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A B S T R A C T

Deepfake detection attracts increasingly attention due to serious security issues caused by facial manipulation
techniques. Recently, deep learning-based detectors have achieved promising performance. However, these
detectors suffer severe untrustworthy due to the lack of interpretability. Thus, it is essential to work on the
interpretibility of deepfake detectors to improve the reliability and traceability of digital evidence. In this work,
we propose a two-branch autoencoder network named TAENet for interpretable deepfake detection. TAENet is
composed of Content Feature Disentanglement (CFD), Content Map Generation (CMG), and Classification. CFD
extracts latent features of real and forged content with dual encoder and feature discriminator. CMG employs a
Pixel-level Content Map Generation Loss (PCMGL) to guide the dual decoder in visualizing the latent repre-
sentations of real and forged contents as real-map and fake-map. In classification module, the Auxiliary Classifier
(AC) serves as map amplifier to improve the accuracy of real-map image extraction. Finally, the learned model
decouples the input image into two maps that have the same size as the input, providing visualized evidence for
deepfake detection. Extensive experiments demonstrate that TAENet can offer interpretability in deepfake
detection without compromising accuracy.

1. Introduction

Benefiting from the successful application of generative models in
the field of computer vision, deepfake technologies, represented by
Autoencoders (AE) (Badrinarayanan et al., 2017) and Generative
Adversarial Networks (GAN) (Goodfellow et al., 2020), have rapidly
developed and garnered widespread attention. Deepfakes are charac-
terized by their low threshold for creation and high realism of forged
images, which increases their risk of misuse. The abuse of fake tech-
nology can lead to the dissemination of false information, fraud online,
privacy violations, and political manipulation. In recent years, many
deep learning-based deepfake detection models (Rossler et al., 2019;
Chollet, 2017; Afchar et al., 2018; Zhou et al., 2017; Qian et al., 2020;
Zhao et al., 2021a) have been proposed, demonstrating significant
detection accuracy. However, limited by the black-box nature of deep
learning, these models struggle to explain their detection results, i.e.,

they cannot elucidate why an image is deemed fake or identify which
parts is the decision-making region of the image (Wang et al., 2022a).
The lack of interpretability in these models implies low trustworthiness,
making practical deployment challenging. As a result, developing
effective and interpretable deepfake detection algorithm is vitally
essential.

Some recent works have focused on this imminent problem and
attempted to provide reasonable explanations to improve the inter-
pretability for deepfake detection. These works can be roughly catego-
rized into two branches: 1) Saliency Map-Based methods, which
highlight the most important pixels for deepfake detection algorithms
(Alqaraawi et al., 2020). Typically, these approaches augment the
original detection model with class activation map modules, displaying
the regions of interest through heatmaps to show the areas the model
focuses on when making decisions. However, the highlighted areas are
not necessarily the actual forged regions, and these decision areas can
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also be highlighted in real facial images, making it impossible to
distinguish them from regions in fake faces. Therefore, they cannot be
used as evidence of forgery. 2) Forgery Clue-Based methods, which
identify artifacts (Li et al., 2022; Hua et al., 2023; Zhao et al., 2021b),
splicing traces (Li et al., 2020a), noise (Wang and Chow, 2023), and
other features in images as evidence of forgery, providing a certain level
of explanation for the model’s decisions. However, these methods have
limitations. For example, Hua et al. (2023) proposes an interpretability
method for deepfake detection, but it mainly explains by visualizing the
traces of forgery and cannot explain the forged content. Zhao et al.
(2021b) explains forged regions by using the cue of the source feature
inconsistency within the forged images. However, when faced with
high-quality forged images, both detection performance and interpret-
ability decrease significantly.

Li et al. (2020a) cannot detect or explain forged images that do not
involve blending operations. Li et al. (2022) andWang and Chow (2023)
are not capable of explaining high-quality forged images. Although the
above explanation methods can, to some extent, indicate the presence of
forgery, they cannot pinpoint the specific forged regions. We believe
that, while ensuring accuracy, being able to distinguish between forged
and non-forged contents and answer the question of where the forgery
occurred would provide a better interpretability.

