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A B S T R A C T

As Chromium-based applications continue to gain popularity, it is necessary for forensic investigators to obtain a 
comprehensive understanding of how they store and manage browsing artifacts from both filesystem and 
memory perspectives. In particular, the incognito mode developed in the current version of Chromium uses only 
physical memory to manage data related to active sessions. Therefore, handling physical memory is essential for 
tracking a user’s browsing behaviour in incognito mode. This paper provides an in-depth examination of Lev-
elDB, a lightweight key-value database utilized as Chromium’s implementation for IndexedDB. In particular, we 
delve into the details of how IndexedDB data is managed through LevelDB, taking into account its low-level 
database file format. Furthermore, we thoroughly explore the possibility of residual data, both complete and 
incomplete, being retained as applications create and initialize IndexedDB-related data. Based on our research 
findings, we propose a systematic methodology for inspecting the internal structures of LevelDB-related C++

classes, carving these structures from binary streams, and interpreting the data for forensic analysis. In addition, 
we develop a proof-of-concept tool based on our approach and demonstrate its performance and effectiveness 
through case studies.

1. Introduction

The Chromium is widely used as a codebase for various web 
browsers, including Google Chrome and Microsoft Edge (Google, 2008). 
In addition, a variety of desktop applications are being developed using 
frameworks that embed the Chromium to enable the use of web tech-
nologies in native application development. Examples of them include 
Electron (OpenJS Foundation, 2014) and Microsoft Edge WebView2 
(Microsoft, 2020).

From a digital forensics perspective, these web browser-related ap-
plications are important because they create and manage traces of user’s 
web browsing activities. For example, instant messaging services may 
generate data such as contacts and chat logs, while cloud storage ser-
vices may store traces such as lists of uploaded, downloaded and shared 
files. In terms of forensic analysis on them, various applications built 
with the Chromium contain artifacts similar to those created by the 
Google Chrome addressed by existing studies.

More specifically, IndexedDB consists of one or more databases for 
each domain, and the IndexedDB data is stored in the LevelDB format. 
An IndexedDB database stores more than one object store containing 
serialized records. Chromium-based applications also store data in key- 
value pairs, so it is important to have a deep understanding of the 

IndexedDB structures and how metadata and records are managed in 
key-value pairs. In addition, Chromium-based browsers support an in-
cognito mode (Private mode) that stores data in volatile memory 
without writing it to local disk. Therefore, analyzing the data left in 
memory dumps becomes a crucial aspect of digital forensic 
investigations.

This paper aims to identify and extract user data in volatile memory 
with an understanding of IndexedDB mechanisms. First, we scan the 
class objects that make up IndexedDB and their structure, and rebuild 
the IndexedDB data area in memory using the scanned class objects as a 
starting point. The IndexedDB data consists of a MemTable that is 
structured as SkipList, which stores key-value paired records. We 
interpret and classify the key-value pairs stored in the MemTable to 
produce forensically meaningful results. Based on our research, we 
experimentally validated our method and developed a proof-of-concept 
tool, MIC, to help digital forensic investigations.

1.1. Motivation and research questions

With an increased number of online services offering Chromium- 
based applications, digital forensics community needs to understand 
how they manage data and respond to challenges posed by the 

* Corresponding author.
E-mail addresses: naaya@korea.ac.kr (B. Jeong), sangjin@korea.ac.kr (S. Lee), jungheumpark@korea.ac.kr (J. Park). 

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301809

Forensic Science International: Digital Investigation 50 (2024) 301809 

Available online 18 October 2024 
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

mailto:naaya@korea.ac.kr
mailto:sangjin@korea.ac.kr
mailto:jungheumpark@korea.ac.kr
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2024.301809
https://doi.org/10.1016/j.fsidi.2024.301809
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2024.301809&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


applications. Furthermore, when Chromium-based browsers are used in 
incognito mode, they only store data in memory. Many of these appli-
cations handle data related to user activity and system data to run the 
applications. However, existing research focuses on IndexedDB stored 
on local disks, so there is a relative lack of research on analyzing data 
remaining in memory.

To solve these challenges, it is important to gain a deep under-
standing of the structures and mechanisms of IndexedDB and to extract 
the user data remaining in volatile memory.

In summary, this study led us to the following research questions.

