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A B S T R A C T

In recent years, there has been a notable increase in the prevalence of cybercrimes related to video content, 
including the distribution of illegal videos and the sharing of copyrighted material. This has led to the growing 
importance of identifying the source of video files to trace the owner of the files involved in the incident or 
identify the distributor. Previous research has concentrated on revealing the device (brand and/or model) that 
“originally” created a video file. This has been achieved by analysing the pattern noise generated by the image 
sensor in the camera, the storage structural features of the file, and the metadata patterns. However, due to the 
widespread use of mobile environments, instant messaging applications (IMAs) such as Telegram and Wire have 
been utilized to share illegal videos, which can result in the loss of information from the original file due to re- 
encoding at the application level, depending on the transmission settings. Consequently, it is necessary to extend 
the scope of existing research to identify the various applications that are capable of re-encoding video files in 
transit. Furthermore, it is essential to determine whether there are features that can be leveraged to distinguish 
them from the source identification perspective. In this paper, we propose a machine learning-based method-
ology for classifying the source application by extracting various features stored in the storage format and in-
ternal metadata of video files. To conduct this study, we analyzed 16 IMAs that are widely used in mobile 
environments and generated a total of 1974 sample videos, taking into account both the transmission options and 
encoding settings offered by each IMA. The training and testing results on this dataset indicate that the Extra-
Trees model achieved an identification accuracy of approximately 99.96 %. Furthermore, we developed a proof- 
of-concept tool based on the proposed method, which extracts the suggested features from videos and queries a 
pre-trained model. This tool is released as open-source software for the community.

1. Introduction

With the widespread adoption of smartphones, users can easily 
capture photos, record videos, and audio anytime and anywhere using 
their mobile devices. The sharing of these multimedia files via various 
social networking services (SNS) and instant messaging applications 
(IMA) has led to a significant increase in the volume of multimedia data 
(Hamdi et al., 2016). However, some malicious users have exploited 
these platforms for illegal activities, such as distributing unlawful videos 
and sharing copyright-infringing materials. Consequently, the impor-
tance of verifying the authenticity and identifying the sources of vast 
amounts of multimedia content has been increasingly emphasized.

Researchers have been engaged in investigating multimedia analysis 
techniques with a view to supporting mobile forensics. Recently, 

deepfake multimedia generated by artificial intelligence has proliferated 
online, prompting the development of technologies to determine the 
authenticity of such data (Reis and Ribeiro, 2024; Li et al., 2023). In 
addition, significant research has been conducted on the subject of 
Photo Response Non-Uniformity (PRNU) to identify the source device of 
images and employing image metadata to determine the editing soft-
ware used (Lawgaly and Khelifi, 2016; Ahmed et al., 2019). Research 
has also demonstrated the use of PRNU to link videos to the smartphones 
that created them (Chen et al., 2008; Dirik et al., 2008). Thus, tech-
niques for identifying the source device of multimedia files, based on 
sensor PRNU, have been well-established. However, identifying sources 
using PRNU is a resource-intensive task (de Roos and Geradts, 2021).

When sharing videos with others, various applications perform re- 
encoding of the videos. During this process, the transmitted videos 
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contain traces of the origin of each application. Data capable of identi-
fying the source of the video is stored within the container structure or 
codec of the multimedia. Amerini et al. (2017) observed that when users 
upload videos to Facebook and X (formerly Twitter), each service 
compresses or reduces the size of the video. The authors proceeded to 
identify the source service of uploaded videos by extracting PRNU from 
such videos. Altinisik et al. (2022) conducted research to classify the 
sources of 109 camera models, 3 video editing tools, and 4 SNS services 
using publicly available datasets ACID (Hosler et al., 2019), VISION 
(Shullani et al., 2017), SOCRatES (Galdi et al., 2019), and EVA-7K (Yang 
et al., 2020). Despite research into identifying the sources of videos 
generated by SNS services or video editing tools, there remains a lack of 
datasets and research on identifying the sources of videos transmitted 
via IMA.

In this study, we propose a method to identify the source application 
of mobile videos by exploiting the differences in metadata left by various 
encoding techniques specific to each IMA through the use of machine 
learning. To discern the origin of video files, we generated a substantial 
video dataset, capturing the unique characteristics of formats and codecs 
produced by different IMAs. These features are then used to train various 
machine learning models, and their performance is assessed. Further-
more, we developed an automated tool that can be utilized by in-
vestigators in their inquiries and made it publicly available.

