
DFRWS APAC 2024 - Selected Papers from the 4th Annual Digital Forensics Research Conference APAC

Do You “Relay” Want to Give Me Away? – Forensic Cues of Smart Relays and
Their IoT Companion Apps

Maximilian Eichhorn *, Gaston Pugliese
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

A R T I C L E I N F O

Keywords:
Smart relays
IoT device forensics
Smart home forensics
Hardware forensics

A B S T R A C T

As IoT devices become more prevalent in everyday environments, their relevance to digital investigations in-
creases. The product class of “smart relays”, which are connected to the low-voltage grid and usually installed in
sockets behind walls, has not yet received much attention in the context of smart home forensics. To close a
category-specific gap in the device forensics literature, we conducted a multi-device analysis of 16 smart relays
from 9 manufacturers, which support six different companion apps in total. Our examination shows that forensic
artifacts can be found locally on the smart relays and in the companion app data, as well as remotely on cloud
servers of the vendors. Based on our findings, we developed a Python framework to extract forensic artifacts
automatically from obtained firmware dumps, from companion app data, and from captured network traffic.

1. Introduction

The number of connected Internet of Things (IoT) devices has risen
steadily in the last years and is forecast to continue growing (Vailshery,
2024a). In 2022, the number of connected devices amounted to around
13.1 billion with 58.6 % of them being consumer devices (Vailshery,
2024b). This widespread use of IoT devices underlines the importance to
look more closely at them from a technical perspective due to their
forensic relevance as “invisible witnesses” (Urquhart et al., 2022) to
digital investigations, especially in smart homes (Servida and Casey,
2019).

Unlike many prominent types of smart devices which can be visibly
perceived in modern households, such as smart TVs, speakers, light
bulbs, cameras, doorbells, or thermostats, smart relays belong to a rather
invisible category of IoT devices, as they are connected to the low-
voltage grid and therefore often installed in sockets behind walls. In
general, relays are used to switch individual connected devices or entire
circuits on and off remotely, which is why they are also called “switch
actuators”. Due to their intended functionality and the fact that their
installation locations are typically not directly accessible, smart relays
are dependent on wireless connectivity (e.g., Wi-Fi, Bluetooth, or Zig-
bee). The predominant form of interaction with smart relays is via
companion apps, which can sometimes even be used for several products
from different brands. Some models can also be controlled via a web
application which is either hosted locally on-device or remotely in the

vendor’s cloud.
Although a selective focus on IoT forensics has been noticeable in the

academic literature for some years now (see Section 2), smart relays, as
an inconspicuous class of IoT devices, have received little attention so
far, leading to a potential blind spot regarding the acquisition of digital
evidence during investigations in smart home environments. To
approach the closing of this research gap, this paper presents a forensic
examination of 16 smart relays from nine brands and six respective
companion apps for Android smartphones. Our findings are intended to
raise awareness for the forensic artifacts of smart relays, and to support
corresponding evidence acquisition in practice.

1.1. Contributions

As we are not aware of any prior work on smart relays, the contri-
butions of this paper are summarized as follows:

● To the best of our knowledge, we are the first to conduct a multi-
device analysis of smart relays from a forensic perspective,
covering 16 models from 9 brands as well as six companion apps.

● Facing a multi-source environment for investigation, we identified
local artifacts in firmware dumps taken from smart relays as well as
in the local app data of companion apps running on Android. Further,
we analyzed the network traffic of smart relays and retrieved remote
artifacts via cloud APIs.

* Corresponding author.
E-mail address: maximilian.eichhorn@fau.de (M. Eichhorn).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301810

Forensic Science International: Digital Investigation 50 (2024) 301810

Available online 18 October 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:maximilian.eichhorn@fau.de
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2024.301810
https://doi.org/10.1016/j.fsidi.2024.301810
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2024.301810&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

● Based on our findings, we developed a Tool for Evidence Acquisition
from Smart Relays (TEASR) to support data acquisition in practice by
enabling automated and repeatable extraction of relevant artifacts.

To facilitate subsequent work on smart relays, we publish our
research artifacts at https://github.com/mxchhrn/teasr, including the
source code of TEASR (see Section 5.5).

1.2. Outline

First, we give an overview of related work in Section 2, and describe
the fundamentals of the smart relays and their ecosystems in Section 3.
Afterwards, we present the methodology of our analysis in Section 4,
which is followed by the respective results in Section 5. Finally, we
discuss our findings in Section 6, before concluding the paper in Section
7.

2. Related Work

In recent years, a wide range of examinations of “connected” or
“smart” devices have been covered under the term “Internet of Things”,
as they are things that are now connected but once had a non-connected
equivalent. This includes, for example, gaming consoles (Read et al.,
2016; Pessolano et al., 2019; Barr-Smith et al., 2021; Eichhorn et al.,
2024), smart speakers and displays with intelligent virtual assistants (Li
et al., 2019; Jo et al., 2019; Youn et al., 2021; Crasselt and Pugliese,
2024), wearables and trackers (Baggili et al., 2015; Hantke and Dewald,
2020; Pace et al., 2023), CCTV surveillance systems (Dragonas et al.,
2023), as well as e-scooters and e-bikes (Hilgert et al., 2021; Stachak
et al., 2024).

In addition to the device-specific perspective on IoT-related foren-
sics, various works have also been dedicated to methodological aspects,
including procedure models and frameworks (Meffert et al., 2017;
Bouchaud et al., 2018; Goudbeek et al., 2018), firmware extraction
(Nadir et al., 2022), network traffic analysis (Wu et al., 2021; Shin et al.,
2020), or side channel analysis (Sayakkara et al., 2019), while others
focused on the identification of challenges (Servida and Casey, 2019;
Stoyanova et al., 2020; Friedl and Pernul, 2024) as well as real-world
applicability in realistic scenarios (Servida et al., 2023).

As mentioned earlier, however, we are not aware that smart relays
and their forensic artifacts have been addressed in the forensic literature
yet. At the time of writing, the only related work known to us whose
analysis comprised a smart relay and its companion app, namely “Sonoff
basic2” and “eWeLink”, respectively, is by Salzillo and Rak (2020),
although the focus is primarily on the security of ESP Touch, a Wi-Fi
pairing protocol by Espressif Systems.

3. Background

Smart relays are embedded into an extended ecosystem consisting of
companion apps and vendor clouds, resulting in a multi-source envi-
ronment for forensic analyses due to the different local and remote lo-
cations for relevant artifacts. In this section, we provide an overview on
the fundamentals of smart relays to introduce them as objects of
investigation.