RQ1. How can IndexedDB data be identified and extracted from 
Chromium-based application effectively?
RQ2. To what degree can data from IndexedDB-related structures be 
interpreted?
RQ3. To what extent can meaningful forensic data be extracted from 
the application under incognito mode?

1.2. Contribution

In summary, this research has three major contributions as follows.

● Identifying all the available data from volatile memory by analyzing 
IndexedDB data manipulation used by Chromium-based application

● Proposing a framework to examine IndexedDB-related artifacts 
during digital forensic investigation

● Validating our approach through experiments and developing a 
proof-of-concept tool

The remainder of this paper is structured as follows. Section 2 de-
scribes how IndexedDB manages and stores data and its structures. 
Additionally, we examine research on application-level memory foren-
sics, including artifacts of browser incognito mode within volatile 
memory, and studies related to IndexedDB in Chromium-based appli-
cations. Section 3 outlines our proposed methodology for extracting and 
analyzing IndexedDB data from memory dumps. Section 4 introduces 
the MIC tool, a proof-of-concept tool developed based on our proposed 
methodology. Section 5 presents the setup and results of experiments 
conducted to evaluate the performance and effectiveness of the MIC 
tool. Finally, Section 6 summarizes our contributions and offers sug-
gestions for future research directions.

2. Background and related work

2.1. IndexedDB and Chromium-based applications

IndexedDB is a client-side storage solution used in web browsers, 
designed to overcome the limitations of cookie storage. IndexedDB 
handles and manages the storage of structured data by supporting 
transactions to ensure its integrity and consistency. Many web-based 
services utilize IndexedDB. For example, messaging applications store 
chat data, attachments, and chat lists, while cloud storage services use 
IndexedDB to manage file lists, metadata and recent files. It optimizes 
service performance by reducing server-client communication and 
leveraging client-side resources. Additionally, IndexedDB enables ap-
plications to work offline. Section 2.1 explains the process of how 
IndexedDB handled user data and provides a detailed description of the 
data and file formats residing in memory and on disk.

Memory-resident data of IndexedDB handling mechanism 
IndexedDB has three main components: MemTable, log, and ldb, which 
are needed to manage and manipulate data in memory. The mechanism 
of IndexedDB is designed to write and read data effectively, and LevelDB 
is used to implement IndexedDB. LevelDB, developed by Google, is a fast 
and lightweight storage library that uses key-value pairs to ensure the 
performance and stability of IndexedDB (Google, 2011a). MemTable is 
an in-memory data structure that stores the most recent data. When 

writing data on IndexedDB, it is recorded in MemTable. As MemTable 
remains in memory, it enables fast data access. The log file also records 
the same data. It stores data on a disk, allowing data to be recovered in 
the event of unexpected events. Once MemTable exceeds the default size 
(4 MB), LevelDB flushes the data and converts it to an ldb file. The ldb 
file is stored on disk with aligned key-value pairs, which enables effec-
tive data search and ingestion. When MemTable is flushed to disk, 
IndexedDB allocates a new MemTable to manage the data. When 
reading data, IndexedDB begins to search for data in the MemTable. If 
the data is not found, it searches the data from a most recent log file to 
the oldest. Thus, IndexedDB uses MemTable, log, and ldb to manage 
data for its consistency and efficiency.

LevelDB file format IndexedDB of Chromium-based applications 
uses LevelDB as back-end storage to manage data. LevelDB, a key-value 
paired storage, provides high performance and efficiency for writing and 
reading data. As mentioned earlier, LevelDB is composed of MemTable, 
‘[0–9]{6}.log’, and ‘[0–9]{6}.ldb’ to ensure its performance and data-
base consistency. SkipList-based MemTable is a data structure used for 
effective data search and insertion (Pugh, 1990). MemTable retains the 
most recent data in memory and flushes data to ldb files on disk when 
the MemTable storing data exceeds the default size.

A ‘[0–9]{6}.log’ file records how the data has been changed such as 
data insertion, modification, and deletion. If an unexpected exception 
occurs when a transaction run by LevelDB, the database goes back to the 
state before the transaction occurs to maintain consistency. The excep-
tion may cause the data in the MemTable to be lost, it logs data to 
prevent this. The log file is composed in a sequence of 32 KB blocks, each 
block has multiple records. A record consists of seven-bytes header 
(checksum, length, and type) and data of the specified length (Google, 
2011c).

