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A B S T R A C T

Explainable Artificial Intelligence (XAI) aims to alleviate the black-box AI conundrum in the field of Digital
Forensics (DF) (and others) by providing layman-interpretable explanations to predictions made by AI models. It
also handles the increasing volumes of forensic images that are impossible to investigate via manual methods; or
even automated forensic tools. A holistic, generalized, yet exhaustive framework detailing the workflow of XAI
for DF is proposed for standardization. A case study examining the implementation of the framework in a
network forensics investigative scenario is presented for demonstration. In addition, the XAI-DF project lays the
basis for a collaborative effort from the forensics community, aimed at creating an open-source forensic database
that may be employed to train AI models for the digital forensics domain. As an onset contribution to the project,
we create a memory forensics database of 27 memory dumps (Windows 7, 10, and 11) simulating malware
activity and extracting relevant features (specific to processes, injected code, network connections, API hooks,
and process privileges) that may be used for training, testing, and validating AI models in keeping with the XAI-
DF framework.

1. Introduction

The adoption of Artificial Intelligence (AI) in the mainstream has
grown exponentially in recent years mainly because it can solve complex
problems, process vast amounts of data, and perform tasks previously
thought to be exclusive to human intelligence only. AI’s prevalence is
also credited to the fact that the technology ‘feeds on itself’ in progression
Yampolskiy and S (2016)]. Everyday businesses, industries, and critical
sectors such as healthcare, finance, defense and cybersecurity, etc. make
use of AI to achieve efficiency in their workflows in various manners
Baggili and Behzadan (2019). Consequently, AI’s utilization in
high-stakes situations, such as those involved in cybersecurity and
Digital Forensics (DF) for justice courts, raises questions about the
assurance, reliability, and validity of its performance and results. Since
the model’s decisions or predictions directly impact individual and
collective human lives, it becomes crucial to develop trust in AI models
through interpretability i.e. through Explainable AI (XAI).1 This is
especially an important consideration when the subject model is
closed-box or black-box.2

Failures in AI systems have been documented on many accounts;
inevitably, because all machines/codes have bugs or loopholes Yam-
polskiy and S (2016). AI failures are specifically attributed to algo-
rithmic biases which are more closely related to the training data rather
than the technical details of data processing Solanke et al. (2022).
Inadequately trained AI models may generate predictions influenced by
unintended features present in the training dataset Hall et al. (2022).
Examples of accidents caused by AI software or robots are numerous,
such as robotic financial advisors giving bad advice to intelligent AI
stock trading software causing trillion-dollar crashes Yampolskiy and S
(2016). In 2015, at a Volkswagen plant, a robot that was programmed to
work with automobile parts seized and crushed a worker against a metal
plate, which resulted in him being killed Yampolskiy and S (2016);
Docterman (2015). Likewise, multiple road accidents involving
self-driving cars like Tesla have been reported as well Yampolskiy and S
(2016); Levin and Woolf (2017).

AI failures may also impact DF processes. For example, a computer
vision system intended to categorize images of tanks but instead learned
to differentiate the backgrounds of these images Yampolskiy and S
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1 In the context of XAI, explainability and interpretability are used interchangeably throughout the text of this paper.
2 A black box AI model’s internal processes are opaque and not easily interpretable, making it difficult to understand how it arrives at its decisions/predictions.

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301806

Forensic Science International: Digital Investigation 50 (2024) 301806 

Available online 18 October 2024 
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

mailto:zkhalid.msis18seecs@seecs.edu.pk
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2024.301806
https://doi.org/10.1016/j.fsidi.2024.301806
https://doi.org/10.1016/j.fsidi.2024.301806
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2024.301806&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2016); Yudkowsky (2008).
With this premise that AI systems, like all machines are bound to fail

