

Revisiting logical image formats for future digital
forensics: A comprehensive analysis on L01 and AFF4-L

By:
Sorin Im, Hyunah Park, Jihun Joun, Sangjin Lee, Jungheum Park

From the proceedings of
The Digital Forensic Research Conference

DFRWS APAC 2024
Oct 22-24, 2024

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first
open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an
informal environment.
As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to
help drive the direction of research and development.
https://dfrws.org

Forensic Science International: Digital Investigation 50 (2024) 301811

Available online 18 October 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS APAC 2024 - Selected Papers from the 4th Annual Digital Forensics Research Conference APAC

Revisiting logical image formats for future digital forensics: A
comprehensive analysis on L01 and AFF4-L

Sorin Im a, Hyunah Park a, Jihun Joun b, Sangjin Lee a, Jungheum Park a,*

a School of Cybersecurity, Korea University, Seoul, South Korea
b School of Interdisciplinary Forensics, Arizona State University, AZ, 85306, USA

A R T I C L E I N F O

Keywords:
Digital forensics
Selective imaging
Logical imaging
Originality
Integrity
L01
AFF4-L

A B S T R A C T

As the capacity of storage devices continues to increase significantly and cloud environments emerge, there is a
need to perform logical imaging to selectively collect specific data relevant to a case. However, there is currently
insufficient research addressing the appropriateness and usability of logical image file formats, which could
potentially raise issues in terms of the originality and integrity of digital evidence. This study performs a
comprehensive analysis of the internal structures and metadata of existing proprietary and open-source logical
image file formats, with a particular focus on the L01 and AFF4-L. Furthermore, this study reveals several
limitations of each file format and the supporting tools through practical experiments including metadata
manipulation and stress tests. More specifically, the potential for loss of originality and metadata manipulation
during and after logical imaging underscores the necessity for the development and standardization of more
advanced logical image file formats to systematically manage different types of digital evidence from different
sources. The findings of this research also demonstrate the necessity of collective efforts from the community for
the continuous improvement of logical image file formats.

1. Introduction

A logical image is comprised of duplicates of one or more files,
accompanied by metadata and file integrity details (Schatz, 2019). With
the increasing capacity of storage devices, there is a growing necessity to
selectively gather specific files. In environments such as the cloud,
where physical imaging is not feasible, the significance of logical im-
aging is becoming increasingly apparent. In the United States, the Fourth
Amendment and Federal Rule of Evidence 611 aim to limit the scope of
seized items to “only what is directly relevant to the investigation”,
thereby minimizing privacy invasion and infringement of fundamental
rights. Similarly, Europe’s General Data Protection Regulation (GDPR)
mandates that only necessary information be collected and processed
during data handling. These regulatory frameworks emphasize selective
information collection rather than broad evidence gathering, under-
scoring the importance of logical imaging. Tools such as EnCase, Tab-
leau, and Falcon Neo have adapted to these requirements by
incorporating logical imaging capabilities.

With the emergence of logical imaging, various specialized evidence
file formats have been proposed for utilization. Commonly used logical

image files in commercial tools include L01 and Lx01 from the OpenText
EnCase product line and AD1 from the AccessData FTK product line.
Additionally, an open-source form of logical image file proposed in
academia is AFF4-L, which is also utilized in commercial products such
as EnCase and Magnet AXIOM Cyber. In this context, we aim to
contemplate the following three research questions (RQ).

● RQ1: Are the existing logical evidence formats adequately suited for
the selective acquisition of potential digital evidence from various
sources?

● RQ2: Are there any weaknesses or deficiencies from an evidence
management perspective?

● RQ3: If any limitations exist, how can they be improved for sup-
porting thorough logical imaging?

Therefore, this paper analyzes the L01 and AFF4-L image file formats
and identifies the metadata items that can be stored in each format.
Based on this analysis, integrity verification is conducted, and metadata
manipulation and stress tests are performed to demonstrate the limita-
tions of existing logical evidence formats from an evidence management

* Corresponding author.
E-mail addresses: lemonlaura@korea.ac.kr (S. Im), ha00116@korea.ac.kr (H. Park), jihun.joun@asu.edu (J. Joun), sangjin@korea.ac.kr (S. Lee), jungheumpark@

korea.ac.kr (J. Park).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301811

mailto:lemonlaura@korea.ac.kr
mailto:ha00116@korea.ac.kr
mailto:jihun.joun@asu.edu
mailto:sangjin@korea.ac.kr
mailto:jungheumpark@korea.ac.kr
mailto:jungheumpark@korea.ac.kr
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2024.301811
https://doi.org/10.1016/j.fsidi.2024.301811
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2024.301811&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 50 (2024) 301811

2

perspective. Furthermore, it emphasizes the need for collective efforts
from the community towards developing and standardizing formats that
enable thorough and secure management of potential digital evidence
from various sources.

2. Background and related work

2.1. Forensic imaging and image formats

A forensic image is a collection of one or more files that encompass
the contents and structure of a large storage device (Knight, 2011).
Forensic image formats can be broadly categorized into RAW (dd: disk
dump) and DEB (Digital Evidence Bag). The RAW format is a bit-by-bit
copy of the target media. Hence, there is no additional metadata besides
information about the original file, and various methods and file formats
are required for different types of target media (Turner, 2005). In
contrast, the DEB format, which serves as a universal container for
digital evidence collection, is defined as a wrapper for gathering all
types of digital evidence, storing both the original files and related
metadata information (Turner, 2005).

The formats that implement the concept of DEB include EWF (Expert
Witness Compression Format) and AFF (Advanced Forensic Format).
EWF is the proprietary evidence compression format of OpenText
EnCase, which includes formats such as E01, Ex01, L01, and Lx01. On
the other hand, AFF is an open-source, scalable file format (Garfinkel
et al., 2006), with variations like AFF4 and AFF4-L.

2.2. Selective collection and logical imaging

The traditional disk imaging process proceeds without error
handling or logging capabilities from the beginning to the end of the
target media collection (Turner, 2006). As storage devices have become
larger in capacity, this approach requires significant time and storage
space. Hence, recognizing that selective or partial acquisition may be
more effective depending on the amount of information to be acquired,
Logical Imaging(Selective Imaging) using the DEB format began to
emerge (Turner, 2006). The concept of logical imaging was introduced
by Turner in 2005 and implemented in 2006 (Garfinkel et al., 2006).
Subsequently, the design and implementation of logical imaging using
the AFF4-based container format have been proposed (Stüttgen et al.,
2013; Faust et al., 2021).

Eco-Bag, a Merkel tree-based DEB container proposed in 2024,
highlights the limitations of integrity verification in traditional logical
image formats. It emphasizes the need for sophisticated and selective
data collection techniques in modern digital investigations and presents
an alternative to enhance the archival continuity and privacy protection
of traditional logical imaging (Han et al., 2024). Furthermore, with the
growth of the privacy field, research on selective collection and logical
imaging for efficient privacy investigations continues (Halboob et al.,
2015; Halboob,W., 2023).

