
DFRWS APAC 2024 - Selected Papers from the 4th Annual Digital Forensics Research Conference APAC

Mount SMB.pcap: Reconstructing file systems and file operations from
network traffic

Jan-Niclas Hilgert *, Axel Mahr, Martin Lambertz
Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE, Fraunhofer FKIE, Zanderstr. 5, 53177, Bonn, Germany

A R T I C L E I N F O

Keywords:
File systems
Network forensics
File extraction
Digital forensics
Server message block

A B S T R A C T

File system and network forensics are fundamental in forensic investigations, but are often treated as distinct
disciplines. This work seeks to unify these fields by introducing a novel framework capable of mounting network
captures, enabling investigators to seamlessly browse data using conventional tools. Although our imple-
mentation supports various protocols such as HTTP, TLS, and FTP, this work will particularly focus on the
complexities of the Server Message Block (SMB) protocol, which is fundamental for shared file system access,
especially within local networks.

For this, we present a detailed methodology to extract essential file system data from SMB network traffic,
aiming to reconstruct the share’s file system as accurately as the original. Our approach goes beyond traditional
tools like Wireshark, which typically only extract individual files from SMB transmissions. Instead, we recon-
struct the entire file system hierarchy, retrieve all associated metadata, and handle multiple versions of files
captured within the same network traffic. In addition, we also investigate how file operations impact SMB
commands and show how these can be used to accurately recreate user activities on an SMB share based solely on
network traffic. Although both methodologies and implementations can be applied independently, their com-
bination provides investigators with a comprehensive view of the reconstructed file system along with the
corresponding user activities extracted from network traffic.

1. Introduction

File system analysis, as described by Brian Carrier in 2005, is a
fundamental part of any forensic investigation (Carrier, 2005). It in-
volves the analysis of a given file system, including its structures, to
recover deleted files, extract metadata such as timestamps, or harness
certain specific features such as journals or snapshots (Kim et al., 2012;
Hilgert et al., 2018). In certain scenarios, performing file system analysis
may not be practical, for instance, when there is no physical access to the
device or when critical files on persistent storage have already been
modified or deleted. In these instances, the use of network traffic can
help bridge this gap.

In general, network forensics deals with a multitude of tasks, such as
the identification of relevant IP addresses, the analysis of protocols, and,
consequently, the extraction of data. Since data can be transferred over
the network in arbitrary ways, there is no universal solution for file
extraction, and dedicated methods must be implemented to deal with

transferred files. Besides network protocols supporting file transfer, such
as HTTP, SMB or FTP, the rise of distributed file systems has resulted in
more and more file systems utilizing a network for data sharing, either
by building on top of existing protocols or by implementing their own.
Consequently, many file system artifacts can be present within captured
network traffic.

Currently, standard tools such as Wireshark1 provide only limited
possibilities to deal with and analyze these files in transit. Typically,
they only support their extraction from the network capture. However,
we found that in most cases, more information valuable for forensic
investigations such as file system hierarchies, timestamps, or other
metadata is contained within these transmissions, which is usually
neglected.

For this reason, this work aims to close the gap between file system
and network forensics. In this research, we focus on the Server Message
Block protocol, which is extensively used for file transfers on the Win-
dows operating system. SMB is frequently used within local corporate

* Corresponding author.
E-mail addresses: jan-niclas.hilgert@fkie.fraunhofer.de (J.-N. Hilgert), axel.mahr@fkie.fraunhofer.de (A. Mahr), martin.lambertz@fkie.fraunhofer.de

(M. Lambertz).
1 https://www.wireshark.org.

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301807

Forensic Science International: Digital Investigation 50 (2024) 301807

Available online 18 October 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:jan-niclas.hilgert@fkie.fraunhofer.de
mailto:axel.mahr@fkie.fraunhofer.de
mailto:martin.lambertz@fkie.fraunhofer.de
https://www.wireshark.org
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2024.301807
https://doi.org/10.1016/j.fsidi.2024.301807
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2024.301807&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

networks, offering clients access to shared files and directories. There-
fore, analyzing SMB is critical for reconstructing events in incidents such
as ransomware attacks or data exfiltration. Although Wireshark is
already capable of extracting files transferred via SMB from network
captures, it does by no means harness all of the information available.

To address this, we created a methodology to recreate a file system
representation from SMB network traffic, including the files’ content
and reconstructing its original hierarchy, timestamps, and other meta-
data. Moreover, we developed a framework that implements our
methodology and is capable of mounting SMB network traffic as a file
system. In addition to SMB, this framework also supports other network
protocols, such as FTP and HTTP.