at one point or another, in the context of DF, we need to be able to prove
that predictions made by AI systems for digital evidence are up to legal
standards i.e. verifiable, and based on an admissible timeline of events.
The end goal is to use the evidence as expert evidence in court. While AI
does make increasing volumes of data/forensic images more manage-
able, the interpretability requirements of AI models hold prime signifi-
cance. To this end, XAI helps demonstrate a model’s ‘impartiality in
decision-making’, by identifying how the prediction was made and if the
subject features are relevant or suitable for contributing to predictions
while also determining unknown biases in training datasets Hall et al.
(2022). It is pertinent to note that explanations given by XAI should be
easy to understand by a layman at the very least (while truly explainable
systems would be an idealistic case) Arrieta et al. (2020).

XAI implementations and tools for DF must have the flexibility to be
contextualized to multiple forensic scenarios and pertinent data under
investigations that may involve multiple file formats, OSs, etc. from
multiple sources like disk, memory, and network after aggregation Hall
et al. (2022). It is also important to utilize the right model for the right
task, e.g. intrinsically explainable (or self-explainable) AI models like
Decision Trees (DT) may especially be used for well-structured forensic
data. On the other hand, relevant interpretable models (or post-hoc
explainable models) may be used for unstructured data like image/-
audio/video Solanke et al. (2022). Also, multiple methods of explana-
tion can be employed as well, such as local vs. global3 explanations Alam
and Altiparmak (2024).

Considerable research is being done in the XAI-DF domain in
particular (discussed further in Section ”2”). However, a standard
framework, that generalizes yet details a workflow through set modules
that can be applied to various DF sub-domains exhaustively, still needs
to be outlined. In this context, our research study aims to propose and
implement an XAI framework for DF and also propagate collaborative
research efforts in the domain. Three major contributions of this study
are as follows.

● A holistic and general XAI-DF framework, that is comprehensive,
adaptable, and explainable is proposed.

● The XAI-DF collaborative project is initiated with amemory forensics
database of 27 dumps (simulatingmalware activity) for XAI in the DF
domain. In addition, we extract process-centric memory features
from the dumps for explained classification. The project aims to build
a vast database that may facilitate research and development in XAI-
DF.

● A case study implementing the practical workflow of the XAI-DF
framework (utilizing the UNSW-NB15 network database) is
presented.

The rest of this paper is structured as follows. Section II discusses
previous research and other related contributions. Section III details the
proposed XAI-DF framework. Section IV explains the XAI-DF project.
Section V presents an implementation of the framework using a case
study utilizing the Network Intrusion Detection Systems (NIDS) data-
base. Section VI discusses the final comments, conclusion, and possible
future directions in the domain.

2. Related work

Hall et al. present a proof of concept implementation of XAI in IT
forensics Hall et al. (2022). Using a database of 23 VHD forensic images
which are sourced to extract multimedia (images and videos) and file

metadata to be input into a training model, the classification results are
processed via LIME for explanations. The classifications for multimedia
were based on a 16-digit hex code embedded into the target images and
videos. The LIME explanations for the results of image classification in
specific divulged that the model was making predictions of target
multimedia based on features other than the hex codes. This analysis
reinforces the fact that explainability needs to be a standard module in
forensic investigations that utilize AI models to avoid coming to con-
clusions based on faulty inferences. Also, the training sets need to be
considerably large in order to sufficiently train the models.

Hall et al. discuss current AI solutions integrated into digital foren-
sics tools that mainly assist in multimedia forensics Hall et al. (2021).
For example, Griffeye4 is a tool that uses AI to classify images. Currently,
such AI-integrated forensic tools are completely opaque and offer no
explanations as to how they perform classifications and predictions. A
human-in-the-loop must validate the results to be acceptable as verified
outputs.

Solanke discusses the limitations of closed-box AI models and ex-
plores methods for making AI-based digital forensics investigations
more interpretable given that courts, legal practitioners, and the general
public are skeptical about using AI for digital evidence extraction due to
concerns about transparency and understandability Solanke et al.
(2022). Inaccurate interpretations are said to be likely caused by
“erroneous algorithms/code, skewed or disproportionate datasets, and
defective functional components of the system (e.g., OS, distributed plat-
forms, etc.)” Solanke et al. (2022).

