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A B S T R A C T

Android stands as the predominant operating system within the mobile ecosystem. Users can download appli-
cations from official sources like Google Play Store and other third-party platforms. However, malicious actors can 
attempt to compromise user device integrity through malicious applications. Traditionally, signatures, rules, and 
other methods have been employed to detect malware attacks and protect device integrity. However, the 
growing number and complexity of malicious applications have prompted the exploration of newer techniques 
like machine learning (ML) and deep learning (DL). Many recent studies have demonstrated promising results in 
detecting malicious applications using ML and DL solutions. However, research in other fields, such as computer 
vision, has shown that ML and DL solutions are vulnerable to targeted adversarial attacks. Malicious actors can 
develop malicious adversarial applications that can bypass ML and DL based anti-viruses. The study of adver-
sarial techniques related to malware detection has now captured the security community’s attention. In this 
work, we utilise android permissions and intents to construct 28 distinct malware detection models using 14 
classification algorithms. Later, we introduce a novel targeted false-negative evasion attack, Gradient Based K 
Perturbation Attack (GBKPA), designed for grey-box knowledge scenarios to assess the robustness of these models. 
The GBKPA attempts to craft malicious adversarial samples by making minimal perturbations without violating 
the syntactic and functional structure of the application. GBKPA achieved an average fooling rate (FR) of 77 % 
with only five perturbations across the 28 detection models. Additionally, we identified the most vulnerable 
android permissions and intents that malicious actors can exploit for evasion attacks. Furthermore, we analyse 
the transferability of adversarial samples across different classes of models and provide explanations for the 
same. Finally, we proposed AuxShield defence mechanism to develop robust detection models. AuxShield 
reduced the average FR to 3.25 % against 28 detection models. Our findings underscore the need to understand 
the causation of adversarial samples, their transferability, and robust defence strategies before deploying ML and 
DL solutions in the real world.

1. Introduction

Android (2024) stands as the predominant operating system within 
the mobile ecosystem with a market share of more than 70 %. One of the 
key attractions is the availability of the numerous and diverse applica-
tions in the android ecosystem. Unfortunately, malicious actors create 
malicious applications to gain financial benefits through data theft, 
ransomware, etc. Kaspersky (2024) recently reported blocking 33.8 
million malware attacks in 2023. Google Play Protect (2024) is designed 
to secure the android ecosystem from potentially harmful applications. 
However, another report by Kaspersky (2023) suggests that Google 
recently removed 43 malicious applications with 2.5 + million 

downloads from its Play Store. Many users often employ anti-virus 
software to safeguard their devices. These anti-virus heavily rely on 
signatures, rules and other methods to identify potentially harmful ap-
plications. Despite these measures, android devices remain vulnerable to 
modern new-age malware threats.

Recent research suggests that machine learning (ML) and deep 
learning (DL) techniques in malware detection systems can offer a so-
lution against new-age malware attacks. Arp et al. (2014) utilised static 
features, such as permissions, APIs and intents extracted from android 
applications and developed a security system using support vector ma-
chines surpassing the performance of several antivirus solutions. 
Rathore et al. (2020) extracted opcode frequencies from android 
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applications using static analysis. They proposed malware detection by 
combining clustering and classification models. Zhu et al. (2020) pro-
posed the SEDMDroid framework, which combines principal component 
analysis, multi-layer perceptrons, and support vector machines to attain 
an accuracy of 94.92 %. Zhang et al. (2023) introduced the Tsdroid 
framework, leveraging temporal and spatial metrics within the context 
of the IoMT for malware detection. ML and DL models have become a 
viable option with increasing data availability in the security domain. 
They can be integrated with existing methods to form a superior security 
system.

Recent studies in fields like computer vision and natural language 
processing have shown that machine learning and deep learning solu-
tions can be deceived by making small perturbations to the input data. 
These are called adversarial attacks and are designed to induce misclas-
sification in a classification system by introducing adversarial samples in 
the system. Many research works like Goodfellow et al. (2014), Ilyas 
et al. (2019), Zhang et al. (2020) and Pal et al. (2024) have attempted to 
explain the existence of adversarial samples due to high-dimensional 
geometry of models, adversarial spheres, limitations of models, test 
error, and the presence of noise. Papernot et al. (2016) showed that 
adversarial samples sometimes exhibit the property of transferability. 
This means that adversarial samples that deceive one classifier often 
tend to deceive other classifiers and generalize effectively across 
different classes of models. These adversarial attacks can drastically 
decrease the performance of classification systems, sometimes making 
them unusable in the real world.