The main contributions of this paper are as follows:

• Identified characteristics of multimedia container structures and 
codec information that can be used to determine the video source

• Proposed a systematic methodology for identifying the source 
application of videos transmitted by specific IMAs

• Created and publicly released a dataset comprising 1974 video files 
generated from 16 widely used IMAs

• Assessed the importance to the features that significantly influence 
the identification of video source applications

• Developed and publicly released a proof-of-concept tool based on 
pretrained machine learning models

This paper is organized as follows: Section 2 provides an introduc-
tion to background knowledge on multimedia container formats and 
video codecs, as well as a review of research related to video source 
identification. Section 3 explains the features for identifying the source 
of videos. Section 4 describes the proposed methodology. In Section 5, 
the methodology is applied to identify the source and evaluate the 

accuracy for 16 IMA applications. Section 6 introduces a concept proof 
tool based on machine learning models. Finally, Section 7 concludes 
this study and suggests directions for future research.

2. Background and related work

2.1. Container file format and video codecs

A multimedia container file format encapsulates multimedia data, 
such as video and audio streams, along with metadata and additional 
information. Mobile devices primarily use formats such as MP4, MOV, 
and 3 GP, while IMAs predominantly implement MP4 and MOV formats 
for video transmission. Both MP4 and MOV are video formats based on 
the ISOBMFF (ISO/IEC Base Media File Format). MP4 is a video file 
format encoded using the MPEG-4 (Motion Pictures Expert Group-4) 
Part 14 standard, created by ISO/IEC (2020). MOV, developed by 
Apple, is a container format primarily used by Apple’s QuickTime pro-
gram (Apple Inc., 2001) for video. Since the only significant difference 
between the two formats is compatibility depending on the manufac-
turer, this paper will explain the ISOBMFF container structure.

The ISOBMFF container is primarily composed of basic units known 
as boxes or atoms; in this paper, they are referred to as boxes. Fig. 1
illustrates the structure of a box and an ISOBMFF container. Fig. 1 (a) is 
a structure of box within the ISOBMFF container, and Fig. 1 (b) is the 
overall structure of the ISOBMFF container. Boxes are stored in a hier-
archical structure within the container, with a minimum size of 8 bytes. 
Typically, a video based on ISOBMFF contains a file type box (ftyp), a 
movie box (moov), and a media data box (mdat). The ftyp box contains 
information for verifying file compatibility, the moov box holds all the 
multimedia metadata in its sub-boxes, and the mdat box stores the 
video, audio, and subtitles. These are the top-level boxes of a video file, 
and the extra area in Fig. 1 may include other top-level boxes, such as 
free and wide, aside from ftyp, mdat, and moov. Furthermore, the 
structure’s characteristics can vary slightly depending on the device or 
software generating the multimedia. For instance, the positions of moov 
and mdat can be flexible, and the variety and internal composition of 
the top-level boxes can differ.

Multimedia containers can encapsulate videos encoded with various 
codecs. Initially, the process of creating a video involves compressing 
raw original video and audio data using specific codecs. This process, 
known as encoding, combines the encoded video and audio data into a 
container format through a muxing process. For a video player to 
playback the video, it undergoes a demuxing process to extract the video 
and audio data from the container format, which is then decoded using 
respective decoders. Codecs, which encode or decode the original data, 
come in various types. Among video codecs, the most commonly used 
are the H.264/AVC and H.265/HEVC codecs (Bitmovin, 2023). The 
H.264/ AVC codec (International Telecommunication Union, 2003), 
standardized jointly by ITU-T and ISO/IEC, is a 
motion-compensation-based compression codec, while the H.265/HEVC 
codec (International Telecommunication Union, 2013) employs 
compression techniques based on Discrete Cosine Transform (DCT) to 
support videos of 4K resolution and above. As for audio codecs, there are 
AAC and MPEG-H codecs, among others. The AAC codec, developed 
collaboratively by Fraunhofer Institute, Bell Labs, Dolby Labs, Sony, 
Nokia, and others to improve upon the MP3 codec, is currently the 
standard for streaming, while MPEG-H is a next-generation standard 
technology under development and standardization by various 
companies.

H.264 and H.265 codecs are controlled by a set of dynamically 
determined parameters by the encoder to achieve the target compres-
sion bitrate and quality. These parameters are stored along with the 
encoded video data because the decoder requires the same parameters to 
playback the video properly. For H.264, the decoding information is 
grouped into Sequence Parameter Set (SPS), Picture Parameter Set 
(PPS), and Video Usability Information (VUI) parameter sets. For H.265, 

Fig. 1. Structure of box and ISOBMFF container.
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the decoding information includes SPS, PPS, VUI, and Video Parameter 
Set (VPS) parameter sets. The encoding parameters are stored in NAL 
units under the avcc box of the container file (Park and Lee, 2014).