3.1. Smart Relays

The main component of a smart relay is a switching device to switch
one or more load circuits through a control circuit, an electromagnetic
relay (Ramirez-Laboreo et al., 2016). If a voltage is applied to the coil
terminals, a corresponding magnetic field is formed due to the current
flow in the coil. When a voltage is applied to the coil terminals, a current
flows, creating a magnetic field that exerts a force on the fixed core
which overpowers the elastic force of the plastic pusher and causes the
movable contact to shift. Fig. 1 shows the circuit diagram of an

electromagnetic relay in an AC circuit and, in this case, the moving
contact closes the normally open contact (NOC). If the current flow
through the coil is interrupted, the magnetic field is canceled, and the
magnetic force acting on the fixed core is removed. The restoring force
on the fixed core is large enough to move it back to its original position
under movable contact, closing the normally closed contact (NCC). Not all
electromagnetic relays have three contact terminals; some have only
two contacts, either an NOC or an NCC.

Additional components are required to expand an electromagnetic
relay into a smart relay, including a System-on-Chip (SoC), flash chip,
Wi-Fi antenna, and debug interfaces. Using terminal blocks, wires can be
connected and disconnected conveniently on the smart relay.

Fig. 2 shows the front and back of a smart relay (Shelly 1) to illustrate
the individual components. Here, the number 1 marks the terminal
blocks to which wires are connected. The number of contacts depends on
the range of functions of the smart relay. A minimum number of three
terminal contacts is necessary. In this minimum case, two terminals are
required for the power supply of the control circuit. One of these two
terminals is used for the load circuit. In a standard household low-
voltage network, this is the neutral conductor. The third terminal is
the switched phase of the load circuit. The actual electromagnetic relay
is marked with the number 2.

In addition to various resistors and capacitors, a debug interface
(number 3) is located on the front of this exemplary relay. On the Shelly
1, the debug interface is already equipped with soldered sockets and
cables can be plugged in directly. In addition to the functions listed in
the following subsection, further accessories can be connected via these
sockets on some models. The remaining essential components are
located on the back. The most relevant component is the SoC (number
5), combining several parts of a computer within a single chip, such as a
processing unit, a memory chip, a network module, and other interfaces.
SoCs are often designed for a specific application. However, the inte-
grated memory is only sometimes sufficiently dimensioned. In other
cases, an external flash memory (number 4) is connected via the in-
terfaces. The final component is the external Wi-Fi antenna (number 6).

Fig. 1. Circuit diagram of an electromagnetic relay in an AC circuit with no
applied voltage on the relay coil.

Fig. 2. Internal components of a smart relay (Shelly 1).

M. Eichhorn and G. Pugliese Forensic Science International: Digital Investigation 50 (2024) 301810

2

https://github.com/mxchhrn/teasr

3.2. Companion App and Vendor Cloud

Due to their connectivity, smart relays should not be considered on
their own during forensic investigations. Smart relays are controlled via
the Internet or a local network using wireless protocols like Wi-Fi,
Bluetooth, or Zigbee; hence, the user interaction with smart relays is
via a companion app or web application, where the corresponding APIs
may be hosted locally on-device or remotely in the vendor’s cloud.

Depending on the relay–app combination in use, the companion app
establishes a local direct connection to the relay or a remote connection
to the vendor cloud. A schematic representation of the communication
within this ecosystem is shown in Fig. 3 and based on observations made
during our examination. The blue arrows indicates remote online
communication between the vendor cloud and the smart relay, while
local direct communication is shown in green. Finally, the communi-
cation between the vendor cloud and the smart relay is shown in orange,
and the communication that is not directly necessary for the function-
ality, such as to a third-party cloud, is shown in gray.

4. Methodology

This section describes how we selected smart relays for our exami-
nation, and how we acquired forensically relevant data from the
different smart relays, companion apps, and network traffic systemati-
cally. To perform repeatable measurements using a predefined circuit
with a light bulb and physical switch buttons within a safety environ-
ment, we customized a Makita MAKPAC toolcase (see Fig. 4).

4.1. Test Device Selection

Since no sales figures were available to us in order to compile a set of
test devices based on definitive market shares of individual models, we
performed the following filtering process to select relevant smart relays
for our examination. As smart relays rely on companion apps, which are
partly not vendor-specific, we started by selecting those apps with at
least 500,000 downloads in the Google Play Store, which resulted in the
six apps (A1–A6) shown in Table 2. The Maxcio app (A2) was included
despite only having around 50,000 downloads, because smart relays by
the eponymous vendor also support the Smart Life (A5) and Tuya Smart
(A6) app which met the aforementioned criterion. Next, we selected
smart relay models based on their support for the six companion apps
and their rating on amazon.de. Where applicable, we opted to include
several models per vendor to reflect a certain level of diversity in our
sample regarding potential differences between products. In total, we
selected 16 smart relay models (R1–R16; see Table 1).

4.2. Firmware Extraction and Analysis

An overview on our entire firmware extraction process is shown in
Fig. 5. During our examination of smart relays, we read out the firmware

via the UART interfaces (universal asynchronous receiver-transmitter)
provided on the respective SoCs. It is crucial to know which SoC has
been installed on a smart relays to determine which chip architecture is
used. In Table 1, we indicate the various SoC models and their instruc-
tion set architectures which we found in the smart relays during our
analysis. Because of architectural differences between RISC-, RISC-V-
and ARM-based SoCs, there is yet to be a ready-made tool for extract-
ing the firmware of every SoC. In our case, we used existing command-
line tools for the respective SoCs, namely bk7231tools (Clement et al.,
2023) and esptool (Espressif Systems, 2023), to obtain the firmware of
the smart relays via a USB-to-UART adapter.

In addition to the choice of tools, there are other obstacles when
extracting the firmware. The contacts of the debug interface are not
always directly accessible due to the arrangement of the smart relay
components. In those cases of inaccessible contacts, desoldering is
necessary. After regaining access to the contacts, the relevant data sheets
must be consulted to determine the wiring of the contact pins. However,
connecting contacts to a logic analyzer or a digital oscilloscope may still
be necessary to determine the pin assignment. Not only is the pin
assignment required, but also the knowledge of the different operating
modes of the SoCs. For the dumping process, the relevant operating
mode is what many manufacturers refer to as “flash mode”. In this mode,
it is possible to read or write the flash memory of an SoC. Unfortunately,
there are no general instructions for enabling this flash mode, and
different steps are necessary depending on the individual SoC. In most
cases, the required steps need to be looked up in the data sheets of the
individual SoCs or in the instructions of existing extraction tools.

