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c Université de Lausanne, Ecole des Sciences Criminelles, Batochime, Lausanne, 1015, Switzerland

A R T I C L E  I N F O

Keywords:
Forensic science
Geolocation error
Smartphone
Evaluation
Bayes

A B S T R A C T

After a decade of technological advancements, digital forensic science is under increasing pressure to deliver 
investigative findings with a high degree of scientific rigor. The judicial community has voiced growing concerns 
regarding digital traces and their interpretation. This research focuses on assessing the significance of geo-
location information embedded within the metadata of photographs captured using a mobile phone. In order to 
examine the variability in the accuracy of this geolocation metadata and identify potential external influences, 
images were taken at 29 different locations distributed along three distinct paths. The photographs were 
captured using two Samsung Galaxy S8 SM-G950F devices running on Android 8.0. Various configurations of 
GNSS and mobile network connections were tested, and their potential impact on the accuracy of geolocation 
metadata was investigated. The findings show the dependency of geolocation accuracy on the specific mea-
surement location. This research ultimately highlights the imperative for evaluative approaches to take into 
account the specific characteristics of each point of interest, as opposed to leaning on broad statements about the 
reliability of geolocation processes in general.

1. Introduction

In the contemporary landscape, where mobile phones have become 
an integral part of daily life, the significance of geolocation data cannot 
be overstated. Its application spans a multitude of domains and notably, 
criminal investigations. The possibility to infer the whereabouts of a 
device’s user has established it as a source of information frequently 
relied upon in criminal cases. However, there is a growing emphasis on 
not automatically presuming inherent reliability with digital and 
multimedia evidence. Many studies and publications now advocate for 
the evaluation and expression of uncertainties associated with such 
types of evidence (Casey, 2019; Bosma et al., 2020; Casey et al., 2020; 
Spichiger, 2022). The term evidence is used here in a broad sense, 
acknowledging that the information conveyed by a trace only becomes 
evidence once it has been interpreted within the context of the case to 
which it is linked.

Turning to the precision of geolocation data linked with mobile 
phones, extensive attention has been directed toward this topic in 
various fields (transportation, public health, forestry). While these do-
mains have conducted experiments to assess the precision of mobile 

phone location (as outlined in Section 2), digital forensic science has 
predominantly concentrated on constructing models for interpreting 
geolocation data recovered from phones (Tart et al., 2019; Tart et al., 
2021; Bosma et al., 2020; Casey et al., 2020; Spichiger, 2023). Yet, to 
effectively interpret the information encapsulated in the geolocation 
data of a phone, understanding how external factors may influence this 
data is crucial. While previous studies have addressed the evaluation of 
mobile geolocation data under different investigative hypotheses, little 
has been said about the consequences of various factors influencing 
mobile geolocation on the entire forensic process.

The study presented in this paper endeavors to bridge this gap by 
furnishing empirical data on the precision of geolocation data produced 
by mobile phones, shedding light on its reliability in forensic in-
vestigations. It is important to note that the aim is not to be exhaustive; 
given the diversity of phones, softwares, and physical environments, 
testing all potential factors is infeasible. Instead, the focus is on under-
standing the variability inherent in the geolocation-related information 
provided by a smartphone, pinpointing critical considerations, and 
exploring potential approaches to interpreting and conveying this 
variability. We consider that, despite being produced 4 years ago, the 

☆ The dataset is available on github.com/Squirrl0x00.
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dataset remains relevant. The main purpose of the present study is to 
underline the presence of uncertainties as well as the importance of an 
informed use of mobile related geolocation data. Even if more recent 
phones might provide a stronger accuracy, the present study shows that, 
in any investigation relying on phone geolocation, accuracy should al-
ways be tested. It is critical to document the possibility of error.

The rest of the article is structured as follows: After the introduction 
in Section 1, existing work is presented in Section 2. The hypotheses and 
aims of this work are described in Section 3. Section 4 explains the 
experimental approach followed in this paper and the experimental re-
sults are presented in Section 5. The signification of these results is 
discussed in Section 6 before a conclusion is reached in Section 7.

2. Previous work

This section focuses on evaluating the accuracy of geolocation ob-
tained through mobile phones, excluding investigations related to 
emergency localization conducted by operators. Additionally, studies 
employing mobile devices as receivers of raw GNSS data, such as precise 
point positioning, are not within the scope of this work. They necessitate 
prior application installation, a feature typically absent in most phones 
analyzed via forensic process.

It is important to acknowledge that the methodologies, measure-
ments, and data processing techniques employed in these studies exhibit 
significant variability in terms of quality and approach, limiting the 
conclusions that may be gained based on them. An overview of mean 
reported error for studies since 2015 is shown in Table 1.

2.1. Controlled experimental conditions

Several geolocation studies have assessed the accuracy of various 
mobile devices and methods, obtaining highly varying degrees of 
results.1

Liu et al. (2018) conducted a study using an HTC One (M7) smart-
phone in both indoor and outdoor settings. For indoor measurements, 
two different modes were utilized: a battery preservation one and a high 
accuracy one. The results demonstrated varying levels of accuracy 
depending on the mode and setting used for geolocation measurements. 
Specifically, the high accuracy mode exhibited the highest error, with an 
average of 215 m indoors.

Garnett and Stewart (2015) investigated the iPhone 4S and the 
iTouch, finding that there was a significant difference in accuracy based 
on the height of surrounding buildings. In areas with obstructed skies, 
the accuracy of geolocation tended to decrease. Additionally, the time 
when data collection took place (between 8 and 13h) did not signifi-
cantly affect location accuracy, whereas data collected at 16h exhibited 
different behaviors. Weather conditions did not appear to have a sig-
nificant impact on geolocation precision.

Merry and Bettinger (2019) investigated the potential impact of the 
season and of people present on site, potentially having an impact 
through WiFi usage. The season did not seem to have an impact on the 
accuracy of the measurements, whether done when GPS-only capability 
was enabled or when WiFi access was provided. The accuracy seemed to 
improve during the leaf-off period in the afternoon or in general when 
WiFi usage appeared to be higher (estimated by the number of persons in 
the location). Tomaštík Jr et al. (2017) compared GPS performance 
across different smartphones in both forested and open areas. The ac-
curacy of location estimates varied depending on the environment 
(leaf-on, leaf-off, or open), with the best accuracy achieved in the open 
environment. They also observed differences in accuracy between 
different smartphone models. The study was repeated in Tomaštík et al. 
(2021) with another selection of smartphones. The results indicated that 
the accuracy varied depending on factors such as leaf coverage (leaf-on, 
leaf-off, or open conditions) and the capabilities of the smartphones, 
with devices equipped with multiple positioning systems demonstrating 
better accuracy. Purfürst (2022) conducted a study involving various 
smartphone models from Samsung, Xiaomi, and Huawei. Results 
concurred with Tomaštík et al. (2021), indicating that phones equipped 
with multiple frequencies exhibited better accuracy (Distance Root 
Mean Square (DRMS): 6.99 m) compared to those with a single fre-
quency (DRMS: 9.13 m). The maximum average distance was 10.44 m, 
with the highest standard deviation reaching 10.19 m.