2.2. Video re-encoding of IMA

IMAs enable real-time communication between two or more users, 
offering not only text messaging but also convenient video sharing ca-
pabilities. Some IMAs additionally provide features for video editing and 
options to select the video quality during transmission. Table 1 sum-
marizes the quality settings and editing functionalities available in 
various messaging apps for video transmission. When videos are sent 
using these features, IMAs perform re-encoding of the videos. During 
this process, the structure of the video, its metadata, and encoding pa-
rameters are altered according to the specific settings of each applica-
tion. Consequently, to identify the source of a video file from an IMA, it 
is essential to consider all transmission and editing options when 
creating a dataset.

2.3. Related work

Numerous studies have been conducted on identifying the source of 
videos. Previous research primarily focused on determining the 
recording camera or verifying the editing and originating application.

Altinisik and Sencar (2020) introduced a method for verifying the 
source camera of a video by considering the spatial transformation 
characteristics of video stabilization within the camera’s image pipeline. 
Flor et al. (2021) proposed a new algorithm aimed at distinguishing 
between cameras of the same manufacturer and model by emphasizing 
pixels contributing to sensor noise in the PRNU pattern. They utilized 
the Jaccard index to provide a measure of the ratio of matching pixel 
positions shared between the noise patterns of two devices. Bennab-
haktula et al. (2022) fine-tuned a pre-trained, unrestricted single 
MobileNet using inputs from up to 50 I-frames to identify the source 
camera. The authors aimed to develop cyber tools to help identify the 
origin of illegal content involving minors. Akbari et al. (2022) enhanced 
a CNN (Convolutional Neural Network) named PRNU-NET with a new 
PRNU-based layer to leverage the strengths of PRNU and machine 
learning approaches commonly used in source camera identification. 
Anmol and Sitara (2024) combined two texture features, LBP and GLCM, 
with the statistical characteristics of PRNU. They selected relevant fea-
tures from the extracted 170 features using ANOVA-based univariate 
feature selection, and input the best feature set into an SVM classifier to 

perform video source camera identification.
Amerini et al. (2021) proposed a multi-stream neural network ar-

chitecture, MultiFrame-Net, capable of capturing double compression 
traces left by social networks and messaging apps on videos. 
MultiFrame-Net performs classification on videos uploaded to YouTube 
and those shared via WhatsApp from the VISION dataset (Shullani et al., 
2017). Kouokam and Dirik (2019) demonstrated the accuracy of iden-
tifying the source of YouTube videos using I-frame fingerprints of flat 
content native videos. López et al. (2020) developed a technique for 
identifying the source of digital videos generated by multimedia devices 
and source applications (e.g., YouTube and WhatsApp) using an unsu-
pervised algorithm based on the structural analysis of multimedia de-
vices. Huamán et al. (2020) created a dataset consisting of videos shared 
through 10 social networks, transmitted via 3 instant messaging appli-
cations, and manipulated by 5 editing programs, and conducted a 
structural comparison and analysis of the videos. Orozco et al. (2020)
described a box extraction algorithm and classified the dataset provided 
by Huamán et al. (2020), along with additional videos downloaded from 
TikTok and Snapchat, using a Random Forest model.

As such, most research has focused on identifying the source camera, 
with relatively few studies addressing the identification of source ap-
plications. Previous studies have classified a very limited number of 
applications using publicly available datasets. Additionally, studies that 
identified a variety of applications did not make their datasets public, 

Table 1 
Video transmission settings and editing options of IMAs.

ApplicationResolution Editing option

Band High Mute
Discord – –
Facebook 
Messenger

– Trim, Sticker, Text, Draw, Mute

KakaoTalk Standard, High Trim, Rotation, Filter, Mute
Line – Trim, Sticker, Text, Draw, Filter, Mute
QQ Original Trim, Text, Mute, Crop, Rotation
Session – –
Signal – Trim
Slack – –
Snapchat – Rotation, Sticker, Text, Draw, Filter, Speed, Zoom, 

Horizontal Flip, Insert audio, Automatic subtitles, 
Mute

Teams – –
Telegram 240p, 360p, 480p, 

720p, 1080p
Trim, Rotation, Sticker, Text, Draw, Crop, Mute, 
Adjust(Brightness, Contrast, 
Saturation, Warmth, etc.)

Viber – Trim, Sticker, Text, Draw, Reverse, Speed, Mute
WeChat – –
WhatsApp – Rotation, Sticker, Text, Draw, Filter, Crop, Mute
Wire – –

Table 2 
Metadata used for video source identification.