Lastly, to interpret the data of the extracted firmware, it is necessary
to gain knowledge of the data structure, such as partition layouts or file
systems. Nevertheless, the firmware is sometimes encrypted and needs
to be decrypted first (see Table 1). We were able to decrypt the
encrypted firmware images analyzed in this work using bk7231tools and
process the encrypted dump accordingly. Finally, the data stored in the
firmware dumps can be accessed and examined.

4.3. Companion App Analysis

We focused on the Android companion apps supported by the smart
relays we examined (see Table 2). Persistent data generated on the

Fig. 3. Overview of a smart relay with its infrastructure and communications.
An arrow indicates an observed communication between the two connected
components. online communication, online communication with vendor
cloud API, online communication to third party services, and local
communication.

Fig. 4. Customized Makita MAKPAC for execution setup.

M. Eichhorn and G. Pugliese Forensic Science International: Digital Investigation 50 (2024) 301810

3

smartphone when an app is used is stored in/data/data/<APPID>
directories (Foundation, 2024) named after the individual application
IDs (Google, 2023b). The directory containing persistent data on an
Android device can be accessed via the Android Debug Bridge (adb)
(Google, 2023a). In our case, we accessed the local data of the com-
panion apps via adb using a rooted Google Pixel 6a phone, as we
required root permissions in the adb shell. The analysis of the generated
network data by the companion apps is explained in the following
section.

4.4. Network Analysis

To intercept the network communication of all involved components
in the multi-source environment of our investigation (i.e., smart relay,
companion app, vendor cloud), we utilized a Raspberry Pi 3 as Wi-Fi
router and we performed a man-in-the-middle (MITM) attack

Table 1
Overview of the smart relays analyzed with details of their SoCs and notes on extracting and analyzing the firmware.

R Model Vendor SoC Chip Type UART Accessibility Tool FW
Dump

FW
Encrypted

R1 Shelly 1 Shelly ESP8266EX RISC esptool

R2 Shelly Plus 1 Shelly ESP32 U4WD RISC esptool

R3 Shelly Plus 1PM Shelly ESP32 U4WD RISC esptool

R4 Shelly Plus 2PM Shelly ESP32 U4WD RISC esptool

R5 Shelly Plus i4 Shelly ESP32 U4WD RISC esptool

R6 RR500W LoraTap BK7231T ARMv7E-M a bk7231tools

R7 RR620W LoraTap BK7231D ARMv7E-M a bk7231tools

R8 MSS710 meross RTL8710CM ARMv8-M b – –

R9 MSS810 Meross RTL8710CM ARMv8-M b – –

R10 BASICR2 Sonoff ESP8285N08 RISC a esptool

R11 MINIR2 Sonoff ESP8285N08 RISC a esptool

R12 SS-8839-03 eMylo BL2028N ARM9E a bk7231tools

R13 EWB1CH-D1 Newgoal BL602L20 RISC-V a – –

R14 QS-WIFI-S06-16A Maxcio BK7231N ARMv7E-M b bk7231tools

R15 MS-105 MoesGo BK7231N ARMv7E-M b bk7231tools

R16 MINI Smart Mesh SIUES TG7220B ARMv6-M b – –

a UART accessible after teardown.
b UART accessible after desoldering

Table 2
Overview of the companion apps, their supported relays, and Android applica-
tion IDs.

A# Companion App Android Application ID Supported Relays

A1 eWeLink - Smart Home com.coolkit R10, R11, R13

A2 Maxcio com.maxcio.smart R14

A3 meross com.meross.meross R8, R9

A4 Shelly Smart Control cloud.shelly.
smartcontrol

R1, R2, R3, R4, R5

A5 Smart Life - Smart
Living

com.tuya.smartlife R6, R7, R12, R14, R15,
R16

A6 Tuya Smart com.tuya.smart R6, R7, R12, R14, R15,
R16

Fig. 5. Firmware extraction process for examined smart relays.

M. Eichhorn and G. Pugliese Forensic Science International: Digital Investigation 50 (2024) 301810

4

(Bhushan et al., 2017) using “mitmproxy” (Cortesi et al., 2023) as
HTTPS proxy in order to bypass TLS encryption and forward
re-encrypted network requests. To perform a MITM attack with
decryption, the CA certificate of mitmproxy must be trusted on the
respective end device whose communication shall be intercepted and
decrypted. Adding certificates to the smart relays without further ado
was not possible, so communication between smart relays and cloud
services could not be recorded in plaintext via mitmproxy.

Two steps were required to capture and decrypt the network traffic of
the companion apps. First, an Android phone with root access was
required to which the mitmproxy’s CA certificate was added as a system
certificate. Depending on the version of Android, this step may involve
varying levels of effort and obstacles. In our case, we used Android 13
and added the CA certificate using the Magisk module “OverlayFS”
(Nguyen, 2023). Secondly, we utilized “objection” (SensePost, 2024) to
circumvent certificate pinning, a mitigation against MITM attacks via
hardcoded certificates in the app code to prevent apps from using
untrusted certificates (Gamache and Wall, 2024). Here, the certificate
un-pinning is achieved by modifying and repackaging the APK, which
also includes the injection of a “Frida gadget” of the Frida toolkit
(Ravnas, 2023) that allows dynamically adapting the app’s control flow.

We bypassed the certificate pinning and recorded the decrypted
network traffic for three of the six companion apps, namely eWeLink
(A1), meross (A3), and Shelly Smart Control (A4). For Maxcio (A2), Smart
Life (A5), and Tuya Smart (A6), however, certificate unpinning failed as
these companion apps have thrown error messages regarding missing
network connections.

4.5. Creation of Test Data

A structured procedure for generating test data is necessary to ensure
a systemic forensic analysis across multiple devices. As the various smart
relays differ in their range of functions, our procedure had to be
designed to allow some variability. Furthermore, as incomplete captures
of the network traffic of individual performed actions may be possible
due to environmental influences, we repeated each action several times.
If possible, the individual actions in the following list have been per-
formed with a 10-s pause between each action:

● 10x toggle relay one (sleep 5 s in between)
● 10x toggle relay two (sleep 5 s in between)
● 10x toggle relay one and relay two after each other (sleep 5 s in

between)
● 10x toggle relay one as fast as possible (no sleep in between)
● 10x if possible, set a timer for toggle relays one

In cases where a smart relay had fewer electromagnetic relays, or
individual functionalities were missing, we have shortened the action
set by the actions that could not be performed. Furthermore, the action
set was executed once for each of the interaction possibilities which
were available for each respective smart relay (i.e., companion app,
local API, web server, hardware switch, and cloud API). The network
traffic was saved individually in separate files for each execution of the
action set.

