLS 1.3 (cf. Chapter
2.4), this approach is only applicable for TLS version 1.2. Furthermore,

their approach was only developed for CoreTLS; therefore, it will not
work without adjustments on other TLS implementations.

Choi and Lee (2016) retrieve the master secret by hooking the key
derivation function of LSASS. Their method focuses solely on extracting
the master secret, limiting its applicability to TLS 1.2. Additionally, the
approach is specifically designed for Windows 32-bit systems.

The work from Noseevich follows a similar approach but also targets
TLS 1.3 in hooking the different key generation functions of Schannel
(George, 2022). As Schannel is used only in Windows, this approach
only works for this platform.

4.5.2. SSL_read and SSL_write hooking
Each TLS library implements functions for the decryption/encryp-

tion of the payload and calls the corresponding read and write func-
tions for this purpose. In OpenSSL, for example, such functions are called
SSL_read and SSL_write. FriTap (Baier and Egner, 2022) imple-
ments hooks for these functions to extract plain text communication
from applications using common TLS libraries. These functions gener-
ally have the same calling parameters, with the pointer to a TLS object as
the first argument.

As shown in Fig. 4, this TLS object also contains the master secret in
substructures. This should theoretically allow TLS secret extraction
based on SSL_read and SSL_write function hooking by taking
memory dumps of the TLS object and all further substructures. FriTap,
for example, uses parsing of these structures to extract the TLS-key
material from NSS (cf. (Baier, 2023)).

4.5.3. Installing keylog callback functions
The underlying mechanism of the SSLKEYLOGFILE (cf. Section 4.1)

essentially operates through keylog callback functions. Thus, an alter-
native method involves setting up these keylog callback functions that
are available in most TLS libraries. By doing so, it becomes possible to
extract key material (cf. (Baier and Egner, 2022; Tunius, 2023; Valadon,
2022)).

The procedure involves hooking the function designated for initi-
ating new TLS/SSL connections. Subsequently, the pertinent keylog
callback functions are installed through this established hook. All these
hooking approaches work for both TLS 1.2 and TLS 1.3, but in many
cases, they are implemented only for TLS 1.2 (cf. Table 1).

5. Discussion and future challenges

Many methods exist to identify and extract TLS key material from
memory dumps (cf. Chapter 3). What all methods have in common is
that they consider only selected TLS implementations. Furthermore, the
procedures are carried out exclusively up to TLS 1.2.

A brute force method (see Section 3.1), effective for data discovery

Fig. 4. Stack content when read is invoked and the corresponding path from the stack to the master secret located in the ssl_session_st struct (based on
(Taubmann et al., 2018)).

D. Baier et al.

Forensic Science International: Digital Investigation 49 (2024) 301766

7

without prior knowledge, methodically examines every byte sequence in
memory for potential matches. While this ensures the location of the
targeted data, such as TLS 1.2 master secrets, it is highly inefficient due
to the need to test every possible 48-byte sequence in a memory dump.
The complexity escalates notably for TLS 1.3, as it necessitates identi-
fying multiple secrets (handshake and traffic secrets for both server and
client), increasing the search challenge tremendously due to unknown
memory order and offsets. Hence, this technique is better reserved for
situations without viable alternative methods.

The machine learning approach to identify TLS session keys from
memory has a high success rate in identifying keys (cf. Section 3.4). A
limitation is its inability to pinpoint exact key locations within data
slices, requiring an additional brute force method for precise key
localization.

Pattern matching, as described in Section 3.2, looks for specific
patterns in memory, such as high entropy or standardized storage for-
mats. Since all TLS secrets are generated randomly, entropy might be a
good measure to narrow down the search to certain regions. An addi-
tional method, like a brute force search, remains necessary to locate the
secrets within these regions. Integrating this with the initial approach
can significantly reduce the complexity of the brute force search.
However, it should be noted that searching for storage formats is not
suitable for TLS keys when they are not generated via RSA, as they do
not follow a strict, standardized storage definition.

Memory pattern search methods show potential, yet their effective-
ness for identifying TLS key material in non-RSA contexts still needs to
be investigated. One advantage of this approach is that the key material
should be independent of the TLS implementation.

Finally, there is the search for program structures (cf. Section 3.3),
which requires prior knowledge of the structures and certain known
values or patterns within those structures to locate them. This approach
is similar to a brute force search, with the advantage that matches must
be validated only if the entire pattern matches the data. Depending on
the quality of the patterns, there may be only a single match, making
validation irrelevant since that single match should be the correct one.