Dunsin et al. propose the MADIK framework, which can be refer-
enced to highlight the proposition that multiple AI agents can be used
for specific forensics purposes, i.e., an AI algorithm can be trained to
analyze just the Windows Registry, others can be trained for file/
directory paths’ analysis, timestamp analysis, etc. Dunsin et al. (2022).
AI models may perform more efficiently when trained and tested for
such specific tasks. All agents’ findings may be combined to produce
corroborative results and predictions finally.

Kalutharage et al. make antemortem utilization of XAI as opposed to
validity and assurance in postmortem forensic law i.e. to help detect
DDoS attacks as part of intrusion detection Kalutharage et al. (2023).
They determine influential features from (local and global) explanations
of individual anomalous instances and correlate them with a list of the
most informative DDoS attack detection features. This streamlined the
most important DDoS attack features enabling more efficient detection
than Deep Neural Network (DNN), Random Forest (RF), and DT.

3. The Explainable Artificial Intelligence for Digital Forensics
(XAI-DF) framework

The integration of XAI into DF is meant to prioritize the interpret-
ability needs of critical forensics contexts; since potential AI failures in
DF, in a worst-case scenario, may lead to inaccurate verdicts in court
that can gravely impact human lives. The proposed XAI-DF framework
generalizes the holistic workflow of a digital forensics investigation
employing XAI for predictions and interpretable explanations, yet of-
fering an exhaustive/comprehensive and adaptable structure that may
be used for: (a) any digital forensics domain, (b) utilizing any suitable
existing AI model (or designing custom models for specialized use), and
(c) finally sourcing any explainability method for interpretability.

Fig. 1 illustrates the abstract/high-level XAI-DF framework, while
Fig. 2 details the framework ontology in-depth. It is composed of three
main modules (or phases): (1) Forensic Data Collection, (2) Artificial
Intelligence Model, and (3) Explainable AI. Before reaching any con-
clusions, it is an efficient practice that a human-in-the-loop cross-checks
and verifies the AI’s decisions at each stage in the XAI-DF frame-
work’s processes. As with any DF investigation, results obtained via the

3 Local explanations interpret decisions for one input or instance in a dataset,
while global explanations provide information about all inputs as a whole Alam
and Altiparmak (2024). 4 https://www.griffeye.com/.
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XAI-DF framework must be done so following the established chain-of-
custody protocols, and pertinent legal and ethical considerations to
ensure the admissibility of the extracted artifacts as expert evidence.

3.1. Forensic Data Collection

The data collection module sources dataset(s)/database(s) of a dig-
ital forensics sub-domain like (1) network, (2) hard drive (Operating
System (OS)/file system), (3) RAM/memory, (4) mobiles/smartphones,
(5) Internet of Things (IoT), (6) blockchain, (7) cloud/server, (8) social
media, (9) multimedia (images, audio, video), (10) removable storage,
etc. This includes a pre-prepared dataset of forensic material (such as
memory dumps, network traffic captures, or hard drive forensic images,
etc. depending on the sub-domain) that is used for training AI models.

In addition, case material of a novel digital forensics investigation at
hand (such as child exploitation cases, intellectual property theft, fraud
or ransomware investigations, etc.) may be input for both training and/
or testing. This ensures real-time postmortem DF analysis capabilities
are included in the framework. The pertinent data is used to extract
meaningful features in the feature extraction step of the next module.

Forensic tools may be used to extract and aggregate information
from databases/case material that contain forensic images in raw form i.
e. bytes. This is done to convert data into a more readable form before
feeding it to an AI model. For example, Volatility may be used to parse
the memory for running processes and other registry or network arti-
facts, etc. Autopsy may be used to view and extract different OS or user
files from bit-by-bit hard drive forensic images, etc. and Wireshark or

NetworkMiner may be used to analyze traffic captured from networking
hardware.