Category Feautre Description Example

CFF Box sequence Type and order of top box ftyp moov free mdat
VM-G Format profile Base media file format 

version
QuickTime

Brands Major and compatible 
brands

mp42 isom mp42

Writing 
application

Encoder information Lavf58.12.100

Movie name Information that Line only 
has

Line Video

Copyright Copyright information wxmmcabr00dr0000
Overall bitrate Average bitrate of the 

entire file (all stream +
container overhead)

17.1Mbps

VM-A Title Name of the handler that 
handles a audio track

Core Media Audio

ID Order of audio stream 2
Bitrate Bits per second 128 Kbps
Alternate group Number of a group in 

order to provide versions 
of the same track

1

VM-V Title Name of the handler that 
handles a video track

Core Media Video

ID Order of video stream 1
Bitrate Bits per second 16.8Mbps
Width Width of frame in pixels 1280
Height Height of frame in pixels 720

EP-V Format profile Standard of video coding 
technology

Baseline L2.1

Format settings Settings used and required 
by decoder

CABAC 4 Ref Frames

Color range Color range for YUV color 
space

Full

Color primaries Chromaticity coordinates 
of the source primaries

BT.709

Transfer 
characteristics

Opto-electronic transfer 
characteristic of the 
source picture Matrix 
coefficients used in 
deriving

BT.601

Matrix 
coefficients

luma and chroma signals 
from the green, blue, and 
red primaries

BT.470 System B/G

CFF: Container File Format, VM: Video Metadata, EP: Encoding Parameter, G: 
General, A: Audio, V: Video.
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and there is a lack of research classifying a large number of instant 
messaging applications.

3. Metadata for video source identification

We categorized the metadata used for source classification into three 
types: Container File Format (CFF), Video Metadata (VM), and Encoding 
Parameters (EP). There are numerous detailed items within VM and EP, 
but we extracted and compared a substantial amount of data to select the 
features that appear to be applicable for source identification. Table 2
summarizes the metadata useful for source identification as described in 
this section.

3.1. Container file format

In the previous section, we explained that the boxes in the ISOBMFF 
container file format are organized in a hierarchical structure. The boxes 
can be stored in any order and can contain various sub-boxes, and the 
values of these boxes may vary depending on the source of the video. 
Therefore, the structure of the boxes can be used as a means to identify 
the source that encapsulated the video file (López et al., 2020). Several 
researchers have utilized the structure of CFF for source identification. 
López et al. (2020) considered not only the structure of the CFF but also 
the values of the lowest-level boxes as features, while Xiang et al. (2021)
used specific boxes within the video for their study. However, these 
approaches are time-consuming as they require checking the hierarchy 
of all boxes, and it is challenging to identify the source for new devices 
and applications.

To enable rapid source identification, we aimed to find features that 
do not require extensive time for feature extraction and can be applied to 
the latest versions and applications. We discovered that videos trans-
mitted through various IMAs have unique characteristics in their top- 
level box information (names, order) depending on the IMA, the oper-
ating system of the device, and the settings. For instance, a video sent via 
WhatsApp contains the boxes ftyp, beam, moov, and mdat in order, 
whereas a video sent to Discord using an iOS device includes the boxes 
ftyp, moov, wide, and mdat in sequence. However, since some ap-
plications share the same top-level box information, these data alone are 
insufficient for complete source classification. Therefore, additional 
features must be utilized to address this issue.

3.2. Video metadata

Video metadata includes various technical information related to 
video content, such as codec, bitrate, and subtitles (Lee et al., 2021). 
Metadata can be categorized into three main types: general metadata for 

the container file, video metadata for the video stream, and audio 
metadata for the audio stream. General metadata is stored in the ftyp 
and/moov/udta boxes, video metadata can be found in the 
video-related trak boxes under the moov box, and audio metadata is 
located in the audio-related trak boxes.

First, the Format profile represents the basic media file version: if the 
value of the/ftyp/@Major Brand field is mp42, it indicates Base 
Media Version 2; if it is isom, it indicates Base Media; and if it is qt, it 
indicates QuickTime. Brands includes the values of the/ftyp/@Major 
Brand field and the/ftyp/@Compatible Brands field. Writing 
application is the encoder information found in the/moov/udta/meta/ 
ilst/xa9too/data/@encoder field. The Movie name field contains 
the value Line_Video only for Line among the 16 messenger apps, located 
in the/moov/udta/titl/@movieName field. Copyright is a feature 
related to copyright, stored in the/moov/udta/cprt/@copyright 
field. Finally, Overall bitrate is the sum of the video and audio stream 
bitrates and the container overhead, which can be calculated using the 
following formula. 

