
DFRWS APAC 2024 - Selected Papers from the 4th Annual Digital Forensics Research Conference APAC

MIC: Memory analysis of IndexedDB data on Chromium-based applications

Byeongchan Jeong, Sangjin Lee, Jungheum Park *

School of Cybersecurity, Korea University, Seoul, South Korea

A R T I C L E I N F O

Keywords:
Digital forensics
Memory forensics
Chromium-based applications
Incognito mode
IndexedDB
LevelDB

A B S T R A C T

As Chromium-based applications continue to gain popularity, it is necessary for forensic investigators to obtain a
comprehensive understanding of how they store and manage browsing artifacts from both filesystem and
memory perspectives. In particular, the incognito mode developed in the current version of Chromium uses only
physical memory to manage data related to active sessions. Therefore, handling physical memory is essential for
tracking a user’s browsing behaviour in incognito mode. This paper provides an in-depth examination of Lev-
elDB, a lightweight key-value database utilized as Chromium’s implementation for IndexedDB. In particular, we
delve into the details of how IndexedDB data is managed through LevelDB, taking into account its low-level
database file format. Furthermore, we thoroughly explore the possibility of residual data, both complete and
incomplete, being retained as applications create and initialize IndexedDB-related data. Based on our research
findings, we propose a systematic methodology for inspecting the internal structures of LevelDB-related C++

classes, carving these structures from binary streams, and interpreting the data for forensic analysis. In addition,
we develop a proof-of-concept tool based on our approach and demonstrate its performance and effectiveness
through case studies.

1. Introduction

The Chromium is widely used as a codebase for various web
browsers, including Google Chrome and Microsoft Edge (Google, 2008).
In addition, a variety of desktop applications are being developed using
frameworks that embed the Chromium to enable the use of web tech-
nologies in native application development. Examples of them include
Electron (OpenJS Foundation, 2014) and Microsoft Edge WebView2
(Microsoft, 2020).

From a digital forensics perspective, these web browser-related ap-
plications are important because they create and manage traces of user’s
web browsing activities. For example, instant messaging services may
generate data such as contacts and chat logs, while cloud storage ser-
vices may store traces such as lists of uploaded, downloaded and shared
files. In terms of forensic analysis on them, various applications built
with the Chromium contain artifacts similar to those created by the
Google Chrome addressed by existing studies.

More specifically, IndexedDB consists of one or more databases for
each domain, and the IndexedDB data is stored in the LevelDB format.
An IndexedDB database stores more than one object store containing
serialized records. Chromium-based applications also store data in key-
value pairs, so it is important to have a deep understanding of the

IndexedDB structures and how metadata and records are managed in
key-value pairs. In addition, Chromium-based browsers support an in-
cognito mode (Private mode) that stores data in volatile memory
without writing it to local disk. Therefore, analyzing the data left in
memory dumps becomes a crucial aspect of digital forensic
investigations.

This paper aims to identify and extract user data in volatile memory
with an understanding of IndexedDB mechanisms. First, we scan the
class objects that make up IndexedDB and their structure, and rebuild
the IndexedDB data area in memory using the scanned class objects as a
starting point. The IndexedDB data consists of a MemTable that is
structured as SkipList, which stores key-value paired records. We
interpret and classify the key-value pairs stored in the MemTable to
produce forensically meaningful results. Based on our research, we
experimentally validated our method and developed a proof-of-concept
tool, MIC, to help digital forensic investigations.

1.1. Motivation and research questions

With an increased number of online services offering Chromium-
based applications, digital forensics community needs to understand
how they manage data and respond to challenges posed by the

* Corresponding author.
E-mail addresses: naaya@korea.ac.kr (B. Jeong), sangjin@korea.ac.kr (S. Lee), jungheumpark@korea.ac.kr (J. Park).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301809

Forensic Science International: Digital Investigation 50 (2024) 301809

Available online 18 October 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:naaya@korea.ac.kr
mailto:sangjin@korea.ac.kr
mailto:jungheumpark@korea.ac.kr
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2024.301809
https://doi.org/10.1016/j.fsidi.2024.301809
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2024.301809&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

applications. Furthermore, when Chromium-based browsers are used in
incognito mode, they only store data in memory. Many of these appli-
cations handle data related to user activity and system data to run the
applications. However, existing research focuses on IndexedDB stored
on local disks, so there is a relative lack of research on analyzing data
remaining in memory.

To solve these challenges, it is important to gain a deep under-
standing of the structures and mechanisms of IndexedDB and to extract
the user data remaining in volatile memory.

In summary, this study led us to the following research questions.

RQ1. How can IndexedDB data be identified and extracted from
Chromium-based application effectively?
RQ2. To what degree can data from IndexedDB-related structures be
interpreted?
RQ3. To what extent can meaningful forensic data be extracted from
the application under incognito mode?

1.2. Contribution

In summary, this research has three major contributions as follows.

● Identifying all the available data from volatile memory by analyzing
IndexedDB data manipulation used by Chromium-based application

● Proposing a framework to examine IndexedDB-related artifacts
during digital forensic investigation

● Validating our approach through experiments and developing a
proof-of-concept tool

The remainder of this paper is structured as follows. Section 2 de-
scribes how IndexedDB manages and stores data and its structures.
Additionally, we examine research on application-level memory foren-
sics, including artifacts of browser incognito mode within volatile
memory, and studies related to IndexedDB in Chromium-based appli-
cations. Section 3 outlines our proposed methodology for extracting and
analyzing IndexedDB data from memory dumps. Section 4 introduces
the MIC tool, a proof-of-concept tool developed based on our proposed
methodology. Section 5 presents the setup and results of experiments
conducted to evaluate the performance and effectiveness of the MIC
tool. Finally, Section 6 summarizes our contributions and offers sug-
gestions for future research directions.