When the size of a record exceeds the default block size (32 KB), it 
uses more blocks in succession. The type value (FULL, FIRST, MIDDLE, 
and LAST) in header indicates whether the records are consecutive or 
not. If a single block is used, the type is ‘FULL.’ If more than one block is 
used, the type describes the start and end of the blocks using the values 
FIRST, MIDDLE, and LAST.

A single ‘[0–9]{6}.ldb’ file contains data blocks, meta blocks, meta 
index block, index block, and footer from the start of the file (Google, 
2011b). The ldb file is stored as a sequence of actual key-value pair 
records, which are separated into a sequence of data blocks of size 4 KB. 
As the amount of data increases, LevelDB optimizes the space. During 
this process, LevelDB removes duplicate and deleted records to make 
efficient use of database space.

2.2. Related work

2.2.1. Identifying significant forensic artifacts for applications stored in 
memory

Identifying application traces in memory has been addressed for a 
long time, which has been an ongoing and growing area of research. 
Previous studies focused on understanding how applications process 
strings, patterns, or specific features for each operating system. Based on 
their findings, the authors discovered and extracted forensically 
important data.

Van Der Horst et al. (2017) and Thomas et al. (2020) examined 
cryptocurrency client applications on Windows. The authors explored 
traces of cryptocurrency use by detecting string and binary formatted 
values from memory dumps.

Wang et al. (2022) studied memory forensics of the V8 JavaScript 
engine. The authors proposed a method to extract V8 JavaScript engine 
objects and their descriptors, which can be applied to other applications 
using the engine.

With recent advances in security technology, the digital forensic 
community requires volatile memory forensics. While current memory 
forensics techniques rely on searching for strings, patterns, and specific 
data structures, they have difficulties in generalizing and applying to a 
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wide variety of situations. To address the challenges, we propose a new 
methodology to support Chromium Projects with a high market share 
under the cross-platform environments by making wide use of memory 
forensic techniques.

2.2.2. Browsers incognito mode and volatile memory
Most web browsers now provide an ‘incognito mode’, that protects 

user privacy by not storing browsing history on local devices. From a 
digital forensic perspective, it is crucial to collect web browser data as it 
contains important clues to solve criminal cases. When using incognito 
mode on web browsers, they store user activities in memory tempo-
rarily, and these research has been conducted on discovering them.

Satvat et al. (2014) suggested new approach to examine private 
browsing session of Firefox, Chrome, IE, and Safari. They conducted 
systematic investigation of local artifacts under the incognito mode. 
Especially, they confirmed that volatile memory stores visited URLs, 
password, and cookie.

Mahlous and Mahlous (2020) suggested digital forensic method for 
Brave browser in a private mode. They studied how to reduce false 
positives and false negatives when searching for keywords used to scan 
memory and browsing history. They observed how the amount of data 
and its type and content differed by taking memory snapshots of in-
cognito and normal mode.

Saputra and Riadi (2020) researched figuring out user data in both 
normal mode and incognito mode. They discovered local artifacts for 
Twitter, one of the social network services, after posting text, link, im-
ages, videos using Twitter.

Nelson et al. (2020) analyzed forensic artifacts in Chrome, Firefox, 
and Tor Browser. The authors identified and examined local artifacts 
under both normal mode and incognito mode. While normal mode stores 
various local artifacts, incognito mode stores fewer artifacts.

Hariharan et al. (2022) conducted their study on browsing artifacts 
for portable web browsers including Brave, Tor, Vivaldi, and Maxthon in 
private mode. After running private mode for each browser, they per-
formed some actions using Facebook, Gmail, Amazon and identified 
related data in memory.

Zollner et al. (2019) examined web-based bitcoin wallets in browsers 
such as Chrome, Firefox, IE, Edge, and Tor. They presented a method to 
discover the artifact related to Bitcoin wallets using regular expressions, 
file signatures and keywords.

Choi et al. (2023) analyzed source codes of Chromium-based browser 
to find out classes that associate with the user activity such as creating 
browser window, adding tab, visiting specific URLs. Based on their 
findings, they suggested a method to examine web browsing history in 
memory and developed the tool to automate the processes.

Kim et al. (2024) analyzed IndexedDB, which is used in Gecko-based 
browsers. Since these browsers use IndexedDB in encrypted SQLite, the 
authors conducted a study on extracting the encryption key from 
memory and decrypting IndexedDB.

