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A B S T R A C T

As IoT devices become more prevalent in everyday environments, their relevance to digital investigations in-
creases. The product class of “smart relays”, which are connected to the low-voltage grid and usually installed in 
sockets behind walls, has not yet received much attention in the context of smart home forensics. To close a 
category-specific gap in the device forensics literature, we conducted a multi-device analysis of 16 smart relays 
from 9 manufacturers, which support six different companion apps in total. Our examination shows that forensic 
artifacts can be found locally on the smart relays and in the companion app data, as well as remotely on cloud 
servers of the vendors. Based on our findings, we developed a Python framework to extract forensic artifacts 
automatically from obtained firmware dumps, from companion app data, and from captured network traffic.

1. Introduction

The number of connected Internet of Things (IoT) devices has risen 
steadily in the last years and is forecast to continue growing (Vailshery, 
2024a). In 2022, the number of connected devices amounted to around 
13.1 billion with 58.6 % of them being consumer devices (Vailshery, 
2024b). This widespread use of IoT devices underlines the importance to 
look more closely at them from a technical perspective due to their 
forensic relevance as “invisible witnesses” (Urquhart et al., 2022) to 
digital investigations, especially in smart homes (Servida and Casey, 
2019).

Unlike many prominent types of smart devices which can be visibly 
perceived in modern households, such as smart TVs, speakers, light 
bulbs, cameras, doorbells, or thermostats, smart relays belong to a rather 
invisible category of IoT devices, as they are connected to the low- 
voltage grid and therefore often installed in sockets behind walls. In 
general, relays are used to switch individual connected devices or entire 
circuits on and off remotely, which is why they are also called “switch 
actuators”. Due to their intended functionality and the fact that their 
installation locations are typically not directly accessible, smart relays 
are dependent on wireless connectivity (e.g., Wi-Fi, Bluetooth, or Zig-
bee). The predominant form of interaction with smart relays is via 
companion apps, which can sometimes even be used for several products 
from different brands. Some models can also be controlled via a web 
application which is either hosted locally on-device or remotely in the 

vendor’s cloud.
Although a selective focus on IoT forensics has been noticeable in the 

academic literature for some years now (see Section 2), smart relays, as 
an inconspicuous class of IoT devices, have received little attention so 
far, leading to a potential blind spot regarding the acquisition of digital 
evidence during investigations in smart home environments. To 
approach the closing of this research gap, this paper presents a forensic 
examination of 16 smart relays from nine brands and six respective 
companion apps for Android smartphones. Our findings are intended to 
raise awareness for the forensic artifacts of smart relays, and to support 
corresponding evidence acquisition in practice.

1.1. Contributions

As we are not aware of any prior work on smart relays, the contri-
butions of this paper are summarized as follows:

● To the best of our knowledge, we are the first to conduct a multi- 
device analysis of smart relays from a forensic perspective, 
covering 16 models from 9 brands as well as six companion apps.

● Facing a multi-source environment for investigation, we identified 
local artifacts in firmware dumps taken from smart relays as well as 
in the local app data of companion apps running on Android. Further, 
we analyzed the network traffic of smart relays and retrieved remote 
artifacts via cloud APIs.
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● Based on our findings, we developed a Tool for Evidence Acquisition 
from Smart Relays (TEASR) to support data acquisition in practice by 
enabling automated and repeatable extraction of relevant artifacts.

To facilitate subsequent work on smart relays, we publish our 
research artifacts at https://github.com/mxchhrn/teasr, including the 
source code of TEASR (see Section 5.5).

1.2. Outline

First, we give an overview of related work in Section 2, and describe 
the fundamentals of the smart relays and their ecosystems in Section 3. 
Afterwards, we present the methodology of our analysis in Section 4, 
which is followed by the respective results in Section 5. Finally, we 
discuss our findings in Section 6, before concluding the paper in Section 
7.

2. Related Work

In recent years, a wide range of examinations of “connected” or 
“smart” devices have been covered under the term “Internet of Things”, 
as they are things that are now connected but once had a non-connected 
equivalent. This includes, for example, gaming consoles (Read et al., 
2016; Pessolano et al., 2019; Barr-Smith et al., 2021; Eichhorn et al., 
2024), smart speakers and displays with intelligent virtual assistants (Li 
et al., 2019; Jo et al., 2019; Youn et al., 2021; Crasselt and Pugliese, 
2024), wearables and trackers (Baggili et al., 2015; Hantke and Dewald, 
2020; Pace et al., 2023), CCTV surveillance systems (Dragonas et al., 
2023), as well as e-scooters and e-bikes (Hilgert et al., 2021; Stachak 
et al., 2024).