Adversarial attacks are of two primary forms: evasion attack and 
poisoning attack. Evasion attack involves the attacker adversarially per-
turbing the input samples with the aim to increase the rate of false- 
negative and/or false-positive. In a poisoning attack, the adversary tampers 
with the training data with the aim to skew the classification model it-
self. These attacks can be either targeted or indiscriminate. In a targeted 
attack, the adversary focuses on a specific sample and/or class in a 
system. On the other hand, in an indiscriminate attack, the adversary 
targets a general set of samples/classes in a system. Depending on the 
adversary’s knowledge and capabilities concerning the target system, 
adversarial attacks unfold in three scenarios: white-box, grey-box, and 
black-box. In a white-box scenario, the adversary possesses complete 
knowledge of the dataset, feature vector, and classifier used by the target 
system. In a grey-box scenario the adversary has partial knowledge of 
some of these parameters. Finally, in a black-box scenario, the attacker 
lacks any information about the target system’s parameters. Most of the 
existing literature concentrates on white-box scenarios, which may not 
fully mirror real-world conditions.

This work aims to develop adversarially robust ML and DL models for 
effectively identifying malicious android applications. We first created a 
balanced dataset of malicious applications (AMD dataset) and benign 
applications (Google Play Store verified by Virus-total). We then created 
28 distinct models for malware detection using four classes of algorithms 
(machine learning, deep neural network (DNN), bagging, and boosting) 
and two kinds of features. We performed exhaustive feature analysis to 
identify relevant features for detection and identified hierarchical re-
lationships between malware families. Subsequently, we assumed an 
adversary’s role to investigate the robustness of the above models and 
formulated a novel targeted false-negative evasion attack titled Gradient 
Based K Perturbation Attack (GBKPA). We design this attack for a grey- 
box knowledge scenario, assuming knowledge of the dataset and 
feature vector but not of the model architecture. GBKPA attempts to 
craft malicious adversarial samples by making minimal perturbations 
without violating the syntactic and functional structure of the applica-
tion. We assess the robustness of various classification algorithms 
against GBKPA and introduce the transferability score metric (ranging 
from 0 to 1) to measure the transferability of adversarial samples. We 
analyse their transferability and provide an explanation using the sim-
ilarities and differences in feature usage across different model classes. 
Finally, we implement our defence mechanism AuxShield to create 

robust malware detection models that can effectively guard against 
adversarial attacks. The major contributions of our study are as follows:

● Feature Usage and Malware Family Analysis: We build 28 distinct 
malware detection models using four classes of classification algo-
rithms and two features. We identified the top features (android 
permissions and intents) utilised by different detection models. 
Additionally, we provide hierarchical relationships of 10 malware 
families based on feature space similarities.

● GBKPA Adversarial Attack: We introduce Gradient Based K Pertur-
bation Attack (GBKPA), a targeted false-negative evasion attack that 
generates adversarial malware applications for a grey-box knowl-
edge scenario. It accomplished an average fooling rate of 77 %, 
making at most five perturbations against 28 malware detection 
models. We also provide a list of the android permissions and intents 
that are most susceptible to exploitation by malicious actors in the 
design of adversarial malware applications.

● Transferability: We investigated the transferability of adversarial 
samples by examining the similarity in feature usage among different 
malware detection models. Our results indicate that the higher 
transferability score of 1.0 between DNNs, compared to an average 
score of 0.88 between DNNs and tree-based models, can be attributed 
to the greater similarity in feature usage among DNNs.

● Adversarial Defence: We proposed a defence strategy AuxShield, a 
two-level hierarchical security mechanism based on an auxiliary 
model and adversarial retraining. It reduced the average fooling rate 
from 77 % to 3.25 % in 28 malware detection models.

The subsequent sections of this paper are as follows: Section 2 presents 
the framework, providing insights into its background, problem defini-
tion, GBKPA evasion attack, transferability, and AuxShield defence 
strategy. Section 3 outlines the experimental setup, while Section 4
delves into the experimental findings. Section 5 discusses existing 
literature, offering a comparative analysis with existing works. Finally, 
Section 6 offers concluding remarks and outlines the future scope of this 
study.

2. Overview and framework

This section covers the framework for creating robust malware 
detection models, the problem definition, the proposed evasion attack 
GBKPA, transferability, and the defence mechanism AuxShield.

2.1. Framework

Fig. 1 outlines the framework to build robust malware detection 
models with GBKPA, transferability analysis, and AuxShield. Step-1 
involved crafting balanced datasets with benign and malicious android 
applications. In Step-2, we extracted two static features (permissions 
and intents) for each sample in the dataset and built 28 classification 
models. In Step-3, we analysed the important features of each of the 28 
models and performed malware family analysis. In Step-4, we performed 
the GBKPA attack using a deep neural network as the surrogate model. 
After crafting the adversarial samples, we evaluated the fooling rate of 
each classification model. In Step-5, we analysed the transferability of 
adversarial samples against different detection models. Finally, in Step- 
6, we deploy the adversarial defence mechanism AuxShield to fortify the 
malware detection model against adversarial attacks.