2. Background and related work

2.1. IndexedDB and Chromium-based applications

IndexedDB is a client-side storage solution used in web browsers,
designed to overcome the limitations of cookie storage. IndexedDB
handles and manages the storage of structured data by supporting
transactions to ensure its integrity and consistency. Many web-based
services utilize IndexedDB. For example, messaging applications store
chat data, attachments, and chat lists, while cloud storage services use
IndexedDB to manage file lists, metadata and recent files. It optimizes
service performance by reducing server-client communication and
leveraging client-side resources. Additionally, IndexedDB enables ap-
plications to work offline. Section 2.1 explains the process of how
IndexedDB handled user data and provides a detailed description of the
data and file formats residing in memory and on disk.

Memory-resident data of IndexedDB handling mechanism
IndexedDB has three main components: MemTable, log, and ldb, which
are needed to manage and manipulate data in memory. The mechanism
of IndexedDB is designed to write and read data effectively, and LevelDB
is used to implement IndexedDB. LevelDB, developed by Google, is a fast
and lightweight storage library that uses key-value pairs to ensure the
performance and stability of IndexedDB (Google, 2011a). MemTable is
an in-memory data structure that stores the most recent data. When

writing data on IndexedDB, it is recorded in MemTable. As MemTable
remains in memory, it enables fast data access. The log file also records
the same data. It stores data on a disk, allowing data to be recovered in
the event of unexpected events. Once MemTable exceeds the default size
(4 MB), LevelDB flushes the data and converts it to an ldb file. The ldb
file is stored on disk with aligned key-value pairs, which enables effec-
tive data search and ingestion. When MemTable is flushed to disk,
IndexedDB allocates a new MemTable to manage the data. When
reading data, IndexedDB begins to search for data in the MemTable. If
the data is not found, it searches the data from a most recent log file to
the oldest. Thus, IndexedDB uses MemTable, log, and ldb to manage
data for its consistency and efficiency.

LevelDB file format IndexedDB of Chromium-based applications
uses LevelDB as back-end storage to manage data. LevelDB, a key-value
paired storage, provides high performance and efficiency for writing and
reading data. As mentioned earlier, LevelDB is composed of MemTable,
‘[0–9]{6}.log’, and ‘[0–9]{6}.ldb’ to ensure its performance and data-
base consistency. SkipList-based MemTable is a data structure used for
effective data search and insertion (Pugh, 1990). MemTable retains the
most recent data in memory and flushes data to ldb files on disk when
the MemTable storing data exceeds the default size.

A ‘[0–9]{6}.log’ file records how the data has been changed such as
data insertion, modification, and deletion. If an unexpected exception
occurs when a transaction run by LevelDB, the database goes back to the
state before the transaction occurs to maintain consistency. The excep-
tion may cause the data in the MemTable to be lost, it logs data to
prevent this. The log file is composed in a sequence of 32 KB blocks, each
block has multiple records. A record consists of seven-bytes header
(checksum, length, and type) and data of the specified length (Google,
2011c).

When the size of a record exceeds the default block size (32 KB), it
uses more blocks in succession. The type value (FULL, FIRST, MIDDLE,
and LAST) in header indicates whether the records are consecutive or
not. If a single block is used, the type is ‘FULL.’ If more than one block is
used, the type describes the start and end of the blocks using the values
FIRST, MIDDLE, and LAST.

A single ‘[0–9]{6}.ldb’ file contains data blocks, meta blocks, meta
index block, index block, and footer from the start of the file (Google,
2011b). The ldb file is stored as a sequence of actual key-value pair
records, which are separated into a sequence of data blocks of size 4 KB.
As the amount of data increases, LevelDB optimizes the space. During
this process, LevelDB removes duplicate and deleted records to make
efficient use of database space.

2.2. Related work

2.2.1. Identifying significant forensic artifacts for applications stored in
memory

Identifying application traces in memory has been addressed for a
long time, which has been an ongoing and growing area of research.
Previous studies focused on understanding how applications process
strings, patterns, or specific features for each operating system. Based on
their findings, the authors discovered and extracted forensically
important data.

Van Der Horst et al. (2017) and Thomas et al. (2020) examined
cryptocurrency client applications on Windows. The authors explored
traces of cryptocurrency use by detecting string and binary formatted
values from memory dumps.

Wang et al. (2022) studied memory forensics of the V8 JavaScript
engine. The authors proposed a method to extract V8 JavaScript engine
objects and their descriptors, which can be applied to other applications
using the engine.

With recent advances in security technology, the digital forensic
community requires volatile memory forensics. While current memory
forensics techniques rely on searching for strings, patterns, and specific
data structures, they have difficulties in generalizing and applying to a

B. Jeong et al. Forensic Science International: Digital Investigation 50 (2024) 301809

2

wide variety of situations. To address the challenges, we propose a new
methodology to support Chromium Projects with a high market share
under the cross-platform environments by making wide use of memory
forensic techniques.

2.2.2. Browsers incognito mode and volatile memory
Most web browsers now provide an ‘incognito mode’, that protects

user privacy by not storing browsing history on local devices. From a
digital forensic perspective, it is crucial to collect web browser data as it
contains important clues to solve criminal cases. When using incognito
mode on web browsers, they store user activities in memory tempo-
rarily, and these research has been conducted on discovering them.

Satvat et al. (2014) suggested new approach to examine private
browsing session of Firefox, Chrome, IE, and Safari. They conducted
systematic investigation of local artifacts under the incognito mode.
Especially, they confirmed that volatile memory stores visited URLs,
password, and cookie.

Mahlous and Mahlous (2020) suggested digital forensic method for
Brave browser in a private mode. They studied how to reduce false
positives and false negatives when searching for keywords used to scan
memory and browsing history. They observed how the amount of data
and its type and content differed by taking memory snapshots of in-
cognito and normal mode.