However, most research has focused on proposing new logical im-
aging designs or introducing logical imaging frameworks to enhance
privacy protection. There is a lack of in-depth discussion on how effec-
tively existing logical image formats actually operate.

2.3. Logical image format

Representative logical image formats include EnCase’s L01 and
Lx01. EnCase began supporting logical imaging through the LEF (EnCase
Logical Evidence File) format L01, based on EWF, from EnCase v5. From
EnCase v7 onwards, it introduced the Lx01 format with LZ compression
functionality. This LEF format was reverse-engineered by Joachim Metz
in 2019 and implemented in the C language (Metz, 2019b).

Additionally, there are vendor-specific formats such as FTK Imager’s
AD1 and X-Ways’ CTR, while well-known formats like TGZ, ZIP, VHD,
etc., are also utilized by adding metadata information separately.

However, pointing out the lack of a standardized format, academia
proposed AFF4-L, an open-source format based on AFF4, in 2019
(Schatz, 2019).

AFF4 is a redesigned version of AFF, utilizing the Map-Stream
approach and employing a container-based format, allowing multiple
data streams to be stored within a single image file (Cohen et al., 2009).
This makes it more efficient for storing and analyzing large-scale data.
The Map-Stream method involves creating a virtual address space called
Map, and navigating to specific addresses along this map reveals the
existence of streams, thus virtualizing the storage space in such a
manner. This supports the transition to non-linear block streams.
Furthermore, AFF4 utilizes the standard format of RDF (Resource
Description Framework) known as the turtle module to store metadata
files and store a unique identity called the AFF4 URN (or ARN in the case
of AFF4-L) for each object. AFF4-L, based on AFF4, also incorporates
these features and additionally proposes AFF4-L by adding the dedu-
plication functionality of Hash-based Imaging (Cohen and Schatz,
2010). It is implemented in the open-source pyAFF4 library (Cohen,
2019).

3. Reversing existing logical image file format internals

The L01 format provided by a well-known commercial tool ‘EnCase’
and the AFF4-L format supported by an open-source tool ‘pyAFF4’ have
been selected as targets for this work’s logical image analysis. Using
EnCase and pyAFF4, sample logical image files are generated, and the
structure of the image files is analyzed using the hex viewer program
‘HxD’. Subsequently, a list of metadata provided by each image file is
identified. In this process, EnCase is used for L01, while AFF4-L is
analyzed using pyAFF4 as well as archiving tools. The datasets used for
format analysis and metadata identification have been made publicly
available online (Im, S., 2024). For ease of distinction, starting from
here, the imaged files are referred to as Original File, and the outputs of
the imaging process are referred to as Image File.

3.1. L01: a proprietary logical image format

An EWF file is a type of disk image that includes the contents and
structure of an entire data storage device, a disk volume, or the physical
memory(RAM) of a computer. The EWF file can take one of two formats:
either as a bitstream (forensic image) or as a logical evidence file (LVF).
L01 is a logical evidence file image format developed by Guidance
Software (now part of the OpenText product line). It preserves the
original file exactly as it exists on the media and documents attributes
such as the assigned file name and extension, creation, modification, and
last access dates and times, logical and physical sizes, MD5 hash values,
permissions, start range, original path, and more (Family, 2015). In this
paper, experiments and analyses were conducted using EnCase v22.3,
the latest version as of May 2024.

3.1.1. Internal structures of L01
The EWF format stores data across one or more segment files, with

each segment file comprised of a 13-byte file header and one or more
sections. Each section begins with a 76-byte section descriptor, con-
taining information about the specific section. In EnCase, L01 files
generated are composed of identical sections regardless of the filesystem
or type of original file. A schematic representation of the overall struc-
ture of L01 has been posted on the online (Im, S., 2024), and more
detailed information can be found in reference (Metz, 2019a).

The structure of L01 is mostly known as it is similar to EWF-E01.
However, there are still several fields and category identifiers within
the detailed data of each section whose meanings have not yet been
determined. Among them, we have identified the contents of the map
section - map entries array, as depicted in Fig. 1. The L01 map section
consists of a section descriptor and a data area, which is further sub-
divided into a map string and a map entries array. The map string allows

S. Im et al.

Forensic Science International: Digital Investigation 50 (2024) 301811

3

us to determine the number of map entries, and there exist as many map
entries in the map entries array as indicated by this count. Each map
entry is 24 bytes long, with the first 4 bytes representing the offset
within the ltree section - file entries category mapped to that map entry.
The next 4 bytes are always an empty field, and the following 16 bytes
represent the GUID of the file mapped to that map entry.

The category identifiers present in specific sections of L01 may vary
depending on the EnCase version, thus requiring analysis for the latest
version. In the L01 generated by EnCase v22.3, new identifiers that have
not been previously identified were discovered, as shown in Table 1.
Moreover, the meaning of the header2 section - sources category iden-
tifier has been ascertained. Upon opening an L01 file in EnCase, you can
ascertain the ‘Sources’ information of the image file. The information is
not within the internal structure of the L01 file, but rather exists in the
Case directory - the directory of the corresponding evidence file GUID -
in the ‘EvidenceInfo.bin’ file under the ‘srl’ category. This category
follows the same structure as the sources category in the header2 sec-
tion, allowing us to understand the meaning of the identifier in the
header2 section - sources category.

3.1.2. A list of metadata supported by L01
L01 provides metadata for both the image file and the original file.

We imaged files existing in NTFS, FAT32, and exFAT file systems indi-
vidually, including system files ($MFT), document files (.docx), com-
pressed files (.zip), and folders, to verify their metadata.

Table 2 presents a list of metadata for the image file, primarily found
in the header2, header, volume, and data sections. The metadata
remained consistent across all file systems and original file types.
Interestingly, despite the experimental environment being Windows 11,
the System Version was displayed as Windows 10.

Additionally, Table 2 presents a list of metadata for the original file,
primarily found in the ltree section, with slight variations depending on
the file system. Variations were also observed based on the type of
original file. When imaging system files and folders, the ‘File Ext’ field
was not present. When imaging document files and folders within NTFS,
the ‘Logical Sequence Number’ field was not present, while imaging
system files and compressed files did not contain ‘Object Identifiers’.