2.2. Problem definition and background

Consider a balanced dataset containing both benign and malicious 
android applications. The dataset D having n android applications X, will 
be represented using m features and class label Y as follows: 
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D = {(Xi,Yi)|i ∈ 1…n}
where Xi = {x1

i ,…, xm
i } and Yi ∈ {0,1}

(1) 

A classification model aims to learn a function F: X → Y such that F 
(Xbenign) = 0 and F(Xmal) = 1. A classification model searches for optimal 
hyperparameters to find the best function to accurately predict the true 
class label.

The adversary (malware designer) can design an adversarial attack 
with the aim to cause misclassifications in the classification model (F) by 
making perturbations (δ) in the applications. 

Xiadv = Xi + δ such that F(Xi) ∕= F(Xiadv ) (2) 

An adversarial defence strategy aims to create a robust model F′ such 
that Fʹ(Xi) = Fʹ(Xiadv ) effectively safeguarding against attackers with 
malicious intent.

2.3. Gradient Based K Perturbation Attack

We introduce a novel targeted false-negative evasion attack titled 
Gradient Based K Perturbation Attack (GBKPA) for a grey box knowledge 
scenario. We assume the attacker has knowledge/access to the dataset 
and feature vectors but lacks knowledge of the model architecture, and 
aims to perturb a correctly classified malware sample m to create an 
adversarial sample m′ that can evade detection by the ML/DL model. 
GBKPA is designed to minimize perturbations without violating the 
syntactic and functional structure of the application.

The adversary begins by constructing a surrogate deep neural network 
with a binary cross-entropy loss function using the dataset D. The DNN 
adjusts its parameters to minimise the loss function as defined by: 

Loss = −y*log(p) − (1 − y)*log(1 − p) (3) 

In this equation, y denotes the class label, while p represents the 
predicted probability of the sample belonging to the malware class.

Given a malicious sample m, the attacker aims to maximize the loss 
function L(x, y) by iteratively perturbing the features with the highest 
impact on the loss. A larger loss value indicates a reduction in the effi-
cacy of the classification model. Algorithm 1 provides the GBKPA 
pseudocode for generating adversarial samples. The steps involved are 
as follows:

1. Compute Partial Derivatives: Compute the partial derivatives of 
the loss function L(x, y) for features where xi = 0: 

gi =
∂L
∂xi

(4) 

2. Select and Perturb Features: Among the features with xi = 0, select 
the feature with the largest gi. Set this feature to 1. Perturbing the 
feature with the largest partial derivative will result in the most 
substantial increase in the loss function. By only adding to the pre- 
existing permissions and intents, we ensure the permissions and in-
tents required for the functioning and malicious nature of the 
android application are unaffected, thereby ensuring application 
integrity.

3. Iterate until Misclassification or Limit Reached: Repeat this 
process K times or until the sample is misclassified by the grey-box 
model.

We used a DNN with 5 hidden layers of 512, 256, 128, 64, and 32 
neurons as the surrogate model.

2.4. Transferability

Adversarial samples designed to evade one model may evade others 
due to shared vulnerabilities in learned features. This phenomenon is 
known as transferability.

For a given sample m, if we have a grey-box model F1, we can build a 
surrogate model F2 and use that to craft an adversarial sample m′. 
Szegedy et al. (2013) showed that due to transferability, it is likely that: 

F1(m) ∕= F1(mʹ) since F2(m) ∕= F2(mʹ)

Thus, the adversarial sample m′, designed to fool the surrogate model F2, 
will also successfully fool the original model F1. This effectively trans-
forms a grey-box scenario, where the architecture details of model F1 are 
unknown, into a semi white-box scenario, enabling us to generate 
adversarial samples for F1 using the knowledge of F2. Similarities in 
adversarial direction (Kurakin et al. (2018)) and feature usage (Ilyas 
et al. (2019)) leads to F1 and F2 being alike resulting in transferability: 

F1 ≈ F2 (5) 

Fig. 1. Framework for building robust malware detection models with GBKPA, transferability analysis and AuxShield
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Algorithm 1. Gradient Based K Perturbation Attack 

2.5. Defence strategy - AuxShield

We propose a novel defence strategy AuxShield that employs a two- 
level hierarchical malware detection system to enhance security 
against adversarial and malicious inputs. The first level of the defence 
strategy is a classification model C1 which is responsible for determining 
if the input sample x is adversarial. The second level C2 is responsible for 
distinguishing between malicious and benign samples. Utilising two 
layers allows for the flexibility of selecting different model architectures 
for each level. Alternatively, a single multiclass classification model 
with an additional class for adversarial samples could be used as a de-
fense strategy. If C1 deems the input sample x to be adversarial (C1(x) =
adversarial), the sample is then promptly marked as malicious: 

C1(x) =
{

adversarial →malicious
non − adversarial →proceed to C2

(6) 

If C1 determines the input to be non-adversarial, the second-level 
classification system C2 is invoked. In this framework, C1 is trained on 
a dataset D1 consisting of adversarial samples (xadv, yadv), non- 
adversarial malicious samples (xmal, ynon-adv), and benign samples 
(xben, ynon-adv). 