Saputra and Riadi (2020) researched figuring out user data in both
normal mode and incognito mode. They discovered local artifacts for
Twitter, one of the social network services, after posting text, link, im-
ages, videos using Twitter.

Nelson et al. (2020) analyzed forensic artifacts in Chrome, Firefox,
and Tor Browser. The authors identified and examined local artifacts
under both normal mode and incognito mode. While normal mode stores
various local artifacts, incognito mode stores fewer artifacts.

Hariharan et al. (2022) conducted their study on browsing artifacts
for portable web browsers including Brave, Tor, Vivaldi, and Maxthon in
private mode. After running private mode for each browser, they per-
formed some actions using Facebook, Gmail, Amazon and identified
related data in memory.

Zollner et al. (2019) examined web-based bitcoin wallets in browsers
such as Chrome, Firefox, IE, Edge, and Tor. They presented a method to
discover the artifact related to Bitcoin wallets using regular expressions,
file signatures and keywords.

Choi et al. (2023) analyzed source codes of Chromium-based browser
to find out classes that associate with the user activity such as creating
browser window, adding tab, visiting specific URLs. Based on their
findings, they suggested a method to examine web browsing history in
memory and developed the tool to automate the processes.

Kim et al. (2024) analyzed IndexedDB, which is used in Gecko-based
browsers. Since these browsers use IndexedDB in encrypted SQLite, the
authors conducted a study on extracting the encryption key from
memory and decrypting IndexedDB.

Despite active research on browser private mode, most studies
examine the data using keyword searches or regular expressions with
known information, which is limited when data sources are not found in
memory. To address this challenge, various memory forensics method-
ologies have been proposed, such as identifying object layouts associ-
ated with a user’s web browsing activity and utilizing them to identify
data. Developing existing research, we propose an updated memory
forensics technique to find out significant data related to user activities
stored in the IndexedDB of a Chromium-based application.

2.2.3. IndexedDB of Chromium-based application
As browser-based applications have become more popular, the

mechanisms for storing user data have evolved. Web storage enables a
reduction in workload and lightens the load on servers, while allowing
users to store their data locally. As a result, those common web-based
services store data related to user activity as well as system data to
provide high-performance services, and a lot of research has been

conducted on this topic.
Paligu et al. (2019) proposed a methodology and a developed tool to

investigate key forensic artifacts in IndexedDB across five most popular
browsers (Chrome, Edge, Fire, Opera, Firefox, and Safari) on popular
operating systems (Windows, MacOS, and Ubuntu). They demonstrated
that the data stored in IndexedDB can be useful for forensic in-
vestigations on fifteen of the most popular websites.

Several studies (Paligu and Varol, 2020, 2022a, 2022b) analyzed
Chromium-based applications using IndexedDB. The authors identified
user data from the IndexedDB by applying pretest–posttest quasi
experiment (Cook and Campbell, 1979) for each case. The study
confirmed that the IndexedDB can be useful during digital forensic
investigation.

CCL Solutions Group (2020) describes how the IndexedDB data
stored on local devices manages LevelDB, and developed an open source
tool to interpret the data at the raw level.

Most forensic research and commercial/open source tools related to
IndexedDB focus on extracting and analyzing the data in LevelDB within
each domain-specific IndexedDB storage that remains on the local de-
vice disk. However, there is a lack of research on analyzing how
IndexedDB works and manages data. Therefore, we conducted research
to gain a deeper understanding of IndexedDB handling mechanisms in
volatile memory and to extract data related to user activities.

3. Methodology for memory analysis of IndexedDB data

This study aims to identify Chromium-based applications from
memory dumps and extract IndexedDB database of each application. We
then select candidates that store IndexedDB through IndexedDB-related
data structures. For the valid data structures, we deserialize the serial-
ized records and store them by constructing an integrated schema. Fig. 1
describes an overview of the proposed methodology.

3.1. Extraction of candidate IndexedDB-related objects

In our study, we applied a carving technique based on class object
size to extract the IndexedDB-related classes. We determined the
InexedDB-related classes analyzing source codes of the Chromium Pro-
jects. As the addresses of memory objects are assigned in eight-byte
alignment, we set the starting addresses of identified classes as multi-
ples of eight. It starts at the specified address and moves in units of eight
multiples until it scans the entire memory corresponding to the size of
the object. In addition, it only scans memory areas that the application
can read/write to reduce false positives.

As Chromium-based applications are composed of a number of
classes to manage and store data. It is necessary to identify class objects
to reconstruct IndexedDB, so we analyzed source codes of the Chromium
Projects. As a result of our analysis, we found out that DBImpl class is the
least unit to extract data from IndexedDB. While the Chromium Projects
and IndexedDB class object layouts undergo frequent updates, LevelDB,
which is used for back-end storage of IndexedDB, has a less frequent
update cycle (Google, 2021). Therefore, we found out DBImpl class to
handle the updates of IndexedDB related classes and scan volatile
memory using the class. The volatile memory area are scanned by the
size of the DBImpl class (0x278) and sent to the validation phase to
verify each class field.

3.2. Validation of candidates considering interconnected structures

The IndexedDB structures identified in the extraction phase are
validated by matching the data type with the offset where the member
fields of the DBImpl class layout should be located in each structure. For
example, the objects in Fig. 2 are the target fields for the top-level class,
as well as the major fields that make up the class. There is a class named
Options inside the class DBImpl that has a size range from hex value
0x30 to 0x68. The Options class include its member fields including

B. Jeong et al. Forensic Science International: Digital Investigation 50 (2024) 301809

3

create_if_missing (boolean), error_if_exists (boolean), block_size (un-
signed integer), compression (enumeration), and this phase processes its
validation by looking over if each field has a type, offset, size in the
proper range. When the field matches the defined data type, the struc-
tures will be considered as valid, otherwise, they become invalid
structures. We set the limited conditions for each data structure and
validate the major fields to extract user data from IndexedDB. The
IndexedDB-related classes are a set of different data types, and we find
candidate objects by adding constraints to validate the class data types.