To address the aforementioned issues, we aim to construct a deep-
fake detection framework that, without sacrificing accuracy, can split an
image into forged and non-forged parts, which represent the forgery-
related and forgery-irrelevant content respectively, thereby providing
interpretability for the detection. Our approach is inspired by disen-
tangled representation learning (Wang et al., 2022b), which can
decouple an image and extract the target contents. Specifically, any
image can be disentangled into real and forged contents. Particularly,
the forged content of a real image is empty, which can be considered as a
zero-image. Thus, the forged content of deepfake and real images exhibit
significant differences. If these differences can be extracted and visual-
ized, it would allow us to distinguish between real and fake images while
simultaneously providing interpretability. Fig. 1 illustrates the differ-
ences in forged content between real and deepfakes.

However, separating the real and forged content of a face is not a
trivial task. Lacking the labels of the forged regions makes it difficult to
extract features of forgery and non-forgery content. Additionally, visu-
alizing the contents to provide interpretability for the detection poses
another challenge.

In this paper, the real and forged contents are visualized as real-map
and fake-map respectively. These maps have the same size as the input
image. Ideally, the real-map of a real image is the image itself, and the
fake-map is a zero image. For a forged image, the real-map and fake-map
are two non-zero maps that, when combined, represent the original
forged image. In order to learn the two maps of an image, we propose a
Two-branch Autoencoder Network (TAENet) to decouple real and
forgery content features and visualize these features as real-map and
fake-map. TAENet is composed of Content Feature Disentanglement
(CFD), Content Map Generation (CMG), and Classification (C). (1) CFD
learns hidden representations of real and forgery content features from
an input image with dual encoder. A discriminator is employed to
distinguish these two features, achieving the disentanglement of real
and forged content features. (2) CMG is implemented using dual
decoder. To obtain the real-map and fake-map, we design a Pixel-level
Content Map Generation Loss (PCMGL) to guide the dual decoder in
generating accurate real-map and fake-map. (3) Classification is
composed of an Auxiliary Classifier (AC) and a Prediction Classifier (C).
The difference between real and fake images exists not only in fake
maps, but also in real maps. Therefore, we introduce an auxiliary clas-
sifier to distinguish real latent features extracted from real and fake
images, which can further improve the accuracy of detection and map
estimation. Therefore, TAENet maintains high accuracy while predicting
forged and real contents, providing visual and interpretable evidence for
deepfake detection.

Our contributions can be summarized as follows.

● We propose a novel interpretable deepfake detection framework
named Two-branch Autoencoder Network (TAENet), which can
disentangle the real and forged contents from an input image, to gain
better results for deepfake detection and provide convincing evi-
dence through visualizing real and fake contents.

● The proposed Pixel-level Content Map Generation Loss (PCMGL) is
designed for efficient pixel-level supervised training to obtain accu-
rate estimates of fake and real contents.

● Extensive experiments demonstrate the effectiveness of our approach
in interpreting face forgery detection with accuracy guarantee.

The remainder of this paper is organized as follows: In section 2, we
provide a brief review of related works. Section 3 presents the details of
the proposed Two-branch Autoencoder Network (TAENet) framework.

Fig. 1. Image disentanglement. The real content is visualized as real-map. The fake content is visualized as fake-map. The fake-map of real image and fake image
is different.
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To assess the effectiveness of our approach, we perform experiments in
section 4. Finally, section 5 conclude this work.

2. Related work

2.1. Deepfake detection

Deepfake detection has become a crucial topic of research due to the
increasing prevalence and sophistication of deepfake technologies. To
address this problem, various methods have been researched to identify
manipulated faces. Early work focused on extracting handcrafted fea-
tures (Bai et al., 2023), such as blinking (Jung et al., 2020), head in-
consistencies (Yang et al., 2019), and visual artifacts (Bappy et al., 2019;
Li and Lyu, 2018). As deepfake technology has advanced, these features
have become increasingly difficult to detect. Researchers have applied
deep learning techniques to deepfake detection tasks, achieving notable
results. These methods are mainly divided into detection methods based
on spatial artifacts (Afchar et al., 2018; Zhao et al., 2021a) and those
based on frequency domain artifacts (Qian et al., 2020; Frank et al.,
2020; Li et al., 2021). However, these methods fail when encountering
high-quality forged images. More importantly, deep learning has a
black-box nature, making it impossible to know how the model makes
decisions, leading to a lack of interpretability in deepfake detection
models and making them difficult to apply in practice. This paper pro-
poses an interpretable deepfake detection method to address this
shortcoming.