In addition to the device-specific perspective on IoT-related foren-
sics, various works have also been dedicated to methodological aspects, 
including procedure models and frameworks (Meffert et al., 2017; 
Bouchaud et al., 2018; Goudbeek et al., 2018), firmware extraction 
(Nadir et al., 2022), network traffic analysis (Wu et al., 2021; Shin et al., 
2020), or side channel analysis (Sayakkara et al., 2019), while others 
focused on the identification of challenges (Servida and Casey, 2019; 
Stoyanova et al., 2020; Friedl and Pernul, 2024) as well as real-world 
applicability in realistic scenarios (Servida et al., 2023).

As mentioned earlier, however, we are not aware that smart relays 
and their forensic artifacts have been addressed in the forensic literature 
yet. At the time of writing, the only related work known to us whose 
analysis comprised a smart relay and its companion app, namely “Sonoff 
basic2” and “eWeLink”, respectively, is by Salzillo and Rak (2020), 
although the focus is primarily on the security of ESP Touch, a Wi-Fi 
pairing protocol by Espressif Systems.

3. Background

Smart relays are embedded into an extended ecosystem consisting of 
companion apps and vendor clouds, resulting in a multi-source envi-
ronment for forensic analyses due to the different local and remote lo-
cations for relevant artifacts. In this section, we provide an overview on 
the fundamentals of smart relays to introduce them as objects of 
investigation.

3.1. Smart Relays

The main component of a smart relay is a switching device to switch 
one or more load circuits through a control circuit, an electromagnetic 
relay (Ramirez-Laboreo et al., 2016). If a voltage is applied to the coil 
terminals, a corresponding magnetic field is formed due to the current 
flow in the coil. When a voltage is applied to the coil terminals, a current 
flows, creating a magnetic field that exerts a force on the fixed core 
which overpowers the elastic force of the plastic pusher and causes the 
movable contact to shift. Fig. 1 shows the circuit diagram of an 

electromagnetic relay in an AC circuit and, in this case, the moving 
contact closes the normally open contact (NOC). If the current flow 
through the coil is interrupted, the magnetic field is canceled, and the 
magnetic force acting on the fixed core is removed. The restoring force 
on the fixed core is large enough to move it back to its original position 
under movable contact, closing the normally closed contact (NCC). Not all 
electromagnetic relays have three contact terminals; some have only 
two contacts, either an NOC or an NCC.

Additional components are required to expand an electromagnetic 
relay into a smart relay, including a System-on-Chip (SoC), flash chip, 
Wi-Fi antenna, and debug interfaces. Using terminal blocks, wires can be 
connected and disconnected conveniently on the smart relay.

Fig. 2 shows the front and back of a smart relay (Shelly 1) to illustrate 
the individual components. Here, the number 1 marks the terminal 
blocks to which wires are connected. The number of contacts depends on 
the range of functions of the smart relay. A minimum number of three 
terminal contacts is necessary. In this minimum case, two terminals are 
required for the power supply of the control circuit. One of these two 
terminals is used for the load circuit. In a standard household low- 
voltage network, this is the neutral conductor. The third terminal is 
the switched phase of the load circuit. The actual electromagnetic relay 
is marked with the number 2.

In addition to various resistors and capacitors, a debug interface 
(number 3) is located on the front of this exemplary relay. On the Shelly 
1, the debug interface is already equipped with soldered sockets and 
cables can be plugged in directly. In addition to the functions listed in 
the following subsection, further accessories can be connected via these 
sockets on some models. The remaining essential components are 
located on the back. The most relevant component is the SoC (number 
5), combining several parts of a computer within a single chip, such as a 
processing unit, a memory chip, a network module, and other interfaces. 
SoCs are often designed for a specific application. However, the inte-
grated memory is only sometimes sufficiently dimensioned. In other 
cases, an external flash memory (number 4) is connected via the in-
terfaces. The final component is the external Wi-Fi antenna (number 6).

Fig. 1. Circuit diagram of an electromagnetic relay in an AC circuit with no 
applied voltage on the relay coil.

Fig. 2. Internal components of a smart relay (Shelly 1).
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3.2. Companion App and Vendor Cloud

Due to their connectivity, smart relays should not be considered on 
their own during forensic investigations. Smart relays are controlled via 
the Internet or a local network using wireless protocols like Wi-Fi, 
Bluetooth, or Zigbee; hence, the user interaction with smart relays is 
via a companion app or web application, where the corresponding APIs 
may be hosted locally on-device or remotely in the vendor’s cloud.