Fig. 3 demonstrates the classes and the fields that need to be exam-
ined to acquire data. If a class has an inherited class, it will store a
pointer, which is a common way to represent relationships between
classes. To analyze and validate the complex relationships between
classes, we classified the candidates of IndexedDB-related structure
more accurately. Especially, our study focused on a deep understanding
of how the structures and fields are related. During this process, it was
important to define and validate appropriate constraints for different
data types and complex referential relationships.

This phase validates all the IndexedDB-related structures in volatile
memory. If validation fails, our methodology goes back to the extraction
phase to scan the memory area.

3.3. Classification of validated objects based on relevant applications

This phase extracts user data stored in IndexedDB by applications
from the gathered validated objects. Memory-resident data of Index-
edDB is stored in MemTable. The proposed method identifies offset list
of storing blocks and block size to reconstruct MemTable in volatile
memory. They are stored in a member field ‘blocks_’ of Arena and a
member field ‘block_size’ of Options. A member field ‘blocks_’ of Arena
objects consists of vector containing offset data list. Options class object

stores a member field ‘block_size’, that has information about data block
size. With the identified data block and size, we reconstruct it in a
sequence of space.

The reconstructed MemTable is structured as a SkipList storing
IndexedDB records. Thoroughly parsing the records requires parsing
nodes managed by the SkipList. Algorithm 1 illustrates to parse
MemTable nodes.

Algorithm 1. Parsing SkipList nodes in MemTable

While SkipList shares a common feature with a linked list in that it
uses ‘pointers’ to represent relationships between nodes, SkipList is
composed of multiple levels. To identify the total level, a member field
‘max_height_’ of SkipList should be acquired. The first 8 bytes of the first
block are filled with 0, followed by a list of address values. It contains a
pointer to the next node of each level from the first node. After skipping
the first eight bytes of the first block, the phase reads the address list up
to the maximum level. The address list contains pointers to the next node
at each level. Then we parse the next node following the pointers for
each level. If the value of the pointers exceeds MemTable blocks, it
moves to the next pointer. The phase extracts key-value pairs from each
node and iterates from the first node to the last node for all levels. The
extracted key-value pairs are single IndexedDB record. Fig. 4 illustrates a
complete structure of an IndexedDB record.

Fig. 1. An overview of the our methodology.

Fig. 2. LevelDB’s DBImpl object.

B. Jeong et al. Forensic Science International: Digital Investigation 50 (2024) 301809

4

A record contains ‘key_length’, ‘key’, ‘sequence number’, ‘type’,
‘value_length’, and ‘value’, where ‘key_length’ and ‘value_length’ are in
serialized varint format. The ‘key’ is used to identify and access specific
data. The ‘sequence number’ helps to track the record history. The
higher the ‘sequence number’, the more recently the record was modi-
fied. The ‘type’ represents the status of the key, whether it is live or
deleted. The ‘value’ represents the V8 object value.

IndexedDB metadata has keys that are commonly composed of
KeyPrefix structure and IDBKey. KeyPrefix uses a reserved number for
storing each metadata. The prefix has a variable length, and the very
first byte indicates the size of the following values including ‘database
id’, ‘object store id’, and ‘index id.’ The value stored in the first three bits
corresponds to the size of the ‘database id’ minus 1 and the value stored
in the next three bits corresponds to the size of the ‘object store id’ minus
1. The value stored in the last two bits corresponds to the size of the
‘index id’ minus 1.

The key for each record is prefixed with <database id, object store id,
index id>, and Table 1 shows KeyPrefix for the essential metadata. The
KeyPrefix allow identifying the database, object store, and index to
which the actual record belongs, as well as the metadata. IDBKey is an
key where the first byte represents the data type (Null, Number, Date,
String, Binary, Array) followed by a type-specific serialized value.

The next step interprets the records in IndexedDB that user data re-
mains. The actual record stored in the object store has the KeyPrefix
<database id, object store id, and value 1 of index id>. It is necessary to
determine which database and object store contain the records with the
stored KeyPrefix, and then deserialize the value using the V8 object
value serializer. Finally, we need to classify the records according to the
database and object store.

Interpreting and classifying the IndexedDB data allows for the
extraction of user data stored in Chromium-based applications, which
may provide important clues for digital forensic investigations.

3.4. Integration of carved IndexedDB data using a normalized schema

We then reconstruct the records extracted from the memory dump
into an organized and structured database. We created three types of
tables in a database. Table 2 shows a normalized database schema and
their descriptions. The ‘Databases’ table records a list of the extracted
databases and object stores. The ‘[DB name 1, 2, ..., N]’ table is named
after each name of a database. They are created as many tables as the
number of databases. Their schema is structured as Database ID, Data-
base name, Object Store ID, Object Store name, Sequence Number, Key
State, Key, Value, and the proposed methodology uses the schema to
write the actual record data stored in the object store to which each
record belongs. If the records do not have any metadata, they are stored
in the ‘Unclassified’ table.

The reconstruction of the raw information extracted from memory
dumps into a more structured form plays an important role in data
analysis and digital forensic investigations.

4. Implementation

4.1. Design of MIC

Based on our proposed methodology, we developed a proof-of-
concept tool, MIC (Jeong, 2024). We implemented MIC as a
proof-of-concept tool consisting of five modules: Validator, Extractor,
Deserializer, Classifier and Exporter. The Deserializer module was
developed using ccl_chrome_indexeddb (CCL Solutions Group, 2020),

Fig. 3. Diagram of major classes and fields of validation targets.