Schaefer and Woodyer (2015) analyzed a range of devices (Sony 

Table 1 
Overview over average accuracies (rounded to the next meter) reported in 
studies since 2015.

Study Environment Device Type Approx. Reported 
Mean Error

Garnett and 
Stewart (2015)

University 
Campus

iPhone 4S 7m

Schaefer and 
Woodyer (2015)

Seaside iPhone 4 2m

iPhone 5/5c 3m
Samsung Galaxy S3 
mini/S4

2m

Sony Xperia E/P/Z 2m
Tomaštík Jr et al. 

(2017)
Forest ZTE Blade 3m/7m/12ma

LG G2 3m/6m/11ma

Sony M4 Aqua 4m/6m/9ma

Lenovo Yoga 8 3m/7m/11ma

Liu et al. (2018) University 
Campus

HTC One (M7) 5m–200m

Merry and 
Bettinger (2019)

University 
Campus

iPhone 6 7m–13m

Yoo et al. (2020) Diverse iPhone 
(unspecified)

950m

Tomaštík et al. 
(2021)

Forest LG G2 2m/8m/10ma

Lenovo A5000 4m/7m/9ma

Lenovo Phab 2 Pro 4m/7m/7ma

Huawei P20 lite 3m/9m/7ma

Xiaomi Mi8 2m/4m/5ma

Purfürst (2022) Forest Xiaomi Mi8 6m
Xiaomi Mi8 Pro 7m
Xiaomi Mi10 light 4m
Huawei P20 5m
Huawei P40 6m
Samsung A7 6m
Samsung S5 Xcover 
4

10m

Xcover 4s A 7m

a Open area/leaf-off season/leaf-on season. Aside from Yoo et al. (2020), all 
studies were conducted outdoors.

Table 2 
Selected position accuracy measures. Adapted from Specht (2020b).

Accuracy 
measure

Probability Definition

RMS 68 % Root mean square error for ϕ, λ or d (or RMSE)
DRMS 63–68 % Distance root mean square error for ϕ, λ or d
CEP50 50 % The radius of circle centered at the true position, 

containing the position estimate with probability of 
50 %

R50 50 % The radius of circle (sphere) centered at the true 
position, containing the position estimate with 
probability of 50 %

R95 95 % The radius of circle (sphere) centered at the true 
position, containing the position estimate with 
probability of 95 %

where ϕ – geodetic (geographic) latitude; λ –geodetic (geographic) longitude; d – 
radial distance.

1 Where corresponding recent work exists, articles prior to 2015 were 
disregarded.
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Experia E, P and Z, Samsung Galaxy S3 mini and S4 as well as iPhones 4, 
5 and 5c), with measurements taken at intervals of 1 min and 3 min. The 
maximum absolute error observed was approximately 44 m, with a 
mean error of 3.49 m and a standard deviation of 3.67 m. The maximum 
relative error was around 45.23 m, with a mean error of 2.44 m and a 
standard deviation of 3.65 m. The study identified a significant differ-
ence between the Sony model with GLONASS activated and the same 
model without GLONASS, indicating that the latter was more precise 
and less variable. However, no significant difference was found based on 
the time elapsed during data collection.

Miluzzo et al. (2008) conducted a comparative analysis between the 
iPhone and iPhone 3G, highlighting discrepancies in error estimations. 
Zandbergen and Barbeau (2011) investigated Sanyo SCP 7050 and 
Motorola i580 accuracy, finding no correlation between the error esti-
mations offered by the API and the observed error. They also observed 
that the locations appeared in a grid form, which they suggested might 
be due to rounding of measurements to the 5th decimal position by the 
devices. This result was confirmed by Jones et al. (2015), who observed 
an effect of grid sensitivity on accuracy with multiple devices.

2.2. Non-controlled conditions

Yoo et al. (2020) conducted a study to address the limitations of 
previous research, which were characterized by short durations and 
lacked proper controls. Yoo et al. (2020) collected geo-temporal data 
from 1464 iPhone users over a span of 3–5 months, utilizing an appli-
cation that recorded the phone’s position when it detected movement 
exceeding 500 m for a period of 5 min or less. Yoo et al. (2020) cate-
gorized the data into three groups based on reported horizontal accu-
racy: greater than 1000 m, between 65 m and 1000 m, and less than 65 
m. The study revealed that the data exhibited a scattered and 
right-skewed distribution, with an average horizontal accuracy of 950 
m. Furthermore, the study found that accuracy was lower in rural areas 
but higher in recreational areas compared to agricultural regions.

Yoo et al. (2020) offer insights into the generation of geolocation 
data during regular mobile device use, diverging from studies conducted 
in controlled experimental settings. However, it is important to note that 
the specific method used by iOS for calculating horizontal accuracy (as 
employed by Yoo et al. (2020)) remains unknown, and several studies 
(Zandbergen and Barbeau, 2011; Tomaštík Jr et al., 2017) have shown 
no correlation between this value and independently measured error. 
Therefore, the results of Yoo et al. (2020)’s study should be interpreted 
with caution.

3. Objectives and hypotheses

As pointed out in the literature review, several factors can affect the 
accuracy of mobile phone location data (e.g. the type of phone, its set-
tings, and the physical environment).

In the case of geolocation metadata generated by a mobile phone, the 
present study’s main goal is to illustrate the significant variation in the 
quality of information provided by such a trace. It also seeks to inves-
tigate various specific variables to evaluate their impact on the accuracy 
of geolocation data obtained from a mobile phone. To achieve this, the 
following pair of opposite hypotheses have been formulated. 

H1. The radial and ϕ, λ errors2 from the GNSS, WiFi + 4G access data 
have the same distribution as the errors from the 4G-only data.

H2. The radial and ϕ, λ errors from the GNSS, WiFi + 4G access data do 
not have the same distribution as the errors from the 4G-only data.