C2(x) =
{

malicious
benign (7) 

The classifier at the second level, C2, undergoes adversarial retraining. 
This means it is trained on a balanced dataset D2 containing adversarial 
samples xadv labelled as malicious (ymal), along with traditional benign 
(xben) and malicious (xmal) applications: 

D 2 = {(xben, yben), (xmal, ymal), (xadv, ymal)} (8) 

By exposing C2 to adversarial samples during training, it becomes 
more robust to such inputs during real-world operations. AuxShield thus 
provides a dual-layered security mechanism: an auxiliary model (C1) to 

detect and handle adversarial samples, and an adversarially retrained 
robust classifier (C2) to accurately determine whether the input is ma-
licious or benign.

3. Experimental setup

This section details the process of dataset creation, feature extrac-
tion, classification algorithms and evaluation metrics employed in the 
paper.

3.1. Data collection

Wei et al. (2017) from Argus Lab curated the Android Malware Dataset 
(AMD), comprising 24, 650 malicious android applications from 135 
distinct types spanning 71 malware families. These malicious applica-
tions threaten users’ privacy and device security. We collected android 
applications from the Google Play Store and confirmed their benign status 
using VirusTotal to compile the benign dataset. Applications were 
labeled as benign only if they received a non-malicious classification 
from all 50 + antivirus scans provided by VirusTotal. The benign sam-
ples, acquired from the Google Play Store and verified through Viru-
sTotal, were merged with the malware samples from the AMD dataset to 
create an extensive dataset for our experiments. This consolidated 
dataset consists of 24, 482 malicious android applications representing 
71 malware families (after removing corrupted malicious applications), 
along with 25, 407 benign android applications.

3.2. Feature extraction

We extracted two kinds of features, namely android permission and 
android intent, using static analysis for each sample in the above dataset 
(refer to Rathore et al. (2021a, 2023a)). Android Permissions are access 
rights that an application must obtain before accessing certain device 
features in the android ecosystem. Similarly, Android Intents are 
messaging objects used to request action from another component of the 
android ecosystem. Using APKTool, we decompiled the android appli-
cations and parsed the AndroidManifest.xml file to extract android per-
missions and android intents utilised by the applications. Finally, we 
created two feature vectors: android permission feature vector with 195 
features and android intent feature vector with 273 features.

3.3. Classification algorithms

Table 1 presents a list of 14 classification algorithms that have been 
used in this work. These algorithms are drawn from four distinct classes: 
machine learning, bagging-based methods, boosting-based methods, 

Table 1 
Classification algorithms.

Category Classification Algorithm

Machine Learning Logistic Regression (LR) 
Bernoulli Naive Bayes (NB) 
Decision Trees (DT) 

Bagging Decision Tree based Bagging (BG) 
Random Forest (RF) 
Extra Trees (EX) 

Boosting Gradient Boosting (GB) 
Adaptive Boosting (AB) 
eXtreme Gradient Boosting (XG) 

Deep 
Neural Network 
(DNN) 

DNN with 1 hidden layers (DNN1) 
DNN with 2 hidden layers (DNN2) 
DNN with 3 hidden layers (DNN3) 
DNN with 4 hidden layers (DNN4) 
DNN with 5 hidden layers (DNN5) 
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and deep neural networks.

3.4. Evaluation metrics

In our experiments, we have employed the following evaluation 
metrics. We designated malware samples as the positive class and benign 
samples as the negative class.

● True Positive (TP): Malware samples correctly classified as the posi-
tive class.

● True Negative (TN): Benign samples correctly classified as the nega-
tive class.

● False Positive (FP): Benign samples falsely classified as the positive 
class.

● False Negative (FN): Malware samples falsely classified as the nega-
tive class.

● True Positive Rate (TPR): ratio of true positives to the no. of positive 
samples.

● False Positive Rate (FPR): ratio of false positives to the no. of negative 
samples.

● Accuracy: percentage of samples correctly classified by the model. 

Accuracy = TP + TN
TP + TN + FP + FN

× 100 (9) 

● AUROC: Area under the ROC curve (plot of TPR vs FPR at various 
thresholds).

● Fooling Rate (FR): This metric represents the percentage of successful 
misclassifications among the adversarial samples (M’), accounting 
for false negatives that naturally occur due to limitations of the 
model. FR is a measure of effectiveness of an adversarial attack. 

FR = max
(

FNMʹ − FNval

Num(Mʹ) − FNval
× 100%,0%

)
(10) 

TS =
FRgrey−box

FRsurrogate
(11) 

● Transferability Score (TS): It is the ratio of FR on the grey-box model 
to the FR on the surrogate model used to generate the adversarial 
samples. It is a measure of the transferability of adversarial samples 
from the surrogate model to the grey-box model.