Complementing the reconstruction of a file system from network
traffic, we take a closer look at the relationship between a user’s actual
file operations and the resulting SMB network traffic. Knowing and
understanding this relationship enables us to reconstruct user in-
teractions from captured network traffic. In general, the contributions of
our work are as follows.

• An analysis of the steps required to reconstruct a file system from
SMB network traffic.

• A framework for mounting SMB network traffic as a file system,
including its original hierarchy and metadata, which also supports
FTP and HTTP Hilgert et al. (2024a).

• A novel method and implementation for SMB Command Finger-
printing used to reconstruct user file operations from SMB network
traffic Hilgert et al. (2024b).

Section 2 will provide an overview of the fundamentals of the SMB
protocol. In Section 3, we will show the steps necessary to reconstruct
the original file system of the SMB share from captured SMB network
traffic and present our implementation that allows investigators to
mount network captures in Section 4. Afterwards, in Section 5, we will
explore the possibilities of reconstructing actual file operations from
captured SMB commands. Section 6 presents related work in this area,
before we conclude in Section 6.

2. Server Message Block protocol

The SMB protocol versions 2 and 3 were introduced with Windows
Server 2008; 2012, respectively and are described in Microsoft’s speci-
fication Corporation (2024), which includes information about sup-
ported commands and parameters, as well as descriptions of the network
packet structures for sending requests and responses. This section pro-
vides a basic overview of the SMB protocol to aid in understanding
subsequent discussions on file system and file operation reconstruction.

Packet Structure. Every SMB request and response starts with a 64
byte SMB header that features a protocol identifier, flags (such as to
indicate whether it’s a request or response), and two bytes that denote
the SMB command type. Compound requests or responses can be used to
include multiple commands linked together in a single packet. In these
instances, the header will contain an offset pointing to the subsequent 8
byte-aligned SMB header in the packet. Additionally, to correlate re-
quests with their responses, each SMB header contains an 8 byte mes-
sage ID.

Moreover, SMB headers include a 4-byte field that indicates the
status of a response. In the case of requests, this field is disregarded and
must be zeroed out. An exhaustive list of possible status codes is avail-
able in the [MS-ERREF] document by Microsoft. A status field filled with
zeros denotes a successful response.

Connection Setup. All SMB dialects, that is versions, support direct
TCP as their transport protocol, typically using port 445 on the server
side. Dialect 3.1.1 also introduces support for QUIC. Initially, the client
sends an SMB2 NEGOTIATE request to inform the server of the SMB
dialects it supports. The server then selects its preferred dialect for
subsequent communications in its SMB2 NEGOTIATE response. This is

followed by SMB2 SESSION_SETUP requests and responses to establish
an authenticated session, which include key details about the domain,
host, and user name used within the session. To access a specific server
share, the client sends TREE_CONNECT messages with the full path of
the share. If successful, the TREE_CONNECT response provides the tree
ID, which is used in the SMB header for subsequent requests related to
this share.

Commands. In the SMB protocol specification, Microsoft lists several
commands that fall under the File Access category of SMB messages. The
most important ones for the upcoming sections will be introduced next.

• SMB2 CREATE requests are used to request access or the creation of a
file or directory. It includes 4 Bytes to specify the desired access,
given in the SMB2 Access Mask encoding. Additionally, it also con-
tains flags to indicate what actions the server should take, if the file
already exists, further options relevant for opening or creating the
file as well as file attributes given in the [MS-FSCC] specification by
Microsoft. The response to a SMB2 CREATE request contains infor-
mation about the status of the operation, e.g. success as well as
create, last access, last write and change timestamps of the file. It also
returns a 16 Byte FileId, which is used to identify the accessed or
created file in subsequent requests.

• SMB2 CLOSE requests are sent by a client to close an opened file or
directory by specifying its FileId.

• SMB2 READ requests contain the FileId of the file a client wants to
request data from. The request contains the offset as well as the
length that should be read. Consequently, the response, if successful,
contains the requested data.

• SMB2 WRITE requests work in a similar way and are used to write
data of a certain length to a certain offset of a file, identified by its
FileId. The successful response then contains the number of bytes
that have been written.

• SMB2 IOCTL commands can be used by the client to issue file system
(FSCTL) or device control (IOCTL) commands to the server over the
network. A list of permitted FSCTL commands can be found in Sec-
tion 2.3 of the [MS-FSCC] specification.