H3. The radial and ϕ, λ errors from the data collected in a rural area 
(GNSS, WiFi + 4G) have the same distribution as the errors from an 

urban area (GNSS, WiFi + 4G).

H4. The radial and ϕ, λ errors from the data collected in a rural area 
(GNSS, WiFi + 4G) do not have the same distribution as the errors from 
an urban area (GNSS, WiFi + 4G).3

H5. The radial and ϕ, λ errors from the 2G-only data, 3G-only data and 
4G-only data have the same distribution.

H6. The radial and ϕ, λ errors from the 2G-only data, 3G-only data and 
4G-only data do not have the same distribution.

The third pair of hypotheses (5 & 6) actually encompasses three pairs 
of comparisons, as each group (2G, 3G, 4G) distributions should be 
assessed separately against each other. However, as explained in Section 
4, the employed method allows the assessment of three distributions 
initially. If the outcome of the first assessment contradicts the null hy-
pothesis (H5), an additional test is then employed. This rationale is why 
three pairs of hypotheses are presented as one set in this context.

In the next section, an exploratory study of geolocation error across 
29 diverse locations is conducted to test these pairs of hypotheses.

4. Methodology

In the following, the choice of locations, the measurement process, as 
well as the conducted statistical analysis is presented.

4.1. Location overview and selection

The canton of Neuchâtel is located in the central part of the Jura 
Mountains in Switzerland, with its northwest border adjoining France. It 
can be divided into three distinct geographical regions: the lakeside area 
along Lake Neuchâtel, the valley region consisting of two valleys at an 
altitude of approximately 700 m, and the mountainous region, ranging 
from 900 to 1065 m, characterized by a long valley. The inhabitants are 
distributed throughout the canton, with numerous small villages and 
two main settlements. Neuchâtel serves as the canton’s capital and is 
situated near Lake Neuchâtel, while La Chaux-de-Fonds, the second 
largest community, is located in the mountainous region. For this 
experiment, twenty-nine location points are chosen, distributed within 
the lakeside region and the mountainous region (see Table 4 in Appendix 
A). The choice of the points focuses on covering a high diversity of 
physical environment as well as quality of network coverage. The co-
ordinates of these points are derived by referencing a topographical map 
supplied by the cantonal topological service of Neuchâtel. The precision 
of these maps is designated as 1:250 in urban areas and 1:500 in rural 
areas.

4.2. Sampling design

The data collection takes place between September 2019 and 
February 2020. Each route is walked on foot nine times, each time on a 
different day, at roughly the same time (with a 1-h variation), except for 
the NE path where the collection time varies from morning to evening.

The data is collected using two Samsung Galaxy S8-G950F(GSM/ 
HSPA/LTE) devices running on Android 8.0.0 (API 26). Both phones 
are connected to the Swiss mobile phone network through Swisscom 
SIM cards. The first phone, referred to as the Standard phone, is 
configured to detect WiFi networks, with GNSS services and LTE (4G) 
connection enabled. Android 8.0.0 allows users to manually select the 
preferred network generation (2G, 3G, or 4G). In cases of poor coverage, 

2 Latitude (ϕ), Longitude (λ).

3 A location is considered as rural as soon as it is located outside a city, a 
village or away from a complex infrastructure (train station). Because of the 
locations selected for the experiment, this definition allows for a clear 
distinction. The locations include urban and rural canyons (places where the 
GNSS satellite coverage is limited).
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the phone defaults to the older generation. The second phone, labeled as 
the Experimental one, is set up to prohibit WiFi connections and GNSS 
services. The phone network connection is adjusted based on the specific 
network generation being evaluated on the day of the experiment. Both 
phones are equipped with the Network Cell Info and Physics Toolbox 
Sensor applications. The Network Cell Info tracking feature is activated 
at the start of each collection day and deactivated at the end. During the 
walk, both phones are placed in the vertical interior pockets of a vest, 
with tracking on. When a measurement point is reached, the exper-
imentator removes the Standard phone, waits for 30s,4 and takes a 
photograph. This process is then repeated with the Experimental phone. 
Care is taken to ensure that the phones are held perpendicular to the 
ground, as previous research (Weaver et al., 2015) demonstrated the 
significance of the GNSS receiver’s position on measurements.

After capturing the photos, the GNSS coordinates displayed by the 
Physics Toolbox Sensor are recorded, along with connection conditions 
(cellular, GNSS, WiFi), sky coverage, and weather conditions. The 
equipment is then stowed, and the journey continues to the next point. 
Each point necessitates roughly 10 min for documentation and 
photography. Upon completing the route, the data (pictures & Network 
Cell Info tracking output file) is saved on an external drive for subse-
quent analysis. The pictures are USB transferred without an extraction 
tool as only the geolocation metadata are of relevance.

A total of 29 trips are completed, with two instances requiring 
repetition due to adverse weather conditions.5 Out of the originally 
planned 522 photographs, 497 are successfully captured. This deviation 
can be attributed primarily to road closures and challenges faced by the 
experimentator in reaching certain locations. Among these 497 photo-
graphs, a total of 348 sets of geospatial data points are gathered. For four 
locations (BELV, ESCA, CHOU, MAIL), fewer than five data points are 
obtained. As a result, these locations are omitted from the analysis 
concerning the influence of the physical environment on geolocation 
accuracy. The locations CHOU and MAIL are situated near the Swiss- 
French border, which limits access to the cellular network. BELV was 
inaccessible throughout the study period. ESCA is located in an urban 
setting, with the experimentator positioned atop stairs surrounded by 
substantial stone walls.

The geolocation metadata is extracted from each photograph. Sub-
sequently, the coordinates are projected on a WGS84 UTM 32 system. 
The data are then converted from longitude/latitude to Cartesian co-
ordinates. This conversion process is executed using the Geographiclib 
Python library (version 1.50), which employs a Mercator transverse 
projection method to convert geodesic coordinates into Cartesian co-
ordinates. The approach for this transformation is based on Krüger’s 
method, extended to the 4th and 6th order, as elucidated by Karney 
(2011). This projection method ensures that any introduced error in 
distance calculations remains under a centimeter. This level of accuracy 
is maintained as long as the coordinates are situated within 35◦ of the 
central meridian (9◦E in this case). The library is subsequently employed 
to compute the radial distance between two sets of coordinates, as well 
as the North-South and East-West distances. Projections and distances 
are calculated by the library up to the eightieth decimal place, providing 
a level of precision greater than that required for this study. These re-
sults are rounded to the meter, as are the ensuing statistical calculations 
(standard deviation, mean, median).

