
DFRWS APAC 2024 - Selected Papers from the 4th Annual Digital Forensics Research Conference APAC

GBKPA and AuxShield: Addressing adversarial robustness and
transferability in android malware detection

Kumarakrishna Valeti, Hemant Rathore *

Dept. of CS & IS, Goa Campus, BITS Pilani, India

A R T I C L E I N F O

Keywords:
Android
Deep learning
Malware
Machine learning
Robustness
Transferability

A B S T R A C T

Android stands as the predominant operating system within the mobile ecosystem. Users can download appli-
cations from official sources like Google Play Store and other third-party platforms. However, malicious actors can
attempt to compromise user device integrity through malicious applications. Traditionally, signatures, rules, and
other methods have been employed to detect malware attacks and protect device integrity. However, the
growing number and complexity of malicious applications have prompted the exploration of newer techniques
like machine learning (ML) and deep learning (DL). Many recent studies have demonstrated promising results in
detecting malicious applications using ML and DL solutions. However, research in other fields, such as computer
vision, has shown that ML and DL solutions are vulnerable to targeted adversarial attacks. Malicious actors can
develop malicious adversarial applications that can bypass ML and DL based anti-viruses. The study of adver-
sarial techniques related to malware detection has now captured the security community’s attention. In this
work, we utilise android permissions and intents to construct 28 distinct malware detection models using 14
classification algorithms. Later, we introduce a novel targeted false-negative evasion attack, Gradient Based K
Perturbation Attack (GBKPA), designed for grey-box knowledge scenarios to assess the robustness of these models.
The GBKPA attempts to craft malicious adversarial samples by making minimal perturbations without violating
the syntactic and functional structure of the application. GBKPA achieved an average fooling rate (FR) of 77 %
with only five perturbations across the 28 detection models. Additionally, we identified the most vulnerable
android permissions and intents that malicious actors can exploit for evasion attacks. Furthermore, we analyse
the transferability of adversarial samples across different classes of models and provide explanations for the
same. Finally, we proposed AuxShield defence mechanism to develop robust detection models. AuxShield
reduced the average FR to 3.25 % against 28 detection models. Our findings underscore the need to understand
the causation of adversarial samples, their transferability, and robust defence strategies before deploying ML and
DL solutions in the real world.

1. Introduction

Android (2024) stands as the predominant operating system within
the mobile ecosystem with a market share of more than 70 %. One of the
key attractions is the availability of the numerous and diverse applica-
tions in the android ecosystem. Unfortunately, malicious actors create
malicious applications to gain financial benefits through data theft,
ransomware, etc. Kaspersky (2024) recently reported blocking 33.8
million malware attacks in 2023. Google Play Protect (2024) is designed
to secure the android ecosystem from potentially harmful applications.
However, another report by Kaspersky (2023) suggests that Google
recently removed 43 malicious applications with 2.5 + million

downloads from its Play Store. Many users often employ anti-virus
software to safeguard their devices. These anti-virus heavily rely on
signatures, rules and other methods to identify potentially harmful ap-
plications. Despite these measures, android devices remain vulnerable to
modern new-age malware threats.

Recent research suggests that machine learning (ML) and deep
learning (DL) techniques in malware detection systems can offer a so-
lution against new-age malware attacks. Arp et al. (2014) utilised static
features, such as permissions, APIs and intents extracted from android
applications and developed a security system using support vector ma-
chines surpassing the performance of several antivirus solutions.
Rathore et al. (2020) extracted opcode frequencies from android

* Corresponding author.
E-mail address: hemantr@goa.bits-pilani.ac.in (H. Rathore).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301816

Forensic Science International: Digital Investigation 50 (2024) 301816

Available online 18 October 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:hemantr@goa.bits-pilani.ac.in
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2024.301816
https://doi.org/10.1016/j.fsidi.2024.301816
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2024.301816&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

applications using static analysis. They proposed malware detection by
combining clustering and classification models. Zhu et al. (2020) pro-
posed the SEDMDroid framework, which combines principal component
analysis, multi-layer perceptrons, and support vector machines to attain
an accuracy of 94.92 %. Zhang et al. (2023) introduced the Tsdroid
framework, leveraging temporal and spatial metrics within the context
of the IoMT for malware detection. ML and DL models have become a
viable option with increasing data availability in the security domain.
They can be integrated with existing methods to form a superior security
system.

Recent studies in fields like computer vision and natural language
processing have shown that machine learning and deep learning solu-
tions can be deceived by making small perturbations to the input data.
These are called adversarial attacks and are designed to induce misclas-
sification in a classification system by introducing adversarial samples in
the system. Many research works like Goodfellow et al. (2014), Ilyas
et al. (2019), Zhang et al. (2020) and Pal et al. (2024) have attempted to
explain the existence of adversarial samples due to high-dimensional
geometry of models, adversarial spheres, limitations of models, test
error, and the presence of noise. Papernot et al. (2016) showed that
adversarial samples sometimes exhibit the property of transferability.
This means that adversarial samples that deceive one classifier often
tend to deceive other classifiers and generalize effectively across
different classes of models. These adversarial attacks can drastically
decrease the performance of classification systems, sometimes making
them unusable in the real world.

Adversarial attacks are of two primary forms: evasion attack and
poisoning attack. Evasion attack involves the attacker adversarially per-
turbing the input samples with the aim to increase the rate of false-
negative and/or false-positive. In a poisoning attack, the adversary tampers
with the training data with the aim to skew the classification model it-
self. These attacks can be either targeted or indiscriminate. In a targeted
attack, the adversary focuses on a specific sample and/or class in a
system. On the other hand, in an indiscriminate attack, the adversary
targets a general set of samples/classes in a system. Depending on the
adversary’s knowledge and capabilities concerning the target system,
adversarial attacks unfold in three scenarios: white-box, grey-box, and
black-box. In a white-box scenario, the adversary possesses complete
knowledge of the dataset, feature vector, and classifier used by the target
system. In a grey-box scenario the adversary has partial knowledge of
some of these parameters. Finally, in a black-box scenario, the attacker
lacks any information about the target system’s parameters. Most of the
existing literature concentrates on white-box scenarios, which may not
fully mirror real-world conditions.