Depending on the relay–app combination in use, the companion app 
establishes a local direct connection to the relay or a remote connection 
to the vendor cloud. A schematic representation of the communication 
within this ecosystem is shown in Fig. 3 and based on observations made 
during our examination. The blue arrows indicates remote online 
communication between the vendor cloud and the smart relay, while 
local direct communication is shown in green. Finally, the communi-
cation between the vendor cloud and the smart relay is shown in orange, 
and the communication that is not directly necessary for the function-
ality, such as to a third-party cloud, is shown in gray.

4. Methodology

This section describes how we selected smart relays for our exami-
nation, and how we acquired forensically relevant data from the 
different smart relays, companion apps, and network traffic systemati-
cally. To perform repeatable measurements using a predefined circuit 
with a light bulb and physical switch buttons within a safety environ-
ment, we customized a Makita MAKPAC toolcase (see Fig. 4).

4.1. Test Device Selection

Since no sales figures were available to us in order to compile a set of 
test devices based on definitive market shares of individual models, we 
performed the following filtering process to select relevant smart relays 
for our examination. As smart relays rely on companion apps, which are 
partly not vendor-specific, we started by selecting those apps with at 
least 500,000 downloads in the Google Play Store, which resulted in the 
six apps (A1–A6) shown in Table 2. The Maxcio app (A2) was included 
despite only having around 50,000 downloads, because smart relays by 
the eponymous vendor also support the Smart Life (A5) and Tuya Smart 
(A6) app which met the aforementioned criterion. Next, we selected 
smart relay models based on their support for the six companion apps 
and their rating on amazon.de. Where applicable, we opted to include 
several models per vendor to reflect a certain level of diversity in our 
sample regarding potential differences between products. In total, we 
selected 16 smart relay models (R1–R16; see Table 1).

4.2. Firmware Extraction and Analysis

An overview on our entire firmware extraction process is shown in 
Fig. 5. During our examination of smart relays, we read out the firmware 

via the UART interfaces (universal asynchronous receiver-transmitter) 
provided on the respective SoCs. It is crucial to know which SoC has 
been installed on a smart relays to determine which chip architecture is 
used. In Table 1, we indicate the various SoC models and their instruc-
tion set architectures which we found in the smart relays during our 
analysis. Because of architectural differences between RISC-, RISC-V- 
and ARM-based SoCs, there is yet to be a ready-made tool for extract-
ing the firmware of every SoC. In our case, we used existing command- 
line tools for the respective SoCs, namely bk7231tools (Clement et al., 
2023) and esptool (Espressif Systems, 2023), to obtain the firmware of 
the smart relays via a USB-to-UART adapter.

In addition to the choice of tools, there are other obstacles when 
extracting the firmware. The contacts of the debug interface are not 
always directly accessible due to the arrangement of the smart relay 
components. In those cases of inaccessible contacts, desoldering is 
necessary. After regaining access to the contacts, the relevant data sheets 
must be consulted to determine the wiring of the contact pins. However, 
connecting contacts to a logic analyzer or a digital oscilloscope may still 
be necessary to determine the pin assignment. Not only is the pin 
assignment required, but also the knowledge of the different operating 
modes of the SoCs. For the dumping process, the relevant operating 
mode is what many manufacturers refer to as “flash mode”. In this mode, 
it is possible to read or write the flash memory of an SoC. Unfortunately, 
there are no general instructions for enabling this flash mode, and 
different steps are necessary depending on the individual SoC. In most 
cases, the required steps need to be looked up in the data sheets of the 
individual SoCs or in the instructions of existing extraction tools.

Lastly, to interpret the data of the extracted firmware, it is necessary 
to gain knowledge of the data structure, such as partition layouts or file 
systems. Nevertheless, the firmware is sometimes encrypted and needs 
to be decrypted first (see Table 1). We were able to decrypt the 
encrypted firmware images analyzed in this work using bk7231tools and 
process the encrypted dump accordingly. Finally, the data stored in the 
firmware dumps can be accessed and examined.

4.3. Companion App Analysis

We focused on the Android companion apps supported by the smart 
relays we examined (see Table 2). Persistent data generated on the 

Fig. 3. Overview of a smart relay with its infrastructure and communications. 
An arrow indicates an observed communication between the two connected 
components. online communication, online communication with vendor 
cloud API, online communication to third party services, and local 
communication.