4.3. Statistical analysis

4.3.1. Normality
The described sampling design enables the collection of four 

location-related variables in meters: radial error (d error), north error (ϕ 
error), west error (λ error), and angular position. The use of a normal 
distribution is commonly advocated and assumed in many publications 
for these variables. However, several publications have raised concerns 
regarding this assumption and suggest that the radial, ϕ and λ errors may 
not necessarily follow a normal distribution. For instance, Zandbergen 
(2008) proposes that only the ϕ error adheres to a normal distribution, 
and advocates for the application of a Rayleigh distribution for the radial 
error instead. Specht (2020b) demonstrates the normality of ϕ and λ 
error distributions in the context of very large samples. However, it is 
specified that for small sample sizes (n < 1000), a criteria only very 
rarely fulfilled in forensic applications, the distributions of ϕ and λ errors 
are not normal.

Moreover, Specht (2020a) illustrates that assuming a χ2 distribution 
for the radial error based on the normality of ϕ and λ error distributions 
is not justified. Instead, Specht (2020a) shows that the radial error dis-
tribution exhibits a closer resemblance to the beta, gamma, logistic, 
lognormal, or Weibull distributions. In geolocation studies, two specific 
statistical tests appear to be frequently utilized: the Shapiro–Wilk test 
(Merry and Bettinger, 2019) and the Kolmogorov–Smirnov test (Specht, 
2020a).

For those tests, a study demonstrated that the Shapiro–Wilk test is 
notably more sensitive to non-normality in the data compared to the 
Kolmogorov–Smirnov test. As a result, the Shapiro–Wilk test is recom-
mended for samples with a small size (fewer than 30 measurement 
points) (Ahad et al., 2011). However, it is important to note that the 
sample size does reduce the power of the Shapiro–Wilk test, thus 
necessitating cautious interpretation of the results for n < 30 (Razali, 
Wah et al., 2011). Given that in the present study, certain subsets of data 
points intended for testing different hypotheses may have a size smaller 
than 30, the Shapiro–Wilk test was chosen over the Kolmogor-
ov–Smirnov test.

4.3.2. Hypothesis testing
Statistical tests are employed to assess the significance of differences 

among various subsets of data, created for the purpose of testing pairs of 
opposite hypotheses (see Table 3). These subsets are created by isolating 
data according to specific variables, thereby limiting variation to only 
those variables being tested. For all subsets, the radial error must be less 
than 1847 m. For the subset used to test the first set of hypotheses (H1, 
H2), only data collected with a 4G connection is considered. For the 
subset used to test the second set of hypotheses (H3,H4), only data 
collected with the standard phone and with a 4G connection are 
considered. For the subset used to test the third set of hypotheses (H5, 
H6), only data collected with the Experimental phone with 2G, 3G, 4G 
connection are considered.

The normality tests consistently indicate that the distributions of 
these subsets deviate from a normal distribution (see Table 5 in Ap-
pendix A). Consequently, non-parametric tests are deemed necessary for 
the subsequent statistical analysis.

Table 3 
Positional radial error of Samsung Galaxy S8 SM-G950F by using different 
network configurations.

n Min [m] Max [m] RMSE

All data 315 2 27259 599.17
Experimental 174 7 27259 716.03
Standard 4G 141 2 11533 411.50
Stand. 4G Urban 54 2 300 87.00
Stand. 4G Rural 87 3 11533 519.36
Experimental 2G 52 40 21935 827.43
Experimental 3G 58 7 27259 550.13
Experimental 4G 64 43 27024 750.58

Standard is always connected to 4G,GNSS and Experimental varies between 2G, 
3G, 4G, no GNSS.
Errors >1847m removed for n, RMSE.

4 This wait is added in the methodology because of the time it takes some-
times for the phones to fix an antenna. The phones are always on and operative.

5 Heavy snowfalls. The temperatures prevented the procedure to be applied 
correctly.
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The Mann–Whitney test is a commonly employed statistical method 
in numerous geolocation-related studies (Zandbergen and Barbeau, 
2011; Abdi et al., 2012; Moriarty and Epps, 2015; Merry and Bettinger, 
2019). In this study, it is systematically implemented at a 95 % confi-
dence level. This test is used to test the first two pairs of hypotheses (H1,
H2) (H3,H4).

The Mann–Whitney test is not suitable for simultaneous comparisons 
of multiple subsets as required by hypotheses H5 and H6. An analogous 
situation is encountered in the study by Tomaštík Jr et al. (2017), where 
a Kruskal–Wallis test is employed. The same is done in this study. In 
cases where the null hypothesis (indicating no population differences) is 
rejected by the Kruskal–Wallis test, the Conover–Inman test is selected 
for further analysis.

Visual observations of the results suggest that antenna proximity and 
the quality of cellular connection might impact the dispersion of mea-
surements at a particular location. To verify this, the Kendall correlation 
test is used. This test is chosen due to its minimal assumptions (requiring 
ordinal data and a monotonic relationship) and its previous use in Merry 
and Bettinger (2019). Antenna locations were logged during geolocation 
measurements and cross-referenced with the publicly accessible Open-
Cell and Mozilla Location Service (MLS) databases. In instances where 
cross-referencing with OFCOM (Federal Office of Communications - 
Switzerland) data is feasible, it is assumed that the antennas are the 
same if the locations appeared to correspond. The identification number 
of the antenna and the connection quality are recorded using the 
Network Cell Info application.

4.3.3. Error measuring
In this study, the quantity and nature of available measurement 

points constrain the range of applicable analytical tools (see Table 2). 
Consequently, metrics such as 2DRMS and CRLB, along with many CEP 
calculation methods, are excluded.

A variety of methods are available for calculating Circular Error 
Probability (CEP). The selection of the most appropriate method de-
pends on the experimental context and the available data. Various 
studies have been conducted to compare different equations and provide 
recommendations for their applicability in specific contexts (Williams, 
1997; Yakimenko, 2013; Wang et al., 2014; Carlson and Beer, 2021).

Given the experimental conditions, it was decided to customize the 
selection of the calculation method based on the available data. To 
compute the 50 % CEP, the Ethridge method is preferred due to its in-
dependence from the type of distribution, provided there are more than 
three data points available and the bias is less than 0.75 times the 
standard deviation of the radial error. If the number of data points is less 
than three, the Rand method is favored. The computation of the CEPs are 
made using the R library shotGroups.