3.2. AFF4-L: an open-source logical image format

AFF4-L was introduced at DFRWS USA 2019 and Magnet Forensics,
2020. In 2020, Magnet Forensics began supporting AFF4-L by releasing
AXIOM 4.5 and AXIOM Cyber 4.5 versions (Magnet Forensics, 2020).
Additionally, EnCase has been supporting AFF4-L since the release of
EnCase v22.3 in August 2022 (OpenText, 2022). Moreover, the previous
version of Winpmem, ‘winpmem_v3.3.rc3.exe’ (Velocidex, 2019), can
also be utilized for AFF4-L. However, since AFF4-L has been imple-
mented as an open-source, extensible file format, each AFF4-L image file
generated by different tools exhibited differences depending on the
features of the respective tool. Therefore, the analysis of AFF4-L was
conducted based on AFF4-L image files generated using pyAFF4, an
open-source implementation for the AFF4-based logical imaging
standard.

pyAFF4 was implemented with a focus on developing the logical
imaging standard based on AFF4 (Cohen, 2019), and it validated its
implementation by generating standard logical images and Hash-based
logical images with duplicate removal functionality (Schatz, 2019). As
of the first half of 2024, this open-source software operates on pyAFF4
version 1.1, with no updates since 2021. It supports functionalities such
as reading and creating logical images, reading and creating dedupli-
cated logical images, examining metadata of image files, extracting data,
and generating encrypted AFF4 logical volumes (Cohen, 2019).

However, there have been instances where imaging did not proceed
as expected due to errors occurring during the runtime of the open-
source software. In pyAFF4, when the size of the original file exceeds
1024 KB during imaging, the file is compressed and stored in units called
chunks. However, the code to define the length of the chunk was
missing, making it impossible to image files larger than 1024 KB in size.
Therefore, to facilitate smooth experimentation, we modified the code to
define the length of the chunk during chunk creation. Moreover,
duplicate removal imaging (Hash-based Imaging), faced difficulties
when imaging a large number of files or files with large sizes, resulting in
unsuccessful imaging. Therefore, the analysis and testing of AFF4-L in
this paper focused on standard logical imaging.

3.2.1. Internal structures of AFF4-L
Using the pyAFF4, we performed standard logical imaging of ‘hello.

txt’ to generate ‘test.aff4’. Upon examining the hex values, as shown in
Fig. 2 (A), we observed the ZIP file format signature. Subsequently,
applying the file compression/decompression program 7-Zip revealed
that the image file, as shown in Fig. 2 (B), comprises the original file,
‘container.description’, ‘information.turtle’ and ‘version.txt’.

For original files, the imaging process stores the path of the input
original file exactly as entered, thus allowing the identical verification of
the original file’s tree structure within the file system if absolute paths

Fig. 1. Detailed analysis of the map section - map entries array.

Table 1
Novel identifiers discovered in the EWF-L01 file structure.

Section Category Identifier

header2 Source do ip se ma
loc si mfr dt
mo

ltree Records cd md wd ad
file entries sha2 spth hshs

S. Im et al.

Forensic Science International: Digital Investigation 50 (2024) 301811

4

were provided during imaging (Schatz, 2019). In the case of Fig. 2 (B),
by entering the path of the original file as a relative path, the original file
could be located under the ‘samples’ folder. The three files excluding the
original file are automatically generated during AFF4-L imaging.
‘container.description’ holds the container ARN information, thereby
serving as the identifier of the AFF4-L file. ‘information.turtle’ stores the
metadata of the original file in RDF format. The metadata information
that can be verified here matches the information obtained using the
‘-m/–meta’ option of the pyAFF4 open-source tool. ‘version.txt’ stores
the version information of the pyAFF4 tool.

Fig. 3 depicts the format structure of the analyzed AFF4-L file (‘test.
aff4’), based on the structure of the analyzed ZIP file format and
regarding the pyAFF4 open-source tool. Each file within the ZIP file
format contains a ‘Local File Header’ and a ‘Central Directory’ At the
bottom of the format lies the ‘End of Central Directory Record’. When

the file is executed, it operates by reading from the ‘End of Central
Directory Record’ at the bottom to the position of the ‘Central Direc-
tory’. From here, it reads the position of the ‘Local File Header’ to
retrieve the file’s data. The AFF4-L file operates similarly, with the
difference being the inclusion of the AFF4 ARN at the bottom of the file
and the ‘Flag’ values of the ‘Local File Header’ and ‘Central Directory’,
which are both set to ‘0x0808’. Considering that the ZIP file format does
not define the Flag value as ‘0x0808’ and the Flag value for AFF4 files is
‘0x08’, it can be inferred that ‘0x0808’ represents the Flag value for
AFF4-L. Furthermore, upon examining Fig. 3, it was observed that the
data section following the ‘Local File Header’ is exposed as-is in HxD,
without compression or encryption, except for the original file.

In the case of Fig. 3, referencing the ‘test.aff4’ file, there are four
instances of both ‘Local File Header’ and ‘Central Directory’. However, if
there are numerous original files imaged or if the size of the original file
is large enough to be split and stored across multiple files, additional
instances of ‘Local File Header’ and ‘Central Directory’ are generated
corresponding to the number of files.

3.2.2. A list of metadata supported by AFF4-L
The metadata of AFF4-L is stored in RDF format in ‘information.

turtle’, which can be inspected using open-source tools or compression
programs. The metadata information provided by both methods is
identical, and Table 3 summarizes the metadata supplied by AFF4-L.
The metadata is generated in two cases based on the original file’s
size. When imaging files smaller than 1024 KB, 8 metadata items are
created, including ARN, path/name of the original file, size, MAC
timestamp, and hash value. For files larger than 1024 KB, the original
file is divided into chunks and undergoes split compression during im-
aging. Therefore, in addition to the existing metadata, metadata
regarding chunk information and compression method are added,
resulting in a total of 11 metadata items.

Fig. 4 depicts the metadata retrieved from the AFF4-L file ‘infor-
mation.turtle’ after imaging files smaller and larger than 1024 KB. After
imaging the 1 KB-sized ‘hello.txt’ file to ‘test.aff4’, metadata inspection
reveals a total of 8 metadata items, as shown in the upper image of
Fig. 4. Next, after imaging the 1025 KB-sized ‘1025 KB.txt’ file to ‘1025
KB.aff4’, metadata inspection displays 11 metadata items, including
additional metadata regarding chunks and compression method, as
depicted in the lower image of Fig. 4.

Table 2
A list of metadata supported by L01.

File Type Category Metadata

Image File

Image File (.L01)

Name CRC Errors Drive Type Primary Path
Compression System Version Evidence Paths Source Type
Sources GUID Case Number Open Mode
Index File Examiner Name Evidence Number File Integrity
Notes Geometry Application Processing Status
Network Port EnCase Version Time Zone Total Sectors
Error Granularity Cache Status Bytes Per Sector Read Errors
Read File System Parity Level Missing Sectors Parse Link File
Interface – – –

Evidence Paths Name – – –

Sources Name Serial Number Model Total Bytes
Device GUID Primary Device GUID Drive Type –

Original File

Original File

Name Item Path Evidence File File Ext
True Path File Identifier Logical Size Description
GUID Category aEntry Modified bShort Name
Last Accessed Initialized Size Is Internal File Created
Physical Size Attributes Last Written File Extents
MD5 Permissions – –

Source Name Total Bytes Drive Type Serial Number
Device GUID Model Primary Device GUID –

aAttributes Sequence ID Logical Sequence Number – –
aObject Identifiers Own ID Birth Volume ID Birth Object ID –
aPermissions Name Property ID Permissions

a Only available for NTFS.
b Only available for FAT32.