• SMB2 QUERY_INFO requests, known as GetInfo requests in Wire-
shark, are utilized to gather details about files, quotas, security, or
the underlying storage system, based on the specified 1 Byte Infor-
mation Type. Additionally, the specific information requested is
determined by the 1 Byte File Information Class, such as Fil-
eBasicInformation for timestamps and attributes. When the in-
formation type is SMB2_0_INFO_FILESYSTEM, the response
includes detailed information about the share’s file system.
Requesting the FileFsAttributeInformation class for instance
would provide the file system’s attributes and its name.

• SMB2 SET_INFO commands are used to update specific information
on files and other objects. The details to be updated are defined by
the information type and information class, along with the actual
data to be applied. For instance, setting the Fil-

eDispositionInformation is used to mark files for deletion.
• SMB2 QUERY_DIRECTORY requests, known as FIND requests in

Wireshark, are used to retrieve details about the contents of a
directory. In addition to the FileId of the target directory and the
specific information class to be returned, the request includes a
Unicode search pattern, which can also be a wildcard. The server
provides the requested specific information for each match to this
search pattern.

In subsequent sections, we will use abbreviated forms of these
commands, e.g. CREATE for SMB2 CREATE.

2.1. Create context

Within a CREATE request, the client can also include Create Context
Structures to request additional information. Some common ones are.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

2

• Maximal Access Request (MxAc): In this request, the client re-
quests the maximal access it has on the opened file or directory based
on the current session. The response includes the corresponding ac-
cess mask.

• Query On Disk ID (QFid): If this is sent, the server responds with the
corresponding 8 Byte FileID as well as the VolumeID to which the
opened file belongs.

• Request Lease V2 (RqLs): The client requests a lease for the opened
file.

Leases were introduced in SMB 2.1 to enhance client-side caching,
effectively replacing OPLOCKs. To utilize this feature, a client requests a
lease for an opened file, specifying the desired mode—such as read,
write, or handle cache. In response, the server grants the appropriate
lease, allowing the client to cache reads and writes locally and thereby
reduce network traffic associated with SMB operations. When a lease is
broken — for instance, due to external changes in a directory for which a
client has an open file handle — the server issues a Lease Break Notifi-
cation to the client. The client must then act based on the lease’s mode.
For example, if a read cache lease is broken, the application is required
to purge all cached data. More detailed information on lease breaks is
available in the SMB specification.

3. File system reconstruction

In order to reconstruct a file system from network traffic, it is
important to consider what data actually makes up a file system. Ac-
cording to Brian Carrier, the data of a file system belongs to one of the
five data categories presented within his reference model Carrier (2005).

• Metadata Category: Metadata encompasses data describing files
such as their timestamps or access rights.

• File name Category: File as well directory names and their rela-
tionship to each other are stored in this category, which is why it
basically describes the file system hierarchy.

• Content Category: The actual content of files within the file system
belongs to this category.

• File system Category: Data in this category defines the structure of
the file system itself, e.g. its size or where other data is stored.

• Application Category: This category consists of all the data the file
system does not necessarily need to read and write data, but is added
for special features, e.g. journaling.

In the subsequent sections, we will outline our approach for data
extraction from SMB network traffic corresponding to the previously
mentioned categories of file system data. In addition, we will discuss
certain peculiarities encountered during the reconstruction of a file
system from SMB network traffic.

3.1. Metadata

Most metadata, such as timestamps or file size, can be obtained from
the corresponding SMB2 CREATE response. While it also includes file
attributes, these do not necessarily match all attributes of the share’s
original file system. Instead, the file attributes used in SMB are detailed
in [MS-FSCC] as mentioned earlier. To associate extracted information
from subsequent requests with a specific file or directory, we also extract
the 16 Byte FileId from the CREATE response, along with the corre-
sponding TreeId, and store them in an internal mapping table.

QUERY_INFO requests and responses can provide additional meta-
data as this command is used to retrieve various types of file informa-
tion. Timestamps and file attributes can be obtained from the
BasicInformation class, while the StandardInformation class
includes details such as the allocation size and the end-of-file value,
which indicates the file’s first unoccupied byte, i.e., its end. Further
metadata can also be found in QUERY_DIRECTORY responses as

described in the next subsection. Finally, metadata can also be extracted
from SET_INFO requests targeting metadata like timestamps.

3.2. File names

Our main method for obtaining file and directory names is through
CREATE requests. These not only include the name of the requested file
or directory but also its complete file path relative to the root directory
of the share, which is derived from the TREE_CONNECT request, pro-
vided it is present in the network capture. This method enables us to
reconstruct parts of the share hierarchy, including the parent directories
of the requested file. However, this reconstruction is only performed
when a corresponding and successful CREATE response is received,
ensuring that only existing or newly created files are reconstructed.