The Root Mean Square Error (RMSE) is a commonly used metric in 
GNSS studies, though it is frequently employed with an assumption of a 
normally distributed error. Zandbergen (2008) advises a cautious 
approach, suggesting the removal of 5–10 % of the most significant 
outliers to account for potential non-normality in the distribution. 
Following John Tukey’s method (1) (Appendix B), 10 % of the most 
extreme data points are excluded prior to conducting all statistical tests 
and accuracy assessments.

To evaluate the Circular Error Probability at 50 % (CEP50) and 
RMSE measurements, we compare them to the 50th and 68th percentiles 
(R50, R68) of each data subset. The percentiles are computed using 
formula (2) (Appendix B), as discussed in Hyndman and Fan (1996).

5. Results

5.1. Radial error

Taking into account all data points, the maximum radial error for the 
Standard and Experimental phones was 11′533 m and 27′259 m, 
respectively (Table 3). The visual inspection of the data distribution 
indicated a deviation from normality, which was corroborated by the 
Shapiro–Wilk normality test result (Table 5 in Appendix A).

The data analysis uncovers groups of photos sharing identical geo- 
metadata. 172 data points can be distributed across 65 groups. Out of 
these, 28 groups consist entirely or partially of duplicates, where the 
data points occur consecutively in the measurement time sequence, 
possibly due to a delayed geo-location update. The remaining 37 groups 
involve measurements taken at the same location on different days or at 
different locations and days, deviating from the delayed update hy-
pothesis. This pattern is observed in most locations (26 out of 29), each 
affected to varying degrees, with some exhibiting important loss of 
variability (ARVR, EGAD, VREV, CRET, FERM, GACH, MOCH and 
PORT). Notably, the Experimental phone and 3G connections show a 
higher frequency of identical data points compared to the Standard 
phone, 2G, and 4G connections. Additionally, four specific days (out of 
the 27 field days) account for one third of the duplicated measurements, 
and 33 outliers with unusually large radial distances have been identi-
fied in this dataset.

5.1.1. Comparing the impact of satellite access (H1; H2)
Subsequently, to test the previously established hypotheses, specific 

subgroups of data are curated to minimize data variability, as described 
in the methodology. Focusing exclusively on data collected with a 4G 
connection, a comparison using a Mann–Whithney test is made between 
the error distributions of the Experimental and Standard phones. This 
analysis reveals a significant difference (p < 0.05), underscoring the 
impact of WiFi or satellite availability on geolocation accuracy (Table 6
in Appendix A). Additionally, the RMSE of the Standard Phone (4G) is 
lower than that of the Experimental phone (4G) (Table 3).

5.1.2. Comparing urban and rural locations (H3; H4)
A comparison is conducted between error distributions from rural 

and urban locations, using data coming from the Standard phone with a 
4G connection. This comparison also yields a significant difference (p <
0.05) (Table 6 in Appendix A), suggesting that geolocation measure-
ments in urban settings substantially vary from those in rural environ-
ments. When focusing solely on data from the Standard phone, a 
noticeable improvement in RMSE is observed for urban locations in 
contrast to rural ones (Table 3). This tendency is illustrated in Fig. 1, 
where the locations are arranged based on the median of the radial er-
rors observed across all recorded data points.

5.1.3. Comparing network generation (H5; H6)
Employing the Kruskal–Wallis test in tandem with the Conover–In-

man method on data points from the Experimental phone, a difference is 
identified between data collected with 2G and 3G connections (p <
0.025) (Table 6 in Appendix A). However, this result is very sensitive to 
outlier identification, potentially impacting its reliability. In terms of 
accuracy, it appears that the RMSE of data collected with a 3G 
connection is lower compared to data collected with 2G and 4G 
connections.

Using the Experimental dataset, a Kendall correlation test examines 
the relationship between radial error and network reception strength. 
Reception strength seems to show an inverse correlation with radial 
error, implying lower error with better reception. However, the 
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correlation is weak (R = −0.24, p = 0.0061). The same conclusion is 
reached when comparing phone subgroups by type of network 
generation.

5.1.4. Additionnal observations
Despite the limited number of data points, analyzing the location- 

specific data without any restrictions (related to phone, networks, or 
outliers) reveals distinct patterns based on where the photographs were 
taken. Specifically, when examining the RMSE values for each location, 
significant variations emerge, with some locations exhibiting an RMSE 
between 10 and 50 m, while others demonstrate an RMSE exceeding 
500 m. The CEP50 calculations exhibit a similar diversity from one 
location to another (Table 7 in Appendix A). When conducted after 
removing outliers, the results reveal projected radii ranging from 25 m 
to 555 m, depending on the location.

The comparison between CEP50 and Q50 metrics reveals varying 
levels of data dispersion across different locations. Some locations 
demonstrate a wider spread of data, while others have a more concen-
trated distribution around the median. Locations like SGAF, FFBO, 
CRFO and PORT have notably high relative error percentages, indicating 
substantial differences between CEP and Q50. Upon closer examination, 
it becomes evident that certain locations, like CRFO, SGAF, and FFBO, 
contain two distinct groups of data points: one with minimal radial error 
and another with substantial radial error. This considerable variation in 
data dispersion may contribute to the observed behavior of CEP50 in 
these locations. Concerning PORT, the presence of identical measure-
ment (4 out of 6) might be the explanation of the highly skewed result. 
The CEP50 metric seems to be as sensible to outliers as the RMSE 
meaning that it might also not be an appropriate metric when the 
measurements are in small numbers or the location tend to present a 
high variation.

5.2. Angular orientation

When analyzing the data from both the Standard and Experimental 
phones, a relatively uniform distribution of angular orientation is 
observed. This suggests that the measuring devices (i.e., the phones) do 

not significantly impact the orientation of the recorded positions. 
However, a distinct trend emerges when examining data from individual 
locations: in slightly over two-thirds of cases, geolocations exhibit a 
clear orientation towards one side of the compass. This phenomenon is 
particularly noticeable in some locations, indicating a potential influ-
ence from both the physical environment and the positions of available 
antennas (Fig. 2).

Using the Experimental dataset, a Kendall correlation test examines 
the relationship between radial error and antenna distances. Antenna 
distances refer to the separation between the indicated photo metadata 
location and the corresponding antenna location in established data-
bases. Notably, a correlation is observed between the 3G connection 
subgroup and the antenna reported in the MLS database, with radial 
error increasing as antenna distance decreases (R = 0.39, p = 0.00025). 
However, as described in the methodology, the location of antennas is 
uncertain (it relies on assumptions made during the different cross- 
referencings). Those results need to be taken cautiously and the rela-
tion between the position of the antenna and the radial error of mobile 
phone geolocation needs to be further investigated. This does not negate 
the observation that angular orientation appears to be influenced by 
external factors.