● Evasion Cost: Evasion cost defined by Chen et al. (2017) measures 
the expense incurred by attackers when implementing perturbations 
during an attack. It costs 0.5 to include permissions and intents, 0.4 
to introduce API calls and new instances, and 0.95 to eliminate 
permissions and intents. Removing API calls and new instances in-
curs a cost of 0.7.

4. Experimental results

This section begins by examining the performance and feature uti-
lisation of the base classification models. Subsequently, we analyse the 
hierarchical relationships between malware families, the performance 
and transferability of GBKPA, and the effectiveness of AuxShield.

4.1. Baseline malware detection models

We created 28 distinct models utilising 14 classification algorithms 
and 2 feature vectors. Fig. 2 illustrates the accuracy of the 14 classifi-
cation algorithms using android permissions (L) and android intents (R). 
The y-axis denotes the model accuracy, while the x-axis indicates the no. 
of features utilised by the model.

Using Permissions: On average, utilising 195 android permissions, the 
models accomplished an accuracy of 94.48 % and an AUROC score of 
0.98. The baseline random forest model using 195 android permissions 
accomplished the maximum accuracy of 95.95 %, while the naive bayes 
model attained the least accuracy of 88.27 %. The random forest model 
based on 195 android permissions also obtained the highest AUROC 
score of 0.99, while naive bayes attained the lowest score of 0.96.

Using Intents: On average, utilising 273 android intents, the models 
accomplished an accuracy of 84.82 % and an AUROC score of 0.92. The 
baseline random forest model using 273 android intent accomplished 
the maximum accuracy of 86.08 % while naive bayes attained the least 
accuracy of 80.51 %. Similarly, the random forest model based on 273 
android intents achieved the highest AUROC score of 0.94 while naive 
bayes attained the lowest score of 0.88.

Overall, the baseline permissions-based malware detection models 
outperformed the baseline intent-based models at encoding information 
and helped build more accurate malware detection models. Most base-
line permissions-based models achieved 90–95 % accuracy, while 
intents-based models attained 80–85 % accuracy.

4.2. Accuracy vs number of features

The baseline malware detection models based on permissions and 
intents were constructed using 195 and 273 features, respectively. For 
each of the 28 baseline models, we estimated the importance of each 
feature using various methods. For example, In the logistic regression 
models, we used weights to estimate the importance of features. Simi-
larly, in naive bayes models, we used mutual information with the class 
labels to determine important features. For tree-based models, we 
measured feature importance using the normalised reduction of the 
impurity criterion. In deep neural network models, we estimated 
important features by calculating the mean of the absolute values of the 
partial derivatives of the loss function for each feature, over all samples 
in the dataset.

Fig. 2 shows the accuracy of the 28 baseline models on the y-axis 
using K top android permissions (L) and intents (R). The no. of features 
used by the models is shown on the x-axis. Considering only the top 1, 5, 

Fig. 2. The accuracy of 14 classification algorithms utilising the top K android permissions (L) and android intents (R).
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and 10 features, we accomplished an average accuracy of 67 %, 72 %, 
and 79 % for the permission-based models and 62 %, 70 %, and 73 % for 
the intent-based models, respectively. The ML-based models attained an 
average accuracy of 71 %, 74 %, and 88 % using the top 1, 5, and 10 
permissions and 62 %, 70 %, and 73 % with the top 1, 5, and 10 intents, 
respectively. Bagging-based models outperformed the other model 
classes and attained an average accuracy of 80 %, 84 %, and 90 % using 
1, 5, and 10 permissions and 66 %, 80 %, and 88 % with intents. 
Boosting-based models attained an average accuracy of 73 %, 86 %, and 
89 % using 1, 5, and 10 permissions and 53 %, 55 %, and 61 % with 
intents. DNNs attained an average accuracy of 71 %, 74 %, and 88 % 
using 1, 5, and 10 permissions and 57 %, 60 %, and 61 % with intents. 
The above results indicate that the top 5–10 features are sufficient to 
detect malware accurately. Additionally, these feature can be utilised to 
create rule-based security systems to complement the ML/DL-based se-
curity system.

4.3. Top features for detecting malware

With 10 features, models achieve significant accuracies. Table 2
shows the top 10 most important and frequently used android permis-
sions and intents by the models. The permission android.permission. 
REQUEST_INSTALL_PACKAGES and the intent android.intent.category. 
LEANBACK_LAUNCHER were considered important by 13 out of the 14 
malware detection algorithms. Each of the top 10 android permissions 
and intents were used by at least 5 and 6 classification algorithms 
respectively, contributing to transferability.