This work aims to develop adversarially robust ML and DL models for
effectively identifying malicious android applications. We first created a
balanced dataset of malicious applications (AMD dataset) and benign
applications (Google Play Store verified by Virus-total). We then created
28 distinct models for malware detection using four classes of algorithms
(machine learning, deep neural network (DNN), bagging, and boosting)
and two kinds of features. We performed exhaustive feature analysis to
identify relevant features for detection and identified hierarchical re-
lationships between malware families. Subsequently, we assumed an
adversary’s role to investigate the robustness of the above models and
formulated a novel targeted false-negative evasion attack titled Gradient
Based K Perturbation Attack (GBKPA). We design this attack for a grey-
box knowledge scenario, assuming knowledge of the dataset and
feature vector but not of the model architecture. GBKPA attempts to
craft malicious adversarial samples by making minimal perturbations
without violating the syntactic and functional structure of the applica-
tion. We assess the robustness of various classification algorithms
against GBKPA and introduce the transferability score metric (ranging
from 0 to 1) to measure the transferability of adversarial samples. We
analyse their transferability and provide an explanation using the sim-
ilarities and differences in feature usage across different model classes.
Finally, we implement our defence mechanism AuxShield to create

robust malware detection models that can effectively guard against
adversarial attacks. The major contributions of our study are as follows:

● Feature Usage and Malware Family Analysis: We build 28 distinct
malware detection models using four classes of classification algo-
rithms and two features. We identified the top features (android
permissions and intents) utilised by different detection models.
Additionally, we provide hierarchical relationships of 10 malware
families based on feature space similarities.

● GBKPA Adversarial Attack: We introduce Gradient Based K Pertur-
bation Attack (GBKPA), a targeted false-negative evasion attack that
generates adversarial malware applications for a grey-box knowl-
edge scenario. It accomplished an average fooling rate of 77 %,
making at most five perturbations against 28 malware detection
models. We also provide a list of the android permissions and intents
that are most susceptible to exploitation by malicious actors in the
design of adversarial malware applications.

● Transferability: We investigated the transferability of adversarial
samples by examining the similarity in feature usage among different
malware detection models. Our results indicate that the higher
transferability score of 1.0 between DNNs, compared to an average
score of 0.88 between DNNs and tree-based models, can be attributed
to the greater similarity in feature usage among DNNs.

● Adversarial Defence: We proposed a defence strategy AuxShield, a
two-level hierarchical security mechanism based on an auxiliary
model and adversarial retraining. It reduced the average fooling rate
from 77 % to 3.25 % in 28 malware detection models.

The subsequent sections of this paper are as follows: Section 2 presents
the framework, providing insights into its background, problem defini-
tion, GBKPA evasion attack, transferability, and AuxShield defence
strategy. Section 3 outlines the experimental setup, while Section 4
delves into the experimental findings. Section 5 discusses existing
literature, offering a comparative analysis with existing works. Finally,
Section 6 offers concluding remarks and outlines the future scope of this
study.

2. Overview and framework

This section covers the framework for creating robust malware
detection models, the problem definition, the proposed evasion attack
GBKPA, transferability, and the defence mechanism AuxShield.

2.1. Framework

Fig. 1 outlines the framework to build robust malware detection
models with GBKPA, transferability analysis, and AuxShield. Step-1
involved crafting balanced datasets with benign and malicious android
applications. In Step-2, we extracted two static features (permissions
and intents) for each sample in the dataset and built 28 classification
models. In Step-3, we analysed the important features of each of the 28
models and performed malware family analysis. In Step-4, we performed
the GBKPA attack using a deep neural network as the surrogate model.
After crafting the adversarial samples, we evaluated the fooling rate of
each classification model. In Step-5, we analysed the transferability of
adversarial samples against different detection models. Finally, in Step-
6, we deploy the adversarial defence mechanism AuxShield to fortify the
malware detection model against adversarial attacks.

2.2. Problem definition and background

Consider a balanced dataset containing both benign and malicious
android applications. The dataset D having n android applications X, will
be represented using m features and class label Y as follows:

K. Valeti and H. Rathore Forensic Science International: Digital Investigation 50 (2024) 301816

2

D = {(Xi,Yi)|i ∈ 1…n}
where Xi = {x1

i ,…, xm
i } and Yi ∈ {0,1}

(1)

A classification model aims to learn a function F: X → Y such that F
(Xbenign) = 0 and F(Xmal) = 1. A classification model searches for optimal
hyperparameters to find the best function to accurately predict the true
class label.

The adversary (malware designer) can design an adversarial attack
with the aim to cause misclassifications in the classification model (F) by
making perturbations (δ) in the applications.

Xiadv = Xi + δ such that F(Xi) ∕= F(Xiadv) (2)

An adversarial defence strategy aims to create a robust model F′ such
that Fʹ(Xi) = Fʹ(Xiadv) effectively safeguarding against attackers with
malicious intent.

2.3. Gradient Based K Perturbation Attack

We introduce a novel targeted false-negative evasion attack titled
Gradient Based K Perturbation Attack (GBKPA) for a grey box knowledge
scenario. We assume the attacker has knowledge/access to the dataset
and feature vectors but lacks knowledge of the model architecture, and
aims to perturb a correctly classified malware sample m to create an
adversarial sample m′ that can evade detection by the ML/DL model.
GBKPA is designed to minimize perturbations without violating the
syntactic and functional structure of the application.