Fig. 4. An IndexedDB record structure.

Table 1
The reserved KeyPrefix for metadata.

KeyPrefix Description

<0, 0, 0, 0> backing store version
<0, 0, 0, 1> maximum allocated database
<0, 0, 0, 201> origin, database name
<database id, 0, 0, 0> origin name
<database id, 0, 0, 1> database name
<database id, 0, 0, 3> maximum allocated object store

id
<database id, 0, 0, 50, object store id, 0> object store name
<database id, 0, 0, 50, object store id, 5> maximum allocated index id
<database id, 0, 0, 100, object store id, index id,

0>
index name

Table 2
A normalized database schema.

Table Column Description

Databases Origin the source of a app
Database ID database id
Database database name
Object Store ID object store id
Object Store object store name

[DBName1, 2, …, N] Database ID database id
Database database name
Object Store ID object store id
Object Store object store name
Sequence
Number

sequence number of record

Key State Key state (live or deleted)
Key the identifier for a record
Value the actual data associated with that

key
Unclassfied Database ID database id

Object Store ID object store id
Sequence
Number

sequence number of record

Key State Key state (live or deleted)
Key the identifier for a record
Value the actual data associated with that

key

B. Jeong et al. Forensic Science International: Digital Investigation 50 (2024) 301809

5

supporting its flexibility and extensibility to be used for the ccl_chro-
me_indexeddb project as well. We note that the ccl_chrome_indexeddb
project only deals with the IndexedDB data stored on local systems, but
it now can support analysis on volatile memory using the MIC module.

The Validator module scans the memory dump and validates the
candidate class objects. With analysis results of class layout, we verify
the identified objects if they match with the expected structure. The
Extractor module reconstructs the data blocks to extract the actual re-
cords from the candidate set of validated objects, parse and extract all
the key-value pairs stored in the SkipList within the reconstructed data
blocks. The Deserializer module decodes the key encoded in the struc-
ture of IDBKey from the extracted key-value pairs and deserializes the
serialized value in the V8 object serialization format. The Classfier
module classifies the deserialized key-value pairs into each database and
object store, and normalizes the records to be used for the next step. The
last module, Exporter, inserts the classified and normalized records into
databases.

4.2. Execution and outputs

The MIC tool is run for a given raw memory dump (Windows Mini-
dump format) with traces of the use of Chromium-based applications.
The output for this tool has two file formats; JSON and SQLite database.
As shown in Fig. 5, the JSON output results include offsets for the
validated class objects and values for the class member fields.

Databases, object stores and their metadata, and records are stored in

the SQLite database format. Fig. 6 shows the results having SQLite
format using the MIC tool.

5. Experiments and results

5.1. Experimental design

In this work, the experiments were performed with a virtual machine
with Windows 11 (VERSION: 23H2, RAM: 16 GB). MIC then performed
some activities using browsers and desktop applications built with
Chromium-Projects as shown in Table 3. Our tool uses Process Hacker
v2.39 (Winsider Seminars & Solutions, Inc, 2016) to collect memory
dumps.

In order to validate the proposed approach, we designed the exper-
iments as follows: 1) Extract metadata of IndexedDB such as databases,
object stores, and their names. 2) Extract all available records (normal,
deleted, and modified) for each IndexedDB 3) Confirm whether all the
records are identifiable in incognito mode for Chromium-based
browsers 4) Confirm whether the records are identifiable for
Chromium-based desktop applications.

During this study, four experiments were designed as follows.
Table 4 illustrates applications, services and defined scenarios used for
the experiments.

5.2. Results and findings

In this section, we describe results for our experiments.

5.2.1. IndexedDB metadata
MemTable stores metadata of IndexedDB in the form of a record.

First of all, the method identifies the records storing metadata among
the records in MemTable. As metadata has a reserved key prefix for each
database and object store. We could recognize the metadata of database

Fig. 6. The output example of an IndexedDB’s metadata using the MIC
tool (SQLite).

Table 3
Applications used for the experiments.

Type Application Name Version

Browser Google Chrome 125.0.6422.114
Microsoft Edge 125.0.2535.7931

Desktop Application Microsoft Teams 24102.2309.2851.4917

Table 4
Defined user activities for Chromium-based services.

Exp
#

App (Service Name) Activities

1 Google Chrome
(Custom site)

1. Start normal browsing mode
2. Create 5 Database and 25 Object Stores (1

Database per 5 Object Stores)
2 Google Chrome

(Custom site)
1. Insert 100 messages into “Database 5, Object

Store 1”
2. Modify sent messages (1–5, 51–55, 86–90)

from “Database 5, Object Store 1”
3 Microsoft Edge

(Telegram)
1. Start incognito browsing mode
2. Visit and login https://web.telegram.org
3. Browse chats(2), dialogs(5), users(4) in

Telegram
4 Desktop App

(Microsoft Teams)
1. Run and login Microsoft Teams
2. Send 8 messages to “User”

Fig. 7. MIC Result: result of the experiment #1.

Fig. 5. The output example of a validated object layout using the MIC tool
outputs (JSON).

B. Jeong et al. Forensic Science International: Digital Investigation 50 (2024) 301809

6

https://web.telegram.org

and object store with the reserved key prefix. Fig. 7 shows the results
coming from MIC for the databases and metadata of object stores created
during Experiment 1. A total of five databases were created, each with
five object stores. As a result, our tool, MIC, successfully extracted five
databases and twenty-five object stores.

The LevelDB records contain their database id and the object store id
in their key prefix to which the records belong to. In other words,
identifying metadata records indicates a database id and an object store
id where they belong to.

5.2.2. IndexedDB object store data
As mentioned above, object stores contain data such as database id

and object store id. Therefore, this study classified all the extracted re-
cords by database id and object store id. Experiment 2 performed
inserting 100 test messages into object store having ‘ID 1’ and database
having ‘ID 5.’ Fig. 8 shows the list of records extracted using MIC, one
hundred records were extracted from one hundred records. the result
was same under the incognito mode.