5. Results

In this section, we present the results of our forensic examination of
smart relays grouped by the following artifact categories: “firmware”
(Section 5.1), ”companion app” (Section 5.2), “network“ (Section 5.4),
and “cloud“ (Section 5.3). A summary of all identified forensic artifacts
and their respective locations can be found in Table 3, where each row
represents a relay–app combination. Finally, we present a Python
framework which we developed based on our findings in order to ease
the data acquisition process for smart relays in practice (Section 5.5).

5.1. Firmware

As mentioned in Section 4.2, SoCs have to be booted into the
appropriate (flash) mode to read out the firmware, which requires
different pin assignments or tools. Usually, the pin assignments is listed
in the manufacturer’s data sheets. However, as it is not always possible
to see whether the boot process was successful in another mode, an
oscilloscope or other measuring device was used to visualize the current
over time. The visualization is helpful because the data sheets show that
the SoC’s current usually depends on the mode. At the beginning, and
after we completed our actions, we were able to successfully boot into
the correct mode and dump the firmware for 12 out of 16 smart relays
(see Table 1). We could not extract the firmware for the remaining relays
as we could not determine the requirements for a stable boot into the
corresponding mode.

An entropy graph was generated for each firmware dump for an
initial high-level analysis and to make first assumptions about possible
partition layouts as well as encryption in use. The first two graphs in
Fig. 6 are of the MINIR2 relay (R11) before and after we performed our
action set (see Section 4.5). Since the relay’s firmware was also updated,
and the first part of the entropy graph is almost congruent, it is
reasonable to assume that this partition layout has two partition sets,
especially since the newly written second half is similar to the first half.
In contrast, the third entropy graph of the RR620W relay (R7) shows a
region with a constant high entropy, which could indicate a possible
encapsulation.

Based on the documentation of the respective SoC manufacturer
(Grokhotkov et al., 2023), we extracted partition tables from the firm-
ware dumps of the four devices R2, R3, R4, and R5. Here, two partition
sets are updated alternately during an update and, in some cases, Lit-
tleFS was used as file system. However, on three other devices with SoCs

Table 3
Categories of identified forensic artifacts and locations
where they have been found. As some relays could be
used with multiple companion apps, the artifacts are
indicated for all possible combinations of individual
relays (Ri) and apps (Aj).

M. Eichhorn and G. Pugliese Forensic Science International: Digital Investigation 50 (2024) 301810

5

from the same manufacturer (R1, R10, and R11), the partition tables could
not be localized, read, or interpreted according to the SoC documenta-
tion. The models R6, R7, R12, R14, and R15, based on the BK7231X SoC
family, had two encrypted partitions followed by a storage with key-
–value pairs. The tool bk7231tools extracted and decrypted the parti-
tions using known keys for older firmware versions. The bulk_extractor
(Garfinkel, 2013) tool was used to search for fragments on unknown file
systems or on firmware dumps with unknown partitioning. Further-
more, we searched for printable strings via the command-line tool
“strings” as well as a Python script to extract JSON file fragments (see
Section 5.5).

Table 3 shows the artifacts found for the various firmware dumps,
and includes information about the respective smart relay, its status,
device and network configurations, Wi-Fi credentials, API endpoints,
and localization data. Listing 1 contains an excerpt of exemplary arti-
facts of the devices R6, R7, R14, and R15, showing the device status and
Wi-Fi credentials. Furthermore, the firmware dump of R2 contained
cloud credentials, cloud access tokens, and information such as the
timezone and coordinates (see Listing 2).

5.2. Companion App

Table 3 shows that forensic artifacts were identified in the app data
for three of the six companion apps, namely A1, A3 and A4. The files of
interest were in the paths */files/log/main and had the file extension
xlog. The corresponding entropy graph Fig. 7 shows an entropy value
above 0.97 across the entire file content, which suggests encryption. We
could not identify the key to decrypt these files. While interesting di-
rectories were found for the three remaining apps (A2, A5, A6), they did
not contain any directly readable data. It should be noted that these apps
share a similar structure, GUI, and almost identical paths in their app
data.

The most interesting forensic artifact in the companion apps’ data is
the log file of the eWeLink - Smart Home app (A1) which contains a
history of switching operations during app use. The log file lists indi-
vidual switching operations along with the corresponding timestamp, as
well as pairing processes, and found Bluetooth devices. Furthermore, we
identified small differences in the log file which can be used to deter-
mine whether the switching process was initiated via the app or other-
wise. Listing 3 shows a section of this file in which two switching
processes are displayed, one via the app and one external via the
physical button.

The discovery of other Bluetooth devices during the pairing process
is shown in Listing 4, which contains another excerpt from the log file. In
addition to a history of the device status, the individual app data in-
cludes device information and configurations, lists of devices, network
status, credentials, and locale information. An overview of all forensic
artifacts that have been found can be seen in Table 3.

5.3. Cloud API

We extracted some of the data stored in the vendor’s clouds via
respective cloud APIs. The responses contained mainly data about the
devices linked to the cloud account. In this way, device lists with the
devices’ information, configurations, and network state could be
retrieved. In three of the six companion apps (A1, A3 and A4), the added
smart relays are connected directly to the cloud account, which can also
be accessed via API with email and password credentials. To use the
cloud API for Tuya-based devices, a separate developer account must
first be created on the developer.tuya.com domain. The usage
credentials in the form of an ID and a key are shown in the creation
process. The devices can then be added to the account by linking the
developer account either with a supported third-party application or
with Smart Life - Smart Living (A5). In the second case, all devices added
to the app so far as well as those added in the future are automatically
linked to the cloud account. The four cloud APIs of Shelly, eWeLink,
meross, and Tuya can be differentiated accordingly.

Listing 5 shows a section of the Tuya cloud API output for a smart
relay with highlighted forensic artifacts. The excerpt contains, among
other things, information about the public IP address, time zone, device
configuration, device status, coordinates, and the timestamp of the last
status update of the device. In addition to a device list, the Tuya cloud
API can also query a log for a device ID (see Listing 6), which lists not
only switching actions but also changes in the device’s online status.
Two IDs, event_from and event_id, are also listed for each action. Unfor-
tunately, we could not find manually initiated switching actions via
physical buttons. Furthermore, only some switching events are listed in
the received log, and we have yet to identify a pattern regarding when
they are listed and when they are not. Again, an overview of further
forensic artifacts is shown in Table 3.