2.2. Model interpretability

The interpretability of the model aims to describe the internal
working mechanism of deep neural networks in understandable terms to
humans (Hua et al., 2023). To achieve this goal, numerous works have
been proposed (Cheng et al., 2020; Zhang et al., 2019, 2020). However,
these works cannot be directly applied to the deepfake detection task
(Hua et al., 2023). The interpretability of deepfake detection is chal-
lenging (Wang et al., 2022a). The main aspects of interpretability in
deepfake detection involve answering why an image is judged as fake
and identifying which parts of the image. Only by understanding the
decision mechanism of deepfake detection can we deploy these models
effectively. Therefore, the interpretability of deepfake detection is
crucial. Some methods have addressed this issue, such as Saliency

Map-based methods (Alqaraawi et al., 2020; Hua et al., 2023) and
Forgery Clue-Based methods (Li et al., 2020a, 2022; Wang and Chow,
2023). However, saliency maps only indicate the regions the model fo-
cuses on, which may not necessarily relate to the forgery. Forgery
Clue-Based methods rely on image artifacts or splicing traces, which are
challenging to identify in high-quality forged images. Thus, this paper
proposes a method to decouple the real and fake content in images and
visualize these content to achieve interpretable deepfake detection.

3. The proposed approach

In this section, we present our approach of Two-branch Autoencoder
Network for Interpretable Deepfake Detection. Here, we first give a brief
overview of the problem formulation and then provide a detailed
description of the approach.

3.1. Problem formulation

We define an image as composed of real content and fake content,
formalized as:

I = Ir + If (1)

where I is an image, Ir is real content of the image, and If is fake content
of the image. Specifically, the fake content of an real image is considered
as empty, denoted as a zero-image. Additionally, we define implicit
representation of the image into real features and fake features. Real
features are the implicit representation of real content, while fake fea-
tures are the implicit representation of fake content. For a fogery image,
real features are related to the parts that are irrelevant to the forgery,
such as the image background. We define the image domain as I ⊆
Xn×n×3, where n represents the image size. Our goal is to learn an
interpretable deepfake detection model F(I; w) that, while maintaining
high accuracy, decouples the real part Ir and the fake part If of the image.
This is formalized as:

F(I,w) = Mr,Mf , ŷ, I,Mr,Mf ⊆ X (2)

where w is the model parameters, Mr is the visualized image of Ir (real-
map), Mf is the visualized image of If (fake-map), and ŷ represents the
predicted result of the input image.

To achieve the above objectives, we propose a two-branch

Fig. 2. The overview framework of our proposed method. The framework consists of Content Feature Disentanglement (CFD), Content Map Generation (CMG) and
Classification. The CFD extracts latent features of real and forged content with dual encoder and feature discriminator. In the CMG, the dual decoder generate
interpretable real-map and fake-map for deepfake detection. A Pixel-level Content Map Generation Loss (PCMGL) is designed to facilitate the learning of CMG.
Finally, the prediction of the model is created by Classifier (C).
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autoencoder network (TAENet). TAENet consists of Content Feature
Disentanglement (CFD), Content Map Generation (CMG), and Classifi-
cation (C). The learning process of the model is shown in Fig. 2. CFD
extracts real content features and fake content features. CMG visual
results of real content and fake content, offering interpretable detection.
The prediction result of the image is given by Classification.

3.2. Content Feature Disentanglement

The purpose of Content Feature Disentanglement (CFD) is to extract
and separate real and fake features of the image, solving the problem of
highly coupled features between real and fake content. As shown in
Fig. 2, CFD consists of dual-branch encoder and feature discriminator.
For an input image, the dual-branch encoder extracts real content fea-
tures and fake content features, respectively. Then, the feature
discriminator is used to distinguish between these two features.