Live session approaches, as discussed in Chapter 4, typically support
a broader spectrum of TLS libraries and have started integrating TLS 1.3,
marking a significant advancement. Nevertheless, the number of sup-
ported libraries and the support for TLS 1.3 still needs to be increased.
Additionally, most live session methods focus on a single operating
system, limiting their applicability across diverse environments.

Approaches like debugging or using the SSLKEYLOGFILE are often
not feasible due to challenges like missing debug symbols or the inability
to specify an SSLKEYLOGFILE. The HTTA method (cf. Section 4.3) re-
quires additional research for identifying global variables in non-
browser applications. This also applies to using the stack content as a

starting pointer to traverse structures to identify the appropriate secrets.
On the other hand, hooking techniques, particularly those that install

keylog callback functions, appear promising in various TLS imple-
mentations (cf. Section 4.5.3). The same applies to memory diffing
techniques (cf. Section 4.4), enabling TLS library agnostic secret key
extraction. The only disadvantage could be the applicability in mobile
environments as they are more difficult to virtualize, and their distinct
architecture and operating constraints can impede efficient memory
analysis.

This results in the following unresolved challenges.

5.1. Challenge: limited TLS library support

Although the principles of previous work discussed in Chapter 3
should generally be applicable across different TLS libraries, the eval-
uation of these approaches against various TLS implementations is still
necessary, as most of the prior work has been evaluated against specific
TLS libraries only. Table 2 lists various approaches, indicating the spe-
cific TLS libraries used in the evaluation. It clarifies whether these ap-
proaches are tested for TLS 1.2 exclusively or if their applicability
extends to TLS 1.2 and TLS 1.3. The table excludes work concentrating
on pattern matching for RSA key material identification in memory
dumps in light of the removal of RSA in TLS 1.3.

As shown in Table 2, none of the listed approaches was evaluated
with all of the most common TLS implementations. An evaluation of the
effectiveness of these methods is most informative when applied to
prevalent TLS implementations.

The y-axis of Table 2 provides an overview of the common TLS li-
braries based on Wikipedia (Wikipedia contributors, 2024). While not
exhaustive, this overview focuses on widely used, actively developed,
and publicly available TLS implementations. It is extended by
language-specific libraries like Rustls.

5.2. Challenge: TLS 1.3 key identification and extraction

Identifying TLS keys in memory dumps presents different challenges
between TLS 1.2 and TLS 1.3, primarily due to the differences in the keys
required for decrypting the traffic as described in Section 2.5.

To our knowledge, no research has been conducted on identifying
TLS key material for TLS 1.3 in the context of dead forensics. Therefore,
future research should investigate whether and how the presented
methods can be used for TLS 1.3 and its generation of distinct keys and
different memory structures.

In live forensics, there are already methods for identifying and
extracting key material, which can also be applied to TLS 1.3. However,
there is a notable gap in the comprehensive evaluation of these

Table 1
Overview of supported TLS libraries and its support for TLS 1.3 in different hooking approaches.

SSL libraries OpenSSL BoringSSL NSS GnuTLS wolfSSL CoreTLS Schannel other

Hooking approach
eBPF based hooking (Valadon, 2022)

friTap (Baier and Egner, 2022; Baier, 2023)

PRF Hooking (Curran and van Bockhaven, 2016)

TLS keylogger (Tunius, 2023)

Choi and Lee (Choi and Lee, 2016)

lsasslkeylog-easy (George, 2022)

= supported TLS 1.2 and TLS 1.3; = supported only TLS 1.2; = library not supported.

D. Baier et al.

Forensic Science International: Digital Investigation 49 (2024) 301766

8

techniques across all TLS libraries, as shown in Table 2. This highlights a
critical area for further research, emphasizing the need for a more
exhaustive analysis encompassing a broader range of TLS
implementations.

Another aspect is to adopt procedures specific to TLS 1.2 to the
changed properties of TLS 1.3. As discussed in Section 4.5.1, the PRF of
the TLS library is hooked to retrieve the master secret. As TLS 1.3 re-
places the PRF with the HKDF, it is necessary to analyze whether this
approach is still applicable to TLS 1.3.

5.3. Challenge: decrypting TLS 1.3 application traffic

Finally, currently available tools such as Wireshark only support the
decryption of TLS 1.3 traffic when all key material is available. There-
fore, there is a need for an implementation that can decrypt these parts
of the traffic for which the secrets are available.