5.4. Network

Network analysis of traffic when using companion apps, cloud APIs,
and smart relays was a means to an end for the forensic artifacts
explained above. The recorded network traffic provided insights into the
structure of requests and responses during switching actions, update
processes, or other procedures. The first thing that stood out when
analyzing the data was that some relays communicate locally and others
(R6, R7, R12, R14, R15, R16) via an Internet connection. All local
communication between smart relays and companion devices or clients
was transmitted unencrypted. However, three relays (R10, R11, R13)
encrypted the part of the payload that contains the transmitted com-
mands. In all cases, communication via the Internet was carried out
using TLS encryption. Below address simple successful attacks on
unencrypted local communication.

A replay attack was possible in all cases of local communication, and
thus, we successfully replayed payloads that had already been sent,

Fig. 6. Comparison of three entropy graphs from firmware dumps of R11 and R7
to show influences of updates, partition layouts, and possible encryption.

Fig. 7. Entropy graph of a log file with the extension xlog with a constant high
entropy value for the file content.

M. Eichhorn and G. Pugliese Forensic Science International: Digital Investigation 50 (2024) 301810

6

irrespective of their encryption. The Shelly relays had an authentication
option that was deactivated by default. The first-generation Shelly
models used the insecure basic access authentication method of the
HTTP protocol, so we received the credentials directly from sent packets
and from the firmware. For second-generation Shelly devices, a hash
value containing the credentials, a nonce, and the corresponding
counter was created and has been sent in the request. However, even
with these devices, the authentication procedure did not protect against
replay attacks, as we could sent a packet multiple times despite the
identical counter of the nonce.

We could also make the respective smart relay unusable in the event
of local communication with DoS attacks. The only exceptions were the
relays R8 and R9, where a successful DoS attack was impossible despite
local communication. In the other cases, the devices were unusable
during the ongoing attack and could only process other requests again
once the attack had ended. However, even after the end of the attack, the
relays of Shelly’s second-generation relays were still able to process
previously cached requests from the DoS attack via the WebSocket
protocol after the end of the attack. In one case, we observed that the
smart relay could not be used even 4.5 min after the attack ended.

5.5. Python Framework

This section describes the development of the Python framework
Tool for Evidence Acquisition from Smart Relays (TEASR) for the auto-
mated extraction of identified forensic artifacts. It is designed to receive
various input files and extract forensic artifacts based on the results in
Sections 5.1, 5.2, 5.4, and 5.3. Correspondingly, the Python script
teasr.py provides four separate commands that can be executed. The
overview in Fig. 8 visualizes the framework with its most important
inputs and outputs.

5.5.1. Extractions From Firmware Dumps
The first command, firmware, takes a given firmware dump as input

or a whole directory containing different firmware dump files. The two
options are mutually exclusive, and the method for extracting possible
traces is called for each firmware dump file. First, the command calls the
tool binwalk to get an entropy graph from the firmware dump.

Furthermore, an attempt is made to assign the firmware to a vendor by
searching for corresponding strings. If the firmware file to be analyzed is
that of a second-generation Shelly or a Tuya device, the partitions are
separated from the firmware dump and then processed further. For
firmware from first-generation Shelly devices, Sonoff devices, or un-
known device types, a partition table in CSV format can be added to the
command to analyze such firmware dumps partition-wise. If no partition
table is available and cannot be extracted, the firmware file is analyzed
as a whole.

Strings, JSON fragments, and files are extracted, regardless of
whether a firmware file or a partition is analyzed. The files are retrieved
with the tools bulk_extractor and mklittlefs. However, mklittlefs can only
successfully find files if a LittleFS file system is present. The output file
summary.json contains a summary of forensic traces of the categories
already presented. If the firmware has several possible sources for this
summary, the sources with the higher offset are selected to use the most
up-to-date data. If there are several partition sets, the summarized data
of both sets is listed separately in the output.

Fig. 8. Overview to visualize the framework with its four main components and their inputs and outputs.

Listing 1. Extracted key–value pairs of LoraTap RR500W (R6) containing Wi-Fi
credentials and the last device state.

M. Eichhorn and G. Pugliese Forensic Science International: Digital Investigation 50 (2024) 301810

7

5.5.2. Extractions From Companion App Data
The second command, app, calls a Python function that inputs the

given app data directory and extracts artifacts from the files within this
directory. The various companion apps are differentiated by the direc-
tory name. Additional companion apps can be added anytime due to the
modular structure. Depending on the companion app in use, different
files can be found in the app’s persistent data, as described in Section
5.2. The files to be searched can be text-based files or databases. The
contents of these files are searched accordingly and summarized in an
output file, summary.json.

5.5.3. Extractions From Network Traffic Captures
The third command, network, can be used to analyze a network traffic

dump which has been captured in PCAP format. The optional inputs are
files belonging to the dump with SSL/TLS keys or flow files of the
mitmproxy tool. If the optional inputs are omitted, the command opens
the PCAP file and reads the HTTP and WebSocket packets. By optionally
specifying a source and a destination address, it is possible to filter the
read packets. Without a TLS key, the function can only process
decrypted packets. A flow file or the corresponding key file is required
for network traffic via HTTPS or WSS. The transferred PCAP file is
temporarily processed with a transferred TLS key file, and the network
packets are decrypted if possible. Finally, relevant information about the
extracted packets are saved in summary.json.

5.5.4. Extractions of Remote Artifacts From Cloud
The fourth command, remote, calls a Python function that extracts a

device list from the corresponding cloud API endpoint, but the particular

Listing 2. Extracted JSON files of Shelly Plus 1 (R2) reveal cloud token, API
endpoint, and timezone information.

Listing 3. Extracted file coolkit_log_1.log of the eWeLink app reveals
two different device switching actions.

Listing 4. Extracted file coolkit_log_1.log of the eWeLink app reveals the
pairing process of a device.

Listing 5. Response of the Tuya cloud API endpoint/v1.0/iot-01/asso-
ciated-users/devices containing the coordinates, public IP address,
and timestamps.

M. Eichhorn and G. Pugliese Forensic Science International: Digital Investigation 50 (2024) 301810

8

cloud service for the given smart relay must be passed as input.
Furthermore, the respective credentials are required, which can be
username and password, or other access data which depends on the
respective vendor and can vary accordingly. The cloud API endpoints
and domains are hardcoded and must be adapted if the cloud provider
changes the endpoints or domains. The command creates a request to
query all devices belonging to the user account and sends this to the
cloud API endpoint. The information transmitted in the response varies
in scope depending on the cloud provider and is stored in the summary.
json output file together with any access token used.

6. Discussion

6.1. Applicability and Practical Remarks

While our forensic analysis of smart relays as a device class was not
based on a specific law enforcement case, the forensic artifacts which we
identified may be helpful in certain investigative scenarios.