Another crucial command for hierarchy reconstruction is QUERY_-
DIRECTORY. The output of this command typically includes matches to
a specified search pattern. For standard interactions with the share, this
pattern is usually set to the wildcard *. Consequently, the server returns
all available files in a directory up to a specified buffer length. The de-
tails stored in the corresponding responses are then used to expand the
file hierarchy. Additionally, depending on the query sent, this infor-
mation contains at least the basic metadata for the files matching the
pattern. Extracting files in this manner results in the creation of hollow
files as described in Section 3.5. Similar to metadata, we also use
SET_INFO requests to gather information about files that have been
renamed.

3.3. Content

File contents can mainly be retrieved leveraging READ and WRITE
commands. To achieve this, we first identify all such command types and
correlate them with the actual files by matching their FileIds against our
internal mapping table. Then, we use the offset and length fields within
the commands to accurately reconstruct the file content.

3.4. File system and application data

Extracting information about the file system of the underlying share
can be achieved through QUERY_INFO responses when a File System
Information Class is requested. Section 2.5 of the [MS-FSCC] specifica-
tion provides a detailed overview of the available classes and their
corresponding data. In our upcoming experiments, we have primarily
encountered requests and responses for the FileFsVolumeInformation and
FileFsAttributionInformation classes. These classes provide details about
the volume on which the file system is mounted, such as its creation date
or serial number, and a list of attributes describing the file system,
respectively. Since each file system has a unique layout and internal
structures, the data on file system details in SMB network traffic does not
allow for an exact replication of the original file system. This also applies
to any data that belongs to the application category. However, as shown
in the previous sections, this is not necessary for reconstructing the most
critical data for forensic analysis.

3.5. Hollow files

A hollow file is a file whose content does not appear in the SMB
network traffic. Nevertheless, as mentioned previously, various SMB
commands already contain extensive metadata, which we use to create a
hollow file that includes the correct file name, path, attributes, and
timestamps. This method aims to provide the most comprehensive view
possible of the original file system on the share. If a corresponding READ
or WRITE request for a hollow file is identified, we populate the file with
its content, thereby making it a regular file. Fig. 1 shows an example of
three SMB requests and responses and how we use their information to
reconstruct the file system.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

3

3.6. Version history

Unlike traditional file systems, which typically provide a snapshot of
files and directories at a specific point in time, network captures contain
data over a continuous period. Consequently, the same file can be
accessed multiple times during a capture period. If the file changes
during this time, different versions, including older and more recent
versions, may be present in the network capture. Since these previous
versions might not be recoverable from persistent storage of the network
share itself, it is crucial to extract these versions when reconstructing the
file system.

To facilitate this, we monitor the timestamps associated with each
file in our reconstructed file system. A change in these timestamps in-
dicates a modification to the file. In such instances, we generate a new
version of the file, denoted by appending ”@<version>” to its filename.
It is important to note that new versions arise not only from files being
read but also from write operations detected in the network traffic.

4. Mounting network traffic

After detailing the process of reconstructing an original file system
from SMB network traffic in the previous section, this section outlines
our implementation for mounting acquired network traffic to achieve
such reconstruction.

Our approach extends traditional network forensics, which typically
focuses on packet-level or protocol-level data analysis. Instead, we
enable an analysis similar to traditional storage forensics, where in-
vestigators can navigate through network data using standard forensic
tools and techniques. This includes operations such as calculating
hashes, searching for YARA signatures, or employing other sophisticated
tools.

Furthermore, our solution tackles a major challenge in network fo-
rensics: the performance drop due to the extensive size of network traffic
captures, which can consist of countless packets and require lengthy
loading periods in analysis tools such as Wireshark. This is achieved by
utilizing a specialized index file that stores the layout of the recon-
structed file system. This eliminates the need for repeated parsing and
examination of the network capture upon mounting, thereby enhancing
performance and accelerating the analysis process.

4.1. Overview

Our implementation utilizes the Filesystem in Userspace (FUSE)2,
which facilitates the creation of customizable and mountable file sys-
tems. Unlike traditional storage forensics, where a volume is mounted,

we process network captures, supporting the PCAP and PCAPNG for-
mats. We analyze and parse the information within these captures so
they can be mounted and accessed as a regular file system. For this
purpose, our implementation creates virtual files for each network pro-
tocol it supports, e.g., TCP or SMB files. As outlined in the previous
section, this involves extracting content, metadata, and filenames and
integrating these components using the methods provided by libfuse.
Naturally, our file system is read-only and thus does not allow writing or
altering the data.