5.4. Challenge: key lifespan

In TLS key material identification, the timing and duration of secrets
in memory are crucial. Fig. 5 illustrates the minimal lifespan of these

secrets in TLS 1.2.
Essential base values, such as client random, server random, and the

PMS, are needed only during the handshake, with the PMS being
required only in the early phase to compute the master secret. Session
keys, generated at the handshake’s conclusion, remain in memory for
the duration of the connection as they encrypt/decrypt application data.

Table 2
Overview of evaluated TLS libraries from previous work.

Procedures

Brute force search Leveraging unique structure identifiers Machine learning (
Stewart et al.,
2022) TLSkex (

Taubmann et al.,
2016)

Entropy-based BF
(Stewart et al.,
2022)

Anderson research (
Anderson et al.,
2019)

Anderson patent (
Anderson et al.,
2020)

Kambic (
Jacob,
2016)

McLaren (
McLaren et al.,
2019)

TLS libraries
Botan (Botan SSL, 2023)

BoringSSL (BoringSSL.
Computer software, 2023)

Bouncy Castle (Bouncy
castle, 2023)

Secure Transport(CoreTLS) (
Apple Inc, 2024a, 2024b)

GnuTLS (GnuTLS. Computer
software, 2023)

Golang crypto/tls (The Go
Authors, 2024)

Java Secure Socket Extension
(Java Secure Socket
Extension, 2023)

LibreSSL (LibreSSL.
Computer software, 2023)

MatrixSSL (now Rambus
TLS) (MatrixSSL, 2023)

Mbed TLS (Mbed TLS, 2023)

Network Security Services
(NSS) (NSS. Computer
software, 2023)

OpenSSL (OpenSSL.
Computer software, 2023)

Rustls (Birr-Pixton et al.,
2024)

s2n (s2n-TLS. Computer
software, 2023)

Schannel (Schannel SSP,
2023)

wolfSSL (wolfSSL. Computer
software, 2023)

= evaluated TLS 1.2 and TLS 1.3; = evaluated only TLS 1.2; = not evaluated.

Fig. 5. Theoretical lifespan of TLS secrets (based on (Lee and Wallach, 2018)).

D. Baier et al.

Forensic Science International: Digital Investigation 49 (2024) 301766

9

The master secret, potentially used for multiple sessions through session
resumption, has the longest lifespan. Following RFC 5246 (Rescorla and
Dierks, 2008), session IDs, and thus master secrets, should not be stored
beyond 24 h.

Therefore, the different lifetimes of the respective keys in the
memory must be considered in future research for TLS 1.2 and TLS 1.3
with its corresponding TLS implementations.

6. Conclusion

Our study on identifying and extracting TLS key material in memory
has revealed several critical insights and directions for future research.
Firstly, there is a notable void in research on TLS 1.3 within the realm of
dead forensics. This gap is significant, as TLS 1.3 handles and derives key
material differently than TLS 1.2. Because of this, approaches working
for TLS 1.2 will likely only work for TLS 1.3 with further adjustments.

Furthermore, our study highlights the substantial influence of TLS
implementations on the storage and management of key material in
memory. We compiled a list of common TLS implementations that
should be prioritized in future research endeavors. This focus is crucial,
given the diversity in how different TLS implementations handle key
material within memory structures and patterns.

Another critical aspect of our findings relates to the lifespan of TLS
keys in memory in the context of dead forensics. As our study reveals,
there has been minimal exploration into the duration of these keys
remaining accessible in memory after their initial use, especially for
various TLS implementations. Investigating the duration that these keys
persist in memory for the various TLS implementations, especially for
both TLS 1.2 and TLS 1.3, thus emerges as a pivotal area for future
studies.

Lastly, our research presents a structured classification of existing
TLS key material identification and extraction methodologies. This
categorization not only aids in understanding the current landscape but
also serves as a foundational framework for future research, highlighting
areas ripe for exploration and improvement.

In essence, this study not only elucidates the current state of TLS key
material identification and extraction in memory but also underscores
the emerging challenges and opportunities in this dynamic field.

References

Allen, Christopher, Dierks, Tim, 1999. The TLS Protocol Version 1.0. RFC 2246.
Anderson, Blake, Chi, Andrew, Scott, Dunlop, McGrew, David, 2019. Limitless HTTP in

an HTTPS world: inferring the semantics of the HTTPS protocol without decryption.
In: Proceedings Of the Ninth ACM Conference On Data And Application Security And
Privacy, CODASPY ’19. Association for Computing Machinery, New York, NY, USA,
pp. 267–278.

Anderson, Blake Harrell, Chi, Andrew, McGrew, David, Dunlop, Scott William, 2020.
Passive Decryption on Encrypted Traffic to Generate More Accurate Machine
Learning Training Data. US Patent 10,536,268.