Fig. 4. Customized Makita MAKPAC for execution setup.
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smartphone when an app is used is stored in/data/data/<APPID>
directories (Foundation, 2024) named after the individual application 
IDs (Google, 2023b). The directory containing persistent data on an 
Android device can be accessed via the Android Debug Bridge (adb) 
(Google, 2023a). In our case, we accessed the local data of the com-
panion apps via adb using a rooted Google Pixel 6a phone, as we 
required root permissions in the adb shell. The analysis of the generated 
network data by the companion apps is explained in the following 
section.

4.4. Network Analysis

To intercept the network communication of all involved components 
in the multi-source environment of our investigation (i.e., smart relay, 
companion app, vendor cloud), we utilized a Raspberry Pi 3 as Wi-Fi 
router and we performed a man-in-the-middle (MITM) attack 

Table 1 
Overview of the smart relays analyzed with details of their SoCs and notes on extracting and analyzing the firmware.

R Model Vendor SoC Chip Type UART Accessibility Tool FW 
Dump

FW 
Encrypted

R1 Shelly 1 Shelly ESP8266EX RISC esptool

R2 Shelly Plus 1 Shelly ESP32 U4WD RISC esptool

R3 Shelly Plus 1PM Shelly ESP32 U4WD RISC esptool

R4 Shelly Plus 2PM Shelly ESP32 U4WD RISC esptool

R5 Shelly Plus i4 Shelly ESP32 U4WD RISC esptool

R6 RR500W LoraTap BK7231T ARMv7E-M a bk7231tools

R7 RR620W LoraTap BK7231D ARMv7E-M a bk7231tools

R8 MSS710 meross RTL8710CM ARMv8-M b – –

R9 MSS810 Meross RTL8710CM ARMv8-M b – –

R10 BASICR2 Sonoff ESP8285N08 RISC a esptool

R11 MINIR2 Sonoff ESP8285N08 RISC a esptool

R12 SS-8839-03 eMylo BL2028N ARM9E a bk7231tools

R13 EWB1CH-D1 Newgoal BL602L20 RISC-V a – –

R14 QS-WIFI-S06-16A Maxcio BK7231N ARMv7E-M b bk7231tools

R15 MS-105 MoesGo BK7231N ARMv7E-M b bk7231tools

R16 MINI Smart Mesh SIUES TG7220B ARMv6-M b – –

a UART accessible after teardown.
b UART accessible after desoldering

Table 2 
Overview of the companion apps, their supported relays, and Android applica-
tion IDs.

A# Companion App Android Application ID Supported Relays

A1 eWeLink - Smart Home com.coolkit R10, R11, R13

A2 Maxcio com.maxcio.smart R14

A3 meross com.meross.meross R8, R9

A4 Shelly Smart Control cloud.shelly. 
smartcontrol

R1, R2, R3, R4, R5

A5 Smart Life - Smart 
Living

com.tuya.smartlife R6, R7, R12, R14, R15, 
R16

A6 Tuya Smart com.tuya.smart R6, R7, R12, R14, R15, 
R16

Fig. 5. Firmware extraction process for examined smart relays.
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(Bhushan et al., 2017) using “mitmproxy” (Cortesi et al., 2023) as 
HTTPS proxy in order to bypass TLS encryption and forward 
re-encrypted network requests. To perform a MITM attack with 
decryption, the CA certificate of mitmproxy must be trusted on the 
respective end device whose communication shall be intercepted and 
decrypted. Adding certificates to the smart relays without further ado 
was not possible, so communication between smart relays and cloud 
services could not be recorded in plaintext via mitmproxy.

Two steps were required to capture and decrypt the network traffic of 
the companion apps. First, an Android phone with root access was 
required to which the mitmproxy’s CA certificate was added as a system 
certificate. Depending on the version of Android, this step may involve 
varying levels of effort and obstacles. In our case, we used Android 13 
and added the CA certificate using the Magisk module “OverlayFS” 
(Nguyen, 2023). Secondly, we utilized “objection” (SensePost, 2024) to 
circumvent certificate pinning, a mitigation against MITM attacks via 
hardcoded certificates in the app code to prevent apps from using 
untrusted certificates (Gamache and Wall, 2024). Here, the certificate 
un-pinning is achieved by modifying and repackaging the APK, which 
also includes the injection of a “Frida gadget” of the Frida toolkit 
(Ravnas, 2023) that allows dynamically adapting the app’s control flow.

We bypassed the certificate pinning and recorded the decrypted 
network traffic for three of the six companion apps, namely eWeLink 
(A1), meross (A3), and Shelly Smart Control (A4). For Maxcio (A2), Smart 
Life (A5), and Tuya Smart (A6), however, certificate unpinning failed as 
these companion apps have thrown error messages regarding missing 
network connections.