To enhance our implementation’s modularity, we utilize a recursive
approach to analyze various network protocols within network captures.
In a first run, virtual files are created for the network capture files
themselves. Then, other protocols, typically TCP and UDP, are parsed
within these files and new corresponding virtual files are created. These
virtual files contain a set of offsets and lengths that point directly into
the lower virtual file, as depicted in Fig. 2. When accessing data, such as
reading a TCP file, our implementation leverages these pointers to
retrieve and assemble the data efficiently.

Similarly, for SMB files, pointers within the SMB file point to data in
lower files, e.g., TCP files. Metadata for SMB files is extracted during an
initial parsing step and then stored for each SMB file. Since this can be a
time-consuming task, our implementation utilizes an index file, which
stores all relevant information about the detected files, their set of off-
sets, as well as any metadata for these files and is typically only a frac-
tion of the size of the associated network capture file.

Additionally, our implementation supports arbitrary transformation
steps between virtual file layers. For instance, if data is encrypted,
reading a virtual file may first access the encrypted data from a lower
file, decrypt it—provided that decryption keys are available—and then
present the decrypted data seamlessly in the mounted file system,
maintaining transparency throughout the process. This concept allows
for the support of more complex network protocols such as TLS.

4.2. Structure

By default, a separate directory is automatically created within the
mounted file system for each supported protocol, in which the corre-
sponding parsed virtual files are stored, as detailed in Listing 1. File
names start with the index of the source file — for UDP and TCP files,
which usually directly reference the network capture, the index remains
uniformly ’0’ in our example, indicating a single capture-file.pcap.
This index is followed by the offset at which the file begins. For example,
TCPFILE12 starts at offset 770 within the network capture file. This
naming pattern also extends to other protocols, such as the HTTP
banner.svg file, which points to TCP file 31 and starts at offset 22434.
All necessary offsets for file construction are initially stored in memory,
but can optionally be written to a special index file on disk to facilitate
faster mounting by avoiding repeated data parsing.

Fig. 1. Reconstructing file systems from SMB requests and responses.

2 https://github.com/libfuse/libfuse.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

4

https://github.com/libfuse/libfuse

Listing 1. Example hierarchy of a mounted network capture.

Depending exclusively on protocols to organize a file system hier-
archy has a limitation: essential network capture artifacts like IP ad-
dresses are concealed from the investigator. To mitigate this issue, we
introduced a sortby feature. This feature allows for the creation of a
tailored hierarchy that includes critical details such as source and
destination IPs or ports, as well as protocol-specific elements such as
domains or URIs. Listing 2 shows an example where the hierarchy in-
cludes the source and destination IP addresses and the domain for the
HTTP protocol. This approach elevates conventional network forensic
filters to the filesystem level, improving both accessibility and usability
for thorough analysis.

Listing 2. The -sortby parameter can be used to create arbitrary hierarchies
for the mounted network capture.

4.3. Mounting SMB

When mounting SMB network traffic, our implementation organizes
the data by creating a directory for each detected SMB server and

subdirectories for each share, or tree. If a TREE_CONNECT request is
detected, the share is named using the provided name; otherwise, it uses
the TreeId. Listing 3 illustrates an example in which a network capture
of the SMBSHARE server is mounted. The test_share represents a
user-defined share, whereas IPC$ is a default share created by Windows
to facilitate anonymous user activities such as share enumeration.

Listing 3. Example for mounted SMB traffic.

As shown for test_share, the share’s hierarchy is reconstructed as
previously detailed. Using the parameter –show-metadata during
mounting, hollow files are enabled and displayed in lighter orange, of-
fering a detailed representation of the SMB share including file names,
hierarchy, and metadata such as file timestamps.

The file file2.txt, highlighted in darker green, contains actual data
from the network capture. Our approach also handles the reconstruction
of multiple file versions within the capture, as demonstrated by the three
versions of file2.txt in the mounted share. Common file system tools
such as ls can be utilized to retrieve metadata, helping to determine the
timestamp of each file version.

While presenting multiple file versions as multiple files already ad-
dresses the dynamic characteristic of data in network captures, we have
further enhanced our implementation with a snapshot feature. This
feature can be invoked using the snapshot argument with the
–sortby option, adding a new layer of directories to the hierarchy. This
structure mimics snapshots in traditional file systems, enabling in-
vestigators to access and navigate the file system as it appeared at spe-
cific moments in time. This functionality is particularly useful for
tracking changes like renames or deletions, which prompt the creation
of a new snapshot — essentially a new directory within this layered
hierarchy.