6. Discussion

While this study illustrates the presence of large location errors (>2 
km), not acknowledged in previous studies, it also demonstrates the 
variance of errors based on specific locations. While it is difficult to 
pinpoint the variables responsible for such variance in position error, the 
present study tested three hypotheses, which are discussed in section 
6.1.

Although variance in geolocation error might have been documented 
in separate studies (for instance studies investigating urban canyons), 
the present results facilitate a discussion on forensic investigation pro-
tocols, as proposed in section 6.2.

Being able to communicate clearly the results of a forensic investi-
gation needs communication tools. In the case of geolocation, statistics, 
scales and figures might be used to report the geolocation indicated by a 
mobile phone as well as to contextualise this information with the un-
certainties that surround it. In section 6.3, we draw on our results to 
discuss the precautions that should be taken when using various previ-
ously illustrated tools (hypothesis tests, statistical metrics, graphs).

Fig. 1. Boxplot of observed distances [m] from the location the device was 
actually at per location (Logarithmic scale, ordered by median). Urban loca-
tions are shown in grey, rural locations in white.

Fig. 2. Positions of the measurements (on the left) and the antennas the phone 
was connected to (on the right). The square represents the real position where 
the pictures were taken. The accuracy of the antennas position depend on the 
data collected within the Opencell and MLS databases. Location: VREV.
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6.1. Impact of different variables: discussing the hypotheses

This study aims to assess three pairs of opposite hypotheses, with the 
first two of them focusing on the impact of network accessibility (GNSS, 
WiFi, Cellular Network) on geolocation, while the third one investigates 
the influence of urbanization on geolocation accuracy.

While the evaluation of these hypotheses through statistical tests was 
somewhat constrained by the presence of multiple duplicates in the data 
points, visual assessments tended to confirm the results of the statistical 
tests, as well did the comparisons between different metrics (minimum, 
maximum, median, mean, RMSE).

6.1.1. Impact of WiFi/GNSS accessibility (H1; H2)
The comparison of geolocation errors between measurements with 

WiFi/GNSS/4G access and those with 4G-only access reveals a signifi-
cant difference, highlighting the influence of WiFi or satellite avail-
ability on geolocation accuracy. This significant difference is 
demonstrated using a Mann–Whitney test and a visual analysis of the 
data (scatter plots and bar charts). This finding tends to align with 
previous research by Merry and Bettinger (2019). However, differences 
in methodologies (such as device, location, and type of networks) make 
direct comparison difficult. Additionally, in the present study, WiFi ac-
cess is limited in most locations, complicating the assessment of WiFi’s 
impact on geolocation accuracy.

Nonetheless, there is a significant disparity between the range of 
radial errors reported in past studies and the values collected in the 
present experiment. Most previous studies report errors of less than ten 
meters, or at most, errors less than five hundred meters. In the present 
study, the maximum recorded radial error is 27 km (without satellite 
access) and 11 km (with satellite access), with median errors of 430 m 
and 42 m, respectively. This discrepancy with past literature un-
derscores the need for precision and accuracy tests of devices involved in 
an investigation, without assuming a specific level of accuracy or 
precision.

The presence of WiFi/GNSS access does not seem to impact the 
angular orientation of the geolocation errors. However, the same miti-
gating factors that affect the discussion of radial errors need to be 
considered, preventing any conclusion to be reached.

6.1.2. Comparing urban and rural locations (H3; H4)
Using visual analysis (scatter plots and bar charts) as well as a 

Mann–Whitney test, the comparison between urban and rural locations 
within the 4G connection subset indicates a significant difference in 
error distributions. Results suggest that geolocation measurements in 
urban settings tend to be more accurate than those in rural environ-
ments, corroborating the findings of Yoo et al. (2020). Fig. 1 however 
illustrates that the distinction is not important. This could be due to (1) 
the definition used to differentiate urban areas from rural areas, or (2) 
other influences or variables that were not controlled in the experiment, 
such as antenna presence or the frequency of human activity in the 
location.

Errors observed in rural areas also exhibit greater dispersion than 
those in urban areas. However, the sample of locations in urban areas is 
smaller than that in rural areas. It is possible that the smaller number of 
input points impacts the statistical metrics. Additionally, the sampled 
urban locations may not represent areas that could significantly impact 
location precision. Indeed, not only accuracy, but also precision seems to 
be highly variable and depends on the location of the measurement. For 
the subset Standard Phone, 4G, not taking into account radial errors over 
1847 m, RMSE (an accuracy measure) varies from 4 m (PORT) to 907 m 
(SGAF) and standard deviation varies from 11 m (ESCH) to 584 m 
(SGFA). However, since the number of measures at each location is 
limited, it is difficult to make any generalisation. Taking that into 
consideration, four categories can be roughly draft: places without any 
geolocation metadata, places with low variability (high precision, 
regardless of accuracy), places with high variability (low precision, 

regardless of accuracy) and places where geolocation metadata record 
extreme behaviors (high accuracy error).

In addition to the direct physical environment, the potential impact 
of antennas and geolocation databases (in this study, the Google data-
base, measurements were made on an Android device) can vary from 
place to place. However, the number of data points per location is 
insufficient for any sort of correlation analysis. Further studies on the 
possible implications of neighboring antennas and the role of databases 
in cellphone geolocation would be valuable. Similar considerations 
apply when interpreting angular error.

6.1.3. Comparing network generation (H5; H6)
For this last set of hypotheses, the combined use of the Krus-

kal–Wallis and Conover–Iman tests highlights a difference between data 
collected while the phone was connected to a 2G cellular network and 
data collected with a 3G connection. However, while slight differences 
between the 3G subset and the 2G or the 4G subsets might be visible with 
the use of bar charts, the results of the statistical test are sensitive to 
slight changes in the outlier limit. Therefore, cautious interpretation of 
the variations in accuracy between measures taken on 2G, 3G, or 4G 
networks appears challenging, suggesting that the observed differences 
may be the result of random elements rather than an actual difference in 
accuracy.

Nonetheless, a difference emerges when comparing the high number 
of pictures without geolocation metadata taken while being connected 
to a 2G network and pictures taken while being connected to a 3G or a 
4G network. It is difficult to pinpoint the reason behind this difference. 
The authors could not find previous studies testing the possible influence 
of cellular network generations on geolocation error.