4.5. Creation of Test Data

A structured procedure for generating test data is necessary to ensure 
a systemic forensic analysis across multiple devices. As the various smart 
relays differ in their range of functions, our procedure had to be 
designed to allow some variability. Furthermore, as incomplete captures 
of the network traffic of individual performed actions may be possible 
due to environmental influences, we repeated each action several times. 
If possible, the individual actions in the following list have been per-
formed with a 10-s pause between each action:

● 10x toggle relay one (sleep 5 s in between)
● 10x toggle relay two (sleep 5 s in between)
● 10x toggle relay one and relay two after each other (sleep 5 s in 

between)
● 10x toggle relay one as fast as possible (no sleep in between)
● 10x if possible, set a timer for toggle relays one

In cases where a smart relay had fewer electromagnetic relays, or 
individual functionalities were missing, we have shortened the action 
set by the actions that could not be performed. Furthermore, the action 
set was executed once for each of the interaction possibilities which 
were available for each respective smart relay (i.e., companion app, 
local API, web server, hardware switch, and cloud API). The network 
traffic was saved individually in separate files for each execution of the 
action set.

5. Results

In this section, we present the results of our forensic examination of 
smart relays grouped by the following artifact categories: “firmware” 
(Section 5.1), ”companion app” (Section 5.2), “network“ (Section 5.4), 
and “cloud“ (Section 5.3). A summary of all identified forensic artifacts 
and their respective locations can be found in Table 3, where each row 
represents a relay–app combination. Finally, we present a Python 
framework which we developed based on our findings in order to ease 
the data acquisition process for smart relays in practice (Section 5.5).

5.1. Firmware

As mentioned in Section 4.2, SoCs have to be booted into the 
appropriate (flash) mode to read out the firmware, which requires 
different pin assignments or tools. Usually, the pin assignments is listed 
in the manufacturer’s data sheets. However, as it is not always possible 
to see whether the boot process was successful in another mode, an 
oscilloscope or other measuring device was used to visualize the current 
over time. The visualization is helpful because the data sheets show that 
the SoC’s current usually depends on the mode. At the beginning, and 
after we completed our actions, we were able to successfully boot into 
the correct mode and dump the firmware for 12 out of 16 smart relays 
(see Table 1). We could not extract the firmware for the remaining relays 
as we could not determine the requirements for a stable boot into the 
corresponding mode.

An entropy graph was generated for each firmware dump for an 
initial high-level analysis and to make first assumptions about possible 
partition layouts as well as encryption in use. The first two graphs in 
Fig. 6 are of the MINIR2 relay (R11) before and after we performed our 
action set (see Section 4.5). Since the relay’s firmware was also updated, 
and the first part of the entropy graph is almost congruent, it is 
reasonable to assume that this partition layout has two partition sets, 
especially since the newly written second half is similar to the first half. 
In contrast, the third entropy graph of the RR620W relay (R7) shows a 
region with a constant high entropy, which could indicate a possible 
encapsulation.

Based on the documentation of the respective SoC manufacturer 
(Grokhotkov et al., 2023), we extracted partition tables from the firm-
ware dumps of the four devices R2, R3, R4, and R5. Here, two partition 
sets are updated alternately during an update and, in some cases, Lit-
tleFS was used as file system. However, on three other devices with SoCs 

Table 3 
Categories of identified forensic artifacts and locations 
where they have been found. As some relays could be 
used with multiple companion apps, the artifacts are 
indicated for all possible combinations of individual 
relays (Ri) and apps (Aj).
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from the same manufacturer (R1, R10, and R11), the partition tables could 
not be localized, read, or interpreted according to the SoC documenta-
tion. The models R6, R7, R12, R14, and R15, based on the BK7231X SoC 
family, had two encrypted partitions followed by a storage with key-
–value pairs. The tool bk7231tools extracted and decrypted the parti-
tions using known keys for older firmware versions. The bulk_extractor 
(Garfinkel, 2013) tool was used to search for fragments on unknown file 
systems or on firmware dumps with unknown partitioning. Further-
more, we searched for printable strings via the command-line tool 
“strings” as well as a Python script to extract JSON file fragments (see 
Section 5.5).

Table 3 shows the artifacts found for the various firmware dumps, 
and includes information about the respective smart relay, its status, 
device and network configurations, Wi-Fi credentials, API endpoints, 
and localization data. Listing 1 contains an excerpt of exemplary arti-
facts of the devices R6, R7, R14, and R15, showing the device status and 
Wi-Fi credentials. Furthermore, the firmware dump of R2 contained 
cloud credentials, cloud access tokens, and information such as the 
timezone and coordinates (see Listing 2).