Dual Encoder. The dual-branch encoder Er and Ef employ the same
backbone based on CNN, and is used to extract the real content features
Fr and the fake content features Ff of an input image, respectively. Thus,
Fr represents the implicit representation of real content, while Ff rep-
resents the implicit representation of fake content. This can be formal-
ized as:

Fr = Er(I) (3)

Ff = Ef (I) (4)

where I is the input image.
Feature Discriminator. After the dual encoder, we obtain real

content features Fr and fake content features Ff. Since the real content
features and fake content features are different, we label all the features
extracted from the Er encoder with the label "1", and label the features
extracted from the Ef encoder with the label "0". In order to supervise
these two types of features, we introduce a feature discriminator D to
determine the classes of Fr and Ff. The discriminator is a fully connected
classifier. We use binary cross-entropy loss Ld to calculate the cross-
entropy, which encourages the model to decouple the real content fea-
tures and fake content features. Ld is formalized as:

Ld = Lrce(Dr(Fr), 1) + Lfce(Df (Ff ), 0) (5)

where Lrce represents the cross-entropy loss of real content features, and
Lfce represents the cross-entropy loss of fake content features.

3.3. Content Map Generation

We utilize the decoupled real content features and forged content
features from the input image to generate a real content map and a
forged content map. This is a key aspect of interpretability in our
approach. In this module, we consider employing dual decoder to
generate maps.

Dual Decoder. The dual decoder consist of two same decoders,
namely the Real Content Map Decoder Dr and the Fake Content Map
Decoder Df. The input of dual decoder is the real content features Fr and
the fake content features Ff obtained from the previous module. Through
upsampling and convolutional layers, Dr and Df respectively generate
the real content map (real-map) and the fake content map (fake-map),
with the same size as the input image. It can be formalized as:

Mr = Dr(Fr) (6)

Mf = Df (Ff ) (7)

where Mr is real-map and Mf is fake-map.
To generate interpretable fake-map that reflect the differences be-

tween real and forged images, we designed a Pixel-level Content Map
Generation Loss (PCMGL) to facilitate the generation of interpretable

real and forged content maps by the dual decoder. According to Equa-
tion (1), we divide an input image into real content and forged content.
Through our model, the real content is visualized as real-map, and the
forged content is visualized as fake-map. For an real image, we know
clearly that the real-map should be the image itself, while the fake-map
should be a zero map. For a forged image, since both the real and forged
contents are unknown, constraints cannot be set for real-map and fake-
map. Additionally, for any image, whether real or forged, the sum of
real-map and fake-map should be the image itself. Therefore, the PCMGL
is formalized as:

Lg = Lf + Lr + Lrecon (8)

Here, Lf and Lr are pixel-level L1 loss functions, which constrain the
real-map and fake-map of an real image, formalized as:

Lf = ‖Mr − Ireal‖1 (9)

Lr =‖Mf‖1 (10)

where Ireal is an input real image, Mr is real-map of the real image,
and Mf is fake-map of the real image. Lrecon is an L2 loss function, which
constrains the fake-map and real-map for any image, formalized as:

Lrecon = ‖Mr +Mf − I‖2 (11)

where I is the input image, andMr andMf are the real-map and fake-
map of the image, respectively.

3.4. Classification

Previous work has shown that it is possible to decouple the real
content and fake content for an input image. However, we also need to
consider how to predict the authenticity of the input image. Considering
that there are significant differences in fake-maps between real and
forged image, the corresponding forged content features have charac-
teristics that can distinguish between real and forged images. Therefore,
we introduce a classifier to distinguish these differences and detect the
authenticity of images. Similarly, the real content features of real and
forged images are also different. Leveraging this characteristic, we
introduce an auxiliary classifier.

Auxiliary Classifier. The auxiliary classifier (Caux) is a binary clas-
sifier implemented by fully connected layers, aiming to improve the
accuracy of predicting feature maps during the training phase. The input
is the real content features, and the output is the prediction result for the
input image. We use binary cross-entropy loss in the training phase, as
follows:

Laux = Lce(Caux(Fr), y) (12)

where Fr is real content features of an input image, y is ground truth, and
Lce is the cross-entropy loss function.

Prediction Classifier. As mentioned earlier, we draw inspiration
from the differences in forged content between real and fake images as a
basis for our model to judge the authenticity of images. We use the same
fully connected layers structure as the auxiliary classifier to build a
prediction classifier, which serves as the final prediction of the model for
the authenticity of the input image. The loss function for this classifier is:

Lp = Lce(C(Ff ), y) (13)

where Ff is forged content features of an input image, y is the ground
truth, and Lce is the cross-entropy loss function.