Apple Inc. coretls. https://github.com/apple-oss-distributions/coreTLS/tags, 2024,
2024-02-01.

Apple Inc, 2024b. Secure transport. https://developer.apple.com/documentation/securit
y/secure_transport/, 2024-02-01.

Baier, Daniel, 2023. friTap - parsing structures to extract key material. https://github.
com/fkie-cad/friTap/blob/main/agent/ssl_lib/nss.ts#L585, 2023-09-11.

Baier, Daniel, Egner, Francois, 2022. friTap - Decrypting TLS on the Fly. https://lolcads.
github.io/posts/2022/08/fritap/, 2023-11-25.

Birr-Pixton, Joe, Ochtman, Dirkjan, McCarney, Daniel, Aas, Josh, 2024. Rustls - a modern
tls library in rust. https://github.com/rustls/rustls, 2024-02-02.

2023-09-18 BoringSSL, 2023. Computer software.
2023-09-18 Botan SSL, 2023. Computer software.
2023-09-18 Bouncy Castle, 2023. Computer software.
Brubacher, Doug, 1999. Detours: binary interception of Win32 functions. In: Windows

NT 3rd Symposium (Windows NT 3rd Symposium).
Caragea, Radu, 2016. Telescope-real-time Peering into the Depths of Tls Traffic from the

Hypervisor. Bitdefender Labs.

Chen, Jianxi, Huang, Jiahao, Lu, Xinghua, 2022. Convolutional neural network-based
identification of malicious traffic for TLS encryption. In: 2022 7th International
Conference on Intelligent Computing and Signal Processing (ICSP), pp. 1544–1549.

Choi, Hyoung-kee, Lee, Hyoseok, 2016. Extraction of TLS master secret key in Windows.
In: 2016 International Conference on Information and Communication Technology
Convergence (ICTC). IEEE, pp. 667–671.

Curran, Tom, van Bockhaven, Cedric, 2016. TLS Session Key Extraction from Memory on
iOS Devices. University of Amsterdam.

Eric Rescorla, 2000. HTTP over TLS. RFC 2818.
George, Noseevich, 2022. Decrypting Schannel TLS Traffic. Part 1. Getting Secrets from

Lsass. https://b.poc.fun/decrypting-schannel-tls-part-1/#6-obtaining-tls13-keys,
2024-01-15.

Gigamon, 2023. The Importance of TLS/SSL Decryption for Network Security. https
://blog.gigamon.com/2023/10/06/the-importance-of-tls-ssl-decryption-for-networ
k-security/, 2024-01-15.

2023-09-18 GnuTLS, 2023. Computer software.
Jacob, M Kambic, 2016. Extracting Cng Tls/ssl Artifacts from Lsass Memory.
Jarmoc, Jeff, Unit, D.S.C.T., 2012. SSL/TLS interception proxies and transitive trust.

Black Hat Europe.
2023-09-18 Java Secure Socket Extension (JSSE), 2023. Computer software.
Kim, Hyundo, Kim, Minsu, Ha, Joon-Soo, Roh, Heejun, 2022. Revisiting TLS-encrypted

traffic fingerprinting methods for malware family classification. In: 2022 13th
International Conference on Information and Communication Technology
Convergence (ICTC), pp. 1273–1278.

Klein, Tobias, 2006. All Your Private Keys Are Belong to Us - Extracting RSA Private Keys
and Certificates from Process Memory. https://www.trapkit.de/articles/all-your-p
rivate-keys-are-belong-to-us/, 2023-11-25.

Lee, Jaeho, Wallach, Dan S., 2018. Removing secrets from android’s TLS. In: 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018. The Internet Society.

2023-09-18 LibreSSL, 2023. Computer software.
Lopez, Juan, Babun, Leonardo, Aksu, Hidayet, Uluagac, Selcuk, 2017. A survey on

function and system call hooking approaches. Journal of Hardware and Systems
Security.

2023-09-18 MatrixSSL - Now Rambus TLS Toolkit, 2023. Computer software.
2023-09-18 Mbed TLS, 2023. Computer software.
McLaren, Peter, Buchanan, William J., Russell, Gordon, Tan, Zhiyuan, 2019. Discovering

Encrypted Bot and Ransomware Payloads through Memory Inspection without a
Priori Knowledge arXiv preprint arXiv:1907.11954.