3.2. Artificial Intelligence Model

The AI model requires data to be preprocessed before training to
handle discrepancies in the datasets. Data cleaning caters for missing/
null values, outliers, and inconsistencies. The feature extraction step
captures relevant information from the raw data (or after it has been
processed via forensic tools) and represents it in a form that is more
suitable for learning by AI models. Then, transformation encodes cate-
gorical features, scales numerical ones, and handles text data pre-
processing. The data is finally split into testing, training, and validation
sets after preprocessing.

Following preprocessing, a fitting AI model (like Decision Tree,
Random Forest, Neural Networks, Support Vector Machines, Gradient
Boosting Machines, Linear Models, Ensemble Methods, or any custom-
ized/designed model) that is suitable and compatible with the subject
dataset is identified. In terms of DF, the AI models may help perform (1)
network traffic analysis, (2) event/timeline reconstruction through file
system analysis, (3) registry analysis, (4) log analysis, (5) database
analysis, (6) browser and cloud/server analysis (7) classification of
malicious memory processes, (8) multimedia analysis, (9) text analysis,
etc.

The training set is used to train the model which then gives pre-
dictions on test data. The performance of the trained models is evaluated
based on metrics such as accuracy, precision, recall, F1-score, Mean

Fig. 1. XAI-DF holistic framework.

Fig. 2. XAI-DF framework ontology.
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Absolute Error (MAE), Mean Squared Error (MSE), etc. and the valida-
tion set may be utilized to tune hyperparameters.

It is pertinent to note that some AI models are intrinsically explain-
able, in that they may provide model-specific explanations of how they
came to certain conclusions. Such model-specific glass-box explanations
(e.g., from classic Machine Learning (ML) models like Decision Trees,
rule-based, linear models, etc.) may later be compared or combined with
the model-agnostic5 explanations obtained from XAI tools in the next
module.

Usually, multiple AI models are used for a dataset to determine
which works best in terms of efficiency, performance, etc.

3.3. Explainable Artificial Intelligence

The Explainable AI module entails obtaining explanations for the
black-box model’s predictions using external tools (i.e. model-agnostic
explanations). Explanations may be local/global, textual, or
visualization-based, etc. As previously mentioned, these explanations
may be corroborated with intrinsic/model-specific explanations for
more clarity, if the AI model under use is intrinsically explainable.

XAI tools create explanations for predictions through various
methods, like model-agnostic approaches that perturb the input data
and fit a simple, interpretable model locally to approximate the complex
model’s behavior, highlighting feature importance. Local Interpretable
Model-agnostic Explanations (LIME) is one such tool that may be used to
explain single instances (or a subset of instances) in datasets; a local
explanation. Tools like SHapely Additive exPlanations (SHAP), Saliency
map, Counterfactual, etc. also produce local explanations. SHAP, how-
ever, uses game theory to assign each feature an importance value,
explaining the contribution of each feature to the prediction. Some of
the global explanation algorithms are Partial Dependence Plot (PDP),
Individual Conditional Expectation (ICE), Global Sensitivity Analysis
(GSA), and Submodular Pick LIME (SP-LIME) Alam and Altiparmak
(2024). Anchors and LORE are post-hoc as well Alam and Altiparmak
(2024).

The implementation of the XAI-DF framework in different DF sce-
narios such as memory forensics and network forensics are presented in
the following sections to demonstrate its practical application.

4. A memory forensics database for the XAI-DF project

The XAI-DF project is initiated as an open-source resource of digital
forensic images to be utilized for (but not limited to) training XAI models
used in DF investigations. For this purpose, we created an initial memory
database of 27 dumps,6 detailed below, that focuses on malware activity
in the memory. With the progression of time, this is intended to be used
as a base to build upon a more vast database consisting of forensic im-
ages of both memory and other sub-disciplines such as network, hard
drive/disk space, smartphones, IoT, multimedia, blockchain, etc.