5.2. Companion App

Table 3 shows that forensic artifacts were identified in the app data 
for three of the six companion apps, namely A1, A3 and A4. The files of 
interest were in the paths */files/log/main and had the file extension 
xlog. The corresponding entropy graph Fig. 7 shows an entropy value 
above 0.97 across the entire file content, which suggests encryption. We 
could not identify the key to decrypt these files. While interesting di-
rectories were found for the three remaining apps (A2, A5, A6), they did 
not contain any directly readable data. It should be noted that these apps 
share a similar structure, GUI, and almost identical paths in their app 
data.

The most interesting forensic artifact in the companion apps’ data is 
the log file of the eWeLink - Smart Home app (A1) which contains a 
history of switching operations during app use. The log file lists indi-
vidual switching operations along with the corresponding timestamp, as 
well as pairing processes, and found Bluetooth devices. Furthermore, we 
identified small differences in the log file which can be used to deter-
mine whether the switching process was initiated via the app or other-
wise. Listing 3 shows a section of this file in which two switching 
processes are displayed, one via the app and one external via the 
physical button.

The discovery of other Bluetooth devices during the pairing process 
is shown in Listing 4, which contains another excerpt from the log file. In 
addition to a history of the device status, the individual app data in-
cludes device information and configurations, lists of devices, network 
status, credentials, and locale information. An overview of all forensic 
artifacts that have been found can be seen in Table 3.

5.3. Cloud API

We extracted some of the data stored in the vendor’s clouds via 
respective cloud APIs. The responses contained mainly data about the 
devices linked to the cloud account. In this way, device lists with the 
devices’ information, configurations, and network state could be 
retrieved. In three of the six companion apps (A1, A3 and A4), the added 
smart relays are connected directly to the cloud account, which can also 
be accessed via API with email and password credentials. To use the 
cloud API for Tuya-based devices, a separate developer account must 
first be created on the developer.tuya.com domain. The usage 
credentials in the form of an ID and a key are shown in the creation 
process. The devices can then be added to the account by linking the 
developer account either with a supported third-party application or 
with Smart Life - Smart Living (A5). In the second case, all devices added 
to the app so far as well as those added in the future are automatically 
linked to the cloud account. The four cloud APIs of Shelly, eWeLink, 
meross, and Tuya can be differentiated accordingly.

Listing 5 shows a section of the Tuya cloud API output for a smart 
relay with highlighted forensic artifacts. The excerpt contains, among 
other things, information about the public IP address, time zone, device 
configuration, device status, coordinates, and the timestamp of the last 
status update of the device. In addition to a device list, the Tuya cloud 
API can also query a log for a device ID (see Listing 6), which lists not 
only switching actions but also changes in the device’s online status. 
Two IDs, event_from and event_id, are also listed for each action. Unfor-
tunately, we could not find manually initiated switching actions via 
physical buttons. Furthermore, only some switching events are listed in 
the received log, and we have yet to identify a pattern regarding when 
they are listed and when they are not. Again, an overview of further 
forensic artifacts is shown in Table 3.

5.4. Network

Network analysis of traffic when using companion apps, cloud APIs, 
and smart relays was a means to an end for the forensic artifacts 
explained above. The recorded network traffic provided insights into the 
structure of requests and responses during switching actions, update 
processes, or other procedures. The first thing that stood out when 
analyzing the data was that some relays communicate locally and others 
(R6, R7, R12, R14, R15, R16) via an Internet connection. All local 
communication between smart relays and companion devices or clients 
was transmitted unencrypted. However, three relays (R10, R11, R13) 
encrypted the part of the payload that contains the transmitted com-
mands. In all cases, communication via the Internet was carried out 
using TLS encryption. Below address simple successful attacks on 
unencrypted local communication.

A replay attack was possible in all cases of local communication, and 
thus, we successfully replayed payloads that had already been sent, 

Fig. 6. Comparison of three entropy graphs from firmware dumps of R11 and R7 
to show influences of updates, partition layouts, and possible encryption.

Fig. 7. Entropy graph of a log file with the extension xlog with a constant high 
entropy value for the file content.
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irrespective of their encryption. The Shelly relays had an authentication 
option that was deactivated by default. The first-generation Shelly 
models used the insecure basic access authentication method of the 
HTTP protocol, so we received the credentials directly from sent packets 
and from the firmware. For second-generation Shelly devices, a hash 
value containing the credentials, a nonce, and the corresponding 
counter was created and has been sent in the request. However, even 
with these devices, the authentication procedure did not protect against 
replay attacks, as we could sent a packet multiple times despite the 
identical counter of the nonce.