Fig. 2. Overview of data access within our implementation for mounting network captures.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

5

To offer a more complete understanding of the reconstructed file
system data, it is crucial to comprehend its origins by extracting file
operations from network traffic. The subsequent section introduces a
novel methodology for identifying user activities within SMB network
traffic. This approach can be utilized in conjunction with mounting the
network capture for a more comprehensive view or separately.

5. Reconstructing file operations

File operations are any interaction an application has with a file or
directory. As a result, there is a strong connection between file opera-
tions and user interactions, since every user interaction may initiate a
series of file operations. This section details how analyzing captured
SMB network traffic can provide insights into file operations and, by
extension, the underlying user interactions.

5.1. Methodology

For this purpose, we divide the process into three steps.

1. Windows API Analysis: We begin by examining the influence of
various Windows API calls on the resultant SMB commands. The
Windows API offers a diverse set of functions that enable applica-
tions to interact with the Windows file system, playing a crucial role
in all file operations within Windows.

2. SMB Command Fingerprinting (SCF): Building on our under-
standing of the Windows API, we propose a novel technique to detect
the execution of a Windows API call on an SMB share, exclusively
through the analysis of intercepted network traffic.

3. Case Study with cmd.exe: To demonstrate the effectiveness of our
approach, we employ SCF rules to reconstruct specific user in-
teractions, starting with the widely used command line utility, cmd.
exe. This tool is selected for its ubiquity, simplicity, and versatile file
system manipulation capabilities.

For our experiments, we used two systems running Windows 11 Pro
Build 22621.3155, configured as an SMB share and an SMB client,
respectively. We captured their network traffic using Wireshark and
further analyzed application behavior through the frida-trace3

utility to track the API calls made by applications.

5.2. Windows API

The Windows API offers a wide array of functions for various tasks
including data access, system management, and networking. Functions
within the Windows API that handle character data typically appear in
three forms: a variant ending in A that utilizes Windows code pages for
text processing, a variant ending in W that accommodates Unicode, and a
basic form without suffix. Given that the standard form ultimately relies
on one of these specific API calls, our emphasis will be on the more
contemporary W-versions of these APIs where relevant. The following
subsections will detail the SMB commands observed when we executed a
compiled C version of the single Windows API call.

5.2.1. CreateFile
Since many Windows API methods require a file handle, it is often

necessary to first open the file using the CreateFile call. In addition to
the file name, it requires the desired access and share mode, the creation
disposition, and flags or attributes as arguments. These arguments thus
need to be adapted to the actual use case, e.g. a read or write.

In our experiments, we have found that the arguments given to the
CreateFile API call can highly influence the resulting SMB commands
sent via the network. For this reason, we present the most crucial results

from our experiments.

• Calling the CreateFile API call results in at least one CREATE
request.

• The specified file share access, create disposition and file attributes are
reflected in the corresponding fields of the CREATE request.

• File attributes do not influence the sequence of SMB commands sent.
• Similarly, file flags including the security flags did not change the SMB

commands sent. Instead, most of the file flags are represented in the
create options field within the CREATE request.

• The desired share mode does not have an impact on the sequence of
SMB commands either.

• The API parameters OPEN_EXISTING, OPEN_ALWAYS, CREA-
TE_NEW and CREATE_ALWAYS for the disposition are mapped to the
FILE_OPEN, FILE_OPEN_IF, FILE_CREATE and FILE_OVER-
WRITE_IF dispositions in SMB commands.

• Using OPEN_ALWAYS, CREATE_NEW or CREATE_ALWAYS as a
disposition adds an additional CREATE request to the sequence of
SMB commands targeting the parent directory.

• If write access is requested in an API call using the OPEN_EXISTING
disposition, an additional QUERY_INFO requesting the normalized
name of a file is issued.