The adversary begins by constructing a surrogate deep neural network
with a binary cross-entropy loss function using the dataset D. The DNN
adjusts its parameters to minimise the loss function as defined by:

Loss = − y*log(p) − (1 − y)*log(1 − p) (3)

In this equation, y denotes the class label, while p represents the
predicted probability of the sample belonging to the malware class.

Given a malicious sample m, the attacker aims to maximize the loss
function L(x, y) by iteratively perturbing the features with the highest
impact on the loss. A larger loss value indicates a reduction in the effi-
cacy of the classification model. Algorithm 1 provides the GBKPA
pseudocode for generating adversarial samples. The steps involved are
as follows:

1. Compute Partial Derivatives: Compute the partial derivatives of
the loss function L(x, y) for features where xi = 0:

gi =
∂L
∂xi

(4)

2. Select and Perturb Features: Among the features with xi = 0, select
the feature with the largest gi. Set this feature to 1. Perturbing the
feature with the largest partial derivative will result in the most
substantial increase in the loss function. By only adding to the pre-
existing permissions and intents, we ensure the permissions and in-
tents required for the functioning and malicious nature of the
android application are unaffected, thereby ensuring application
integrity.

3. Iterate until Misclassification or Limit Reached: Repeat this
process K times or until the sample is misclassified by the grey-box
model.

We used a DNN with 5 hidden layers of 512, 256, 128, 64, and 32
neurons as the surrogate model.

2.4. Transferability

Adversarial samples designed to evade one model may evade others
due to shared vulnerabilities in learned features. This phenomenon is
known as transferability.

For a given sample m, if we have a grey-box model F1, we can build a
surrogate model F2 and use that to craft an adversarial sample m′.
Szegedy et al. (2013) showed that due to transferability, it is likely that:

F1(m) ∕= F1(mʹ) since F2(m) ∕= F2(mʹ)

Thus, the adversarial sample m′, designed to fool the surrogate model F2,
will also successfully fool the original model F1. This effectively trans-
forms a grey-box scenario, where the architecture details of model F1 are
unknown, into a semi white-box scenario, enabling us to generate
adversarial samples for F1 using the knowledge of F2. Similarities in
adversarial direction (Kurakin et al. (2018)) and feature usage (Ilyas
et al. (2019)) leads to F1 and F2 being alike resulting in transferability:

F1 ≈ F2 (5)

Fig. 1. Framework for building robust malware detection models with GBKPA, transferability analysis and AuxShield

K. Valeti and H. Rathore Forensic Science International: Digital Investigation 50 (2024) 301816

3

Algorithm 1. Gradient Based K Perturbation Attack

2.5. Defence strategy - AuxShield

We propose a novel defence strategy AuxShield that employs a two-
level hierarchical malware detection system to enhance security
against adversarial and malicious inputs. The first level of the defence
strategy is a classification model C1 which is responsible for determining
if the input sample x is adversarial. The second level C2 is responsible for
distinguishing between malicious and benign samples. Utilising two
layers allows for the flexibility of selecting different model architectures
for each level. Alternatively, a single multiclass classification model
with an additional class for adversarial samples could be used as a de-
fense strategy. If C1 deems the input sample x to be adversarial (C1(x) =
adversarial), the sample is then promptly marked as malicious:

C1(x) =
{

adversarial →malicious
non − adversarial →proceed to C2

(6)

If C1 determines the input to be non-adversarial, the second-level
classification system C2 is invoked. In this framework, C1 is trained on
a dataset D1 consisting of adversarial samples (xadv, yadv), non-
adversarial malicious samples (xmal, ynon-adv), and benign samples
(xben, ynon-adv).

C2(x) =
{

malicious
benign (7)

The classifier at the second level, C2, undergoes adversarial retraining.
This means it is trained on a balanced dataset D2 containing adversarial
samples xadv labelled as malicious (ymal), along with traditional benign
(xben) and malicious (xmal) applications:

D 2 = {(xben, yben), (xmal, ymal), (xadv, ymal)} (8)

By exposing C2 to adversarial samples during training, it becomes
more robust to such inputs during real-world operations. AuxShield thus
provides a dual-layered security mechanism: an auxiliary model (C1) to

detect and handle adversarial samples, and an adversarially retrained
robust classifier (C2) to accurately determine whether the input is ma-
licious or benign.

3. Experimental setup

This section details the process of dataset creation, feature extrac-
tion, classification algorithms and evaluation metrics employed in the
paper.

3.1. Data collection

Wei et al. (2017) from Argus Lab curated the Android Malware Dataset
(AMD), comprising 24, 650 malicious android applications from 135
distinct types spanning 71 malware families. These malicious applica-
tions threaten users’ privacy and device security. We collected android
applications from the Google Play Store and confirmed their benign status
using VirusTotal to compile the benign dataset. Applications were
labeled as benign only if they received a non-malicious classification
from all 50 + antivirus scans provided by VirusTotal. The benign sam-
ples, acquired from the Google Play Store and verified through Viru-
sTotal, were merged with the malware samples from the AMD dataset to
create an extensive dataset for our experiments. This consolidated
dataset consists of 24, 482 malicious android applications representing
71 malware families (after removing corrupted malicious applications),
along with 25, 407 benign android applications.

3.2. Feature extraction

We extracted two kinds of features, namely android permission and
android intent, using static analysis for each sample in the above dataset
(refer to Rathore et al. (2021a, 2023a)). Android Permissions are access
rights that an application must obtain before accessing certain device
features in the android ecosystem. Similarly, Android Intents are
messaging objects used to request action from another component of the
android ecosystem. Using APKTool, we decompiled the android appli-
cations and parsed the AndroidManifest.xml file to extract android per-
missions and android intents utilised by the applications. Finally, we
created two feature vectors: android permission feature vector with 195
features and android intent feature vector with 273 features.

3.3. Classification algorithms

Table 1 presents a list of 14 classification algorithms that have been
used in this work. These algorithms are drawn from four distinct classes:
machine learning, bagging-based methods, boosting-based methods,

Table 1
Classification algorithms.