Since discarded smart devices can contain sensitive information, as
pointed out by Sharma and Awasthi (2024), a disposed smart relay could
be secretly confiscated to extract Wi-Fi credentials (see Table 3), which
may result in expanded opportunities for the surveillance of a suspect’s
domestic habitat during digital investigations. From an anti-forensics
perspective, but also from a security and privacy standpoint, it is
therefore not advisable to dispose or resell smart relays without taking
additional measures to prevent subsequent unauthorized access to
locally persisted data.

For smart relays with local network communication (i.e., all devices
supported by the companion apps A1, A3, and A4; see Table 3), we
showed that commands for switching actions are sent in plain text over
HTTP. The only exception to this are the two relays R8 and R9 where the
commands are encrypted but still sent over HTTP. The monitoring of
such app-relay communication within a suspect’s local network may
therefore help in surveillance scenarios where it is necessary to identify
whether the individual is certainly at home and currently interacting
with their unlocked smartphone, or whether there are activities within
rooms where smart relays are installed. If the respective smart relay
vendor is willing to cooperate, these switching actions can also be
monitored externally via the vendor’s cloud. Without cooperation, law

enforcement must obtain the cloud credentials first through other
investigative or surveillance measures. However, the approach via the
vendor’s cloud may only be applicable if cloud usage was activated on
the smart relay, or a developer account has been created (see Section
5.3).

6.2. Limitations and Future Work

Despite our best efforts to systematically generate test data during
our investigation (see Section 4), the list of performed actions to create
local and network artifacts cannot be considered exhaustive in light of
the entire range of possible functions that (some of) the examined smart
relays provide. While we covered the most essential functionalities to
generate relevant traces, the number of reported artifacts may therefore
rather be a lower boundary, and further actions may create additional
artifacts which we could not identify due to methodological reasons. For
future work, we encourage the analysis of smart relays from other
manufacturers, new models from the manufacturers that we looked at,
as well as of companion apps for iOS devices in order to identify further
relevant artifacts on the basis of an extended scope of investigation.

The Python framework presented in Section 5.5, which we developed
to ease the data acquisition process from the smart relays and their
extended ecosystem consisting of companion app and vendor cloud,
currently supports only those models what have been examined in this
paper. Hence, adding support for newer models or further companion
apps will require changes of the source code. By releasing the source
code (see Section 1.1), we hope to mitigate this temporary limitation to
the extent that we enable the community to adapt or extend the range of
functions and devices as needed.

7. Conclusion

We forensically analyzed the IoT device class of smart relays based
on 16 models from 9 vendors and six different companion apps in total.
For test data generation during our examination, we used a structured
approach with minimally varying action sets to create traces in a
controlled manner.

We discovered a variety of forensic artifacts within the multi-source
environment of our investigation which consisted of the smart relays
themselves, their supported companion apps, and their respective
vendor clouds. The artifacts of forensic relevance which we identified
include, inter alia, Wi-Fi and cloud credentials, device and network in-
formation, as well as device lists and their status histories. Based on our
findings, we developed a Python framework to facilitate evidence
extraction from smart relays, their companion apps, and their respective
vendor cloud APIs.

CRediT authorship contribution statement

Maximilian Eichhorn: Conceptualization, Methodology, Software,
Validation, Formal Analysis, Investigation, Data Curation, Writing -
Original Draft, Writing - Review & Editing, Visualization, Project
administration. Gaston Pugliese: Conceptualization, Methodology,
Resources, Writing - Review & Editing, Visualization, Supervision,
Project administration, Funding acquisition.

Acknowledgments

We thank the anonymous reviewers for their helpful comments.
Furthermore, we thank Lukas Fischer for sharing insights into the
authorization protocol of Shelly Gen 2 devices, as well as Matti Schulze
for recommending TikZ for the symbols in Table 3. This work has been
supported by the Bavarian Ministry of Science and Arts as part of the
project “Security in Everyday Digitization” (ForDaySec).

Listing 6. Device event log requested of the Tuya cloud API endpoint/v1.0/
devices/[DEVICE_ID]/logs containing event log messages for the device
R7. The event_from value specifies the source of the event and can take values
from 1 to 16 or -1. The most important values are 1 (from this device), 2 (from
client), 3 (from third-party service), and 4 (from the cloud). Furthermore, the
variable event_id specifies the event type and can take values from 1 to 10. The
most important values are 1 (online), 2 (offline), 3 (activated), and 4 (reset) and
refer to the device in each case. Other values can be found in the Tuya cloud API
documentation (Tuya Inc, 2024).

M. Eichhorn and G. Pugliese Forensic Science International: Digital Investigation 50 (2024) 301810

9

References

Baggili, I., Oduro, J., Anthony, K., Breitinger, F., McGee, G., 2015. Watch what you wear:
preliminary forensic analysis of smart watches. In: 2015 10th International
Conference on Availability, Reliability and Security. IEEE, pp. 303–311.

Barr-Smith, F., Farrant, T., Leonard-Lagarde, B., Rigby, D., Rigby, S., Sibley-Calder, F.,
2021. Dead Man’s Switch: Forensic Autopsy of the Nintendo Switch. Forensic Sci.
Int.: Digit. Invest. 36, 301110.

Bhushan, B., Sahoo, G., Rai, A.K., 2017. Man-in-the-middle attack in wireless and
computer networking — A review. In: 2017 3rd International Conference on
Advances in Computing,Communication & Automation (ICACCA) (Fall), pp. 1–6.
https://doi.org/10.1109/ICACCAF.2017.8344724.

Bouchaud, F., Grimaud, G., Vantroys, T., 2018. IoT Forensic: identification and
classification of evidence in criminal investigations. In: Proceedings of the 13th
International Conference on Availability, Reliability and Security, pp. 1–9.

Clement, T., Nassar, K., Szczodrzyński, K., 2023. bk7231tools. https://github.com/tu
ya-cloudcutter/bk7231tools. (Accessed 19 November 2023).

Cortesi, A., Hils, M., Kriechbaumer, T., contributors, 2023. mitmproxy: a free and open
source interactive HTTPS proxy. URL: https://mitmproxy.org/. (Accessed 20
November 2023).

Crasselt, J., Pugliese, G., 2024. Started Off Local, Now We’re in the Cloud: Forensic
Examination of the Amazon Echo Show 15 Smart Display. Digital Forensics Research
Conference USA. DFRWS USA 2024) URL: https://dfrws.org/wp-content/uploads/2
024/07/dfrws-usa-2024-echo-show-1.5.pdf.