Despite active research on browser private mode, most studies 
examine the data using keyword searches or regular expressions with 
known information, which is limited when data sources are not found in 
memory. To address this challenge, various memory forensics method-
ologies have been proposed, such as identifying object layouts associ-
ated with a user’s web browsing activity and utilizing them to identify 
data. Developing existing research, we propose an updated memory 
forensics technique to find out significant data related to user activities 
stored in the IndexedDB of a Chromium-based application.

2.2.3. IndexedDB of Chromium-based application
As browser-based applications have become more popular, the 

mechanisms for storing user data have evolved. Web storage enables a 
reduction in workload and lightens the load on servers, while allowing 
users to store their data locally. As a result, those common web-based 
services store data related to user activity as well as system data to 
provide high-performance services, and a lot of research has been 

conducted on this topic.
Paligu et al. (2019) proposed a methodology and a developed tool to 

investigate key forensic artifacts in IndexedDB across five most popular 
browsers (Chrome, Edge, Fire, Opera, Firefox, and Safari) on popular 
operating systems (Windows, MacOS, and Ubuntu). They demonstrated 
that the data stored in IndexedDB can be useful for forensic in-
vestigations on fifteen of the most popular websites.

Several studies (Paligu and Varol, 2020, 2022a, 2022b) analyzed 
Chromium-based applications using IndexedDB. The authors identified 
user data from the IndexedDB by applying pretest–posttest quasi 
experiment (Cook and Campbell, 1979) for each case. The study 
confirmed that the IndexedDB can be useful during digital forensic 
investigation.

CCL Solutions Group (2020) describes how the IndexedDB data 
stored on local devices manages LevelDB, and developed an open source 
tool to interpret the data at the raw level.

Most forensic research and commercial/open source tools related to 
IndexedDB focus on extracting and analyzing the data in LevelDB within 
each domain-specific IndexedDB storage that remains on the local de-
vice disk. However, there is a lack of research on analyzing how 
IndexedDB works and manages data. Therefore, we conducted research 
to gain a deeper understanding of IndexedDB handling mechanisms in 
volatile memory and to extract data related to user activities.

3. Methodology for memory analysis of IndexedDB data

This study aims to identify Chromium-based applications from 
memory dumps and extract IndexedDB database of each application. We 
then select candidates that store IndexedDB through IndexedDB-related 
data structures. For the valid data structures, we deserialize the serial-
ized records and store them by constructing an integrated schema. Fig. 1
describes an overview of the proposed methodology.

3.1. Extraction of candidate IndexedDB-related objects

In our study, we applied a carving technique based on class object 
size to extract the IndexedDB-related classes. We determined the 
InexedDB-related classes analyzing source codes of the Chromium Pro-
jects. As the addresses of memory objects are assigned in eight-byte 
alignment, we set the starting addresses of identified classes as multi-
ples of eight. It starts at the specified address and moves in units of eight 
multiples until it scans the entire memory corresponding to the size of 
the object. In addition, it only scans memory areas that the application 
can read/write to reduce false positives.

As Chromium-based applications are composed of a number of 
classes to manage and store data. It is necessary to identify class objects 
to reconstruct IndexedDB, so we analyzed source codes of the Chromium 
Projects. As a result of our analysis, we found out that DBImpl class is the 
least unit to extract data from IndexedDB. While the Chromium Projects 
and IndexedDB class object layouts undergo frequent updates, LevelDB, 
which is used for back-end storage of IndexedDB, has a less frequent 
update cycle (Google, 2021). Therefore, we found out DBImpl class to 
handle the updates of IndexedDB related classes and scan volatile 
memory using the class. The volatile memory area are scanned by the 
size of the DBImpl class (0x278) and sent to the validation phase to 
verify each class field.

3.2. Validation of candidates considering interconnected structures

The IndexedDB structures identified in the extraction phase are 
validated by matching the data type with the offset where the member 
fields of the DBImpl class layout should be located in each structure. For 
example, the objects in Fig. 2 are the target fields for the top-level class, 
as well as the major fields that make up the class. There is a class named 
Options inside the class DBImpl that has a size range from hex value 
0x30 to 0x68. The Options class include its member fields including 
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create_if_missing (boolean), error_if_exists (boolean), block_size (un-
signed integer), compression (enumeration), and this phase processes its 
validation by looking over if each field has a type, offset, size in the 
proper range. When the field matches the defined data type, the struc-
tures will be considered as valid, otherwise, they become invalid 
structures. We set the limited conditions for each data structure and 
validate the major fields to extract user data from IndexedDB. The 
IndexedDB-related classes are a set of different data types, and we find 
candidate objects by adding constraints to validate the class data types.