3.5. Total loss

The final loss function of the training phase is the weighted sum of
the above loss functions.

L = λ1Ld + λ2Lg + λ3Laux + λ4Lp
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Here, λ1, λ2, λ3, λ4 are hyperparameters that balance training losses.
Empirically, we set λ1 = 1, λ2 = 1, λ3 = 1, λ4 = 1 during experiments.

4. Experiments

4.1. Experimental settings

Datasets. To evaluate the effectiveness of our proposed method, we
conducted experiments on three large-scale mainstream benchmark
datasets: FaceForensics++ (FF++) (Rossler et al., 2019), Celeb-DF-v2
(Celeb-DF) (Li et al., 2020b), and DeepFake Detection Challenge
(DFDC) (Dolhansky et al., 2019). FF++ comprises 1000 real videos and
4000 forged videos. The forged videos are generated using four different
methods: DeepFakes (DF) (Korshunov and Marcel, 2018), FaceSwap
(FS) (Rossler et al., 2019), Face2Face (F2F) (Thies et al., 2016), and
NeuralTextures (NT) (Thies et al., 2019). Each method corresponds to
1000 fake videos. We used the HQ version of the C23 compression from
FF++, and extracted 30 frames from each video. The training, valida-
tion and testing sets are divided according to the official guidelines.
Celeb-DF consists of 590 real videos, with 390 used for training, 115 for
validation, and 115 for testing. There are 5639 forged videos. Each real
video randomly sampled for 5 frames, and each forged video randomly
sampled for 50 frames to balance the dataset labels. DFDC contains
nearly 119,146 videos, with 19,154 real and 99,992 forged videos,
which is divided into training, validation, and testing sets in 6:2:2. To
balance the labels, each real video is randomly sampled for 5 frames,
and each forged video is randomly sampled for 1 frame. These datasets
provide a diverse range of real and forged videos, allowing us to thor-
oughly evaluate the performance of our method across different sce-
narios and challenges in deepfake detection.

Experimental Details.We use ResNet18 as the backbone (He et al.,
2016). The backbone was trained on ImageNet. Face extraction and
alignment are performed using DLIB (Sagonas et al., 2016). The aligned
faces are resized to 224 × 224 for both training and testing. We use the
Adam (Kingma and Ba, 2014) for optimization with the learning rate of
0.001, and the batch size is 128.

Evaluation Metrics. To evaluate the effectiveness of our approach,
we check both the detection performance and the interpretability per-
formance with comprehensive metrics. We use area under curve (AUC)
and accuracy (ACC) as detection evaluation metrics, which is consistent
with the evaluation approach adopted in previous works (Cao et al.,
2022; Liu et al., 2021). The interpretability evaluation is implemented
through the visualization analysis of maps.

4.2. Detection performance

Main Objective Accuracy. We proposed a framework (TAENet),
where different backbone networks of base models can serve as encoders
within this framework. Consequently, we initially evaluated the accu-
racy of the baseline model (ResNet18) and its corresponding TAENet. To
achieve this goal, all models are trained on DeepFakes, FaceSwap,

Face2Face and NeuralTextures with pretrained ResNet18 on ImageNet.
The results are presented in Table 1. We can see that our interpretable
models are comparable to the baseline models on ACC and AUC. It can
be observed that our proposed TAENet maintains high accuracy
compared to the baseline models. This indicates that our model does not
compromise the accuracy of the original baseline models and can pro-
vide interpretability.

Comparison of Accuracy with Competing Methods. To further
assess the comprehensive detection capabilities of our framework, we
reproduced four state-of-the-art methods, including Meso4 (Afchar
et al., 2018), MesoInception4 (Afchar et al., 2018), Xception (Rossler
et al., 2019), and SPSL (Liu et al., 2021), under the same conditions. We
trained these models on FF++, Celeb-DF and tested in-dataset, evalu-
ating by AUC and ACC. The experimental results are presented in
Table 2. Specifically, our method is significantly better than Meso4,
MesoInception4, and Xception, achieving the second highest AUC.
Compared to the SOTA method (Liu et al., 2021), our method is
competitive, showcasing superior performance in deepfake detection. It
is evident that the proposed TAENet leads to excellent performance
compared to other models in most cases.