Overall_bitrate = file_size × 8 × timescale/duration (1) 

The metadata for the video stream that can be obtained from the trak 
box includes the Video Title, which is the value of the/moov/trak/ 
mdia/hdlr/@component name field. The Video ID indicates the order 
of the video stream and is the @track id value of the trak where the/ 
moov/trak/mdia/hdlr/@component subtype field value is vide. 
Width and Height represent the video’s width and height in pixels, stored 
in/moov/trak/mdia/minf/stbl/stsd/@width and @height. 
Lastly, Video bitrate is the calculated number of bits per second for the 
video stream, which can be determined using the following formula. 

video_stream_size + = video_stsz_entry (2) 

video_bitrate = video_stream_size × 8
×video_timescale/video_duration (3) 

Metadata for the audio stream can be obtained from the audio- 
related trak box. The Audio ID indicates the order of the audio 
stream and is the @track id value of the trak where the/moov/trak/ 
mdia/hdlr/@component subtype field value is soun. The Audio Title 
is stored in/moov/trak/mdia/hdlr/@component name in the 
audio-related trak box. The Alternate group is a feature that indicates the 
number of alternate audio tracks, stored in/moov/trak/tkhd/ 
@alternateGroup. Lastly, the Audio bitrate is the calculated number of 
bits per second for the audio stream, which can be determined using the 
following formula. 

audio_stream_size + = audio_stsz_entry (4) 

Fig. 2. An overview of the proposed methodology.
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audio_bitrate = audio_stream_size × 8
×audio_timescale/audio_duration (5) 

3.3. Encoding parameter

Values useful for classifying source applications were identified not 
only from metadata but also from encoding parameters required for 
decoding. This was based on the official documents of H.264 and H.265 
(International Telecommunication Union, 2003, 2013). Firstly, Format 
profile represents the video encoding technology according to the usage 
area and is a combination of profile_idc and level_idc in the SPS 
header. Format settings indicate the number of reference frames and 
whether CABAC is applied in the video stream. If the entropy_co-
ding_mode_flag in the PPS header is 1, CABAC is applied, and the 
number of reference frames can be determined from num_ref_frames 
in the SPS header. Features related to the video’s color, such as Color 
range, Color primaries, Transfer characteristics, and Matrix coefficients, 
refer to the YUV color space, the chromaticity coordinates of the source 
primaries, the electro-optical transfer characteristics of the source 
image, and the matrix coefficients used to derive luma and chroma 
signals from the green, blue, and red primaries, respectively. These four 
features are stored in the VUI.

4. Methodology for identifying video sources

In this study, we propose a methodology for classifying the source 
application of videos shared through IMAs based on their metadata. 
Fig. 2 provides an overview of the proposed methodology. First, we 
capture videos using the native camera application and then create a 
dataset by applying all editing options and transmission settings of each 
IMA. Features are extracted from the generated dataset and pre-
processed into a format suitable for machine learning models. Finally, 
various machine learning algorithms and an ensemble voting model are 

employed to determine the optimal algorithm. To enhance classification 
accuracy, we utilized SMOTE and K-Fold cross-validation techniques.

4.1. Dataset

The video dataset was created using a Galaxy A23 for Android de-
vices and an iPhone 13 for iOS devices. Table 3 summarizes the types 
and versions of applications used for dataset creation. The selection 
criteria for the target IMAs focused on widely used applications, 
including work-related messengers like Slack and Teams, as well as 
secure messaging apps like Telegram and Signal.

The dataset was generated by recording videos with the default 
camera application on the Galaxy A23 and iPhone 13. Videos were then 
sent using all available options for each IMA, and subsequently down-
loaded from web browsers or desktop applications on a Windows 
operating system.

For Android devices, videos were sent unaltered on Wire, and for 
both Android and iOS devices, the QQ application offers a quality option 
to select the original format, which does not alter the metadata. 
Consequently, these settings was excluded from the dataset, and only the 
editing options were used. The differences in the number of datasets per 
IMA, as shown in Table 3, result from the presence or absence of editing 
and quality options. To address this issue, additional measures were 
taken to mitigate data imbalance during the experiments.

4.2. Feature extraction

IMAs leave traces in the internal metadata that can be used to 
identify the source when videos are transmitted, making it necessary to 
extract this data. To extract the CFF described in Section 3, we analyzed 
the ISOBMFF container format structure and developed a custom script 
to extract top-level box data from the videos. While VM can be extracted 
using FFmpeg (FFmpeg, 2000) and MediaInfo (MediaArea, 2002), these 
tools do not allow extraction in the desired format. Thus, we developed 
source code to extract metadata similar to the CFF. Lastly, EP for the 
H.264 codec can be extracted using the h264bitstream tool (Aizvorski, 
2014), but it does not support the analysis of EP for the H.265 codec. 
However, through our experiments, we confirmed that videos shared 
using the high-quality option on KakaoTalk are re-encoded with the 
H.265 codec. Therefore, it is necessary to analyze the parameters of the 
H.265 bitstream. Consequently, we developed source code to extract EP 
by referencing the standard documents for H.264 and H.265 
(International Telecommunication Union, 2003, 2013).