Then we modified 15 messages (1–5, 51–55, 86–90) out of the 100
messages and collected the memory dump. Fig. 9 shows the results using
our developed tool. LevelDB records assume that the record with the
highest sequence number is the most recent record when they have the
same key. Therefore, we confirmed that both the modified messages and
the original messages remain in the volatile memory and MIC extracts
them thoroughly.

5.2.3. IndexedDB records in Chromium-based browsers incognito mode
Google Chrome and Microsoft Edge, two of the most popular

browsers built on the Chromium, offer incognito mode. This mode does
not store data in local disk, but only in volatile memory.

The third experiment analyzed whether IndexedDB-related records
are identifiable when using the incognito mode of the Microsoft Edge

browser. We logged into Telegram using the incognito mode of the web
browser and explored the list of ‘channels’, ‘dialogues’, and ‘contacts.’
Fig. 10 is the user interface accessing Telegram using the browser in
incognito mode. The user in this experiment was involved in one
channel, one group and had conversations with three other users.

MIC identified and extracted one ‘channel’, two ‘dialogues’, and
three ‘users.’ As shown in Fig. 11 (a), MIC extracts user data from the
memory dump even when using the service in incognito mode. The
approach supports the investigation of user behavior that uses incognito
mode to not store the data on local disk.

5.2.4. IndexedDB records in Chromium-based application
Microsoft Teams is one of the well-known desktop applications built

with Microsoft Edge WebView2. As it stores user data in IndexedDB, we
chose it one of the experimental subject.

We sent a total of 8 messages using Microsoft Teams to evaluate
whether MIC successfully extracts user data or not. MIC extracted 7 out
of the 8 messages we sent.

Fig. 12 shows the results of MIC extraction of Microsoft Teams
messages. The results include message data such as content, display
name, from, to, timestamp, and type, which can be useful for the digital
forensic investigations. Fig. 11 (b) shows the list of messages extracted
using MIC. We confirmed that the data for Microsoft Teams remains in
volatile memory, and our approach can be applied to Chromium-based
desktop applications.

5.2.5. Other findings
MIC also identifies LevelDB database that are used to maintain and

manage Chromium-based applications. Unlike IndexedDB data, LevelDB
stores data in key-value pairs, without serialization. Fig. 13 illustrates
the partial records that GCM Store of Chrome browser use.

Chromium-based applications store data in LevelDB format using the
IndexedDB API. Considering the frequent update cycle of IndexedDB, we
noticed that the proposed approach could be outdated in a short time.
Therefore, we focused on identifying class objects that are relatively
stable rather than the wrapper class having fast updates in LevelDB. This
approach allowed us to capture the LevelDB-related data while the ap-
plications were running, as well as the IndexedDB data.

5.3. Dataset and performance evaluation

We created test data sets (Jeong, 2024) during the experiments and
evaluated the time taken to analyze the IndexedDB and its performance
on Intel i9-10900X CPU and 256 GB RAM. Table 5 shows the accuracy of
detecting IndexedDB related objects and the time spent for the analysis.

6. Conclusions and future directions

Recently, Chromium-based applications have been widely used and

Fig. 8. MIC Result: result of the experiment #2.

Fig. 9. MIC Result: result of the experiment #3.

Fig. 10. Chats tab in web version telegram in Microsoft Edge Browser In-
cognito mode.

B. Jeong et al. Forensic Science International: Digital Investigation 50 (2024) 301809

7

developed recently for various online services. In particular, these ap-
plications utilize the IndexedDB to manage and handle their data. In this
paper, we propose a methodology to find forensically relevant data from
memory dumps. Chromium-based browsers support incognito mode to
enhance privacy. In this mode, they do not store data on the local disk, so
investigating volatile memory is essential.

Our methodology focused on understanding the mechanisms by
which IndexedDB manipulates data to extract forensically relevant data
from memory dumps. With the proposed method, metadata such as
databases, object stores and their names from IndexedDB are extracted
successfully. The metadata provides important insights into the struc-
tures of an IndexedDB. Furthermore, our approach successfully extracts
all records stored in IndexedDB, including normal, deleted, and modi-
fied records. The extraction allows for an in-depth analysis of the data
stored within the IndexedDB database. We extend our investigation to
determine if our methodology is also applicable to desktop applications

developed using Chromium-based frameworks.
This broad scope of research ensures that our methodology is ver-

satile and compatible with many different kinds of Chromium-based
applications. We conducted experiments on the services Google
Chrome, Microsoft Edge, and Microsoft Teams, demonstrating that our
approach can successfully acquire user data. We expect that our meth-
odology can be effectively used for digital forensic investigations in the
future. Based on our findings, we developed a proof-of-concept tool
based on our approach and evaluated its performance and effectiveness
through several experiments.

However, our methodology has limitations. When running the
browser in incognito mode, LevelDB manages partial data in BLOB, but
the proposed method does not address this issue. In addition, we have an
interest in all the available artifacts related to IndexedDB. Although this
study mainly focused on extracting and comprehending data in memory,
we plan to expand our research on analyzing and integrating IndexedDB
acquired from various digital sources.

Acknowledgements

This work was supported by Police-Lab 2.0 Program(www.kipot.or.
kr) funded by the Ministry of Science and ICT (MSIT, Korea) & Korean
National Police Agency(KNPA, Korea) [Project Name: Research on Data
Acquisition and Analysis for Counter Anti-Forensics/Project Number:
210121M07].

References

CCL Solutions Group, 2020. ccl_chromium_reader. https://github.com/cclgrouplt
d/ccl_chrome_indexeddb, 2024-06-01.