Category Classification Algorithm

Machine Learning Logistic Regression (LR)
Bernoulli Naive Bayes (NB)
Decision Trees (DT)

Bagging Decision Tree based Bagging (BG)
Random Forest (RF)
Extra Trees (EX)

Boosting Gradient Boosting (GB)
Adaptive Boosting (AB)
eXtreme Gradient Boosting (XG)

Deep
Neural Network
(DNN)

DNN with 1 hidden layers (DNN1)
DNN with 2 hidden layers (DNN2)
DNN with 3 hidden layers (DNN3)
DNN with 4 hidden layers (DNN4)
DNN with 5 hidden layers (DNN5)

K. Valeti and H. Rathore Forensic Science International: Digital Investigation 50 (2024) 301816

4

and deep neural networks.

3.4. Evaluation metrics

In our experiments, we have employed the following evaluation
metrics. We designated malware samples as the positive class and benign
samples as the negative class.

● True Positive (TP): Malware samples correctly classified as the posi-
tive class.

● True Negative (TN): Benign samples correctly classified as the nega-
tive class.

● False Positive (FP): Benign samples falsely classified as the positive
class.

● False Negative (FN): Malware samples falsely classified as the nega-
tive class.

● True Positive Rate (TPR): ratio of true positives to the no. of positive
samples.

● False Positive Rate (FPR): ratio of false positives to the no. of negative
samples.

● Accuracy: percentage of samples correctly classified by the model.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (9)

● AUROC: Area under the ROC curve (plot of TPR vs FPR at various
thresholds).

● Fooling Rate (FR): This metric represents the percentage of successful
misclassifications among the adversarial samples (M’), accounting
for false negatives that naturally occur due to limitations of the
model. FR is a measure of effectiveness of an adversarial attack.

FR = max
(

FNMʹ − FNval

Num(Mʹ) − FNval
× 100%,0%

)

(10)

TS =
FRgrey− box

FRsurrogate
(11)

● Transferability Score (TS): It is the ratio of FR on the grey-box model
to the FR on the surrogate model used to generate the adversarial
samples. It is a measure of the transferability of adversarial samples
from the surrogate model to the grey-box model.

● Evasion Cost: Evasion cost defined by Chen et al. (2017) measures
the expense incurred by attackers when implementing perturbations
during an attack. It costs 0.5 to include permissions and intents, 0.4
to introduce API calls and new instances, and 0.95 to eliminate
permissions and intents. Removing API calls and new instances in-
curs a cost of 0.7.

4. Experimental results

This section begins by examining the performance and feature uti-
lisation of the base classification models. Subsequently, we analyse the
hierarchical relationships between malware families, the performance
and transferability of GBKPA, and the effectiveness of AuxShield.

4.1. Baseline malware detection models

We created 28 distinct models utilising 14 classification algorithms
and 2 feature vectors. Fig. 2 illustrates the accuracy of the 14 classifi-
cation algorithms using android permissions (L) and android intents (R).
The y-axis denotes the model accuracy, while the x-axis indicates the no.
of features utilised by the model.

Using Permissions: On average, utilising 195 android permissions, the
models accomplished an accuracy of 94.48 % and an AUROC score of
0.98. The baseline random forest model using 195 android permissions
accomplished the maximum accuracy of 95.95 %, while the naive bayes
model attained the least accuracy of 88.27 %. The random forest model
based on 195 android permissions also obtained the highest AUROC
score of 0.99, while naive bayes attained the lowest score of 0.96.

Using Intents: On average, utilising 273 android intents, the models
accomplished an accuracy of 84.82 % and an AUROC score of 0.92. The
baseline random forest model using 273 android intent accomplished
the maximum accuracy of 86.08 % while naive bayes attained the least
accuracy of 80.51 %. Similarly, the random forest model based on 273
android intents achieved the highest AUROC score of 0.94 while naive
bayes attained the lowest score of 0.88.

Overall, the baseline permissions-based malware detection models
outperformed the baseline intent-based models at encoding information
and helped build more accurate malware detection models. Most base-
line permissions-based models achieved 90–95 % accuracy, while
intents-based models attained 80–85 % accuracy.

4.2. Accuracy vs number of features

The baseline malware detection models based on permissions and
intents were constructed using 195 and 273 features, respectively. For
each of the 28 baseline models, we estimated the importance of each
feature using various methods. For example, In the logistic regression
models, we used weights to estimate the importance of features. Simi-
larly, in naive bayes models, we used mutual information with the class
labels to determine important features. For tree-based models, we
measured feature importance using the normalised reduction of the
impurity criterion. In deep neural network models, we estimated
important features by calculating the mean of the absolute values of the
partial derivatives of the loss function for each feature, over all samples
in the dataset.

Fig. 2 shows the accuracy of the 28 baseline models on the y-axis
using K top android permissions (L) and intents (R). The no. of features
used by the models is shown on the x-axis. Considering only the top 1, 5,

Fig. 2. The accuracy of 14 classification algorithms utilising the top K android permissions (L) and android intents (R).

K. Valeti and H. Rathore Forensic Science International: Digital Investigation 50 (2024) 301816

5

and 10 features, we accomplished an average accuracy of 67 %, 72 %,
and 79 % for the permission-based models and 62 %, 70 %, and 73 % for
the intent-based models, respectively. The ML-based models attained an
average accuracy of 71 %, 74 %, and 88 % using the top 1, 5, and 10
permissions and 62 %, 70 %, and 73 % with the top 1, 5, and 10 intents,
respectively. Bagging-based models outperformed the other model
classes and attained an average accuracy of 80 %, 84 %, and 90 % using
1, 5, and 10 permissions and 66 %, 80 %, and 88 % with intents.
Boosting-based models attained an average accuracy of 73 %, 86 %, and
89 % using 1, 5, and 10 permissions and 53 %, 55 %, and 61 % with
intents. DNNs attained an average accuracy of 71 %, 74 %, and 88 %
using 1, 5, and 10 permissions and 57 %, 60 %, and 61 % with intents.
The above results indicate that the top 5–10 features are sufficient to
detect malware accurately. Additionally, these feature can be utilised to
create rule-based security systems to complement the ML/DL-based se-
curity system.