We could also make the respective smart relay unusable in the event 
of local communication with DoS attacks. The only exceptions were the 
relays R8 and R9, where a successful DoS attack was impossible despite 
local communication. In the other cases, the devices were unusable 
during the ongoing attack and could only process other requests again 
once the attack had ended. However, even after the end of the attack, the 
relays of Shelly’s second-generation relays were still able to process 
previously cached requests from the DoS attack via the WebSocket 
protocol after the end of the attack. In one case, we observed that the 
smart relay could not be used even 4.5 min after the attack ended.

5.5. Python Framework

This section describes the development of the Python framework 
Tool for Evidence Acquisition from Smart Relays (TEASR) for the auto-
mated extraction of identified forensic artifacts. It is designed to receive 
various input files and extract forensic artifacts based on the results in 
Sections 5.1, 5.2, 5.4, and 5.3. Correspondingly, the Python script 
teasr.py provides four separate commands that can be executed. The 
overview in Fig. 8 visualizes the framework with its most important 
inputs and outputs.

5.5.1. Extractions From Firmware Dumps
The first command, firmware, takes a given firmware dump as input 

or a whole directory containing different firmware dump files. The two 
options are mutually exclusive, and the method for extracting possible 
traces is called for each firmware dump file. First, the command calls the 
tool binwalk to get an entropy graph from the firmware dump. 

Furthermore, an attempt is made to assign the firmware to a vendor by 
searching for corresponding strings. If the firmware file to be analyzed is 
that of a second-generation Shelly or a Tuya device, the partitions are 
separated from the firmware dump and then processed further. For 
firmware from first-generation Shelly devices, Sonoff devices, or un-
known device types, a partition table in CSV format can be added to the 
command to analyze such firmware dumps partition-wise. If no partition 
table is available and cannot be extracted, the firmware file is analyzed 
as a whole.

Strings, JSON fragments, and files are extracted, regardless of 
whether a firmware file or a partition is analyzed. The files are retrieved 
with the tools bulk_extractor and mklittlefs. However, mklittlefs can only 
successfully find files if a LittleFS file system is present. The output file 
summary.json contains a summary of forensic traces of the categories 
already presented. If the firmware has several possible sources for this 
summary, the sources with the higher offset are selected to use the most 
up-to-date data. If there are several partition sets, the summarized data 
of both sets is listed separately in the output.

Fig. 8. Overview to visualize the framework with its four main components and their inputs and outputs.

Listing 1. Extracted key–value pairs of LoraTap RR500W (R6) containing Wi-Fi 
credentials and the last device state.
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5.5.2. Extractions From Companion App Data
The second command, app, calls a Python function that inputs the 

given app data directory and extracts artifacts from the files within this 
directory. The various companion apps are differentiated by the direc-
tory name. Additional companion apps can be added anytime due to the 
modular structure. Depending on the companion app in use, different 
files can be found in the app’s persistent data, as described in Section 
5.2. The files to be searched can be text-based files or databases. The 
contents of these files are searched accordingly and summarized in an 
output file, summary.json.

5.5.3. Extractions From Network Traffic Captures
The third command, network, can be used to analyze a network traffic 

dump which has been captured in PCAP format. The optional inputs are 
files belonging to the dump with SSL/TLS keys or flow files of the 
mitmproxy tool. If the optional inputs are omitted, the command opens 
the PCAP file and reads the HTTP and WebSocket packets. By optionally 
specifying a source and a destination address, it is possible to filter the 
read packets. Without a TLS key, the function can only process 
decrypted packets. A flow file or the corresponding key file is required 
for network traffic via HTTPS or WSS. The transferred PCAP file is 
temporarily processed with a transferred TLS key file, and the network 
packets are decrypted if possible. Finally, relevant information about the 
extracted packets are saved in summary.json.

5.5.4. Extractions of Remote Artifacts From Cloud
The fourth command, remote, calls a Python function that extracts a 

device list from the corresponding cloud API endpoint, but the particular 

Listing 2. Extracted JSON files of Shelly Plus 1 (R2) reveal cloud token, API 
endpoint, and timezone information.

Listing 3. Extracted file coolkit_log_1.log of the eWeLink app reveals 
two different device switching actions.

Listing 4. Extracted file coolkit_log_1.log of the eWeLink app reveals the 
pairing process of a device.