4.4. Malware family analysis

We analyse the malware families from the AMD dataset containing 
more than 500 samples: Airpush, Youmi, DroidKungfu, Mecor, FakeInst, 
Jisut, Bankbot, Dowgin, Kuguo, and Fusob. Fig. 3a shows a dendrogram 
illustrating the hierarchical relationships among these malware families 
based on similarities in permissions and intents. The y-axis indicates 
distances between clusters, while the x-axis denotes families. A K- 
Nearest Neighbors model was used to calculate the mean distance be-
tween a pair of families. A linkage matrix was calculated using the Ward 
method, based on the normalised distance between each pair of families, 
to generate the dendrogram. The dendrogram notably highlights three 
prominent clusters: (Dowgin, Kuguo), (Mecor, DroidKungFu, Airpush, 
Youmi), and (FakeInst, Jisut). Here, Fusob and Bankbot stand out as 

outliers and are the furthest from these three clusters. Following this 
exploratory family analysis, we plan to investigate family-specific at-
tacks that integrate traditional obfuscation attacks with adversarial at-
tacks in the future.

4.5. Similarity in feature usage with surrogate model

Most model accuracies reach saturation with the 20 most important 
features. Fig. 3b demonstrates the percentage of top 20 features common 
with the surrogate model along the y-axis, with each model represented 
along the x-axis. DNNs exhibit an average similarity of 88 % for per-
missions and 83 % for intents with the surrogate model. The machine 
learning methods show an average similarity of 33 % for permissions 
and 27 % for intents, the bagging-based methods show an average 
similarity of 25 % for permissions and 15 % for intents and the boosting- 
based methods show an average similarity of 28 % for permissions and 
22 % for intents. Tree-based models show an average similarity of 26 % 
with permissions and 18 % with intents. The difference in similarity of 
important features across classes occurs due to the difference in learning 
methods of these classes. DNNs demonstrate the highest similarity, 
trailed by boosting methods, while logistic regression predominantly 
contributes to the higher averages observed in ML methods. Conversely, 
traditional decision trees and bagging-based methods display the lowest 
similarity.

4.6. Adversarial attack and fooling rate

The underlying classification model can incorrectly classify mali-
cious samples as benign, leading to False Negatives. GBKPA aims to 
efficiently cause minimal perturbations to the malicious samples in the 

Table 2 
Top ten most significant android permissions (T) and intents (B) for detecting 
malware.

Android Permission

android.permission.REQUEST_INSTALL_PACKAGES
android.permission.READ_PHONE_STATE
android.permission.SEND_SMS
android.permission.READ_EXTERNAL_STORAGE
com.android.launcher.permission.INSTALL_SHORTCUT
android.permission.USE_FINGERPRINT
android.permission.ACCESS_COARSE_LOCATION
android.permission.FOREGROUND_SERVICE
android.permission.GET_TOP_ACTIVITY_INFO
android.permission.MANAGE_DOCUMENTS

Android Intent

android.intent.category.LEANBACK_LAUNCHER
android.intent.action.MY_PACKAGE_REPLACED
android.intent.category.HOME
android.intent.action.USER_PRESENT
android.intent.action.BOOT_COMPLETED
android.intent.action.PACKAGE_ADDED
android.intent.action.VIEW
android.intent.action.APPLICATION_PREFERENCES
android.intent.action.ASSIST
android.intent.category.DEFAULT

Fig. 3. Analysis of malware families and feature usage similarity in detec-
tion models.
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dataset to create adversarial samples that can evade detection by the 
underlying classification models. We conducted the attack on all 28 
classification models using a varying number of perturbations, ranging 
from 1 to 10, observing saturation at 10 perturbations. Fig. 4 depicts the 
fooling rate attained by GBKPA on the y-axis with the no. of perturba-
tions depicted on the x-axis for each model.

GBKPA with 1 Perturbation: With 1 perturbation and an evasion cost 
of 0.5, GBKPA achieved an average fooling rate of 35 % and 46 % against 
models using permissions and intents respectively. Against ML-based 
models using permissions and intents, the average fooling rate was 33 
% and 43 % respectively. Against bagging-based models using permis-
sions and intents, the average fooling rate was 15 % and 40 % respec-
tively. Against boosting-based models using permissions and intents, the 
average fooling rate was 30 % and 47 % respectively. Against DNNs 
using permissions and intents, the average fooling rate was 50 % and 53 
% respectively.

GBKPA with 5 Perturbations: With 5 perturbations and an evasion cost 
of 2.5 perturbations, GBKPA achieved an average fooling rate of 70 % 
and 84 % against models using permissions and intents, respectively. 
Against machine learning (ML)-based models using permissions and 
intents, the average fooling rate was 68 % and 83 %, respectively. 
Against bagging-based models using permissions and intents, the 
average fooling rate was 59 % and 80 %, respectively. Against boosting- 
based models using permissions and intents, the average fooling rate 
was 70 % and 83 %, respectively. Against deep neural network (DNN) 
models using permissions and intents, the average fooling rate was 78 % 
and 86 %, respectively. Against tree-based models using permissions and 
intents, the average fooling rate was 61 % and 82 %, respectively. 
Notably, decision trees were more robust compared to other models in 
the machine learning class with a fooling rate of 55 % and 80 % against 
permissions and intents, respectively. Models using permissions 
demonstrated greater adversarial robustness compared to models using 
intents.