4.3. Top features for detecting malware

With 10 features, models achieve significant accuracies. Table 2
shows the top 10 most important and frequently used android permis-
sions and intents by the models. The permission android.permission.
REQUEST_INSTALL_PACKAGES and the intent android.intent.category.
LEANBACK_LAUNCHER were considered important by 13 out of the 14
malware detection algorithms. Each of the top 10 android permissions
and intents were used by at least 5 and 6 classification algorithms
respectively, contributing to transferability.

4.4. Malware family analysis

We analyse the malware families from the AMD dataset containing
more than 500 samples: Airpush, Youmi, DroidKungfu, Mecor, FakeInst,
Jisut, Bankbot, Dowgin, Kuguo, and Fusob. Fig. 3a shows a dendrogram
illustrating the hierarchical relationships among these malware families
based on similarities in permissions and intents. The y-axis indicates
distances between clusters, while the x-axis denotes families. A K-
Nearest Neighbors model was used to calculate the mean distance be-
tween a pair of families. A linkage matrix was calculated using the Ward
method, based on the normalised distance between each pair of families,
to generate the dendrogram. The dendrogram notably highlights three
prominent clusters: (Dowgin, Kuguo), (Mecor, DroidKungFu, Airpush,
Youmi), and (FakeInst, Jisut). Here, Fusob and Bankbot stand out as

outliers and are the furthest from these three clusters. Following this
exploratory family analysis, we plan to investigate family-specific at-
tacks that integrate traditional obfuscation attacks with adversarial at-
tacks in the future.

4.5. Similarity in feature usage with surrogate model

Most model accuracies reach saturation with the 20 most important
features. Fig. 3b demonstrates the percentage of top 20 features common
with the surrogate model along the y-axis, with each model represented
along the x-axis. DNNs exhibit an average similarity of 88 % for per-
missions and 83 % for intents with the surrogate model. The machine
learning methods show an average similarity of 33 % for permissions
and 27 % for intents, the bagging-based methods show an average
similarity of 25 % for permissions and 15 % for intents and the boosting-
based methods show an average similarity of 28 % for permissions and
22 % for intents. Tree-based models show an average similarity of 26 %
with permissions and 18 % with intents. The difference in similarity of
important features across classes occurs due to the difference in learning
methods of these classes. DNNs demonstrate the highest similarity,
trailed by boosting methods, while logistic regression predominantly
contributes to the higher averages observed in ML methods. Conversely,
traditional decision trees and bagging-based methods display the lowest
similarity.

4.6. Adversarial attack and fooling rate

The underlying classification model can incorrectly classify mali-
cious samples as benign, leading to False Negatives. GBKPA aims to
efficiently cause minimal perturbations to the malicious samples in the

Table 2
Top ten most significant android permissions (T) and intents (B) for detecting
malware.

Android Permission

android.permission.REQUEST_INSTALL_PACKAGES
android.permission.READ_PHONE_STATE
android.permission.SEND_SMS
android.permission.READ_EXTERNAL_STORAGE
com.android.launcher.permission.INSTALL_SHORTCUT
android.permission.USE_FINGERPRINT
android.permission.ACCESS_COARSE_LOCATION
android.permission.FOREGROUND_SERVICE
android.permission.GET_TOP_ACTIVITY_INFO
android.permission.MANAGE_DOCUMENTS

Android Intent

android.intent.category.LEANBACK_LAUNCHER
android.intent.action.MY_PACKAGE_REPLACED
android.intent.category.HOME
android.intent.action.USER_PRESENT
android.intent.action.BOOT_COMPLETED
android.intent.action.PACKAGE_ADDED
android.intent.action.VIEW
android.intent.action.APPLICATION_PREFERENCES
android.intent.action.ASSIST
android.intent.category.DEFAULT

Fig. 3. Analysis of malware families and feature usage similarity in detec-
tion models.

K. Valeti and H. Rathore Forensic Science International: Digital Investigation 50 (2024) 301816

6

dataset to create adversarial samples that can evade detection by the
underlying classification models. We conducted the attack on all 28
classification models using a varying number of perturbations, ranging
from 1 to 10, observing saturation at 10 perturbations. Fig. 4 depicts the
fooling rate attained by GBKPA on the y-axis with the no. of perturba-
tions depicted on the x-axis for each model.

GBKPA with 1 Perturbation: With 1 perturbation and an evasion cost
of 0.5, GBKPA achieved an average fooling rate of 35 % and 46 % against
models using permissions and intents respectively. Against ML-based
models using permissions and intents, the average fooling rate was 33
% and 43 % respectively. Against bagging-based models using permis-
sions and intents, the average fooling rate was 15 % and 40 % respec-
tively. Against boosting-based models using permissions and intents, the
average fooling rate was 30 % and 47 % respectively. Against DNNs
using permissions and intents, the average fooling rate was 50 % and 53
% respectively.

GBKPA with 5 Perturbations: With 5 perturbations and an evasion cost
of 2.5 perturbations, GBKPA achieved an average fooling rate of 70 %
and 84 % against models using permissions and intents, respectively.
Against machine learning (ML)-based models using permissions and
intents, the average fooling rate was 68 % and 83 %, respectively.
Against bagging-based models using permissions and intents, the
average fooling rate was 59 % and 80 %, respectively. Against boosting-
based models using permissions and intents, the average fooling rate
was 70 % and 83 %, respectively. Against deep neural network (DNN)
models using permissions and intents, the average fooling rate was 78 %
and 86 %, respectively. Against tree-based models using permissions and
intents, the average fooling rate was 61 % and 82 %, respectively.
Notably, decision trees were more robust compared to other models in
the machine learning class with a fooling rate of 55 % and 80 % against
permissions and intents, respectively. Models using permissions
demonstrated greater adversarial robustness compared to models using
intents.