Fig. 2. AFF4-L file structure.

S. Im et al.

Forensic Science International: Digital Investigation 50 (2024) 301811

5

Metadata verification was conducted for 58 files with various ex-
tensions including documents, images, audio, video, and system files,
besides ‘txt’ files. However, no peculiarities were observed for any file,
with all providing the same type and quantity of metadata information.
Additionally, logical imaging was performed for FAT32 and exFAT files,
in addition to NTFS, to examine filesystem-specific characteristics.
Nevertheless, no filesystem information or peculiarities were identified.

4. Analyzing the limits of existing logical image formats

To analyze the limitations of the existing logical image formats L01
and AFF4-L, the metadata identified in Section 3 was examined to
investigate any loss of originality. Additionally, the integrity verification
information for each format was reviewed, and metadata manipulation
tests were performed to assess any failure of integrity verification.
Finally, stress tests were performed to evaluate and compare the per-
formance of the tools supporting each format.

4.1. Loss of originality with limited metadata types

In Section 3, we imaged and analyzed the metadata of original files
with various extensions and sizes across NTFS, FAT32, and exFAT file
systems. For AFF4-L, the types of metadata stored were identical
regardless of the file system, thus failing to provide the diverse metadata
that different file systems typically contain. Furthermore, despite the
variety of original file types, the metadata provided by AFF4-L remained
consistent. For instance, the metadata for image files included only ARN
information, thus making it impossible to ascertain details such as the
file name, imaging date, or examiner information. Similarly, metadata
for original files did not adequately capture characteristic metadata
information for various types of files, such as file system details or sys-
tem files. L01 provides comparatively more metadata information and
file system-specific metadata than AFF4-L. However, due to its policy of
interpreting and normalizing the original metadata before storing it, L01
does not capture all of the original metadata. Notably, despite the va-
riety of original file types, the metadata provided by L01 is largely
similar, and it does not adequately reflect file system types or timestamp
metadata.

Timestamps, which serve as the foundational evidence for analyzing
events in chronological order, are among the most fundamental yet
crucial pieces of information in digital forensics analysis (Bang et al.,
2011). Each file system contains various timestamp information, and
both L01 and AFF4-L metadata include multiple timestamp details.
However, there are limitations as not all timestamp information is
included. For instance, NTFS uses FILETIME format, which can express
time up to seven decimal places, while L01 uses the Unix Seconds
format, limiting storage to seconds, and AFF4-L provides timestamps up
to six decimal places. Table 4 outlines the timestamp information not
provided by L01 and AFF4-L, highlighting the need for their inclusion in
digital forensics analysis.

Both formats use the DEB format to interpret the original metadata
and normalize it to the specified metadata before storing it. However,

Fig. 3. AFF4-L file format.

Table 3
A list of metadata supported by AFF4-L.

File Size Metadata

1,024 KB or less Image Stream ARN
File Image ARN
Original File Path Name
Original File Size
Original File Birth Time
Original File Last Accessed Time
Original File Last Written Time
Original File Hash (SHA1, MD5)

Over 1,025 KB
(Additional generated metadata)

Chunk Size
Chunk In Segment
Compression Method

S. Im et al.

Forensic Science International: Digital Investigation 50 (2024) 301811

6

since logical imaging does not collect the entire file system, it cannot
collect raw data and must rely on the metadata information provided by
the format. As a result, L01 and AFF4-L do not contain enough metadata
information from various sources during the imaging process and lose
their originality. To address these issues, improvements are needed to
enable archiving and managing potential evidence from multiple sour-
ces, such as different file systems or cloud data, including storing raw
data (e.g., NTFS’s $MFT Entry) together so that all available metadata
can be utilized later.

4.2. Failure of integrity verification against metadata manipulation

After analyzing each format, we found that both L01 and AFF4-L lack
integrity verification information and security evaluation metrics. First,
neither format provides a representative verification value at the format
level to demonstrate integrity. This is in contrast to E01, the leading
digital forensic image format, which provides integrity verification in-
formation via a hash value of the file upon completion of imaging. In
addition, both formats are simple and unorganized in structure. Without
encryption, individual metadata fields can be exposed through a simple
analysis using a hex editor, and the simplicity of the format makes it
relatively easy to calculate checksums and verify CRC values. Therefore,
the integrity of each format was tested by manipulating the metadata of

the L01 and AFF4-L formats and checking the ability of relevant tools to
detect the manipulations. Two ways of manipulation are defined: Simple
Manipulation, where only the metadata is altered, and Elaborate Manip-
ulation, where both the metadata and CRC value are altered. All meta-
data used in the L01 and AFF4-L manipulation are publicly available
online, and detailed manipulation results for each format are available
online.

4.2.1. Integrity verification test of L01
For the integrity verification of the L01, we focused on selecting

high-priority metadata for digital forensic analysis and conducted met-
adata manipulation tests accordingly. We categorized manipulation into
three types: changing the value of the target metadata to a different
value of the same length, completely deleting the existing value of the
metadata, and adding arbitrary values to consistently empty metadata
entries.

Each section in L01 starts with a section descriptor structured as
shown in Fig. 5. The checksum of the section descriptor is calculated
using Adler-32 checksum for all data within the section descriptor, from
Section Type to padding, thereby verifying the integrity of the section.
Therefore, when performing actions such as deleting or adding metadata
values resulting in changes in the length of the metadata, the next sec-
tion offset, section size, and checksum values within the section

Fig. 4. AFF4-L metadata comparison.

Table 4
Timestamps to be added to logical images (L01, AFF4-L).

Format File System Attribute Data Description

L01 &AFF4-L NTFS $FILE_NAME Created Time File creation time

Modified Time File modification time

MFT Modified Time MFT Item modification time

Last Accessed Time Last time a file was accessed

Only L01 FAT32 Directory Entry Create Time Tenth File creation time in 1/10 units

exFAT File Directory Entry Create 10 ms Generation time in 10 ms

Last Mod 10 ms Last modified time in 10 ms

Only AFF4-L NTFS $STANDARD_ INFORMATION MFT Modified Time MFT Item modification time

S. Im et al.

Forensic Science International: Digital Investigation 50 (2024) 301811

7

descriptor of that section, as well as the next section offset and checksum
values within the section descriptors of all sections following it, must be
recalculated.

Certain sections contain additional integrity verification elements
within their section data, and Table 5 lists them. When modifying
metadata values within these sections, the integrity verification ele-
ments existing within the section data must also be recalculated. L01
metadata manipulation tests were conducted, distinguishing between
Elaborate manipulation, which recalculates all elements affected by the
manipulation actions mentioned earlier, and Simple manipulation,
which does not involve such recalculations.