Fig. 3 demonstrates the classes and the fields that need to be exam-
ined to acquire data. If a class has an inherited class, it will store a 
pointer, which is a common way to represent relationships between 
classes. To analyze and validate the complex relationships between 
classes, we classified the candidates of IndexedDB-related structure 
more accurately. Especially, our study focused on a deep understanding 
of how the structures and fields are related. During this process, it was 
important to define and validate appropriate constraints for different 
data types and complex referential relationships.

This phase validates all the IndexedDB-related structures in volatile 
memory. If validation fails, our methodology goes back to the extraction 
phase to scan the memory area.

3.3. Classification of validated objects based on relevant applications

This phase extracts user data stored in IndexedDB by applications 
from the gathered validated objects. Memory-resident data of Index-
edDB is stored in MemTable. The proposed method identifies offset list 
of storing blocks and block size to reconstruct MemTable in volatile 
memory. They are stored in a member field ‘blocks_’ of Arena and a 
member field ‘block_size’ of Options. A member field ‘blocks_’ of Arena 
objects consists of vector containing offset data list. Options class object 

stores a member field ‘block_size’, that has information about data block 
size. With the identified data block and size, we reconstruct it in a 
sequence of space.

The reconstructed MemTable is structured as a SkipList storing 
IndexedDB records. Thoroughly parsing the records requires parsing 
nodes managed by the SkipList. Algorithm 1 illustrates to parse 
MemTable nodes. 

Algorithm 1. Parsing SkipList nodes in MemTable 

While SkipList shares a common feature with a linked list in that it 
uses ‘pointers’ to represent relationships between nodes, SkipList is 
composed of multiple levels. To identify the total level, a member field 
‘max_height_’ of SkipList should be acquired. The first 8 bytes of the first 
block are filled with 0, followed by a list of address values. It contains a 
pointer to the next node of each level from the first node. After skipping 
the first eight bytes of the first block, the phase reads the address list up 
to the maximum level. The address list contains pointers to the next node 
at each level. Then we parse the next node following the pointers for 
each level. If the value of the pointers exceeds MemTable blocks, it 
moves to the next pointer. The phase extracts key-value pairs from each 
node and iterates from the first node to the last node for all levels. The 
extracted key-value pairs are single IndexedDB record. Fig. 4 illustrates a 
complete structure of an IndexedDB record.

Fig. 1. An overview of the our methodology.

Fig. 2. LevelDB’s DBImpl object.
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A record contains ‘key_length’, ‘key’, ‘sequence number’, ‘type’, 
‘value_length’, and ‘value’, where ‘key_length’ and ‘value_length’ are in 
serialized varint format. The ‘key’ is used to identify and access specific 
data. The ‘sequence number’ helps to track the record history. The 
higher the ‘sequence number’, the more recently the record was modi-
fied. The ‘type’ represents the status of the key, whether it is live or 
deleted. The ‘value’ represents the V8 object value.

IndexedDB metadata has keys that are commonly composed of 
KeyPrefix structure and IDBKey. KeyPrefix uses a reserved number for 
storing each metadata. The prefix has a variable length, and the very 
first byte indicates the size of the following values including ‘database 
id’, ‘object store id’, and ‘index id.’ The value stored in the first three bits 
corresponds to the size of the ‘database id’ minus 1 and the value stored 
in the next three bits corresponds to the size of the ‘object store id’ minus 
1. The value stored in the last two bits corresponds to the size of the 
‘index id’ minus 1.

The key for each record is prefixed with <database id, object store id, 
index id>, and Table 1 shows KeyPrefix for the essential metadata. The 
KeyPrefix allow identifying the database, object store, and index to 
which the actual record belongs, as well as the metadata. IDBKey is an 
key where the first byte represents the data type (Null, Number, Date, 
String, Binary, Array) followed by a type-specific serialized value.