4.3. Data preprocessing

To train a machine learning model using the extracted features, the 
features must be vectorized. These features include numerical data such 
as Bitrate, ID, Width, and Height, as well as textual data like Format, 
Format profile, and Codec ID. Numerical data can be directly used as 
input to machine learning models without additional preprocessing. 
However, textual data requires a preprocessing step to convert them into 
a format suitable for machine learning algorithms. The textual data were 
tokenized, converted into integer indices for each token, and then 
encoded using Word Embedding. After encoding, Principal Component 
Analysis (PCA) was applied to reduce the dimensionality of the features. 
PCA is a widely used dimensionality reduction technique that extracts 
principal components from the correlations among multiple variables to 
reduce the dimensionality.

4.4. Model training & classification

In this study, we compare 11 commonly used models in classification 
problems to select the most suitable machine learning model for video 
source classification. These models are classification algorithms 
designed to distinguish between classes in the given data. The models 

Table 3 
Details of target IMAs and number of datasets.

Application Total OS

OS Version Total

Band 114 Android 10.2.1 44
iOS 10.2.1 70

Discord 49 Android 176.21 22
iOS 175.0 27

Facebook Messenger 207 Android 406.0.0.13.115 110
iOS 406.0 97

KakaoTalk 245 Android 10.2.9 110
iOS 10.1.8 135

Line 204 Android 13.10.1 22
iOS 13.6.1 182

QQ 218 Android 8.9.76 110
iOS 8.9.84 108

Session 27 Android 1.16.9 –
iOS 2.2.13 27

Signal 98 Android 6.18.4 44
iOS 6.21.0 54

Slack 49 Android 23.04.40.0 22
iOS 23.04.40 27

Snapchat 147 Android 12.33.1.19 79
iOS 12.31.0 64

Teams 97 Android 1416/1.0.0.2024093502 44
iOS 6.7.1 53

Telegram 141 Android 9.6.5 66
iOS 9.6.3 75

Viber 147 Android 19.9.4.0 70
iOS 19.9.1 77

WeChat 49 Android 8.0.30 22
iOS 8.0.37 27

WhatsApp 155 Android 2.23.8.76 66
iOS 23.20.79 89

Wire 27 Android 3.82.38 –
iOS 3.109 27
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include Support Vector Machine (SVM), DecisionTree (DT), AdaBoost 
(AB), RandomForest (RF), ExtraTrees (ET), GradientBoosting (GB), 
Multi-Layer Perceptron (MLP), K-Nearest Neighbors (KNN), Logistic 
Regression (LR), Linear Discriminant Analysis (LDA), and Bernoulli 
Naive Bayes (BNB). Additionally, to achieve better performance, we 
selected the top three models and conducted further experiments using 
the ensemble technique of voting. Voting involves training several ma-
chine learning algorithms on the same dataset and combining their 
predictions through a voting process to determine the final prediction 
(Dietterich, 2000).

When evaluating the models, the validation data is selected 
randomly, which can sometimes introduce bias and reduce the reli-
ability of the model evaluation. To address this limitation, we performed 
K-Fold cross-validation (Wong and Yeh, 2019). K-Fold cross-validation 
involves dividing the entire dataset into k smaller subsets and using 
each subset as validation data at least once. In this study, we used 5-Fold 
cross-validation with k set to 5. Additionally, to address class imbalance 
caused by the uneven number of samples, we used synthetic minority 
over-sampling technique (SMOTE), an algorithm that selects the nearest 
neighbors of sampled data points, connects these points with line seg-
ments, and generates new samples along these segments (Chawla et al., 
2002).

5. Result and evaluation

5.1. Performance metrics

We generated a confusion matrix to evaluate the trained classifica-
tion model. The confusion matrix is used to compare predicted values 
with actual values to measure prediction performance. It applies to both 
binary and multi-class classification problems. TP (True Positive) refers 
to cases where the actual value is True and the model correctly predicts 
True. TN (True Negative) indicates cases where the actual value is False 
and the model correctly predicts False. FP (False Positive) refers to cases 
where the actual value is False but the model incorrectly predicts True. 
FN (False Negative) indicates cases where the actual value is True but 
the model incorrectly predicts False. Based on these values, we used four 
commonly used performance metrics: Accuracy, Recall, Precision, and 
F1-Score.

Accuracy is the most commonly used metric for evaluating models, 
representing the proportion of correct predictions over the entire test 
dataset. 

Accuracy =
TP + TN

TP + FP + FN + TN
(6) 

Recall is the ratio of correctly predicted positive values to all actual 
positive values. 

Recall =
TP

TP + FN
(7) 

Precision is the ratio of correctly predicted positive observations to 
the total predicted positives. 

Precision =
TP

TP + FP
(8) 

F1-Score is the harmonic mean of Precision and Recall, and it is 
primarily used when there is a significant imbalance between the 
classes. 