When creating an L01 file, you can set options for compression and
Entry Hash. If the compression option is selected, the Sectors section
data exists in a zlib-compressed state, whereas if compression is not
selected, the Sectors section data remains uncompressed, identical to the
original file. When the Entry Hash option is enabled, the data paired
with the ‘ha’ identifier in the ltree section under the file entries category,
is converted into the MD5 hash value of the original file. If the Entry
Hash option is not enabled, the corresponding data is set to 0, indicating
it is “not set” Accordingly, the sample file is structured as shown in
Table 6.

Since the header2 and header section data are compressed with zlib,
to manipulate the metadata of these sections, it is necessary to go
through the process of decompression, metadata manipulation, and
recompression. To derive accurate results from metadata manipulation
tests, the compression options used during compressing the section data

were identified, as shown in Table 7.
Even if the values of the target metadata are changed to different

values of the same length, the length of the recompressed data may
differ from the original. Therefore, when manipulating the metadata
within the section, regardless of the action taken, the checksum values
and next section offsets within the section descriptor of that section, as
well as those of all subsequent sections, must be recalculated.

Based on the analysis conducted so far, attempting to manipulate the
metadata of the header2 and header sections results in a verification
failure message in EnCase, stating ‘The integrity of the following sector
groups could not be verified’. It suggests that there are unidentified
integrity verification fields and values requiring further investigation.
However, since EnCase did not detect any manipulation within the
original file, which contains the actual evidence data, this study focused
on this aspect.

The volume section data forms a unique structure in its entirety.
Therefore, if the GUID of the volume section is completely manipulated
with a value of the same length, it will be displayed as the changed value
in EnCase. However, if the GUID is deleted, even with a elaborate
manipulation, an ‘Invalid block checksum’ error occurs.

The ltree section data is divided into five categories, among which
the identifiers–data pairs of the sources category and the file entries
category were selected for the manipulation test. The sources category
stores the metadata of the original file sources, while the file entries
category stores the metadata of the original files.

If the Name of the original file source and the File Created value of
the original file are fully manipulated to values of the same length,

Fig. 5. Detailed analysis of the section descriptor.

Table 5
Integrity verification elements for each section.

Section Integrity
Verification
Element

Description

Volume Checksum Adler-32 of all data (from Media Type to
Reserved)in the volume section

Table table header -
Checksum

Adler-32 of all data in the table section

table footer -
Checksum

Adler-32 of an offset array

header - Checksum Adler-32 of all data in the table section
footer - Checksum Adler-32 of an offset array

Ltree ltree header - MD5 MD5 hash of entire ltree data, big endian
ltree header -
Checksum

Adler-32 checksum of all data in ltree header
(excluding unknown field) with checksum
value of 00000000

Data Checksum Adler-32 of all data in the data section (from
Media Type to Reserved)

Done Checksum Adler-32 of all data in the done section (from
Section Type to Padding)

Table 6
L01 sample file for metadata manipulation test.

Entry Hash Compression

Disabled Enabled

None origin.L01 originCom.L01
MD5 originMD5.L01 –

Table 7
Compression options for header2 and header sections.

Option Value Description

CMF CM 8 deflate compression method with a window size up to
32K

CINFO 7 32K window size
FLG FCHECK 1 check bits for CMF and FLG

FDICT 0 no preset dictionary
FLEVEL 0 compressor used fastest algorithm

S. Im et al.

Forensic Science International: Digital Investigation 50 (2024) 301811

8

EnCase will display the modified values. Conversely, if these are fully
deleted, the corresponding entries existing in the original EnCase data
will also be deleted. When the GUID of the original file is fully manip-
ulated to an arbitrary value of the same length, EnCase will display the
changed value. However, if this GUID is fully deleted, the corresponding
entry will not be deleted; instead, a new GUID value will be displayed.

In the case of MD5 and SHA1 values of the original file source, they
are always stored as 0, indicating “not set”. If these are fully manipulated
to values of the same length, new MD5 and SHA1 entries will be added to
EnCase, which were not present before, and will be displayed with the
modified values. Similarly, ‘Acquisition date and time’ of the original
file source and ‘Deletion date and time’ of the original file always exist as
empty values. If arbitrary values are fully added for each, new Acquired
and Deleted entries, which were not present before, will be added to
EnCase, and displayed with the manipulated arbitrary values.

The option to set the Entry Hash when creating an L01 file was
previously mentioned. Although EnCase offers only None and MD5
options, the ltree section - file entries category includes an identifier sha
corresponding to SHA1 in addition to the MD5 identifier ha. When MD5
is selected, the data paired with the identifier ha represents the MD5
hash value of the original file. If this is altered to a value of equal length,
it will be displayed as the changed value in EnCase. Choosing the None
option results in the paired data with the identifier ha representing 0,
indicating it is not set. Altering this to a value of equal length adds a
previously nonexistent MD5 entry to EnCase and displays the changed
value. Moreover, since EnCase lacks the option to calculate the SHA1
hash value of the original file, the data paired with the identifier sha
always remains 0. Nevertheless, altering it to a value of equal length
adds a SHA1 entry that was not present in the original EnCase and
displays the changed value.

When attempting to open the ltree section after performing simple
manipulation by altering each target metadata to an arbitrary value of
the same length, EnCase does not respond. In cases of simple deletion
and simple addition, EnCase displays warning messages such as “Invalid
block checksum” and “File not found”. However, the outcome is similar

to that of perfect deletion and perfect addition.
The data and map sections, similar to the volume section, constitute a

single unique structure for their entire section data and include GUIDs.
However, even when completely altered or deleted with values of the
same length, they retain the original values without displaying any
changed values or errors.

4.2.2. Integrity verification test of AFF4-L
Metadata manipulation in AFF4-L was conducted by dividing the

process into two methods: image file metadata manipulation and orig-
inal file metadata manipulation. Files for manipulation tests were pre-
pared by imaging ‘origin.txt’ as ‘origin.aff4’ and ‘target.txt’ as ‘target.
aff4’. The manipulation content and results are presented in Fig. 6.

In AFF4-L files, there are two types of ARNs: Image Stream ARN and
File Image ARN. The Image Stream ARN is located in ‘information.tur-
tle’, while the File Image ARN is located at the bottom of the file format
under ‘container.description’, ‘information.turtle’. Therefore, a simple
manipulation, as depicted Fig. 6 (A), was performed by replacing the
ARNs at each location in the ‘origin.aff4’ file with the ARNs of ‘target.
aff4’. Subsequently, when the ‘origin.aff4’ file was checked using the
pyAFF4 open-source tool, the image file could be read without any is-
sues, and the manipulated content could also be confirmed. However,
when checked using a compression program, the file could not be
verified due to CRC value errors. In the case of AFF4-L, each file has a
Local File Header and Central Directory with the same Checksum value.
This value is calculated using the CRC-32 Checksum for the data
following the Local File Header, ensuring the integrity of each file.
Therefore, we calculated the CRC values of ‘container.description’ and
‘information.tutle’ using the manipulated data and manipulated the
CRCs of ‘Local File Header’ and ‘Central directory’, respectively, to
perform elaborate manipulation, as depicted Fig. 6 (B). As a result, the
file could be verified without any issues using a compression program,
and the manipulated content could also be confirmed.