6.2. Using geolocation in a case

The results obtained in this study show a larger degree of variance 
and higher errors than previous studies. Whilst the variance may be a 
result of a smaller sample size, the origin of the difference in observed 
error is still unknown. Potential reasons might be the mountainous 
terrain, specific device settings or the measurement protocol using 
photographs instead of an application running on the device. With the 
information currently available, there is no good way to discern between 
these potential explanations. However, these observations illustrate the 
risk associated with unconditionally trusting evidentiary localisations. 
No matter the reason of the higher observed error, this data shows that 
mobile devices can sometimes produce highly inaccurate geolocation 
traces.

Acknowledging this does not allow to conclude that geo-location 
traces cannot be used due to them being unreliable. Instead, it empha-
sises their use as one element of many. Indeed, it is rare to have only one 
single piece of geolocation information available in a case. Often, 
practitioners are presented with a series of localisations, generally with 
varying accuracy and precision. The ensemble of these data points 
generally makes it possible to identify locations with large error as 
evident outliers. These other available traces act as a safeguard. Typi-
cally, it is more reasonable to consider one outlier rather than assuming 
that all other traces are affected by large errors. Consequently, it is 
unlikely that errors as extreme as those observed in this study would 
lead to erroneous conclusions. However, caution must be exercised 
when an argument about location is based purely on a singular obser-
vation. In such cases, none of these safeguards are present, and the risk 
of an erroneous conclusion increases.

The observations presented here align with a series of previous 
studies that question the absolute reliability of mobile device locations 
(von Watzdorf and Michahelles, 2010; Rodriguez et al., 2018; Merry and 
Bettinger, 2019). The implication for localisations in criminal cases is 
clear: Categorical statements about the location of a device are not 
supported by existing research and should not be presented in court. 
Instead, more balanced approaches, integrating uncertainties, should be 
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chosen. So far, Bayesian evaluation is the only approach that has been 
proposed in this regard (Casey et al., 2020; Spichiger, 2022, 2023). This 
approach consists in evaluating the observed trace from the perspective 
of each proposed explanation of the trace. For each suggested location, 
the likelihood of the observations is explored. Ideally based on reference 
data, a probability is assigned to the statement These location-traces were 
recovered from the device given its presence at location A. This process is 
then repeated for each other suggested location, allowing for a differ-
entiated conclusion to be presented. In Spichiger (2023), the feasibility 
of conducting such an evaluation for a single point location is shown. In 
this study the process of data generation is approached as a black box 
process. For each location of interest, an equivalent device is used to 
generate a series of reference data points. This approach allows to 
measure where a device is localised when it is at this given location 
(Spichiger, 2023).

This approach requires on-site measurements for each case anew, 
which can be resource-intensive. Developing a generalised model for 
localisation accuracy could lead to significant efficiency gains for 
practitioners. Currently, there are no suggestions on the potential 
structure or approach for such a model. However, the results presented 
here highlight potential challenges for developing such a model. As can 
be seen in Fig. 1, the distance between the actual location of the device 
and the coordinates recovered from the images vary quite heavily from 
one location to the other. The observed medians differ by two orders of 
magnitudes from the lowest to the highest. The spread of the quartiles 
vary heavily and the form of the distribution includes all from relative 
symmetry to being heavily skewed in either direction. This implies 
highly variable parameters that a model would need to account for and 
may suggest that different distribution models might best describe the 
observations at different locations. If other factors, such as different 
devices or environmental changes, are also considered, the complexity 
of a generalised model will increase even more. This complexity could 
reach a degree where generalised modeling is no longer feasible, leaving 
black box measurements as the only viable option.

6.3. Choice of results presentation

Three types of measurements are employed in this study to describe 
radial error: RMSE, CEP50, and the 50th and 68th percentiles. 
Comparing RMSE with the 68th percentile reveals differences in most 
locations, except for MOCH and JGAZ. However, in the case of MOCH, 
where only four data points were observed, all of the observations are 
identical, which distorts the calculations. Notably, in subsets like ARVR, 
PORT, and CRFO, the RMSE exceeds the Q68 considerably. This in-
dicates that a substantial portion of data points in these subsets exhibit 
larger errors than suggested by the Q68. It implies the presence of 

outliers or instances of exceptionally large errors within these specific 
subsets, despite the defined outlier threshold of 1847 m.

Conversely, for other locations such as EGAD, CRET, and FFBO, the 
RMSE is significantly lower than the Q68. This suggests the presence of a 
subgroup displaying higher accuracy within these subsets. A closer 
scrutiny of the data reveals distinct clusters of data points that exhibit 
superior accuracy compared to the remaining subset, underlining the 
variability in measurements within these locations. Finally, in certain 
locations, there is a slight difference between the RMSE and the Q68, 
with the RMSE being marginally lower (indicating a relative error of 
approximately 10–15 %). In these cases, the RMSE appears to provide a 
representative indication of the radial error behavior. These results are 
coherent with those of Zandbergen (2008, 2009) acknowledging that in 
some cases the RMSE metric might not be representative of the error 
distribution.

Reporting the Circular Error Probable (CEP) values to the 50th 
percentile reveals that in most cases, the relative error is greater than 5 
%, with the median absolute error at 38 m. Overall, the CEP appears to 
overestimate the accuracy of the measuring device (in this case, a mobile 
phone). However, this behavior varies from one location to another, and 
we are unable to pinpoint an explanation.

These results might be influenced by the number of measurement 
points. However, it seems reasonable to suggest that characterizing the 
geolocation error of a mobile device should not rely solely on a single 
statistical tool (such as RMSE or CEP). Including graphical representa-
tions allows for an illustration of both the accuracy and precision of a 
specific device in a specific location (see Fig. 3). A report that limits the 
evaluation of accuracy and precision to one metric or one type of 
communication media might not be the most effective way to convey 
that information to a third party.

7. Conclusion

The use of localisations recovered from mobile devices is nowadays 
central to many investigations and frequently used in court. The recent 
rise in awareness for errors and uncertainty linked to these traces 
underlined the need for a better understanding of the factors influencing 
the observed results and for means to quantify the observed 
uncertainties.