Choi, G., Bang, J., Lee, S., Park, J., 2023. Chracer: memory analysis of Chromium-based
browsers. Forensic Sci. Int.: Digit. Invest. 46, 301613 https://doi.org/10.1016/j.
fsidi.2023.301613. URL: https://www.sciencedirect.com/science/article/pii/
S2666281723001257.

Cook, T.D., Campbell, D.T., 1979. The design and conduct of true experiments and quasi-
experiments in field settings. In: Reproduced in Part in Research in Organizations:
Issues and Controversies. Goodyear Publishing Company.

Google, 2008. The chromium projects. https://www.chromium.org/chromium-projects/,
2024-06-01.

Google, 2011a. LevelDB. https://github.com/google/leveldb, 2024-06-03.
Google, 2011b. LevelDB LDB format. https://github.com/google/leveldb/blob/main/

doc/table_format.md, 2024-06-03.
Google, 2011c. LevelDB log format. https://github.com/google/leveldb/blob/main/do

c/log_format.md, 2024-06-03.
Google, 2021. LevelDB latest version. https://github.com/google/leveldb/releases,

2024-07-14.
Hariharan, M., Thakar, A., Sharma, P., 2022. Forensic analysis of private mode browsing

artifacts in portable web browsers using memory forensics. In: 2022 International
Conference on Computing, Communication, Security and Intelligent Systems
(IC3SIS), pp. 1–5. https://doi.org/10.1109/IC3SIS54991.2022.9885379.

Jeong, B., 2024. Mic. https://github.com/naaya17/MIC, 2024-06-01.
Kim, D., Lee, S., Park, J., 2024. Decrypting IndexedDB in private mode of Gecko-based

browsers. Forensic Sci. Int.: Digit. Invest. 49, 301763 https://doi.org/10.1016/j.
fsidi.2024.301763. https://www.sciencedirect.com/science/article/pii/S2666281
724000829.

Mahlous, A., Mahlous, H., 2020. Private browsing forensic analysis: a case study of
privacy preservation in the Brave browser. International Journal of Intelligent

Fig. 11. MIC Result: (a) Extracting Telegram data using browser in incognito mode (b) Extracting MS Teams data using desktop app.

Fig. 12. MIC Result: Extracting messages for MS Teams.

Fig. 13. MIC Result: Other findings.

Table 5
Evaluation results using the MIC tool with a high accuracy.

Exp # Data Type Accuracy Elapsed Time

1 Metadata (Database) 5/5 22 s
Metadata (Object Store) 25/25

2 Normal records 100/100 22 s
Modified records 15/15

3 Chats 1/2 81 s
Dialogs 2/5
Users 3/4

4 Messages 7/8 26 s

B. Jeong et al. Forensic Science International: Digital Investigation 50 (2024) 301809

8

http://www.kipot.or.kr
http://www.kipot.or.kr
https://github.com/cclgroupltd/ccl_chrome_indexeddb
https://github.com/cclgroupltd/ccl_chrome_indexeddb
https://doi.org/10.1016/j.fsidi.2023.301613
https://doi.org/10.1016/j.fsidi.2023.301613
https://www.sciencedirect.com/science/article/pii/S2666281723001257
https://www.sciencedirect.com/science/article/pii/S2666281723001257
http://refhub.elsevier.com/S2666-2817(24)00133-1/sref3
http://refhub.elsevier.com/S2666-2817(24)00133-1/sref3
http://refhub.elsevier.com/S2666-2817(24)00133-1/sref3
https://www.chromium.org/chromium-projects/
https://github.com/google/leveldb
https://github.com/google/leveldb/blob/main/doc/table_format.md
https://github.com/google/leveldb/blob/main/doc/table_format.md
https://github.com/google/leveldb/blob/main/doc/log_format.md
https://github.com/google/leveldb/blob/main/doc/log_format.md
https://github.com/google/leveldb/releases
https://doi.org/10.1109/IC3SIS54991.2022.9885379
https://github.com/naaya17/MIC
https://doi.org/10.1016/j.fsidi.2024.301763
https://doi.org/10.1016/j.fsidi.2024.301763
https://www.sciencedirect.com/science/article/pii/S2666281724000829
https://www.sciencedirect.com/science/article/pii/S2666281724000829

Engineering and Systems 13, 294–306. https://doi.org/10.22266/
ijies2020.1231.26.

Microsoft, 2020. Microsoft Edge WebView2. https://learn.microsoft.com/en-us/microso
ft-edge/webview2/, 2024-06-03.

Nelson, R., Shukla, A., Smith, C., 2020. Web Browser Forensics in Google Chrome,
Mozilla Firefox, and the Tor Browser Bundle. Springer International Publishing,
Cham, pp. 219–241. https://doi.org/10.1007/978-3-030-23547-5_12.

OpenJS Foundation, 2014. Electron. https://electronjs.org, 2024-06-03.
Paligu, F., Kumar, A., Cho, H., Varol, C., 2019. BrowStExPlus: a tool to aggregate

IndexedDB artifacts for forensic analysis. J. Forensic Sci. 64, 1370–1378. https://doi.
org/10.1111/1556-4029.14043. https://onlinelibrary.wiley.com/doi/abs/10.1111
/1556-4029.14043.

Paligu, F., Varol, C., 2020. Browser forensic investigations of WhatsApp web utilizing
IndexedDB persistent storage. Future Internet 12. https://doi.org/10.3390/
fi12110184. https://www.mdpi.com/1999-5903/12/11/184.

Paligu, F., Varol, C., 2022a. Browser forensic investigations of Instagram utilizing
IndexedDB persistent storage. Future Internet 14. https://doi.org/10.3390/
fi14060188. https://www.mdpi.com/1999-5903/14/6/188.