Next, for manipulation with the original file metadata, the original
file name in the ‘origin.aff4’ file was manipulated with to ‘target.txt’,

Fig. 6. Overview of AFF4-L metadata manipulation.

S. Im et al.

Forensic Science International: Digital Investigation 50 (2024) 301811

9

and the SHA1 hash of the original file was manipulated to all ‘0xff’. As a
result, similar to the ARN manipulation, when simple manipulation was
applied, it only worked in the pyAFF4 open-source tool, but when
elaborate manipulation was performed, it worked without any issues
even in compression programs.

In addition, for all existing metadata such as file size and MAC cre-
ation time, manipulation tests were conducted. The results showed that
both simple manipulation and elaborate manipulation were possible for
all metadata information that can be verified in HxD in the case of AFF4-
L.

4.3. Lack of performance testing results including stress testing

Logical image formats are widely used, but there is no systematic
performance testing efforts for them. The stress tests performed in this
study fall into two categories: imaging a large number of files simulta-
neously and imaging large files. The same set of sample files was used to
generate both L01 and AFF4-L image files. Comparative analysis was
then performed on the image files to identify any unexpected results.
The sample files used for this testing is publicly available online (Im, S.,
2024). For AFF4-L, tests were conducted for both the default logical
imaging method and the hash-based logical imaging method for dupli-
cate removal. The results are summarized in Table 8.

To ensure no issues arose when imaging a large number of files,
imaging was conducted for all folders and files within the ‘Carpe’
directory. This directory contained a total of 51,417 files with a com-
bined size of 18.9 GB. Imaging with L01 took approximately 12 min and
resulted in a 2 GB image. For AFF4-L, imaging took around 8 min and
resulted in a 3 GB image. However, as mentioned in Section 3, modi-
fications were made to a portion of the AFF4-L open-source code to
image files larger than 1024 KB. Therefore, the imaging results for AFF4-
L were obtained after making these modifications. It’s worth noting that
the current pyAFF4 open-source code available on GitHub does not
support imaging files larger than 1024 KB. Additionally, for duplicate
removal imaging, an error occurred in the code when the number of files
exceeded 13, making it impossible to verify the results.

To ensure no issues arose when imaging large files, imaging was
conducted for the 124 GB file named ‘test_bigmulti.aff4’. Imaging with
L01 took approximately 1 h and 28 min, resulting in a 106 GB image. For
AFF4-L, imaging took around 50 min, resulting in a 116 GB image.
However, when attempting duplicate removal imaging with AFF4-L, the
process was not complete even after 5 days. Considering this impractical
delay, it was determined that imaging with AFF4-L for this scenario was
not feasible.

5. Results and discussion

The study aimed to address the three research questions proposed in
the introduction. To achieve this goal, an analysis of the L01 and AFF4-L
image file formats was conducted, identifying the metadata items that
could be stored in each format. Subsequently, metadata manipulation
tests and stress tests were performed. The comprehensive findings of this

study are intended to provide answers to the research questions posed.

RQ1: Are the existing logical evidence formats adequately
suited for the selective acquisition of potential digital evidence
from various sources?

Existing logical evidence formats may not be sufficiently suitable for
effectively managing potential digital evidence from various sources. A
study targeting the most commonly used logical image format, L01, and
the open-source format proposed in academia, AFF4-L, revealed that
while L01 shares similarities with E01 and most fields can be identified,
there are numerous unidentified fields and category identifiers in the
detailed data. Moreover, despite containing a significant amount of
metadata information, it did not encompass all such information when
imaging various files from diverse file systems. Similarly, AFF4-L offered
very limited metadata compared to L01 and provided only the same
metadata information regardless of imaging various files from different
file systems. Therefore, existing logical image formats do not contain
sufficient metadata information necessary for effectively managing
digital evidence from various sources.

RQ2: Are there any weaknesses or deficiencies from an evidence
management perspective?

A detailed analysis of the internal structure of existing logical image
formats demonstrated that they are being utilized in the process of
logical imaging without sufficient consideration of how to preserve the
originality and integrity of digital evidence. Due to the characteristics of
the DEB format, interpreting and normalizing original metadata before
storing it leads to a loss of originality. Existing logical evidence formats
normalize the original metadata according to the format’s predefined
metadata structure. This approach makes it challenging to flexibly
handle metadata from various sources and to fully preserve the original
metadata. It was observed that both L01 and AFF4-L formats do not
sufficiently reflect file system types or timestamp metadata. Further-
more, the metadata manipulation test results indicated that both L01
and AFF4-L formats were susceptible to metadata manipulation when
encryption was not used. They lacked representative verification values
for the image files themselves, and due to their simple and systematic
format structures, metadata manipulation was relatively easy. Conse-
quently, the tools supporting these formats failed to detect manipula-
tions, leading to a potential failure of integrity verification. Due to the
large amount of metadata stored in L01, selective metadata manipula-
tion tests were conducted by prioritizing high-importance metadata for
digital forensic analysis. The results showed that EnCase did not detect
most of the manipulated metadata, with warnings appearing only for
simple manipulation, while EnCase was able to confirm manipulated
documents without warnings after elaborate manipulation. In the case of
AFF4-L, the format verification was possible using pyAFF4 along with
compression programs for handling the ZIP file format. Tests were
conducted to determine if these tools could detect manipulated meta-
data. Simple manipulation was used to manipulate both image file
metadata and original file metadata, with manipulated content
confirmed through open-source tools. However, content verification
using compression programs was not possible, but elaborate manipula-
tion allowed confirmation of manipulated content even in compression
programs through CRC manipulation. Both L01 and AFF4-L lacked
representative verification values for the image files themselves,
requiring investigative agencies to use separate tools for calculating
hash values for generated image files. Therefore, it is necessary to
consider providing additional verification information at the format
level to confirm the manipulation of evidence and to ensure systematic
evidence management.

Additionally, the stress test results revealed limitations in the per-
formance of the pyAFF4 open-source tool supporting AFF4-L. Errors
occurred when imaging files larger than 1025 KB, and issues were

Table 8
Stress test results.

Stress Test 51,417 Files (18.9
GB) Imaging

124 GB File
Imaging

L01 Result O O
Time 12m 1h 28m
Size 2 GB 106 GB

AFF4-L Logical Imaging Result O △
Time 8m 50m
Size 3 GB 116 GB

Hash Based
Logical Imaging

Result X X
Detail No more than 13

files
Over 5 days

S. Im et al.

Forensic Science International: Digital Investigation 50 (2024) 301811

10

encountered with open-source tools not functioning properly during
deduplication imaging of large and numerous files.

RQ3: If any limitations exist, how can they be improved for
supporting thorough logical imaging?