Since the XAI-DF project is a collaborative effort, members of the
forensics community are urged to contribute with forensic images (of all
types) by uploading them to the project. This will help achieve its
intended purpose of providing researchers and practitioners with a vast
database of DF images for XAI. Forensics research, in general, may also
greatly benefit from such a database in many ways.

4.1. Memory database creation

Virtual Machines (VMs), operated via a controlled VMware Work-
station Pro environment, and created with various Windows OSs’ .iso

images, i.e. Windows 7 Professional, Windows 10 Home, and Windows
11 Home, were allotted 2 GB RAM, and 60 GB disk space. Table 1 logs
the experimental environment details.

VMs were used as testbeds to simulate malicious activity. Since
malware can infect a machine through various methods, a random
combination of activities was conducted for each VM to achieve an
infected machine like careless online surfing (visiting suspicious web-
sites, clicking questionable pop-ups, downloading ambiguous games), or
directly downloading and executing malware samples from resources
such as Zeltser (2021) and various GitHub repositories like Malwar-
e2.0Database,7 and malware-samples8 etc.

Raw memory images, each 2 GB in size, were taken using the
AccessData FTK Imager by suspending the VMs and creating duplicates
of the .vmem file pertinent to each VM. In addition to memory dumps of
malicious activity, some benign memory dumps consisting of normal
user activity/benign running processes were also captured for each OS.
Table 2 logs the characteristics of the memory database in detail.

4.2. Feature extraction

Memory features were extracted from raw memory dumps of Win-
dows 7 and 10, in particular, using the Volatility Framework 2.6 and 3
Volatility (2024). Note that since current tools do not support Windows
11 analysis, it is omitted from the feature extraction stage for now. In-
formation extracted from outputs of various Volatility plugins (specified
below for each feature) was largely done manually which contributed to
the curation of process-centric memory features. Some network con-
nections, API hooks, injected code, and process privilege features were
also extracted. A total of 55 features (with numerical and categorical
values) are presently extracted from the database. To label the dataset,
each process in the memory dump was individually extracted via the
Procdump Volatility plugin and scanned on VirusTotal.9

The memory features can be accessed via the GitHub repository of
the project10. Memory_Features_Separate.xlsx logs features of each
memory dump separately whileMemory_Features_Combined_CSV.csv logs
the same features combined altogether. The names with descriptions of
the extracted features are elaborated in detail below.

● OSVersion_Win7SP1x86: Indicates (by 1/0) if the OS version is
Win7SP1x86

● OSVersion_Win10Homex64: Indicates (by 1/0) if the OS version is
Win10Homex64

● Process_Name: Name of the running process as seen in memory
(via Pslist, Psscan, and Psxview plugins)

● PID: Process ID (via Pslist plugin)
● PPID: Parent Process ID (via Pslist plugin)
● Hidden_Process: Indicates (by 1/0) whether or not the subject

process was hidden in memory (via Psscan and/or Psxview plugins)

Table 1
Environment—memory database creation.

Characteristic Description

Virtualization Software VMware Workstation 16 Pro, 16.2.5 build-20904516
Windows 7 Windows 7 Professional, Service Pack 1, 32-bit OS
Windows 10 Windows 10 Home, 19042.631, 64-bit OS
Windows 11 Windows 11 Home, 64-bit OS
Memory acquisition AccessData FTK Imager 4.5.0.3
Feature extraction Volatility (versions 2.6 and 3)
Classification Weka 3.8.6 (DT, RF, Naive Bayes), TensorFlow (DT, RF)
XAI-DF LIME, SHAP

5 Model-agnostic explanations of AI predictions are obtained without relying
on their internal structures, and applicable to any model type.
6 Memory database can be accessed at the link provided in the GitHub re-

pository of the project: https://github.com/znbkhld/XAI-DF-Project.