Paligu, F., Varol, C., 2022b. Microsoft Teams desktop application forensic investigations
utilizing IndexedDB storage. J. Forensic Sci. 67, 1513–1533. https://doi.org/
10.1111/1556-4029.15014. https://onlinelibrary.wiley.com/doi/abs/10.1111
/1556-4029.15014.

Pugh, W., 1990. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM
33, 668–676.

Saputra, R., Riadi, I., 2020. Forensic browser of Twitter based on web services. Int. J.
Comput. Appl. 975, 8887.

Satvat, K., Forshaw, M., Hao, F., Toreini, E., 2014. On the privacy of private browsing–a
forensic approach. J. Inf. Secur. Appl. 19, 88–100.

Thomas, T., Piscitelli, M., Shavrov, I., Baggili, I., 2020. Memory FORESHADOW: memory
forensics of hardware cryptocurrency wallets – a tool and visualization framework.
Forensic Sci. Int.: Digit. Invest. 33, 301002 https://doi.org/10.1016/j.
fsidi.2020.301002. https://www.sciencedirect.com/science/article/pii/S2666281
720302511.

Van Der Horst, L., Choo, K.K.R., Le-Khac, N.A., 2017. Process memory investigation of
the Bitcoin clients Electrum and Bitcoin Core. IEEE Access 5, 22385–22398.

Wang, E., Zurowski, S., Duffy, O., Thomas, T., Baggili, I., 2022. Juicing V8: a primary
account for the memory forensics of the V8 Javascript engine. Forensic Sci. Int.:
Digit. Invest. 42, 301400 https://doi.org/10.1016/j.fsidi.2022.301400. https://
www.sciencedirect.com/science/article/pii/S2666281722000816.

Winsider Seminars & Solutions, Inc, 2016. Process hacker. In: https://processhacker.
sourceforge.io, 2024-06-01.

Zollner, S., Choo, K.K.R., Le-Khac, N.A., 2019. An automated live forensic and
postmortem analysis tool for Bitcoin on Windows systems. IEEE Access 7,
158250–158263. https://doi.org/10.1109/ACCESS.2019.2948774.

B. Jeong et al. Forensic Science International: Digital Investigation 50 (2024) 301809

9

https://doi.org/10.22266/ijies2020.1231.26
https://doi.org/10.22266/ijies2020.1231.26
https://learn.microsoft.com/en-us/microsoft-edge/webview2/
https://learn.microsoft.com/en-us/microsoft-edge/webview2/
https://doi.org/10.1007/978-3-030-23547-5_12
https://electronjs.org
https://doi.org/10.1111/1556-4029.14043
https://doi.org/10.1111/1556-4029.14043
https://onlinelibrary.wiley.com/doi/abs/10.1111/1556-4029.14043
https://onlinelibrary.wiley.com/doi/abs/10.1111/1556-4029.14043
https://doi.org/10.3390/fi12110184
https://doi.org/10.3390/fi12110184
https://www.mdpi.com/1999-5903/12/11/184
https://doi.org/10.3390/fi14060188
https://doi.org/10.3390/fi14060188
https://www.mdpi.com/1999-5903/14/6/188
https://doi.org/10.1111/1556-4029.15014
https://doi.org/10.1111/1556-4029.15014
https://onlinelibrary.wiley.com/doi/abs/10.1111/1556-4029.15014
https://onlinelibrary.wiley.com/doi/abs/10.1111/1556-4029.15014
http://refhub.elsevier.com/S2666-2817(24)00133-1/sref20
http://refhub.elsevier.com/S2666-2817(24)00133-1/sref20
http://refhub.elsevier.com/S2666-2817(24)00133-1/sref21
http://refhub.elsevier.com/S2666-2817(24)00133-1/sref21
http://refhub.elsevier.com/S2666-2817(24)00133-1/sref22
http://refhub.elsevier.com/S2666-2817(24)00133-1/sref22
https://doi.org/10.1016/j.fsidi.2020.301002
https://doi.org/10.1016/j.fsidi.2020.301002
https://www.sciencedirect.com/science/article/pii/S2666281720302511
https://www.sciencedirect.com/science/article/pii/S2666281720302511
http://refhub.elsevier.com/S2666-2817(24)00133-1/sref24
http://refhub.elsevier.com/S2666-2817(24)00133-1/sref24
https://doi.org/10.1016/j.fsidi.2022.301400
https://www.sciencedirect.com/science/article/pii/S2666281722000816
https://www.sciencedirect.com/science/article/pii/S2666281722000816
https://processhacker.sourceforge.io
https://processhacker.sourceforge.io
https://doi.org/10.1109/ACCESS.2019.2948774

	MIC: Memory analysis of IndexedDB data on Chromium-based applications
	1 Introduction
	1.1 Motivation and research questions
	1.2 Contribution

	2 Background and related work
	2.1 IndexedDB and Chromium-based applications
	2.2 Related work
	2.2.1 Identifying significant forensic artifacts for applications stored in memory
	2.2.2 Browsers incognito mode and volatile memory
	2.2.3 IndexedDB of Chromium-based application

	3 Methodology for memory analysis of IndexedDB data
	3.1 Extraction of candidate IndexedDB-related objects
	3.2 Validation of candidates considering interconnected structures
	3.3 Classification of validated objects based on relevant applications
	3.4 Integration of carved IndexedDB data using a normalized schema

	4 Implementation
	4.1 Design of MIC
	4.2 Execution and outputs

	5 Experiments and results
	5.1 Experimental design
	5.2 Results and findings
	5.2.1 IndexedDB metadata
	5.2.2 IndexedDB object store data
	5.2.3 IndexedDB records in Chromium-based browsers incognito mode
	5.2.4 IndexedDB records in Chromium-based application
	5.2.5 Other findings

	5.3 Dataset and performance evaluation

	6 Conclusions and future directions
	Acknowledgements
	References