4.3. Interpretability performance

Accuracy and interpretability are two crucial capabilities of our
proposed method. The above experiments demonstrate that our method
ensures accuracy. Next, we will evaluate the interpretability by visual-
izing the real content and the fake content.

Visualization of Maps. We analyzed the interpretability of our
model on the Deepfakes, FaceSwap, Face2Face and NeuralTextures
datasets. We visualized the real content and forged content of input
images as real-maps and fake-maps. As shown in Fig. 3, in the real-map,
the non-black regions represent the real content of the image. In the
fake-map, the non-black regions represent the forged content of the
image. From Fig. 3, it can be observed that the real map and the fake
map have a complementary relationship. The forged content of the input
image is decoupled into the fake-map and visualized, while the real
content is decoupled into the real-map and visualized. For real images,
the fake map is a zero-map, and the real map is similar to the original
input image, which is consistent with reality. This indicates that the
model decouples the real and forged content from real images. To verify

Table 1
Detection results (%) on DeepFakes, FaceSwap, Face2Face, and NeuralTextures.

Train Set Method DeepFakes FaceSwap Face2Face NeuralTextures

ACC AUC ACC AUC ACC AUC ACC AUC

DeepFakes ResNet18 95.85 98.49 48.64 36.02 54.12 67.54 54.82 70.97
Ours 95.63 98.41 48.87 39.55 53.61 69.27 53.58 69.23

FaceSwap ResNet18 50.75 50.85 95.00 98.71 51.39 61.30 49.65 51.51
Ours 50.70 52.79 95.99 98.86 51.31 62.69 50.19 53.74

Face2Face ResNet18 54.43 71.22 50.73 52.31 96.01 98.29 51.63 63.47
Ours 54.92 73.06 50.82 46.78 95.79 98.40 51.11 60.98

NeuralTextures ResNet18 63.26 77.59 50.25 51.42 55.94 67.94 89.45 95.90
Ours 61.49 75.21 50.27 50.25 55.58 66.89 89.38 95.64

Table 2
Comparison of accuracy (%) with competing methods on FF++ and Celeb-DF.

Method FF++ Celeb-DF

AUC ACC AUC ACC

Meso4 (Afchar et al., 2018) 82.32 72.12 91.24 83.67
MesoInception4 (Afchar et al., 2018) 86.45 77.30 92.02 84.53
Xception (Rossler et al., 2019) 91.80 82.54 96.20 90.23
SPSL (Liu et al., 2021) 96.25 89.53 98.26 93.24
Ours 95.35 87.20 97.63 91.94
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the accuracy of the decoupling capability in fake images, we performed
a qualitative visual analysis.

We know that Face2Face is a facial reenactment technique that tar-
gets the entire face, so its forged content includes nearly the whole face.
NeuralTextures is a facial reenactment technique that targets the mouth
area, so its forged content is the mouth. FaceSwap is a face-swapping
technique, and its forged content covers most of the facial area. Deep-
fakes is also a face-swapping technique, with forged content covering
most of the facial area, typically in a rectangular region from the eye-
brows to the chin.

From Fig. 4, it can be seen that for images forged using the Face2Face
method, the extracted forged content is concentrated in the facial area,
while the real content includes non-facial regions such as hair and
background. For images forged using the NeuralTextures method, the
extracted forged content is located in the mouth area, with the area
outside the mouth being real content, which aligns closely with the
actual forged content. For images forged using the FaceSwap method,

the extracted forged content covers most of the facial area, the
remaining areas being real content. For images forged using the Deep-
fakes method, the extracted forged content is mainly concentrated in the
region between the eyebrows and the chin, closely matching the actual
forged content.

Therefore, for the input images, the real and forged content extracted
by our model generally corresponds to the actual content.

Explanations. From the above analysis, it is evident that the model
accurately decouples the forged and real content of input images. The
forged content map and real content map are generated from the real
content features and forged content features, indicating that the dual
encoder in the model successfully extract these features. Our model
makes authenticity predictions based on the features of the forged
content, providing interpretability. Furthermore, in addition to the
significant differences in the fake content maps of real and fake images,
the real content maps (real-map) also exhibit notable differences. This
further provides evidence for deepfake detection. This demonstrates that

Fig. 3. The real content and forged content of input images are visualized as real-maps and fake-maps. The non-black regions represent forged content in real-map.
The non-black regions represent forged content in fake-map. These maps provide interpretability for deepfake detection.