Comparison with Surrogate: GBKPA achieves 78 % and 86 % fooling 
rates against the surrogate model after 10 perturbations using android 
permissions and intents, respectively. Its performance against base 
models yields an average fooling rate of 70 % and 84 %, showing 
comparable efficacy to a white-box attack in a grey-box scenario.

4.7. Perturbation Lists

To identify the most frequently perturbed permissions and intents, 
we generate samples with 5 perturbations. Table 3 presents the top five 
permissions and intents that modified most frequently by GBKPA. The 
top permission and intent were perturbed in 82 % and 61 % of the 
samples, respectively, while the top three permissions and intents were 
perturbed in 45 % and 24 % of the samples on average, respectively. 
These perturbed permissions and intents contribute to imparting a 
benign appearance to the malicious samples, aiding in masking their 
true malicious nature. Potential attackers can exploit these features to 
evade ML and DL classifiers.

4.8. Transferability scores

Transferability scores were computed for different models after 
conducting the attack with 10 perturbations. These scores help gauge 
the transferability of adversarial samples from the surrogate model to 
the grey-box model. Fig. 6 presents the transferability scores for each 
model, with the y-axis representing the scores and the x-axis denoting 
the models.

Android Permissions: Using permissions, the average transferability 
scores for ML-based methods, bagging-based methods, boosting-based 
methods and DNN’s were 0.87, 0.76, 0.90 and 1 respectively.

Android Intents: Using intents, the average transferability scores for 
Ml-based methods, bagging-based methods, boosting-based methods 
and DNN’s were 0.97, 0.94, 0.97, and 1 respectively.

Against tree-based models the average transferability score was 0.81 
and 0.95 using permissions and intents, respectively. Noticeably, in the 
class of ML-models decision trees scored significantly less than other 
models, with scores of 0.71 and 0.94 with permissions and intents 
respectively. GBKPA aims to efficiently craft adversarial samples that 
evade the classifier by perturbing the features considered most impor-
tant by the surrogate model. The transferability of adversarial samples 
can be attributed to the similarity in feature usage, as demonstrated in 
Sections 4.2 and 4.3. DNNs exhibit the highest average transferability 
scores, followed by boosting-based methods. This can be explained by 
the higher similarity of feature usage with the surrogate model, as dis-
cussed in Section 4.5.

4.9. AuxShield

We reinforce our base models using the AuxShield defence strategy. 
Employing random forest, gradient boosting, and a DNN as grey-box 
models, we generate adversarial samples with 1–10 max perturbations 
using GBKPA. To detect if the input is adversarial, we build a Random 
Forest model using these samples along with additional malicious and 
benign samples from our training dataset, constituting the first level of 
AuxShield. The second level involves adversarially retraining the 
aforementioned base models, enhancing their robustness. In Fig. 5, 
GBKPA’s fooling rate is plotted on the y-axis against the number of 
perturbations on the x-axis for each model after implementing Aux-
Shield. In permissions (L), values are ≤ 1%, resulting in lines close to the 
x-axis.

The models show a difference of ± 3 % in accuracy and AUROC 
scores after implementing AuxShield. After 10 perturbations, the models 
show an average fooling rate (FR) of 0.11 % and 6.4 % with permissions 
and intents, respectively. This signifies a substantial improvement from 
the previous FR of 70 % and 84 %, respectively. ML-based models 
exhibit an average FR of 0.09 % and 9 % with permissions and intents, 
respectively. Bagging-based models demonstrate an average FR of 0.08 
% and 8 % with permissions and intents, respectively. Boosting-based 
models exhibit an average FR of 0.18 % and 8 % with permissions and 
intents, respectively. DNNs display an average FR of 0.09 % and 3 % 

Fig. 4. Fooling rate of GBKPA against different classification algorithms using android permissions (L) and intents (R).
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with permissions and intents, respectively. Tree-based models show an 
average FR of 0.1 % and 8 % with permissions and intents, respectively. 
Against permissions and intents-based models, the highest FR was 0.35 
% (against AdaBoost) and 17 % (against DT), respectively.

5. Related work

Table 4 presents the current literature on adversarial robustness and 
transferability of adversarial malicious android applications. Grosse 
et al. (2017) presented a gradient-based white box approach to craft 
adversarial samples against neural networks and obtained a fooling rate 
of 65.48 %. Chen et al. (2017) also devised an attack for a white-box 
scenario utilising information gain to rank the features, achieving an 
average fooling rate of 84 %. However, these attacks did not represent 
the real-world scenario, as the attacker typically lacks access to the 
classifier’s internal mechanisms. Nevertheless, these studies laid the 
foundation for subsequent research focusing on grey-box scenarios that 
represent a more realistic scenario in the real world. Several works like 
Taheri et al. (2020), Sewak et al. (2020), Cara et al. (2020), Rafiq et al. 