Comparison with Surrogate: GBKPA achieves 78 % and 86 % fooling
rates against the surrogate model after 10 perturbations using android
permissions and intents, respectively. Its performance against base
models yields an average fooling rate of 70 % and 84 %, showing
comparable efficacy to a white-box attack in a grey-box scenario.

4.7. Perturbation Lists

To identify the most frequently perturbed permissions and intents,
we generate samples with 5 perturbations. Table 3 presents the top five
permissions and intents that modified most frequently by GBKPA. The
top permission and intent were perturbed in 82 % and 61 % of the
samples, respectively, while the top three permissions and intents were
perturbed in 45 % and 24 % of the samples on average, respectively.
These perturbed permissions and intents contribute to imparting a
benign appearance to the malicious samples, aiding in masking their
true malicious nature. Potential attackers can exploit these features to
evade ML and DL classifiers.

4.8. Transferability scores

Transferability scores were computed for different models after
conducting the attack with 10 perturbations. These scores help gauge
the transferability of adversarial samples from the surrogate model to
the grey-box model. Fig. 6 presents the transferability scores for each
model, with the y-axis representing the scores and the x-axis denoting
the models.

Android Permissions: Using permissions, the average transferability
scores for ML-based methods, bagging-based methods, boosting-based
methods and DNN’s were 0.87, 0.76, 0.90 and 1 respectively.

Android Intents: Using intents, the average transferability scores for
Ml-based methods, bagging-based methods, boosting-based methods
and DNN’s were 0.97, 0.94, 0.97, and 1 respectively.

Against tree-based models the average transferability score was 0.81
and 0.95 using permissions and intents, respectively. Noticeably, in the
class of ML-models decision trees scored significantly less than other
models, with scores of 0.71 and 0.94 with permissions and intents
respectively. GBKPA aims to efficiently craft adversarial samples that
evade the classifier by perturbing the features considered most impor-
tant by the surrogate model. The transferability of adversarial samples
can be attributed to the similarity in feature usage, as demonstrated in
Sections 4.2 and 4.3. DNNs exhibit the highest average transferability
scores, followed by boosting-based methods. This can be explained by
the higher similarity of feature usage with the surrogate model, as dis-
cussed in Section 4.5.

4.9. AuxShield

We reinforce our base models using the AuxShield defence strategy.
Employing random forest, gradient boosting, and a DNN as grey-box
models, we generate adversarial samples with 1–10 max perturbations
using GBKPA. To detect if the input is adversarial, we build a Random
Forest model using these samples along with additional malicious and
benign samples from our training dataset, constituting the first level of
AuxShield. The second level involves adversarially retraining the
aforementioned base models, enhancing their robustness. In Fig. 5,
GBKPA’s fooling rate is plotted on the y-axis against the number of
perturbations on the x-axis for each model after implementing Aux-
Shield. In permissions (L), values are ≤ 1%, resulting in lines close to the
x-axis.

The models show a difference of ± 3 % in accuracy and AUROC
scores after implementing AuxShield. After 10 perturbations, the models
show an average fooling rate (FR) of 0.11 % and 6.4 % with permissions
and intents, respectively. This signifies a substantial improvement from
the previous FR of 70 % and 84 %, respectively. ML-based models
exhibit an average FR of 0.09 % and 9 % with permissions and intents,
respectively. Bagging-based models demonstrate an average FR of 0.08
% and 8 % with permissions and intents, respectively. Boosting-based
models exhibit an average FR of 0.18 % and 8 % with permissions and
intents, respectively. DNNs display an average FR of 0.09 % and 3 %

Fig. 4. Fooling rate of GBKPA against different classification algorithms using android permissions (L) and intents (R).

K. Valeti and H. Rathore Forensic Science International: Digital Investigation 50 (2024) 301816

7

with permissions and intents, respectively. Tree-based models show an
average FR of 0.1 % and 8 % with permissions and intents, respectively.
Against permissions and intents-based models, the highest FR was 0.35
% (against AdaBoost) and 17 % (against DT), respectively.

5. Related work

Table 4 presents the current literature on adversarial robustness and
transferability of adversarial malicious android applications. Grosse
et al. (2017) presented a gradient-based white box approach to craft
adversarial samples against neural networks and obtained a fooling rate
of 65.48 %. Chen et al. (2017) also devised an attack for a white-box
scenario utilising information gain to rank the features, achieving an
average fooling rate of 84 %. However, these attacks did not represent
the real-world scenario, as the attacker typically lacks access to the
classifier’s internal mechanisms. Nevertheless, these studies laid the
foundation for subsequent research focusing on grey-box scenarios that
represent a more realistic scenario in the real world. Several works like
Taheri et al. (2020), Sewak et al. (2020), Cara et al. (2020), Rafiq et al.

(2022) and Rathore et al. (2023b) tried to address these research gaps
and obtained average fooling rates of 27 %, 90 %, 44.23 %, and 59 %
respectively in grey-box scenarios. However, many of these studies did
not assess the attack’s effectiveness across various model classes or
discuss the transferability of adversarial samples. Additionally, they did
not provide a comprehensive list of perturbations that could serve as
potential vulnerabilities for evading models. Moreover, defence strate-
gies in the existing literature did not significantly reduce the fooling rate
to below 15 %.