7 https://github.com/pankoza2-pl/Malware2.0Database.
8 https://github.com/fabrimagic72/malware-samples.
9 https://www.virustotal.com/gui/home/upload.
10 https://github.com/znbkhld/XAI-DF-Project.
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● Threads: Number of open threads (via Pslist plugin)
● Handles: Number of open handles (via Pslist plugin)
● DLLs: Number of DLLs (via DLLlist plugin)
● Session_ID: Session ID (via Pslist plugin)
● Wow64: Indicates (by 1/0) whether or not the process is a Wow64

process (i.e. it uses a 32-bit address space on a 64-bit kernel) (via
Pslist plugin)

● Start_Time: Process’ start time (via Pslist plugin)
● Exit_Time: Process’ exit time (in case closed) (via Pslist and Psscan

plugins)
● Injected_Code: Indicates (by 1/0) whether or not the process

contains injected code (via Malfind plugin)
● APIhooks Features: Indicates the number of API hooks of subject

type (via APIhooks plugin)
– APIhooks_ImportAddressTable(IAT)

– APIhooks_Inline/Trampoline

– APIhooks_NTSyscall

● Network_Connection: Indicates (by 1/0) whether or not the
subject process established a network connection (via Netscan
plugin)

● Network_Protocol_TCP: Indicates (by 1/0) whether or not the
subject process communicated via TCP protocol (via Netscan plugin)

● Network_Protocol_UDP: Indicates (by 1/0) whether or not the
subject process communicated via UDP protocol (via Netscan plugin)

● Process Privileges Features: Indicates (by 1/0) whether or
not the subject process had the specified privilege (description of
each privilege can be referenced fromMemory_Features_Separate.xlsx)
– CreateTokenPrivilege

– AssignPrimaryTokenPrivilege

– LockMemoryPrivilege

– IncreaseQuotaPrivilege

– MachineAccountPrivilege

– TcbPrivilege

– SecurityPrivilege

– TakeOwnershipPrivilege

– TakeOwnershipPrivilege

– LoadDriverPrivilege

– SystemProfilePrivilege

– SystemtimePrivilege

– ProfileSingleProcessPrivilege

– IncreaseBasePriorityPrivilege

– CreatePagefilePrivilege

– CreatePermanentPrivilege

– BackupPrivilege

– RestorePrivilege

– ShutdownPrivilege

– DebugPrivilege

– AuditPrivilege

– SystemEnvironmentPrivilege

– ChangeNotifyPrivilege

– RemoteShutdownPrivilege

– UndockPrivilege

– SyncAgentPrivilege

– EnableDelegationPrivilege

– ManageVolumePrivilege

– ImpersonatePrivilege

– CreateGlobalPrivilege

– TrustedCredManAccessPrivilege

– RelabelPrivilege

– IncreaseWorkingSetPrivilege

– TimeZonePrivilege

– CreateSymbolicLinkPrivilege

– DelegateSessionUserImpersonatePrivilege

● Label: Malicious vs. Benign

4.3. Classification results

Classification of the memory database (Memory_Featur-
es_Combined_CSV.csv) usingWeka’s DT (J48), DT (LMT), DT (Hoeffding),
Random Forest, and Naive Bayes gave accuracy scores of 93.75 %,
94.55 %, 92.16 %, 95.35 %, and 91.07 %, respectively.

The classification was also done using Python’s TensorFlow library;
DT, RF, and DNN models were used. In addition, other libraries were
used including Pandas for data manipulation, NumPy for numerical
computations, Matplotlib for visualization, and scikit-learn modules for
preprocessing, modeling, and evaluation. Memory_Featur-
es_Combined_CSV.csv was loaded using Pandas, followed by preprocess-
ing steps which included separating features and label, and catering for
categorical and numerical features. After splitting the dataset into
testing and training sets, DT, RF, and DNN models were defined and
trained using scikit-learn and used for classification. Accuracy scores for
DT, RF, and DNN models were 93.11 %, 95.28 %, and 93.47 %
respectively. The implementations of all three models are available via
GitHub.