We propose solutions to address the identified limitations. For the
loss-of-originality threshold, it is necessary to consider storing raw data
alongside the normalized metadata provided by existing logical image
formats. This means that the metadata storage structure of each file
system, such as $MFT Entry for NTFS and Directory Entry for FAT,
should be included as raw data to preserve its originality. This approach
not only preserves originality but also allows you to interpret the raw
data stored together and utilize all of the metadata if necessary.

To address the issue of integrity verification failure due to metadata
manipulation, a solution could involve using digital signatures to certify
the hash value of the image file with a public certificate. This involves
encrypting the hash value with a private key to generate a digital
signature, which is then stored in the form of a public-key certificate
issued by a trusted third-party institution. To verify the validity of the
digital signature in the future, the public key included in the public-key
certificate can be used to decrypt and verify the digital signature.
Through this method, image files can be transmitted while preserving
their hash values, and the integrity of the file contents can be verified
using the decrypted hash values, thus ensuring that the digital signatures
were generated from the original files and that the files have not been
altered in transit.

Finally, the overall limitations of existing logical evidence formats,
such as the performance limitations of AFF4-L, suggest the need for
continued development and standardization of logical image formats.
AFF4-L open-source maintenance ceased after 2021. Although there
have been continuous pull requests on the AFF4-L open-source GitHub
repository since 2021, they have not been incorporated. Therefore,
continuous development is necessary to effectively manage potential
digital evidence from various sources using logical image formats.
Standardization is also essential to enhance the efficiency and consis-
tency of digital evidence management and analysis.

6. Conclusions and perspectives

Logical imaging has become increasingly important due to the
growing demand for large-capacity storage devices, diverse computing
environments, and the need for selective collection for privacy protec-
tion. However, there is a lack of in-depth discussion and research on
existing logical image formats. Therefore, this paper raises this issue and
further analyzes and manipulates existing logical image formats to
identify their shortcomings.

Firstly, this paper identified the metadata of L01 and AFF4-L.
Through this process, it successfully identified field and category iden-
tifiers in L01 that had not been previously recognized and highlighted
the metadata deficiency issue in AFF4-L. Additionally, the study high-
lighted the issue of loss of originality due to the limited types of meta-
data in existing logical image formats and proposed storing raw data
alongside to mitigate this problem. Metadata manipulation tests iden-
tified limitations related to the failure of integrity verification of the
formats, and stress tests identified limitations in terms of the perfor-
mance and reliability of the tools that support each format. Both L01 and
AFF4-L showed vulnerabilities in easily manipulation with key metadata
information such as hash values or timestamps when analyzing the
format structure. Proposed improvements include providing verification
information for image files themselves at the format level and suggesting
hash value signing and verification using electronic signatures.
Furthermore, for AFF4-L, it identified performance limitations, such as
the inability to image files larger than 1025 KB using the currently
available open-source version and the inability to perform imaging of
large files and many files when using the deduplication option.

For future development, it is deemed necessary to maintain and
update the AFF4-L open-source or develop a new format to effectively
manage potential digital evidence from various sources. Furthermore,
considering the increasing importance and significance of selective
collection, there is a need for standardization of logical imaging through
sustained interest and efforts from the entire community. Through these
efforts, it is expected that logical imaging formats will align with current
diverse environments and requirements, providing high efficiency and
interoperability.

Acknowledgements

This work was supported by a Korea University Grant, and also
supported by Police-Lab 2.0 Program(www.kipot.or.kr) funded by the
Ministry of Science and ICT(MSIT, Korea) & Korean National Police
Agency(KNPA, Korea) [Project Name: Research on Data Acquisition and
Analysis for Counter Anti-Forensics/Project Number: 210121M07].

References

Cohen, M., Schatz, B., 2010. Hash based disk imaging using aff4. Digit. Invest. 7,
S121–S128. https://doi.org/10.1016/j.diin.2010.05.015. https://www.sciencedirec
t.com/science/article/pii/S1742287610000423. the Proceedings of the Tenth
Annual DFRWS Conference.

Bang, J., Yoo, B., Lee, S., 2011. Analysis of changes in file time attributes with file
manipulation. Digit. Invest. 7, 135–144.. https://doi.org/10.1016/j.
diin.2010.12.001. https://www.sciencedirect.com/science/article/pii/S1742287
610000824.

Cohen, M., 2019. pyaff4. https://github.com/aff4/pyaff4.
Cohen, M., Garfinkel, S., Schatz, B., 2009. Extending the advanced forensic format to

accommodate multiple data sources, logical evidence, arbitrary information and
forensic workflow. Digit. Invest. 6, S57–S68. https://doi.org/10.1016/j.
diin.2009.06.010. https://www.sciencedirect.com/science/article/pii/S1742287
609000401. the Proceedings of the Ninth Annual DFRWS Conference.

EWF Family, 2015. Expert witness disk image format (ewf) family, 2024-05-19. htt
ps://www.loc.gov/preservation/digital/formats/fdd/fdd000406.shtml.

Faust, F., Thierry, A., Müller, T., Freiling, F., 2021. Selective imaging of file system data
on live systems. Forensic Sci. Int.: Digit. Invest. 36, 301115 https://doi.org/
10.1016/j.fsidi.2021.301115. https://www.sciencedirect.com/science/article/pii/
S2666281721000093. dFRWS 2021 EU - Selected Papers and Extended Abstracts of
the Eighth Annual DFRWS Europe Conference.

Garfinkel, S.L., Malan, D.J., Dubec, K.A., Stevens, C.C., Pham, C., 2006. Disk imaging
with the advanced forensic format , library and tools. https://api.semanticscholar.or
g/CorpusID:10658527.

Halboob, W., Mahmod, R., Udzir, N.I., Abdullah, M.T., 2015. Privacy levels for computer
forensics: toward a more efficient privacy-preserving investigation. In: FNC/
MobiSPC. URL: https://api.semanticscholar.org/CorpusID:43688858.

Halboob, W., Almuhtadi, J., 2023. Computer forensics framework for efficient and lawful
privacy-preserved investigation. Comput. Syst. Sci. Eng. 45, 2071–2092. https://doi.
org/10.32604/csse.2023.024110. http://www.techscience.com/csse/v45n2/50368.

Han, J., Han, M.L., Lee, S., Park, J., 2024. Eco-bag: an elastic container based on merkle
tree as a universal digital evidence bag. Forensic Sci. Int.: Digit. Invest. 49, 301725
https://doi.org/10.1016/j.fsidi.2024.301725. https://www.sciencedirect.com/sci
ence/article/pii/S2666281724000404.

Im, S., 2024. Dataset. https://github.com/ggeng2/Logical_Image_DataSet.
Knight, G., 2011. Forensic disk imaging report. Technical report. In: Forensic

Investigation of Digital Objects (FIDO). The Report Examines the Principles and
Practices Associated with Forensic Disk Imaging. https://researchonline.lshtm.ac.
uk/id/eprint/354890/.