Moriconi, Florent, Levillain, Olivier, Francillon, Aurélien, Troncy, Raphaël, 2024. X-ray-
tls: transparent decryption of tls sessions by extracting session keys from memory. In:
ACM (Ed.), ASIACCS 2024, 19th ACM ASIA Conference on Computer and
Communications Security, 1-5 July 2024, Singapore, Singapore, Singapore.

Mozilla Inc, 2023. NSS Makefile. https://github.com/mozilla/gecko-dev/blob/80432
ae524a5360af40bb9c8b8e381008e9a001b/security/nss/lib/ssl/Makefile#L42
C3-L42C69, 2023-09-11.

2023-09-18 NSS, 2023. Computer software.
NSS Key Log Format. https://firefox-source-docs.mozilla.org/security/nss/legac

y/key_log_format/index.html. Accessed: 2023-11-27.
2023-09-18 OpenSSL, 2023. Computer software.
Pan, Jiaye, Zhuang, Yi, Sun, Binglin, 2019. Efficient and transparent method for large-

scale tls traffic analysis of browsers and analogous programs. Secur. Commun.
Network. 1–22 (10), 2019.

Papadogiannaki, Eva, Ioannidis, Sotiris, 2021. A survey on encrypted network traffic
analysis applications, techniques, and countermeasures. ACM Comput. Surv. 54 (6),
1–35.

Pric, J.W., 2013. Significant SSL performance loss leaves much room for improvement.
https://www.nsslabs.com/reports/ssl-performance-problems, 2024-01-15.

Rescorla, Eric, 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446.
Rescorla, Eric, Dierks, Tim, 2008. The Transport Layer Security (TLS) Protocol Version

1.2. RFC 5246.
2023-09-18 s2n-TLS, 2023. Computer software.
2023-09-18 Schannel SSP, 2023. Computer software.
Shamir, Adi, van Someren, Nicko, 1999. Playing ”hide and seek” with stored keys. In:

Proceedings of the Third International Conference on Financial Cryptography, FC
’99. Springer-Verlag, Berlin, Heidelberg, pp. 118–124.

SSL Pulse - Best Protocol Support. https://www.ssllabs.com/ssl-pulse/. Accessed: 2023-
12-15.

Stewart, Sentanoe, Fellicious, Christofer, Reiser, Hans P., Granitzer, Michael, 2022. “the
need for speed”: extracting session keys from the main memory using brute-force and
machine learning. In: 2022 IEEE International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom). IEEE, pp. 1028–1035.

Taubmann, Benjamin, Frädrich, Christoph, Dusold, Dominik, Reiser, Hans P., 2016.
TLSkex: harnessing virtual machine introspection for decrypting TLS
communication. Digit. Invest. 16, S114–S123. DFRWS 2016 Europe.

Taubmann, Benjamin, Omar, Alabduljaleel, Reiser, Hans P., 2018. DroidKex: fast
extraction of ephemeral TLS keys from the memory of Android apps. Digit. Invest.
26, S67–S76.

The Go Authors, 2024. Tls package - crypto/tls - go packages. https://pkg.go.dev/c
rypto/tls, 2024-02-02.