The next step interprets the records in IndexedDB that user data re-
mains. The actual record stored in the object store has the KeyPrefix 
<database id, object store id, and value 1 of index id>. It is necessary to 
determine which database and object store contain the records with the 
stored KeyPrefix, and then deserialize the value using the V8 object 
value serializer. Finally, we need to classify the records according to the 
database and object store.

Interpreting and classifying the IndexedDB data allows for the 
extraction of user data stored in Chromium-based applications, which 
may provide important clues for digital forensic investigations.

3.4. Integration of carved IndexedDB data using a normalized schema

We then reconstruct the records extracted from the memory dump 
into an organized and structured database. We created three types of 
tables in a database. Table 2 shows a normalized database schema and 
their descriptions. The ‘Databases’ table records a list of the extracted 
databases and object stores. The ‘[DB name 1, 2, ..., N]’ table is named 
after each name of a database. They are created as many tables as the 
number of databases. Their schema is structured as Database ID, Data-
base name, Object Store ID, Object Store name, Sequence Number, Key 
State, Key, Value, and the proposed methodology uses the schema to 
write the actual record data stored in the object store to which each 
record belongs. If the records do not have any metadata, they are stored 
in the ‘Unclassified’ table.

The reconstruction of the raw information extracted from memory 
dumps into a more structured form plays an important role in data 
analysis and digital forensic investigations.

4. Implementation

4.1. Design of MIC

Based on our proposed methodology, we developed a proof-of- 
concept tool, MIC (Jeong, 2024). We implemented MIC as a 
proof-of-concept tool consisting of five modules: Validator, Extractor, 
Deserializer, Classifier and Exporter. The Deserializer module was 
developed using ccl_chrome_indexeddb (CCL Solutions Group, 2020), 

Fig. 3. Diagram of major classes and fields of validation targets.

Fig. 4. An IndexedDB record structure.

Table 1 
The reserved KeyPrefix for metadata.

KeyPrefix Description

<0, 0, 0, 0> backing store version
<0, 0, 0, 1> maximum allocated database
<0, 0, 0, 201> origin, database name
<database id, 0, 0, 0> origin name
<database id, 0, 0, 1> database name
<database id, 0, 0, 3> maximum allocated object store 

id
<database id, 0, 0, 50, object store id, 0> object store name
<database id, 0, 0, 50, object store id, 5> maximum allocated index id
<database id, 0, 0, 100, object store id, index id, 

0>
index name

Table 2 
A normalized database schema.

Table Column Description

Databases Origin the source of a app
Database ID database id
Database database name
Object Store ID object store id
Object Store object store name

[DBName1, 2, …, N] Database ID database id
Database database name
Object Store ID object store id
Object Store object store name
Sequence 
Number

sequence number of record

Key State Key state (live or deleted)
Key the identifier for a record
Value the actual data associated with that 

key
Unclassfied Database ID database id

Object Store ID object store id
Sequence 
Number

sequence number of record

Key State Key state (live or deleted)
Key the identifier for a record
Value the actual data associated with that 

key
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supporting its flexibility and extensibility to be used for the ccl_chro-
me_indexeddb project as well. We note that the ccl_chrome_indexeddb 
project only deals with the IndexedDB data stored on local systems, but 
it now can support analysis on volatile memory using the MIC module.

The Validator module scans the memory dump and validates the 
candidate class objects. With analysis results of class layout, we verify 
the identified objects if they match with the expected structure. The 
Extractor module reconstructs the data blocks to extract the actual re-
cords from the candidate set of validated objects, parse and extract all 
the key-value pairs stored in the SkipList within the reconstructed data 
blocks. The Deserializer module decodes the key encoded in the struc-
ture of IDBKey from the extracted key-value pairs and deserializes the 
serialized value in the V8 object serialization format. The Classfier 
module classifies the deserialized key-value pairs into each database and 
object store, and normalizes the records to be used for the next step. The 
last module, Exporter, inserts the classified and normalized records into 
databases.

4.2. Execution and outputs

The MIC tool is run for a given raw memory dump (Windows Mini-
dump format) with traces of the use of Chromium-based applications. 
The output for this tool has two file formats; JSON and SQLite database. 
As shown in Fig. 5, the JSON output results include offsets for the 
validated class objects and values for the class member fields.

Databases, object stores and their metadata, and records are stored in 

the SQLite database format. Fig. 6 shows the results having SQLite 
format using the MIC tool.