Magnet Forensics, 2020. Aff4-l support, portable case updates and more in magnet axiom
4.5 magnet axiom cyber 4.5. https://www.magnetforensics.com/blog/aff4-l-suppo
rt-portable-case-updates-and-more-in-magnet-axiom-4-5/, 2024-05-19.

Metz, J., 2019a. Ewf specification. https://github.
com/libyal/libewf/blob/main/documentation/ExpertWitnessCompressionFormat
(EWF).asciidoc, 2024-05-19.

Metz, J., 2019b. Libewf. https://github.com/libyal/libewf, 2024-05-19.
OpenText, 2022. Encase forensic 22.3 release notes. https://cyber.quality-net.co.jp/we

bkanri/cbqualitynet27/wp-content/uploads/2022/08/EnCase_Forensic_22.3_Relea
se_Notes.pdf, 2024-05-19.

Schatz, B.L., 2019. Aff4-l: a scalable open logical evidence container. Digit. Invest. 29,
S143–S149. https://doi.org/10.1016/j.diin.2019.04.016. https://www.sciencedirec
t.com/science/article/pii/S1742287619301653.

Stüttgen, J., Dewald, A., Freiling, F.C., 2013. Selective imaging revisited. In: 2013
Seventh International Conference on IT Security Incident Management and IT
Forensics, pp. 45–58. https://doi.org/10.1109/IMF.2013.16.

S. Im et al.

http://www.kipot.or.kr
https://doi.org/10.1016/j.diin.2010.05.015
https://www.sciencedirect.com/science/article/pii/S1742287610000423
https://www.sciencedirect.com/science/article/pii/S1742287610000423
https://doi.org/10.1016/j.diin.2010.12.001
https://doi.org/10.1016/j.diin.2010.12.001
https://www.sciencedirect.com/science/article/pii/S1742287610000824
https://www.sciencedirect.com/science/article/pii/S1742287610000824
https://github.com/aff4/pyaff4
https://doi.org/10.1016/j.diin.2009.06.010
https://doi.org/10.1016/j.diin.2009.06.010
https://www.sciencedirect.com/science/article/pii/S1742287609000401
https://www.sciencedirect.com/science/article/pii/S1742287609000401
https://www.loc.gov/preservation/digital/formats/fdd/fdd000406.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000406.shtml
https://doi.org/10.1016/j.fsidi.2021.301115
https://doi.org/10.1016/j.fsidi.2021.301115
https://www.sciencedirect.com/science/article/pii/S2666281721000093
https://www.sciencedirect.com/science/article/pii/S2666281721000093
https://api.semanticscholar.org/CorpusID:10658527
https://api.semanticscholar.org/CorpusID:10658527
https://api.semanticscholar.org/CorpusID:43688858
https://doi.org/10.32604/csse.2023.024110
https://doi.org/10.32604/csse.2023.024110
http://www.techscience.com/csse/v45n2/50368
https://doi.org/10.1016/j.fsidi.2024.301725
https://www.sciencedirect.com/science/article/pii/S2666281724000404
https://www.sciencedirect.com/science/article/pii/S2666281724000404
https://github.com/ggeng2/Logical_Image_DataSet
https://researchonline.lshtm.ac.uk/id/eprint/354890/
https://researchonline.lshtm.ac.uk/id/eprint/354890/
https://www.magnetforensics.com/blog/aff4-l-support-portable-case-updates-and-more-in-magnet-axiom-4-5/
https://www.magnetforensics.com/blog/aff4-l-support-portable-case-updates-and-more-in-magnet-axiom-4-5/
https://github.com/libyal/libewf/blob/main/documentation/ExpertWitnessCompressionFormat(EWF).asciidoc
https://github.com/libyal/libewf/blob/main/documentation/ExpertWitnessCompressionFormat(EWF).asciidoc
https://github.com/libyal/libewf/blob/main/documentation/ExpertWitnessCompressionFormat(EWF).asciidoc
https://github.com/libyal/libewf
https://cyber.quality-net.co.jp/webkanri/cbqualitynet27/wp-content/uploads/2022/08/EnCase_Forensic_22.3_Release_Notes.pdf
https://cyber.quality-net.co.jp/webkanri/cbqualitynet27/wp-content/uploads/2022/08/EnCase_Forensic_22.3_Release_Notes.pdf
https://cyber.quality-net.co.jp/webkanri/cbqualitynet27/wp-content/uploads/2022/08/EnCase_Forensic_22.3_Release_Notes.pdf
https://doi.org/10.1016/j.diin.2019.04.016
https://www.sciencedirect.com/science/article/pii/S1742287619301653
https://www.sciencedirect.com/science/article/pii/S1742287619301653
https://doi.org/10.1109/IMF.2013.16

Forensic Science International: Digital Investigation 50 (2024) 301811

11

Turner, P., 2005. Unification of digital evidence from disparate sources (digital evidence
bags). Digit. Invest. 2, 223–228. https://doi.org/10.1016/j.diin.2005.07.001.
https://www.sciencedirect.com/science/article/pii/S1742287605000575.

Turner, P., 2006. Selective and intelligent imaging using digital evidence bags. Digit.
Invest. 3, 59–64. https://doi.org/10.1016/j.diin.2006.06.003. https://www.scienc

edirect.com/science/article/pii/S174228760600065X. the Proceedings of the 6th
Annual Digital Forensic Research Workshop (DFRWS ’06).

Velocidex, 2019. winpmem_v3.3.rc3.exe. https://github.com/Velocidex/c-aff4/releases,
2024-05-19.

S. Im et al.

https://doi.org/10.1016/j.diin.2005.07.001
https://www.sciencedirect.com/science/article/pii/S1742287605000575
https://doi.org/10.1016/j.diin.2006.06.003
https://www.sciencedirect.com/science/article/pii/S174228760600065X
https://www.sciencedirect.com/science/article/pii/S174228760600065X
https://github.com/Velocidex/c-aff4/releases

	Revisiting logical image formats for future digital forensics: A comprehensive analysis on L01 and AFF4-L
	1 Introduction
	2 Background and related work
	2.1 Forensic imaging and image formats
	2.2 Selective collection and logical imaging
	2.3 Logical image format

	3 Reversing existing logical image file format internals
	3.1 L01: a proprietary logical image format
	3.1.1 Internal structures of L01
	3.1.2 A list of metadata supported by L01

	3.2 AFF4-L: an open-source logical image format
	3.2.1 Internal structures of AFF4-L
	3.2.2 A list of metadata supported by AFF4-L

	4 Analyzing the limits of existing logical image formats
	4.1 Loss of originality with limited metadata types
	4.2 Failure of integrity verification against metadata manipulation
	4.2.1 Integrity verification test of L01
	4.2.2 Integrity verification test of AFF4-L

	4.3 Lack of performance testing results including stress testing

	5 Results and discussion
	6 Conclusions and perspectives
	Acknowledgements
	References