Fig. 4. Fake-maps of fake images from four forgery methods. (a) Deepfakes, (b) FaceSwap, (c) Face2Face, (d) NeuralTextures. Black regions represent forged content.
The forged contents we detected matched what was actually known.
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our model is an easily interpretable deepfake detection method. The
generated real-map and fake-map visually assist in identifying forged
images, offering discernible evidence for deepfake detection.

4.4. Ablation study

We conducted ablation experiments on the NeuralTextures to eval-
uate the impact of the real-fake feature Discriminator (D), the Auxiliary
Classifier (AC), and Pixel-level Content Map Generation Loss (PCMGL)
on the detection capability and interpretability.

Effects of Detection Performance.We first compared the impact of
different components on detection performance. The experimental re-
sults are presented in Table 4. The highest AUC (95.70) is observed when
the PCMGL component is removed. However, the differences are minor
and the AUC of all methods is very close, indicating that the impact on
the accuracy of each component is relatively small. It is indicate that the
accuracy of our method is determined by the performance of backbone.

Effects of Interpretability Performance. Then, we evaluated the
impact of each component on the interpretive performance. Fig. 5 il-
lustrates the real content maps generated by the models which removing
some component. Visually, after removing the Discriminator (D), the
forgery area is too large, indicating that the model does not completely
separate the real and fake contents. When the Auxiliary Classifier (AC) is
removed, the forgery regions are not obvious. The real content repre-
sented by real-map showed deviations. Specifically, when our proposed
Pixel-level Content Map Generation Loss was removed, we cannot un-
derstand the contents in real-map, which shows the interpretability
significantly decreased.

Based on the above experiments and analysis, the auxiliary classifier,
real-fake feature discriminator, and Pixel-level Content Map Generation
Loss ensure the interpretive capabilities. This demonstrates the effec-
tiveness of these components.

4.5. Discussion

The above experiments prove that the proposed method can provide
interpretability for deepfake detection while ensuring accuracy. Mean-
while, the generalization of the model should also be appreciated. In
order to evaluate the generalization, we conducted cross-dataset ex-
periments. The results are shown in Table 3. It can be seen that our
model has a certain generalization, with an average AUC of more than
75%, which is not enough for deepfake detection. In the future, we will
improve the generalization of the model on this interpretable method.

5. Conclusion

In this paper, we propose an interpretable deepfake detection
network based on a two-branch autoencoder. The real and forged con-
tent features of an image are decoupled by dual encoder. Then, guided
by a Pixel-level Content Map Generation Loss, dual decoder generate
fake content map and real content map of the same size as the input
image. To evaluate the effectiveness of our proposed method, we
conduct extensive experiments on several benchmark datasets and
compare to existing SOTA methods. Experiments demonstrate that our
approach can provide visually discriminative evidence to understand
face forgery detection while maintaining high accuracy. In the future,
we will further investigate the generalization of deepfake detection

Fig. 5. Ablation study on the NeuralTextures dataset, examining the impact of removing different components from the proposed method on interpretability. (a)
without D, (b) without AC, (c) without PCMGL, (d) is our proposed method. The mouth is manipulated by NeuralTextures in face image.

Table 3
Cross-dataset evaluation accuracy (%) on FF++, Celeb-DF, and DFDC.

Train Set FF++ Celeb-DF DFDC Avg.

AUC ACC AUC ACC AUC ACC AUC ACC

FF++ 95.35 87.20 81.00 62.36 68.48 61.67 81.61 74.89
Celeb-DF 58.67 54.67 97.63 91.94 62.81 57.67 75.18 69.79
DFDC 60.22 57.48 77.62 65.95 85.59 76.12 76.04 68.85

Table 4
The ablation study of proposed method on NeuralTextures.

Method NeuralTextures

AUC ACC

Proposed w/o D 95.66 89.33
Proposed w/o AC 95.60 88.41
Proposed w/o PMGL 95.70 89.60
Proposed (full method) 95.64 89.38
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models while maintaining interpretability.
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