(2022) and Rathore et al. (2023b) tried to address these research gaps 
and obtained average fooling rates of 27 %, 90 %, 44.23 %, and 59 % 
respectively in grey-box scenarios. However, many of these studies did 
not assess the attack’s effectiveness across various model classes or 
discuss the transferability of adversarial samples. Additionally, they did 
not provide a comprehensive list of perturbations that could serve as 
potential vulnerabilities for evading models. Moreover, defence strate-
gies in the existing literature did not significantly reduce the fooling rate 
to below 15 %.

We address the limitations of the existing literature in our work. Our 
work attains a relatively high average fooling rate of 77 % for a grey-box 
scenario while making minimal perturbation to ensure the least evasion 
cost. Additionally, we construct a varied set of models to assess our 
attack and explain the transferability of adversarial samples. We also 
provide a list of potential perturbations that effectively conceal the 
malicious properties of malware samples. We also introduce a dual- 
layered security mechanism called AuxShield to counter these adver-
sarial attacks, which significantly reduced the average fooling rate to 
0.11 % for permissions and 6.4 % for intents.

Table 3 
Top five frequently perturbed permissions (L) and intents (R) by GBKPA.

Android Permission % of 
Samples 

Android Intent % of 
Samples 

android.permission.REQUEST_INSTALL_PACKAGES 82.37 android.intent.category.LEANBACK_LAUNCHER 60.87
android.permission.FOREGROUND_SERVICE 35.66 android.intent.action.MY_PACKAGE_REPLACED 5.75
android.permission.GET_TOP_ACTIVITY_INFO 15.70 android.intent.action.SCREEN_OFF 4.88
android.permission.USE_FINGERPRINT 11.05 android.intent.action.ACTION_SHUTDOWN 4.42
android.permission.SYSTEM_ALERT_WINDOW 6.21 android.intent.action.PACKAGE_REPLACED 2.59

Fig. 5. Fooling rate of GBKPA against different classfication algorithms using android permissions (L) and intents (R) after implementing AuxShield defence.

Fig. 6. Transferability scores of baseline classification algortihms using android permissions and intents against GBKPA.
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6. Conclusion and future work

Researchers have begun studying the efficacy of ML/DL techniques 
in detecting malware. However, these models face significant chal-
lenges, including vulnerability to adversarial attacks and concerns 
regarding their robustness.

This study evaluated the adversarial robustness of 28 distinct ML/DL 
models, constructed using classification algorithms spanning four 
distinct classes, alongside two separate features (permissions and in-
tents) extracted from android applications. These models demonstrated 
high average accuracies of 94.5 % and 84.5 % for permission-based and 
intent-based models, respectively, highlighting their effectiveness in 
detecting malicious android applications. Following that, we introduced 
Gradient Based K Perturbation Attack (GBKPA) to evaluate the adversarial 
robustness of these models. GBKPA demonstrated significant fooling 
rates, achieving 70 % against models using permissions and 84 % against 
models using intents. This highlights the susceptibility of these ML/DL 
models to adversarial attacks. Furthermore, we identified the vulnerable 
permissions and intents. DNNs showed higher transferability with the 
surrogate model (average score of 1) than other models (average score of 
0.9), likely due to differing feature reliance across classes and similar-
ities within the same class. Finally, we implemented AuxShield and 
reduced the average fooling rate to 0.11 % and 6.4 % against permission 
and intent based models, respectively.

Our study highlights the need for further analysis of transferability’s 
causation and implications, alongside developing innovative adversarial 
defences. However, we focused on a grey-box scenario and did not 
explore pure black-box scenarios, alternative feature vectors beyond 
permissions and intents, or family-specific attacks. Future research 
could comprehensively investigate these aspects and explore trans-
ferability across different datasets, proposing effective defences. This 
research underscores the importance of addressing vulnerabilities and 
limitations in ML/DL models within the evolving security landscape.
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Proposed work versus state-of-the-art in existing literature.

Existing 
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Attack 
Scenario
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Perturbed

Evasion 
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# of Model 
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Feature Usage 
Analysis

Average 
FR

Pertub 
Lista

Transfer 
Analysisb

Adversarial Defence

Grosse et al. 
(2017)

White Box 36 % 9 1 No 65.48 No No Adversarial Retraining and 
Defensive Distillation

Chen et al. 
(2017)

White Box 5.39 % 25 1 No 84 No No SecureDroid

Taheri et al. 
(2020)

Grey Box 20 % 30 2 No 27 No No Adversarial Retraining and 
GAN

Cara et al. 
(2020)

Grey Box 100 % 80 1 No 90 Yes No No

Rathore et al. 
(2021b)

Grey Box 2.56 % 2.5 4 No 44.23 No No Adversarial Retraining

Rafiq et al. 
(2022)

Grey Box 3.96 % N.A. 1 No 59 No No No

Proposed Work Grey Box 1.83 %–2.56 % 2.5 4 Yes 77 Yes Yes AuxShield

a Perturbation List.
b Transferability Analysis.
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