F1 − Score = 2⋅
Precision × Recall
Precision + Recall

(9) 

5.2. Evaluation

In this section, we evaluate the classification performance of the 
proposed methodology. The results of experiments conducted with the 

11 machine learning model algorithms mentioned in Section 4.4 and 
the three best-performing models used for voting are presented in 
Table 4. The model performance evaluation shows that the ExtraTrees 
model outperformed the voting model, with RandomForest and Gra-
dientBoosting models achieving the next highest classification accuracy. 
We generated a confusion matrix for the ExtraTrees model, which pro-
vided the best classification of video sources. Fig. 3 illustrates the 
confusion matrix for class classification using the ExtraTrees model. 

Table 4 
Classification performance by machine learning models.

Model Accuracy Precision Recall F1-Score

ExtraTrees 99.9247 99.9275 99.9254 99.9253
Voting (RF, ET, GB) 99.7742 99.7826 99.7750 99.7754
RandomForest 99.7366 99.7468 99.7382 99.7370
GradientBoosting 99.5107 99.5283 99.5109 99.5130
DecisionTree 98.2678 98.3523 98.2665 98.2607
K-Neareest Neighbors 91.7178 91.9144 91.7291 91.6135
AdaBoost 68.2210 67.7052 68.1952 63.9668
Multi-Layer Perceptron 64.8373 66.3409 64.8362 62.2051
Linear Discriminant Analysis 62.8775 68.3619 62.8844 59.8663
Support Vector Machine 47.0256 45.9592 47.0711 40.5715
Logistic Regression 45.5564 41.0556 45.5515 40.4119
Bernoulli Naive Bayes 40.4368 32.4767 40.4846 31.5011

Fig. 3. Confusion matrix for IMA classification.

Table 5 
Feature importance in ExtraTrees

Feature Importance 
(%)

Feature Importance 
(%)

CFF-Box Sequence 9.2 EP-V-Matrix coefficient 4.3
EP-V-Format 

settings
8.5 VM-V-Title 3.8

VM-G-Writing 
application

6.3 VM-G-Format profile 3.7

VM-V-Width 6.2 VM-G-Brands 3.7
EP-V-Format profile 6.1 VM-A-Title 3.6
VM-G-Movie name 5.9 VM-A-ID 3.5
VM-A-Bitrate 5.7 EP-V-Color primaries 2.3
VM-V-Bitrate 5.2 EP-V-Transfer 

characteristics
2.3

VM-V-Height 5.2 VM-A-Alternate group 2.2
VM-V-ID 4.7 VM-G-Copyright 1.8
VM-G-Overall 

bitrate
4.6 EP-V-Color range 1.5
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Among the 16 classes, data from the QQ application was misclassified as 
WeChat by 2 %, and the overall classification accuracy was 99.92 %.

5.3. Assessment of feature importance

In this section, we evaluate feature importance and identify the 
optimal feature set for the best-performing machine learning model, 
ExtraTrees. Table 5 summarizes the importance of each feature when 
classifying video sources using the ExtraTrees model. Since the top-level 
box sequence is unique for each IMA, CFF-Box Sequence had the highest 
importance. The EP features, such as EP-V-Format settings and EP-V- 
Format profile, also had high importance because videos transmitted 
through the same application often have identical values. The VM-G- 
Movie name feature showed high importance because it is metadata that 
is stored only in videos sent via Line. The VM-A-Bitrate and VM-G-Bitrate 
represent the number of bits processed per unit of time. A higher VM-A- 
Bitrate generally improves audio quality but increases file size. Similarly, 
a higher VM-V-Bitrate improves video quality but also increases file size, 
while a lower bitrate reduces quality. Since each messaging app uses 
appropriate VM-A-Bitrate and VM-V-Bitrate settings, these features are 
highly important for classifying the source messaging app.

Through experimentation, we manually selected a total of 22 fea-
tures from a vast array of metadata. Applying these features to the 
ExtraTrees model, we achieved the accuracy of 99.92 %. To ensure that 
none of the selected features negatively impacted the classification, we 
incrementally removed the features with the lowest importance and 
measured the classification performance. As a result, we found that 
using the top 14 or 15 most important features yielded the highest ac-
curacy of 99.96 % for identifying the video source. Table 6 summarizes 
the classification performance of the ExtraTrees model based on the 
number of features used.

5.4. Effectiveness of selected features

To validate the effectiveness of our selected features, we employed t- 
Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform 
Manifold Approximation and Projection (UMAP) for visualizing the 
feature relationships. These dimensionality reduction techniques allow 
us to observe how well the features differentiate between various 
application sources. When visualizing the selected features, we further 
subdivided the total 16 application classes by operating system. The 
reason for this is that even the same application exhibits differences in 
feature values across different operating systems. Consequently, as 
shown in Table 3, we classified the data into a total of 30 distinct classes.