Dragonas, E., Lambrinoudakis, C., Kotsis, M., 2023. IoT forensics: Analysis of a
HIKVISION’s mobile app. Forensic Sci. Int.: Digit. Invest. 45, 301560.

Eichhorn, M., Schneider, J., Pugliese, G., 2024. Well Played, Suspect! — Forensic
examination of the handheld gaming console “Steam Deck”. Forensic Sci. Int.: Digit.
Invest. 48, 301688 https://doi.org/10.1016/j.fsidi.2023.301688.

Espressif Systems, 2023. esptool.py. https://github.com/espressif/esptool. (Accessed 19
November 2023).

Friedl, S., Pernul, G., 2024. IoT Forensics Readiness – influencing factors. Forensic Sci.
Int.: Digit. Invest. 49, 301768.

Garfinkel, S.L., 2013. Digital media triage with bulk data analysis and bulk_extractor.
Comput. Secur. 32, 56–72. https://doi.org/10.1016/j.cose.2012.09.011. URL:
https://www.sciencedirect.com/science/article/pii/S0167404812001472.

Google, 2023a. Android debug bridge (adb). URL: https://developer.android.com/tools/
adb. (Accessed 20 November 2023).

Google, 2023b. Configure the app module. URL: https://developer.android.com/build/c
onfigure-app-module. (Accessed 20 November 2023).

Goudbeek, A., Choo, K.K.R., Le-Khac, N.A., 2018. A Forensic Investigation Framework
for Smart Home Environment. In: 2018 17th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications/12th IEEE International
Conference on Big Data Science and Engineering (TrustCom/BigDataSE). IEEE,
pp. 1446–1451.

Grokhotkov, I., Gratton, A., Jiang, J., contributors, 2023. Partition tables. URL: htt
ps://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-ta
bles.html. (Accessed 25 November 2023).

Hantke, F., Dewald, A., 2020. How can data from fitness trackers be obtained and
analyzed with a forensic approach?. In: 2020 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW). IEEE, pp. 500–508.

Hilgert, J.N., Lambertz, M., Hakoupian, A., Mateyna, A.M., 2021. A forensic analysis of
micromobility solutions. Forensic Sci. Int.: Digit. Invest. 38, 301137.

Jo, W., Shin, Y., Kim, H., Yoo, D., Kim, D., Kang, C., Jin, J., Oh, J., Na, B., Shon, T., 2019.
Digital Forensic Practices and Methodologies for AI Speaker Ecosystems. Digit.
Invest. 29, S80–S93.

Li, S., Choo, K.K.R., Sun, Q., Buchanan, W.J., Cao, J., 2019. IoT Forensics: Amazon Echo
as a Use Case. IEEE Internet Things J. 6, 6487–6497. https://doi.org/10.1109/
JIOT.2019.2906946.

Meffert, C., Clark, D., Baggili, I., Breitinger, F., 2017. Forensic State Acquisition from
Internet of Things (FSAIoT): A general framework and practical approach for IoT
forensics through IoT device state acquisition. In: Proceedings of the 12th
International Conference on Availability, Reliability and Security, pp. 1–11.

Nadir, I., Mahmood, H., Asadullah, G., 2022. A taxonomy of IoT firmware security and
principal firmware analysis techniques. Int. J. Critic. Infrastruct. Protect. 38, 100552

https://doi.org/10.1016/j.ijcip.2022.100552. URL: https://www.sciencedirect.co
m/science/article/pii/S1874548222000373.

Nguyen, S., 2023. Magisk Overlayfs. https://github.com/HuskyDG/magic_overlayfs.
(Accessed 20 November 2023).

Pace, L.R., Salmon, L.A., Bowen, C.J., Baggili, I., Richard III, G.G., 2023. Every step you
take, I’ll be tracking you: Forensic analysis of the tile tracker application. Forensic
Sci. Int.: Digit. Invest. 45, 301559.

Pessolano, G., Read, H.O., Sutherland, I., Xynos, K., 2019. Forensic Analysis of the
Nintendo 3DS NAND. Digit. Invest. 29, S61–S70.

Ramirez-Laboreo, E., Sagues, C., Llorente, S., 2016. A New Model of Electromechanical
Relays for Predicting the Motion and Electromagnetic Dynamics. IEEE Trans. Ind.
Appl. 52, 2545–2553. https://doi.org/10.1109/TIA.2016.2518120.

Ravnas, O.A.V., 2023. Frida - Dynamic instrumentation toolkit for developers, reverse-
engineers, and security researchers. https://frida.re/. (Accessed 20 November 2023).

Read, H., Thomas, E., Sutherland, I., Xynos, K., Burgess, M., 2016. A Forensic
Methodology for Analyzing Nintendo 3DS Devices. In: IFIP International Conference
on Digital Forensics. Springer, pp. 127–143.

Salzillo, G., Rak, M., 2020. A (in)Secure-by-Design IoT Protocol: the ESP Touch Protocol
and a Case Study Analysis from the Real Market. In: Proceedings of the 2020 Joint
Workshop on CPS&IoT Security and Privacy. Association for Computing Machinery,
New York, NY, USA, pp. 37–48. https://doi.org/10.1145/3411498.3419965.

Sayakkara, A., Le-Khac, N.A., Scanlon, M., 2019. Leveraging Electromagnetic Side-
Channel Analysis for the Investigation of IoT Devices. Digit. Invest. 29, S94–S103.

SensePost, 2024. Objection - Runtime mobile Exploration. https://github.com/
sensepost/objection.

Servida, F., Casey, E., 2019. IoT forensic challenges and opportunities for digital traces.
Digit. Invest. 28, S22–S29. https://doi.org/10.1016/j.diin.2019.01.012.

Servida, F., Fischer, M., Delémont, O., Souvignet, T.R., 2023. OK Google, Start a Fire. IoT
devices as witnesses and actors in fire investigations. Forensic Sci. Int. 348, 111674
https://doi.org/10.1016/j.forsciint.2023.111674.

Sharma, P., Awasthi, L.K., 2024. Unveiling the hidden dangers: Security risks and
forensic analysis of smart bulbs. Forensic Sci. Int.: Digit. Invest. 50, 301794 https://
doi.org/10.1016/j.fsidi.2024.301794. URL: https://www.sciencedirect.com/scienc
e/article/pii/S2666281724001185.

Shin, Y., Kim, H., Kim, S., Yoo, D., Jo, W., Shon, T., 2020. Certificate Injection-Based
Encrypted Traffic Forensics in AI Speaker Ecosystem. Forensic Sci. Int.: Digit. Invest.
33, 301010.