5.2.2. FindFirstFile
This API call is used to search a directory for a specific file name or

pattern, including a wild card, and returns a search handle for subse-
quent searches, as well as the file information for the first matching file.
Performing this call on an explicit file name or directory name results in
a CREATE command for its parent directory followed by two QUER-
Y_INFO commands, which were sent as a compound request in our

Fig. 3. SMB commands triggered by a FindFirstFile API call. The right side
illustrates the outcomes when the call is made with the prior file handle
remaining open.3 https://frida.re/docs/frida-trace/.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

6

https://frida.re/docs/frida-trace/

experiments, as illustrated in Fig. 3. If the client receives a response
indicating a NO_MORE_FILES status after the initial QUERY_INFO re-
quests, it does not perform additional ones. However, if the server still
returns files, it performs additional QUERY_INFO requests using a buffer
length of 1048612 Bytes until all files are returned. Most interestingly,
regardless of the search pattern specified in the API call, the SMB
commands seem to always utilize the wild card parameter *, thus
returning information for all files within a directory.

Since the CREATE also requests a lease, the file handle is kept open
and the CLOSE request is only sent when the DormantDirector-
yTimeout is reached, which by default is set to 10 min. Alternatively,
the client also sends this command as soon as a Lease Break Notification
for the directory is received. During the time the file handle is still open,
performing this API call still creates the CREATE request as shown in the
second example in Fig. 3. However, the QUERY_INFO commands are
omitted in this case, and the CLOSE request is sent immediately.

The FindFirstFileEx call additionally allows us to specify attri-
butes that need to match the returned file. In our tests, the resulting SMB
commands were identical to the ones observed for FindFirstFile.

Subsequently, the FindNextFile API call is usually used to obtain
the next file that matches the search pattern. This call requires the search
handle returned by FindFirstFile. However, since this API function
initially requests all matching and even nonmatching files through SMB,
using FindNextFile does not trigger any additional commands in the
network compared to just using FindFirstFile.

5.2.3. GetFileAttributes and SetFileAttributes
The GetFileAttributes API call is a straightforward method to

retrieve the attributes of a file or directory based on its name, elimi-
nating the need for a preceding CreateFile call. This operation trig-
gers a single CREATE command for the target file, with the parameters in
the SMB packet set automatically. This is immediately followed by a
CLOSE command.

Conversely, to modify file attributes, the Windows API offers the
SetFileAttributes call, which requires a file name and the new
attributes to apply. Following the CREATE request, which employs pa-
rameters distinct from those for attribute retrieval, a QUERY_INFO
command is issued to obtain FileNormalizedNameInfo. Subse-
quently, attribute modifications are made using a SET_INFO command
directed at FileBasicInfo. The sequence ends with a CLOSE
command.

5.2.4. ReadFile
To read a file, the Windows API provides the ReadFile function,

which requires a file handle and a specified number of bytes to read. For
our experiments, we obtained the file handle by performing the Cre-
ateFile API call with standard GENERIC_READ settings, yielding SMB
commands as detailed in Section 5.2.1.

When ReadFile is called, it causes an additional READ command. In
particular, the number of bytes requested in the SMB command is always
rounded up to the nearest multiple of 4096 or the actual file size of the
file, if it is lower. For example, an API call to read only 50 bytes of a large
file will actually request 4096 bytes over SMB. For read operations that
exceed 2,097,152 bytes, multiple READ requests are issued, using the
offset parameter to request the next parts of the file. These requests are
transmitted consecutively without pausing for the server’s response.

While the ReadFile function lacks a direct parameter to set a read
offset, this can be accomplished by adjusting the file pointer using the
SetFilePointer function. This adjustment also affects the offset
utilized in the SMB READ commands. Similarly to the read length, any
specified offset is rounded down to the nearest multiple of 4096 bytes in
the respective READ command.

5.2.5. WriteFile
Writing data to a file in the Windows APIs is performed using the

WriteFile function. This function requires three key inputs: a file

handle, a pointer to the buffer containing the data, and the number of
bytes to write. The file handle must be obtained first, with the correct
access rights set for writing. For our experiments, we created the handle
using GENERIC_WRITE and OPEN_ALWAYS.

The WriteFile operation itself triggers two additional SMB re-
quests: A WRITE request, which includes the actual data to write, follows
the CREATE response for the target file. If the data length exceeds
3,473,408 bytes, the operation is handled through multiple WRITE re-
quests. These requests utilize the length and offset fields in the SMB
commands to indicate which part of the data is sent. Once the write
operation is complete, a QUERY_INFO command is issued to retrieve the
FileNetworkOpenInfo, which provides details about the file status
post-write.

5.2.6. CreateDirectory and RemoveDirectory
The API calls CreateDirectory and RemoveDirectory are

intended for creating and deleting directories, respectively.Crea-
teDirectory generates a single CREATE request followed by a CLOSE
request. As illustrated in Fig. 4, invoking RemoveDirectory initiates a
CREATE request, which is then succeeded by a SET_INFO request that
sets the FileDispositionInformation to explicitly mark the
directory for deletion. Finally, a CLOSE request is issued.