The t-SNE visualization, shown in Fig. 4, demonstrates the clustering 
of video samples based on their extracted features. Each point represents 
a video sample, colored according to its source application. The clear 
separation between clusters indicates that our features effectively cap-
ture unique characteristics of each application. This distinct clustering 
confirms the discriminative power of our feature set, which is crucial for 
accurate classification.

In addition to t-SNE, we applied UMAP to further validate the 
robustness of our feature set. Fig. 5 presents the UMAP visualization, 
where each point corresponds to a video sample, with colors indicating 
the source application. Similar to t-SNE, UMAP reveals distinct clusters, 
reinforcing the ability of our features to separate different applications 
effectively. UMAP provides an alternative perspective, complementing 
the t-SNE results and confirming the robustness of our feature selection 
process.

The insights from both t-SNE and UMAP visualizations provide 
strong evidence of our feature extraction method’s effectiveness. These 
visualizations highlight the features’ discriminative power and their 
capability to facilitate accurate classification. By incorporating these 
dimensionality reduction techniques, we demonstrate the utility of our 
feature set in distinguishing between different video source applications, 
thus validating our methodology and reinforcing the reliability of our 
results.

6. Implementation

In this paper, we developed an automated tool based on the proposed 
methodology. This tool can aid in the detailed analysis of multimedia 
during the Analysis phase of the digital forensic process (Kent and 
Grance, 2006). It is particularly useful for detecting forgery and 
tampering of video files, as well as identifying their sources, which can 
be crucial evidence.

Fig. 6 illustrates an example of executing this tool. The tool accepts a 
directory path containing video files and recursively searches all 

Table 6 
Classification performance by number of metadata based on feature importance 
in ExtraTrees

ET-# of features Accuracy Precision Recall F1-Score

ET-8 99.7364 99.7447 99.7382 99.7352
ET-9 99.8117 99.8183 99.8151 99.8128
ET-10 99.8117 99.8183 99.8128 99.8117
ET-11 99.8870 99.8897 99.8875 99.8869
ET-12 99.8493 99.8540 99.8485 99.8490
ET-13 99.8494 99.8540 99.8507 99.8501
ET-14 99.9623 99.9643 99.9621 99.9627
ET-15 99.9623 99.9643 99.9621 99.9627
ET-16 99.9247 99.9306 99.9242 99.9252

Fig. 4. 2D t-SNE visualization illustrating the effectiveness of the selected 
features in differentiating between application sources.

Fig. 5. 2D UMAP visualization illustrating the effectiveness of the selected 
features in differentiating between application sources.
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subdirectories for files with.mp4 and.mov extensions. Subsequently, as 
described in Section 5.3, it extracts the top 14 features that showed the 
best performance. The extracted features are preprocessed using pre- 
trained models saved in pickle files, and the source application is sub-
sequently classified using a pre-trained ExtraTrees model, also loaded 
from pickle files.

To validate the proposed methodology, this tool has been released as 
an open-source Python project (Yang, H., 2024). In this study, the 
experimental setup comprised the following environment: Python 3.8.1, 
scikit-learn 1.2.2, TensorFlow 2.9.1, and Keras 2.9.0. Additionally, a 
release executable is provided to simplify dependency management.

7. Conclusions and perspectives

This paper described the machine learning-based method for iden-
tifying the source application of video files by extracting and utilizing 
various feature information stored in the video file’s storage format and 
internal metadata. We generated a total of 1974 sample videos for 16 
different IMAs, considering all transmission options and encoding set-
tings provided by each IMA. By extracting features that can identify the 
source from these media files and training various machine learning 
models, we achieved an identification accuracy of approximately 99.96 
%. We developed an automated analysis tool implementing this meth-
odology and made it available as open-source for the forensic 
community.

The results of this study showed that the video files transmitted by 
the 16 IMAs contain clearly distinguishable features from each other. 
However, in real-world digital investigation, we have to deal with a 
more complex situation: a large number of video files are generated by 
various hardware, software, and services, including multimedia-related 
devices such as digital cameras, smartphones, and dashcams. Therefore, 
in order for the video source identification method proposed in this 
study to be of practical use in digital forensics, it needs to be 

continuously improved to identify a wide variety of possible video 
sources and to clearly report on video files that are not pre-trained and 
cannot be identified. We plan to further strengthen our implementation 
through future research efforts.

With the advancement of technology, video-related cybercrimes 
such as illegal video distribution and copyright infringement are on the 
rise. Consequently, there is an increasing need to identify the owners of 
potential evidence files or pinpoint the distributors. As a solution to 
these issues, we proposed a method to identify the source application 
through which the video was shared. We hope that we can contribute to 
the detailed analysis of video files that can serve as crucial digital 
evidence.
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