Stachak, M., Geus, J., Pugliese, G., Freiling, F., 2024. Nyon Unchained: Forensic Analysis
of Bosch’s eBike Board Computers. Digital Forensics Research Conference Europe
(DFRWS EU 2024). URL: https://dfrws.org/wp-content/uploads/2024/03/Nyon-Un
chained-Forensic-An.alysis-of-Boschs-eBike-Board-Computer_2024.pdf.

Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., Markakis, E.K., 2020.
A Survey on the Internet of Things (IoT) Forensics: Challenges, Approaches, and
Open Issues. IEEE Commun. Surv. Tutor. 22, 1191–1221.

Urquhart, L., Miranda, D., Podoletz, L., 2022. Policing the smart home: The internet of
things as ‘invisible witnesses’. Inf. Polity 27, 233–246.

Vailshery, L.S., 2024a. Number of Internet of Things (IoT) connections worldwide from
2022 to 2023, with forecasts from 2024 to 2033. https://www.statista.com/statist
ics/1183457/iot-connected-devices-worldwide. (Accessed 14 August 2024).

Vailshery, L.S., 2024b. Number of Internet of Things (IoT) connected devices worldwide
from 2019 to 2030, by vertical. https://www.statista.com/statistics/1194682/iot
-connected-devices-vertically. (Accessed 14 August 2024).

Wu, T., Breitinger, F., Niemann, S., 2021. IoT network traffic analysis: Opportunities and
challenges for forensic investigators? Forensic Sci. Int.: Digit. Invest. 38, 301123.

Youn, M.A., Lim, Y., Seo, K., Chung, H., Lee, S., 2021. Forensic analysis for AI speaker
with display Echo Show 2nd generation as a case study. Forensic Science
International. Digit. Invest. 38, 301130.

Gamache, M., Wall, K., 2024. Certificate and Public Key Pinning. https://owasp.or
g/www-community/controls/Certificate_and_Public_Key_Pinning. (Accessed 14
August 2024).

OWASP Foundation, 2024. Android Data Storage. https://mas.owasp.org/MAST
G/0x05d-Testing-Data-Storage/. (Accessed 14 August 2024).

Tuya Inc., 2024. Device management URL: https://developer.tuya.com/en/docs/cloud
/device-management. (Accessed 2 June 2024).

M. Eichhorn and G. Pugliese Forensic Science International: Digital Investigation 50 (2024) 301810

10

http://refhub.elsevier.com/S2666-2817(24)00134-3/sref1
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref1
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref1
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref2
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref2
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref2
https://doi.org/10.1109/ICACCAF.2017.8344724
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref4
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref4
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref4
https://github.com/tuya-cloudcutter/bk7231tools
https://github.com/tuya-cloudcutter/bk7231tools
https://mitmproxy.org/
https://dfrws.org/wp-content/uploads/2024/07/dfrws-usa-2024-echo-show-1.5.pdf
https://dfrws.org/wp-content/uploads/2024/07/dfrws-usa-2024-echo-show-1.5.pdf
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref8
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref8
https://doi.org/10.1016/j.fsidi.2023.301688
https://github.com/espressif/esptool
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref11
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref11
https://doi.org/10.1016/j.cose.2012.09.011
https://www.sciencedirect.com/science/article/pii/S0167404812001472
https://developer.android.com/tools/adb
https://developer.android.com/tools/adb
https://developer.android.com/build/configure-app-module
https://developer.android.com/build/configure-app-module
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref15
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref15
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref15
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref15
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref15
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-tables.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-tables.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-tables.html
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref17
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref17
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref17
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref18
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref18
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref20
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref20
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref20
https://doi.org/10.1109/JIOT.2019.2906946
https://doi.org/10.1109/JIOT.2019.2906946
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref22
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref22
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref22
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref22
https://doi.org/10.1016/j.ijcip.2022.100552
https://www.sciencedirect.com/science/article/pii/S1874548222000373
https://www.sciencedirect.com/science/article/pii/S1874548222000373
https://github.com/HuskyDG/magic_overlayfs
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref26
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref26
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref26
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref27
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref27
https://doi.org/10.1109/TIA.2016.2518120
https://frida.re/
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref30
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref30
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref30
https://doi.org/10.1145/3411498.3419965
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref32
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref32
https://github.com/sensepost/objection
https://github.com/sensepost/objection
https://doi.org/10.1016/j.diin.2019.01.012
https://doi.org/10.1016/j.forsciint.2023.111674
https://doi.org/10.1016/j.fsidi.2024.301794
https://doi.org/10.1016/j.fsidi.2024.301794
https://www.sciencedirect.com/science/article/pii/S2666281724001185
https://www.sciencedirect.com/science/article/pii/S2666281724001185
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref37
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref37
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref37
https://dfrws.org/wp-content/uploads/2024/03/Nyon-Unchained-Forensic-An.alysis-of-Boschs-eBike-Board-Computer_2024.pdf
https://dfrws.org/wp-content/uploads/2024/03/Nyon-Unchained-Forensic-An.alysis-of-Boschs-eBike-Board-Computer_2024.pdf
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref39
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref39
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref39
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref40
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref40
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide
https://www.statista.com/statistics/1194682/iot-connected-devices-vertically
https://www.statista.com/statistics/1194682/iot-connected-devices-vertically
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref44
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref44
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref45
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref45
http://refhub.elsevier.com/S2666-2817(24)00134-3/sref45
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://mas.owasp.org/MASTG/0x05d-Testing-Data-Storage/
https://mas.owasp.org/MASTG/0x05d-Testing-Data-Storage/
https://developer.tuya.com/en/docs/cloud/device-management
https://developer.tuya.com/en/docs/cloud/device-management

	Do You “Relay” Want to Give Me Away? – Forensic Cues of Smart Relays and Their IoT Companion Apps
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Related Work
	3 Background
	3.1 Smart Relays
	3.2 Companion App and Vendor Cloud

	4 Methodology
	4.1 Test Device Selection
	4.2 Firmware Extraction and Analysis
	4.3 Companion App Analysis
	4.4 Network Analysis
	4.5 Creation of Test Data

	5 Results
	5.1 Firmware
	5.2 Companion App
	5.3 Cloud API
	5.4 Network
	5.5 Python Framework
	5.5.1 Extractions From Firmware Dumps
	5.5.2 Extractions From Companion App Data
	5.5.3 Extractions From Network Traffic Captures
	5.5.4 Extractions of Remote Artifacts From Cloud

	6 Discussion
	6.1 Applicability and Practical Remarks
	6.2 Limitations and Future Work

	7 Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	References