4.4. LIME and SHAP explanations for interpretability

Subsequently, LIME was used to generate local explanations for the
models’ predictions. This involved initializing a LIME tabular
explainer object, randomly choosing an instance from the test set to
explain, and using LIME to explain the model’s prediction for that
particular instance, i.e., plotting feature importances. Fig. 3 illustrates
such an explanation in a bar plot form. The same explanation can be
obtained as a graph format (Fig. 4). From the graph plot, the sample’s
prediction probability indicates it is malicious, and top contributing
features are APIhooks_ImportAddressTable with 16 % feature
importance score, Threads with 15 %, while Trust-

edCredManAccessPrivilege, Wow64, RestorePrivilege, and
Network_Protocol_TCP features with 4 % importance scores.
Other contributing features include DelegateSessionUser-

ImpersonatePrivilege, PID, Network_Protocol_UDP,
IncreaseWorkingSetPrivilege, SecurityPrivilege, Hid-

den_Process, etc.
As opposed to explanations of single instances that LIME produces,

SHAP provides global explanations as well. Fig. 5 illustrates features (in
order of importance) with the most impact on the classification across all
instances. For the memory database in its current stage, top features
include Handles, PPID, Threads, PID, and APIhooks_ImportAd-
dressTable, etc.

5. Case study: implementation of XAI-DF framework in a
network forensics scenario

As another implementation of the XAI-DF framework, we detail our
experiments conducted for the classification of various network attacks
of the UNSW-NB15 dataset using DT, RF, and DNN models and inter-
preting the predictions using LIME model-agnostic XAI tool Moustafa
and Slay (2015a,b); Ribeiro et al. (2016).

Table 2
Memory database characteristics.

Characteristic Description

Size 54 GB raw bytes captured in (.vmem) memory dump files
Memory dumps per
OS

Windows 7 SP1: 12 memory dumps Windows 10 Home: 8
memory dumps Windows 11 Home: 7 memory dumps

Memory attack type Malware activity
Features 55 (Process-centric features, Injected code features, API hooks

features, Network connections features, Process privileges
features)
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5.1. UNSW-NB15 database

The UNSW-NB15 dataset is a widely used benchmark dataset in the
field of network security Moustafa and Slay (2015a,b). Developed by
researchers at the University of New South Wales (UNSW) in Australia,
the dataset contains network traffic data generated using the IXIA Per-
fectStorm tool in a controlled lab environment, simulating various types
of low-footprint network attacks and normal network activities.

The dataset contains 9 different network attack families and includes
49 features extracted from network packets, such as source and desti-
nation IP addresses, port numbers, transaction protocols, transaction
bytes, etc. Moustafa and Slay (2015a,b). The dataset comprises a total of
2,540,044 records across four CSV files (UNSW-NB15-[1–4].csv). From
these records, a subset is dedicated for training and testing purposes:
UNSW_NB15_training-set.csv and UNSW_NB15_testing-set.csv containing

175,341 and 82,332 records, respectively. These records encompass
different types of network activities, including both normal traffic and
various forms of attacks.

The UNSW-NB15 dataset is often used for evaluating and testing
NIDSs. Its diverse range of attack scenarios makes it valuable for training
and validating ML models for detecting network intrusions and anom-
alies. For our implementation of the XAI-DF framework, we use the
dataset in the context of a cybercrime forensic investigation, aiming to
perform binary classification (to determine normal and attack traffic)
and multiclass classification (to determine the various attack families).
Table 3 details the characteristics of the UNSW-NB15 dataset.

5.2. Artificial Intelligence Model(s) for classification

DT, RF, and DNNmodels were used to perform binary and multiclass

Fig. 3. LIME local explanation (bar plot)—features’ importance for a random instance from memory dataset, DT implementation.