Listing 5. Response of the Tuya cloud API endpoint/v1.0/iot-01/asso-
ciated-users/devices containing the coordinates, public IP address, 
and timestamps.
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cloud service for the given smart relay must be passed as input. 
Furthermore, the respective credentials are required, which can be 
username and password, or other access data which depends on the 
respective vendor and can vary accordingly. The cloud API endpoints 
and domains are hardcoded and must be adapted if the cloud provider 
changes the endpoints or domains. The command creates a request to 
query all devices belonging to the user account and sends this to the 
cloud API endpoint. The information transmitted in the response varies 
in scope depending on the cloud provider and is stored in the summary. 
json output file together with any access token used.

6. Discussion

6.1. Applicability and Practical Remarks

While our forensic analysis of smart relays as a device class was not 
based on a specific law enforcement case, the forensic artifacts which we 
identified may be helpful in certain investigative scenarios.

Since discarded smart devices can contain sensitive information, as 
pointed out by Sharma and Awasthi (2024), a disposed smart relay could 
be secretly confiscated to extract Wi-Fi credentials (see Table 3), which 
may result in expanded opportunities for the surveillance of a suspect’s 
domestic habitat during digital investigations. From an anti-forensics 
perspective, but also from a security and privacy standpoint, it is 
therefore not advisable to dispose or resell smart relays without taking 
additional measures to prevent subsequent unauthorized access to 
locally persisted data.

For smart relays with local network communication (i.e., all devices 
supported by the companion apps A1, A3, and A4; see Table 3), we 
showed that commands for switching actions are sent in plain text over 
HTTP. The only exception to this are the two relays R8 and R9 where the 
commands are encrypted but still sent over HTTP. The monitoring of 
such app-relay communication within a suspect’s local network may 
therefore help in surveillance scenarios where it is necessary to identify 
whether the individual is certainly at home and currently interacting 
with their unlocked smartphone, or whether there are activities within 
rooms where smart relays are installed. If the respective smart relay 
vendor is willing to cooperate, these switching actions can also be 
monitored externally via the vendor’s cloud. Without cooperation, law 

enforcement must obtain the cloud credentials first through other 
investigative or surveillance measures. However, the approach via the 
vendor’s cloud may only be applicable if cloud usage was activated on 
the smart relay, or a developer account has been created (see Section 
5.3).

6.2. Limitations and Future Work

Despite our best efforts to systematically generate test data during 
our investigation (see Section 4), the list of performed actions to create 
local and network artifacts cannot be considered exhaustive in light of 
the entire range of possible functions that (some of) the examined smart 
relays provide. While we covered the most essential functionalities to 
generate relevant traces, the number of reported artifacts may therefore 
rather be a lower boundary, and further actions may create additional 
artifacts which we could not identify due to methodological reasons. For 
future work, we encourage the analysis of smart relays from other 
manufacturers, new models from the manufacturers that we looked at, 
as well as of companion apps for iOS devices in order to identify further 
relevant artifacts on the basis of an extended scope of investigation.

The Python framework presented in Section 5.5, which we developed 
to ease the data acquisition process from the smart relays and their 
extended ecosystem consisting of companion app and vendor cloud, 
currently supports only those models what have been examined in this 
paper. Hence, adding support for newer models or further companion 
apps will require changes of the source code. By releasing the source 
code (see Section 1.1), we hope to mitigate this temporary limitation to 
the extent that we enable the community to adapt or extend the range of 
functions and devices as needed.

7. Conclusion

We forensically analyzed the IoT device class of smart relays based 
on 16 models from 9 vendors and six different companion apps in total. 
For test data generation during our examination, we used a structured 
approach with minimally varying action sets to create traces in a 
controlled manner.

We discovered a variety of forensic artifacts within the multi-source 
environment of our investigation which consisted of the smart relays 
themselves, their supported companion apps, and their respective 
vendor clouds. The artifacts of forensic relevance which we identified 
include, inter alia, Wi-Fi and cloud credentials, device and network in-
formation, as well as device lists and their status histories. Based on our 
findings, we developed a Python framework to facilitate evidence 
extraction from smart relays, their companion apps, and their respective 
vendor cloud APIs.
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Listing 6. Device event log requested of the Tuya cloud API endpoint/v1.0/ 
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from 1 to 16 or -1. The most important values are 1 (from this device), 2 (from 
client), 3 (from third-party service), and 4 (from the cloud). Furthermore, the 
variable event_id specifies the event type and can take values from 1 to 10. The 
most important values are 1 (online), 2 (offline), 3 (activated), and 4 (reset) and 
refer to the device in each case. Other values can be found in the Tuya cloud API 
documentation (Tuya Inc, 2024).
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