5. Experiments and results

5.1. Experimental design

In this work, the experiments were performed with a virtual machine 
with Windows 11 (VERSION: 23H2, RAM: 16 GB). MIC then performed 
some activities using browsers and desktop applications built with 
Chromium-Projects as shown in Table 3. Our tool uses Process Hacker 
v2.39 (Winsider Seminars & Solutions, Inc, 2016) to collect memory 
dumps.

In order to validate the proposed approach, we designed the exper-
iments as follows: 1) Extract metadata of IndexedDB such as databases, 
object stores, and their names. 2) Extract all available records (normal, 
deleted, and modified) for each IndexedDB 3) Confirm whether all the 
records are identifiable in incognito mode for Chromium-based 
browsers 4) Confirm whether the records are identifiable for 
Chromium-based desktop applications.

During this study, four experiments were designed as follows. 
Table 4 illustrates applications, services and defined scenarios used for 
the experiments.

5.2. Results and findings

In this section, we describe results for our experiments.

5.2.1. IndexedDB metadata
MemTable stores metadata of IndexedDB in the form of a record. 

First of all, the method identifies the records storing metadata among 
the records in MemTable. As metadata has a reserved key prefix for each 
database and object store. We could recognize the metadata of database 

Fig. 6. The output example of an IndexedDB’s metadata using the MIC 
tool (SQLite).

Table 3 
Applications used for the experiments.

Type Application Name Version

Browser Google Chrome 125.0.6422.114
Microsoft Edge 125.0.2535.7931

Desktop Application Microsoft Teams 24102.2309.2851.4917

Table 4 
Defined user activities for Chromium-based services.

Exp 
#

App (Service Name) Activities

1 Google Chrome 
(Custom site)

1. Start normal browsing mode
2. Create 5 Database and 25 Object Stores (1 

Database per 5 Object Stores)
2 Google Chrome 

(Custom site)
1. Insert 100 messages into “Database 5, Object 

Store 1”
2. Modify sent messages (1–5, 51–55, 86–90) 

from “Database 5, Object Store 1”
3 Microsoft Edge 

(Telegram)
1. Start incognito browsing mode
2. Visit and login https://web.telegram.org
3. Browse chats(2), dialogs(5), users(4) in 

Telegram
4 Desktop App 

(Microsoft Teams)
1. Run and login Microsoft Teams
2. Send 8 messages to “User”

Fig. 7. MIC Result: result of the experiment #1.

Fig. 5. The output example of a validated object layout using the MIC tool 
outputs (JSON).
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and object store with the reserved key prefix. Fig. 7 shows the results 
coming from MIC for the databases and metadata of object stores created 
during Experiment 1. A total of five databases were created, each with 
five object stores. As a result, our tool, MIC, successfully extracted five 
databases and twenty-five object stores.

The LevelDB records contain their database id and the object store id 
in their key prefix to which the records belong to. In other words, 
identifying metadata records indicates a database id and an object store 
id where they belong to.

5.2.2. IndexedDB object store data
As mentioned above, object stores contain data such as database id 

and object store id. Therefore, this study classified all the extracted re-
cords by database id and object store id. Experiment 2 performed 
inserting 100 test messages into object store having ‘ID 1’ and database 
having ‘ID 5.’ Fig. 8 shows the list of records extracted using MIC, one 
hundred records were extracted from one hundred records. the result 
was same under the incognito mode.

Then we modified 15 messages (1–5, 51–55, 86–90) out of the 100 
messages and collected the memory dump. Fig. 9 shows the results using 
our developed tool. LevelDB records assume that the record with the 
highest sequence number is the most recent record when they have the 
same key. Therefore, we confirmed that both the modified messages and 
the original messages remain in the volatile memory and MIC extracts 
them thoroughly.

5.2.3. IndexedDB records in Chromium-based browsers incognito mode
Google Chrome and Microsoft Edge, two of the most popular 

browsers built on the Chromium, offer incognito mode. This mode does 
not store data in local disk, but only in volatile memory.

The third experiment analyzed whether IndexedDB-related records 
are identifiable when using the incognito mode of the Microsoft Edge 

browser. We logged into Telegram using the incognito mode of the web 
browser and explored the list of ‘channels’, ‘dialogues’, and ‘contacts.’ 
Fig. 10 is the user interface accessing Telegram using the browser in 
incognito mode. The user in this experiment was involved in one 
channel, one group and had conversations with three other users.