D. Baier et al.

http://refhub.elsevier.com/S2666-2817(24)00085-4/sref1
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref2
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref2
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref2
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref2
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref2
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref3
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref3
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref3
https://github.com/apple-oss-distributions/coreTLS/tags
https://developer.apple.com/documentation/security/secure_transport/
https://developer.apple.com/documentation/security/secure_transport/
https://github.com/fkie-cad/friTap/blob/main/agent/ssl_lib/nss.ts#L585
https://github.com/fkie-cad/friTap/blob/main/agent/ssl_lib/nss.ts#L585
https://lolcads.github.io/posts/2022/08/fritap/
https://lolcads.github.io/posts/2022/08/fritap/
https://github.com/rustls/rustls
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref9
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref10
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref11
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref12
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref12
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref13
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref13
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref14
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref14
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref14
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref15
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref15
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref15
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref16
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref16
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref17
https://b.poc.fun/decrypting-schannel-tls-part-1/#6-obtaining-tls13-keys
https://blog.gigamon.com/2023/10/06/the-importance-of-tls-ssl-decryption-for-network-security/
https://blog.gigamon.com/2023/10/06/the-importance-of-tls-ssl-decryption-for-network-security/
https://blog.gigamon.com/2023/10/06/the-importance-of-tls-ssl-decryption-for-network-security/
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref20
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref21
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref22
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref22
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref23
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref24
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref24
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref24
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref24
https://www.trapkit.de/articles/all-your-private-keys-are-belong-to-us/
https://www.trapkit.de/articles/all-your-private-keys-are-belong-to-us/
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref26
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref26
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref26
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref27
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref28
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref28
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref28
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref29
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref30
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref31
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref31
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref31
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref32
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref32
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref32
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref32
https://github.com/mozilla/gecko-dev/blob/80432ae524a5360af40bb9c8b8e381008e9a001b/security/nss/lib/ssl/Makefile#L42C3-L42C69
https://github.com/mozilla/gecko-dev/blob/80432ae524a5360af40bb9c8b8e381008e9a001b/security/nss/lib/ssl/Makefile#L42C3-L42C69
https://github.com/mozilla/gecko-dev/blob/80432ae524a5360af40bb9c8b8e381008e9a001b/security/nss/lib/ssl/Makefile#L42C3-L42C69
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref34
https://firefox-source-docs.mozilla.org/security/nss/legacy/key_log_format/index.html
https://firefox-source-docs.mozilla.org/security/nss/legacy/key_log_format/index.html
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref36
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref37
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref37
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref37
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref38
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref38
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref38
https://www.nsslabs.com/reports/ssl-performance-problems
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref40
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref41
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref41
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref42
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref43
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref44
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref44
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref44
https://www.ssllabs.com/ssl-pulse/
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref46
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref46
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref46
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref46
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref47
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref47
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref47
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref48
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref48
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref48
https://pkg.go.dev/crypto/tls
https://pkg.go.dev/crypto/tls

Forensic Science International: Digital Investigation 49 (2024) 301766

10

Tunius, Hugo, 2023. TLS Keylogger. https://codeshare.frida.re/@k0nserv/tls-k
eylogger/, 2023-09-11.

Valadon, Guillaume, 2022. When eBPF Meets TLS! CanSecWest.
Warburton, D., Vinberg, S., 2021. The 2021 TLS telemetry report. F5 Labs. WWW-

dokumentti. Saatavissa. https://www.f5.com/labs/articles/threat-intelligence/th
e-2021-tls-telemetry-report [viitattu 11.2. 2023].

Wikipedia contributors, 2024. Comparison of tls implementations. https://en.wikipedia.
org/wiki/Comparison_of_TLS_implementations, 2024-02-01.

2023-09-18 wolfSSL, 2023. Computer software.
Wu, Peter, 2023. GDB Keylogger. https://git.lekensteyn.nl/peter/wireshark-notes/tree

/src/sslkeylog.py, 2023-09-11.
Xavier de Carné de Carnavalet, van Oorschot, P.V., 2023. A survey and analysis of tls

interception mechanisms and motivations. ACM Comput. Surv.

D. Baier et al.

https://codeshare.frida.re/@k0nserv/tls-keylogger/
https://codeshare.frida.re/@k0nserv/tls-keylogger/
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref51
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://en.wikipedia.org/wiki/Comparison_of_TLS_implementations
https://en.wikipedia.org/wiki/Comparison_of_TLS_implementations
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref54
https://git.lekensteyn.nl/peter/wireshark-notes/tree/src/sslkeylog.py
https://git.lekensteyn.nl/peter/wireshark-notes/tree/src/sslkeylog.py
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref56
http://refhub.elsevier.com/S2666-2817(24)00085-4/sref56

	TLS key material identification and extraction in memory: Current state and future challenges
	1 Introduction
	2 TLS fundamentals
	2.1 Handshake
	2.2 Key derivation
	2.3 Session resumption
	2.4 Differences in version 1.3
	2.5 Traffic decryption keys

	3 TLS key identification in memory dumps
	3.1 Brute force search
	3.2 Pattern matching in unknown memory
	3.3 Leveraging unique structure identifiers
	3.4 Machine learning

	4 TLS key identification in live sessions
	4.1 SSLKEYLOGFILE
	4.2 Debugging
	4.3 Commencement-based structure traversal
	4.4 Memory diffing techniques
	4.5 Hooking
	4.5.1 Hooking of key generation and deriving functions
	4.5.2 SSL_read and SSL_write hooking
	4.5.3 Installing keylog callback functions

	5 Discussion and future challenges
	5.1 Challenge: limited TLS library support
	5.2 Challenge: TLS 1.3 key identification and extraction
	5.3 Challenge: decrypting TLS 1.3 application traffic
	5.4 Challenge: key lifespan

	6 Conclusion
	References