We address the limitations of the existing literature in our work. Our
work attains a relatively high average fooling rate of 77 % for a grey-box
scenario while making minimal perturbation to ensure the least evasion
cost. Additionally, we construct a varied set of models to assess our
attack and explain the transferability of adversarial samples. We also
provide a list of potential perturbations that effectively conceal the
malicious properties of malware samples. We also introduce a dual-
layered security mechanism called AuxShield to counter these adver-
sarial attacks, which significantly reduced the average fooling rate to
0.11 % for permissions and 6.4 % for intents.

Table 3
Top five frequently perturbed permissions (L) and intents (R) by GBKPA.

Android Permission % of
Samples

Android Intent % of
Samples

android.permission.REQUEST_INSTALL_PACKAGES 82.37 android.intent.category.LEANBACK_LAUNCHER 60.87
android.permission.FOREGROUND_SERVICE 35.66 android.intent.action.MY_PACKAGE_REPLACED 5.75
android.permission.GET_TOP_ACTIVITY_INFO 15.70 android.intent.action.SCREEN_OFF 4.88
android.permission.USE_FINGERPRINT 11.05 android.intent.action.ACTION_SHUTDOWN 4.42
android.permission.SYSTEM_ALERT_WINDOW 6.21 android.intent.action.PACKAGE_REPLACED 2.59

Fig. 5. Fooling rate of GBKPA against different classfication algorithms using android permissions (L) and intents (R) after implementing AuxShield defence.

Fig. 6. Transferability scores of baseline classification algortihms using android permissions and intents against GBKPA.

K. Valeti and H. Rathore Forensic Science International: Digital Investigation 50 (2024) 301816

8

6. Conclusion and future work

Researchers have begun studying the efficacy of ML/DL techniques
in detecting malware. However, these models face significant chal-
lenges, including vulnerability to adversarial attacks and concerns
regarding their robustness.

This study evaluated the adversarial robustness of 28 distinct ML/DL
models, constructed using classification algorithms spanning four
distinct classes, alongside two separate features (permissions and in-
tents) extracted from android applications. These models demonstrated
high average accuracies of 94.5 % and 84.5 % for permission-based and
intent-based models, respectively, highlighting their effectiveness in
detecting malicious android applications. Following that, we introduced
Gradient Based K Perturbation Attack (GBKPA) to evaluate the adversarial
robustness of these models. GBKPA demonstrated significant fooling
rates, achieving 70 % against models using permissions and 84 % against
models using intents. This highlights the susceptibility of these ML/DL
models to adversarial attacks. Furthermore, we identified the vulnerable
permissions and intents. DNNs showed higher transferability with the
surrogate model (average score of 1) than other models (average score of
0.9), likely due to differing feature reliance across classes and similar-
ities within the same class. Finally, we implemented AuxShield and
reduced the average fooling rate to 0.11 % and 6.4 % against permission
and intent based models, respectively.

Our study highlights the need for further analysis of transferability’s
causation and implications, alongside developing innovative adversarial
defences. However, we focused on a grey-box scenario and did not
explore pure black-box scenarios, alternative feature vectors beyond
permissions and intents, or family-specific attacks. Future research
could comprehensively investigate these aspects and explore trans-
ferability across different datasets, proposing effective defences. This
research underscores the importance of addressing vulnerabilities and
limitations in ML/DL models within the evolving security landscape.

References

Android, 2024. Market share of mobile operating systems worldwide from 2009 to 2024,
by quarter. https://www.statista.com/statistics/272698/global-market-share-held-
by-mobile-operating-systems-since-2009/. (Accessed June 2024).

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C., 2014. Drebin:
effective and explainable detection of android malware in your pocket. In: Network
and Distributed System Security Symposium (NDSS 2014), pp. 23–26.

Cara, F., Scalas, M., Giacinto, G., Maiorca, D., 2020. On the feasibility of adversarial
sample creation using the android system api. Information. MDPI 11, 433.

Chen, L., Hou, S., Ye, Y., 2017. Securedroid: enhancing security of machine learning-
based detection against adversarial android malware attacks. In: 33rd Annual
Computer Security Applications Conference (ACSAC 2017), pp. 362–372.

Goodfellow, I.J., Shlens, J., Szegedy, C., 2014. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572.

Google Play Protect, 2024. Google play protect. https://developers.google.com/andro
id/play-protect. (Accessed June 2024).

Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P., 2017. Adversarial
examples for malware detection. In: European Symposium on Research in Computer
Security (ESORICS 2017). Springer, pp. 62–79.

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A., 2019. Adversarial
examples are not bugs, they are features. Adv. Neural Inf. Process. Syst. 32 (NIPS
2019.

Kaspersky, 2023. Google play malware clocks up more than 600 million downloads in
2023. https://www.kaspersky.co.in/blog/malware-in-google-play-2023/26621/.
(Accessed June 2024).

Kaspersky, 2024. The mobile malware threat landscape in 2023. https://securelist.com/
mobile-malware-report-2023/111964/. (Accessed June 2024).

Kurakin, A., Goodfellow, I.J., Bengio, S., 2018. Adversarial examples in the physical
world. In: Artificial Intelligence Safety and Security. Chapman and Hall/CRC,
pp. 99–112.

Pal, A., Sulam, J., Vidal, R., 2024. Adversarial examples might be avoidable: the role of
data concentration in adversarial robustness. Adv. Neural Inf. Process. Syst. 36 (NIPS
2024.

Papernot, N., McDaniel, P., Goodfellow, I., 2016. Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277.

Rafiq, H., Aslam, N., Issac, B., Randhawa, R.H., 2022. On impact of adversarial evasion
attacks on ml-based android malware classifier trained on hybrid features. In: 14th
International Conference on Software, Knowledge, Information Management and
Applications (SKIMA). IEEE, pp. 216–221.

Rathore, H., Nandanwar, A., Sahay, S.K., Sewak, M., 2023a. Adversarial superiority in
android malware detection: Lessons from reinforcement learning based evasion
attacks and defenses. Forensic Sci. Int.: Digit. Invest. 44, 301511.