MIC identified and extracted one ‘channel’, two ‘dialogues’, and 
three ‘users.’ As shown in Fig. 11 (a), MIC extracts user data from the 
memory dump even when using the service in incognito mode. The 
approach supports the investigation of user behavior that uses incognito 
mode to not store the data on local disk.

5.2.4. IndexedDB records in Chromium-based application
Microsoft Teams is one of the well-known desktop applications built 

with Microsoft Edge WebView2. As it stores user data in IndexedDB, we 
chose it one of the experimental subject.

We sent a total of 8 messages using Microsoft Teams to evaluate 
whether MIC successfully extracts user data or not. MIC extracted 7 out 
of the 8 messages we sent.

Fig. 12 shows the results of MIC extraction of Microsoft Teams 
messages. The results include message data such as content, display 
name, from, to, timestamp, and type, which can be useful for the digital 
forensic investigations. Fig. 11 (b) shows the list of messages extracted 
using MIC. We confirmed that the data for Microsoft Teams remains in 
volatile memory, and our approach can be applied to Chromium-based 
desktop applications.

5.2.5. Other findings
MIC also identifies LevelDB database that are used to maintain and 

manage Chromium-based applications. Unlike IndexedDB data, LevelDB 
stores data in key-value pairs, without serialization. Fig. 13 illustrates 
the partial records that GCM Store of Chrome browser use.

Chromium-based applications store data in LevelDB format using the 
IndexedDB API. Considering the frequent update cycle of IndexedDB, we 
noticed that the proposed approach could be outdated in a short time. 
Therefore, we focused on identifying class objects that are relatively 
stable rather than the wrapper class having fast updates in LevelDB. This 
approach allowed us to capture the LevelDB-related data while the ap-
plications were running, as well as the IndexedDB data.

5.3. Dataset and performance evaluation

We created test data sets (Jeong, 2024) during the experiments and 
evaluated the time taken to analyze the IndexedDB and its performance 
on Intel i9-10900X CPU and 256 GB RAM. Table 5 shows the accuracy of 
detecting IndexedDB related objects and the time spent for the analysis.

6. Conclusions and future directions

Recently, Chromium-based applications have been widely used and 

Fig. 8. MIC Result: result of the experiment #2.

Fig. 9. MIC Result: result of the experiment #3.

Fig. 10. Chats tab in web version telegram in Microsoft Edge Browser In-
cognito mode.
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developed recently for various online services. In particular, these ap-
plications utilize the IndexedDB to manage and handle their data. In this 
paper, we propose a methodology to find forensically relevant data from 
memory dumps. Chromium-based browsers support incognito mode to 
enhance privacy. In this mode, they do not store data on the local disk, so 
investigating volatile memory is essential.

Our methodology focused on understanding the mechanisms by 
which IndexedDB manipulates data to extract forensically relevant data 
from memory dumps. With the proposed method, metadata such as 
databases, object stores and their names from IndexedDB are extracted 
successfully. The metadata provides important insights into the struc-
tures of an IndexedDB. Furthermore, our approach successfully extracts 
all records stored in IndexedDB, including normal, deleted, and modi-
fied records. The extraction allows for an in-depth analysis of the data 
stored within the IndexedDB database. We extend our investigation to 
determine if our methodology is also applicable to desktop applications 

developed using Chromium-based frameworks.
This broad scope of research ensures that our methodology is ver-

satile and compatible with many different kinds of Chromium-based 
applications. We conducted experiments on the services Google 
Chrome, Microsoft Edge, and Microsoft Teams, demonstrating that our 
approach can successfully acquire user data. We expect that our meth-
odology can be effectively used for digital forensic investigations in the 
future. Based on our findings, we developed a proof-of-concept tool 
based on our approach and evaluated its performance and effectiveness 
through several experiments.

However, our methodology has limitations. When running the 
browser in incognito mode, LevelDB manages partial data in BLOB, but 
the proposed method does not address this issue. In addition, we have an 
interest in all the available artifacts related to IndexedDB. Although this 
study mainly focused on extracting and comprehending data in memory, 
we plan to expand our research on analyzing and integrating IndexedDB 
acquired from various digital sources.
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