Fig. 4. LIME local explanation (graph plot)—features’ importance for a random instance from memory dataset, DT implementation.

Z. Khalid et al. Forensic Science International: Digital Investigation 50 (2024) 301806 

6 



classifications of the dataset using Python and TensorFlow. The ‘label’
feature in the dataset (which had 2 outcomes: 0 for normal traffic, 1 for
abnormal traffic) was used as the target label for binary classification.
The ‘attack_cat’ feature (with 9 possible outcomes representing the 9
attack families specified in Table 3) was used as the target label for
multiclass classification.

Loading the training and testing sets’ CSV files using Pandas, pre-
processing steps included combining the datasets, separating features
and target labels, encoding categorical targets into numerical labels, and
preprocessing categorical and numerical columns separately. The data-
set was then split into training and testing sets. A DT classifier was then
defined and trained which then made predictions on the testing set and
performance was evaluated using accuracy score and classification
report metrics (precision, recall, f-score, etc). The accuracy for DT bi-
nary and multiclass classifications was 98.4 % and 85.1 %, respectively.
While accuracy for RF binary and multiclass classifications was 97.6 %
and 85.25 %, respectively. Similarly, multiclass classification accuracy
for DNN was 81 %. Classification reports detailing precision, recall, and
f1-scores for DT and RF multiclass implementations are shown in Figs. 6
and 7, respectively. Note that 0–9 identifiers in the Figures represent 9
attack categories plus normal traffic (detailed mapping of identifiers to
attack categories used in implementations can be referenced from
Table 3). The DT, RF, and DNN implementations are available via
GitHub.

5.3. LIME explanations for interpretability

LIME was used to generate a local explanation for a random instance
(Fig. 8). Fig. 9 illustrates a more specific explanation that details feature
importances for two attack categories, i.e., 4 (Reconnaissance) and 9
(Normal).

Fig. 5. SHAP global explanation—average impact of each feature on DT model’s output.

Table 3
UNSW-NB15 dataset.

Characteristic Description

Size 100 GB raw network data captured in .pcap files
Network attack
types

9 (DoS: 0, Fuzzers: 1, Generic: 2, Exploits: 3, Reconnaissance: 4,
Analysis: 5, Shellcode: 6, Worms: 7, Backdoor: 8, Normal: 9)

Features 49 (Flow features, Basic features, Content features, Time
features, Additional generated features, Labelled features)

Total no. of
records

2,540,044 (4 CSV files)

Training set 175,341 records
Testing set 82,332 records

Fig. 6. Accuracy and classification report of Decision Tree multiclass imple-
mentation (clipped CMD output).

Fig. 7. Accuracy and classification report of Random Forest multiclass imple-
mentation (clipped CMD output).
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6. Conclusion and future work

Explainable Artificial Intelligence (XAI) addresses the challenge of
opaque AI systems in Digital Forensics and related fields by providing
easily understandable explanations for AI model predictions. An
exhaustive XAI-DF framework is proposed to standardize the workflow
of investigations utilizing AI. The implementation of the framework is
demonstrated in memory and network forensics investigative scenarios.

The XAI-DF project is introduced with an initial contribution of a
memory forensics database that may be utilized not only for XAI-specific
DF research but generally for other DF domains as well. Some memory
features including process, network, injected code, API hooks, and
process privilege features are extracted from the memory database in its
current form followed by classification results’ explanations for
interpretability.

For future work, we aim to expand the memory database (by adding
further memory dumps, including OSs of various vendors (macOS,
Linux, etc.) and their versions). More records in the database will
improve the efficiency of XAI models’ training and testing capabilities.
In addition, we are working to incorporate multi-class labels of malware
activity in the memory database. It is also pertinent to note that memory

dumps from actual host machines (in addition to VMs) with bigger RAM
sizes also need to be incorporated to reflect modern-day sizes.
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