Rathore, H., Nikam, P., Sahay, S.K., Sewak, M., 2021a. Identification of adversarial
android intents using reinforcement learning. In: 2021 International Joint
Conference on Neural Networks (IJCNN), IEEE, pp. 1–8.

Rathore, H., Sahay, S.K., Nikam, P., Sewak, M., 2021b. Robust android malware
detection system against adversarial attacks using q-learning. Inf. Syst. Front 23,
867–882. Springer.

Rathore, H., Sahay, S.K., Thukral, S., Sewak, M., 2020. Detection of malicious android
applications: classical machine learning vs. deep neural network integrated with
clustering. In: International Conference on Broadband Communications, Networks
and Systems (BROADNETS). Springer, pp. 109–128.

Rathore, H., Samavedhi, A., Sahay, S.K., Sewak, M., 2023b. Towards adversarially
superior malware detection models: an adversary aware proactive approach using
adversarial attacks and defenses. Inf. Syst. Front 25, 567–587.

Sewak, M., Sahay, S.K., Rathore, H., 2020. Assessment of the relative importance of
different hyper-parameters of lstm for an ids. In: IEEE Region 10 Conference
(TENCON). IEEE, pp. 414–419.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.,
2013. Intriguing Properties of Neural Networks arXiv preprint arXiv:1312.6199.

Taheri, R., Javidan, R., Shojafar, M., Vinod, P., Conti, M., 2020. Can Machine Learning
Model with Static Features Be Fooled: an Adversarial Machine Learning Approach,
vol. 23. Cluster Computing, Springer, pp. 3233–3253.

Wei, F., Li, Y., Roy, S., Ou, X., Zhou, W., 2017. Deep ground truth analysis of current
android malware. In: 14th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA). Springer, pp. 252–276.

Zhang, C., Benz, P., Imtiaz, T., Kweon, I.S., 2020. Understanding adversarial examples
from the mutual influence of images and perturbations. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 14521–14530.

Zhang, G., Li, Y., Bao, X., Chakarborty, C., Rodrigues, J.J., Zheng, L., Zhang, X., Qi, L.,
Khosravi, M.R., 2023. Tsdroid: a novel android malware detection framework based
on temporal & spatial metrics in iomt. ACM Trans. Sens. Netw. 19, 1–23.

Zhu, H., Li, Y., Li, R., Li, J., You, Z., Song, H., 2020. Sedmdroid: an enhanced stacking
ensemble framework for android malware detection. IEEE Transactions on Network
Science and Engineering (IEEE TNSE) 8, 984–994.

Table 4
Proposed work versus state-of-the-art in existing literature.

Existing
Literature

Attack
Scenario

Max % of Features
Perturbed

Evasion
Cost

of Model
classes

Feature Usage
Analysis

Average
FR

Pertub
Lista

Transfer
Analysisb

Adversarial Defence

Grosse et al.
(2017)

White Box 36 % 9 1 No 65.48 No No Adversarial Retraining and
Defensive Distillation

Chen et al.
(2017)

White Box 5.39 % 25 1 No 84 No No SecureDroid

Taheri et al.
(2020)

Grey Box 20 % 30 2 No 27 No No Adversarial Retraining and
GAN

Cara et al.
(2020)

Grey Box 100 % 80 1 No 90 Yes No No

Rathore et al.
(2021b)

Grey Box 2.56 % 2.5 4 No 44.23 No No Adversarial Retraining

Rafiq et al.
(2022)

Grey Box 3.96 % N.A. 1 No 59 No No No

Proposed Work Grey Box 1.83 %–2.56 % 2.5 4 Yes 77 Yes Yes AuxShield

a Perturbation List.
b Transferability Analysis.

K. Valeti and H. Rathore Forensic Science International: Digital Investigation 50 (2024) 301816

9

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref2
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref2
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref2
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref3
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref3
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref4
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref4
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref4
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref5
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref5
https://developers.google.com/android/play-protect
https://developers.google.com/android/play-protect
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref7
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref7
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref7
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref8
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref8
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref8
https://www.kaspersky.co.in/blog/malware-in-google-play-2023/26621/
https://securelist.com/mobile-malware-report-2023/111964/
https://securelist.com/mobile-malware-report-2023/111964/
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref11
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref11
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref11
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref12
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref12
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref12
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref13
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref13
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref13
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref14
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref14
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref14
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref14
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref15
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref15
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref15
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref16
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref16
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref16
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref17
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref17
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref17
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref18
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref18
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref18
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref18
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref19
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref19
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref19
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref20
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref20
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref20
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref21
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref21
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref22
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref22
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref22
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref23
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref23
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref23
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref24
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref24
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref24
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref25
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref25
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref25
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref26
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref26
http://refhub.elsevier.com/S2666-2817(24)00140-9/sref26

	GBKPA and AuxShield: Addressing adversarial robustness and transferability in android malware detection
	1 Introduction
	2 Overview and framework
	2.1 Framework
	2.2 Problem definition and background
	2.3 Gradient Based K Perturbation Attack
	2.4 Transferability
	2.5 Defence strategy - AuxShield

	3 Experimental setup
	3.1 Data collection
	3.2 Feature extraction
	3.3 Classification algorithms
	3.4 Evaluation metrics

	4 Experimental results
	4.1 Baseline malware detection models
	4.2 Accuracy vs number of features
	4.3 Top features for detecting malware
	4.4 Malware family analysis
	4.5 Similarity in feature usage with surrogate model
	4.6 Adversarial attack and fooling rate
	4.7 Perturbation Lists
	4.8 Transferability scores
	4.9 AuxShield

	5 Related work
	6 Conclusion and future work
	References