In this study, localisations are obtained at 29 different locations, over 
a time span of six months with the settings of the devices varying. The 
measurements reveal a large variety of precision in the data and suggest 
an impact of the urbanisation of the surroundings of the measurement 
location. Overall, distances between observed locations and the actual 
position of the device are found to be larger than observed in previous 
studies without it being clear where this difference comes from. The 
largest observed difference was over 11 km in standard conditions and 
more than 27 km when only based on visible cell towers (referred to as 
the experimental setting). The obtained results highlight the critical 
importance of considering the uncertainties associated with geolocation 
data obtained from mobile phones, as well as their high complexity. It is 
crucial to recognize that while mobile phones offer a valuable source of 
information, this data can be complex and prone to potential inaccura-
cies. The revealed significant variability suggests that finding a simple, 
universal model for evaluating location data is unlikely. A nuanced 
approach is needed for interpreting and utilizing this information in 
legal proceedings and for basing conclusions on field measurements.

It is worth noting that this research is not exhaustive, and there 
remain many unexplored factors that may impact geolocation data.
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Fig. 3. Accuracy metrics projection for GACH. The grid-like positions illus-
trates the rounding of measurements to the 5th decimal.

E. Ryser et al.                                                                                                                                                                                                                                    Forensic�Science��)�	�)��

)�(��Digital�Investigation�50��������301813�

8�



A Appendix. 

Table 4 
Measurement points

Location Latitude Longitude Environment

ARVR 47◦02′14.53″ 6◦52′29.68″ Rural
BCEC 47◦03′43.56″ 6◦44′42.82″ Rural
BELV 46◦59′53.42″ 6◦55′36.90″ Urban
BOUD 47◦01′40.02″ 6◦53′16.31″ Urban
CCHP 47◦04′18.65″ 6◦44′59.19″ Rural
CHOU 47◦05′41.92″ 6◦45′21.02″ Rural
CRCH 47◦00′26.37″ 6◦54′13.62″ Rural
CRET 47◦06′22.48″ 6◦48′45.42″ Rural
CRFO 47◦00′41.12″ 6◦54′22.53″ Rural
EGAD 46◦59′40.00″ 6◦56′07.36″ Urban
ESCA 47◦ 05′ 04″ 6◦ 45′ 18″ Rural
ESCH 46◦ 59′ 31″ 6◦ 55′ 38″ Urban
FAFO 47◦03′22.50″ 6◦52′59.42″ Rural
FERM 47◦ 04′ 49″ 6◦ 45′ 16″ Rural
FFBO 47◦00′52.40″ 6◦54′30.31″ Rural
FRBD 47◦01′10.60″ 6◦54′16.34″ Rural
GACH 47◦05′56.05″ 6◦49′30.03″ Urban
GALO 47◦03′27.31″ 6◦44′46.18″ Urban
GANE 46◦59′46.15″ 6◦56′07.59″ Urban
GORG 46◦59′22.81″ 6◦54′41.64″ Rural
HGGA 47◦02′52.05″ 6◦52′29.25″ Urban
JGAZ 47◦03′02.65″ 6◦53′12.61″ Rural
MAIL 47◦06′11.13″ 6◦47′11.77″ Rural
MOCH 46◦59′30.37″ 6◦55′42.93″ Urban
PORT 46◦59′22.88″ 6◦56′09.91″ Urban
SAAB 47◦04′12.28″ 6◦45′03.81″ Rural
SGAF 47◦03′21.22″ 6◦52′46.54″ Rural
SPON 46◦59′24.47″ 6◦54′32.02″ Rural
VREV 47◦06′15.30″ 6◦48′14.21″ Rural

Table 5 
Results of the Shapiro–Wilk Normality Test on radial 
error from Experimental (Exp.) and Standard (Std.) 
phones

Subsets p-value

Exp. Phone 4G 1.55733e-06
Std. Phone 4G 3.38884e-17
Exp. Phone 2G 7.805305e-05
Exp. Phone 3G 6.107828e-08
Exp. Phone 4G 1.55733e-06
Std. Phone 4G Urban 2.170208e-08
Std. Phone 4G Rural 5.408977e-11
Limit value 1847m

Table 6 
Results of hypotheses test on Radial error from Experimental 
(Exp.) and Standard (Std.) phones

Mann–Whitney p-value

Standard 4G/Experimental 4G 5.547026e-13
Rural Std 4G/Urban Std 4G 0.002223755
Kruskal–Wallis p-value
Experimental 2G/3G/4G 0.02960179
Conover–Inman p-value
Experimental 2G/3G 0.004208075
Experimental 2G/4G 0.133197728
Experimental 3G/4G 0.049376780
Limit value 1847m

E. Ryser et al.                                                                                                                                                                                                                                    Forensic�Science��)�	�)��

)�(��Digital�Investigation�50��������301813�

9�



Table 7 
Comparison of accuracy measures in meters (Per location, Standard, 4G). Locations with less then 4 datapoints do not appear.

Loc. n CEP 50 ± 0,2 Q50 RMSE Q68

ARVR 9 81.13 ± 1.62 20.43 225.32 53.30
BCEC 5 262.27 ± 5.25 202.59 548.68 380.84
CRCH 4 313.48 ± 6.27 270.10 490.02 606.43
CRET 4 555.65 ± 11.11 592.91 744.46 1048.27
CRFO 4 88.09 ± 1.76 11.20 132.67 82.60
EGAD 5 19.33 ± 0.39 7.59 22.10 32.65
ESCH 6 23.30 ± 0.47 27.29 27.24 29.96
FAFO 6 153.98 ± 3.08 97.92 223.62 247.01
FFBO 8 173.23 ± 3.47 286.56 329.68 438.65
FRBD 5 321.64 ± 6.43 350.72 505.48 617.35
GACH 9 25.95 ± 0.52 29.38 32.12 36.31
GALO 7 53.55 ± 1.07 55.82 91.56 72.43
GANE 5 61.07 ± 1.22 66.31 82.68 76.14
GORG 6 117.60 ± 2.35 29.90 156.87 190.31
HGGA 7 64.55 ± 1.29 98.30 118.69 135.87
JGAZ 6 306.25 ± 6.13 248.28 505.20 506.90
MOCH 4 – 11.48 11.48 11.48
PORT 6 42.72 ± 0.85 4.14 79.89 18.96
SGAF 8 535.49 ± 10.71 1104.92 907.08 1119.75
SPON 5 31.71 ± 0.63 16.40 46.38 48.59

Errors >1847m removed; all CEP computed with Ethridge; MOCH is not computable.

B Equations

IQR = X̂0.75 − X̂0.25 (1) 

Upper Limit = X̂0.75 + 1.5× IQRLower Limit = X̂0.25 − 1.5× IQRWith: X̂p, estimation of pth percentile 

m = (p + 1)
3.pk

= k − 1/3
n + 1/3

pk ≈ median[F(xk)] (2) 
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