5.2.7. DeleteFile
The DeleteFile API call requires the name of the file to be deleted.

The resulting SMB commands are similar to those of the RemoveDir-
ectory command. However, the parameters for the CREATE request
are different, and there is an additional QUERY_INFO command issued
to retrieve the FileNormalizedNameInformation class. This com-
mand sequence is illustrated in Fig. 4.

5.3. SMB Command Fingerprinting

Our research has shown that each Windows API call generates a
distinctive sequence of SMB commands. These sequences are

Fig. 4. SMB commands originating from a RemoveDirectory and Dele-
teFile API call.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

7

characterized by two key aspects: the specific types of SMB commands
issued and the parameters set within these commands. This is because
API calls that require a filename generally initiate a file operation using
unique parameters, such as file attributes or desired access levels. We
can use this information to associate SMB command sequences with
their respective API calls.

To facilitate the analysis, we propose an SMB Command Finger-
printing approach. This method calculates an MD5 hash for each SMB
packet, simplifying the identification of distinct command sequences. To
ensure that the hashes are both precise and universally applicable, i.e.,
independent of dynamic fields, we selectively hash values based on the
specific type of SMB command. Fig. 5 illustrates which parameters are
used to calculate an SCF for an SMB Create request.

For compound requests containing multiple SMB requests or re-
sponses in a single SMB packet, we calculate the individual SCF for each
SMB command, concatenate them, and calculate the final hash of this
result. To facilitate this process, we developed a utility that calculates
the SCFs for SMB packets in a given network capture file automatically.
Examples of SCFs resulting from various Windows API calls can be found
in Table 2.

5.4. Case study: cmd.exe

While reconstructing specific Windows API calls from SMB network
traffic yields valuable insights, the true strength of our approach lies in
reconstructing explicit user interactions. For this purpose, we developed
a set of SCF rules that comprise one or more SCFs. Thus, these rules
consider not only the individual parameters of an SMB command but
also the sequence in which these commands are sent. Listing 4 provides
an example of an SCF rule. This rule identifies a sequence that includes a

, a , a , and a
, while considering the specific parameters for creation,

as well as the information type and class through the use of SCFs.

Listing 4. An SCF rule for the detection of file creation using e.g. echo “Data”
> file in SMB network traffic.

To demonstrate the practicability of this methodology, we utilized

the Windows Command Line Utility cmd.exe, a ubiquitous tool across
Windows systems that can be used to perform various file operations.
We executed a series of commands on a mounted SMB share, captured
the corresponding network traffic, and used our SCF rules to reconstruct
the file operations. Although only 18 commands were executed over a
span of about 2 min, the generated SMB traffic included roughly 250
SMB packets, making a manual analysis impractical and unscalable.
Table 1 provides a comprehensive summary of the events that were
automatically reconstructed purely from network traffic, together with
the original commands executed and their timestamps.

Our findings show that our approach successfully identified 16 of 18
commands executed using cmd.exe. The exceptions were the cd …
commands, which did not generate SMB commands, likely due to
caching mechanisms, hence they could not be reconstructed. All other
commands, including other simple directory changes, were accurately
reconstructed. Notably, the mkdir Files\Other command was
reconstructed as two separate events, reflecting the recursive nature of
directory creation in this scenario.

It is important to note that the timestamps of reconstructed events
typically lag behind the actual execution times due to the inherent delay
in capturing the corresponding network packets. Therefore, the preci-
sion of these timestamps in real-world scenarios can vary significantly
depending on the network configuration.

6. Related work

Over the years, multiple research efforts have explored methods to
facilitate network traffic analysis. In digital forensics, research has, for
example, explored the extraction of HTTP traffic events (Gugelmann
et al., 2015). Other studies range from employing neural projections for
the visualization of network traffic for intrusion detection (Corchado
and Herrero, 2011), incorporating 3D representations that integrate the
temporal aspect (Clark and Turnbull, 2020), to using relational graphs
for enhanced data exploration (Cermak et al., 2023). A 2021 study
emphasized the difficulties in using visualization techniques for anom-
aly detection in network traffic, highlighting the persistent challenges in
this research area (Corchado and Herrero, 2011).

File extraction from network traffic is a well-established practice,
with current methods capable of extracting various file types from
different network protocols, similar to the functionalities provided by
tools such as Wireshark (Choi et al., 2015; Hansen et al., 2018). How-
ever, these methods either do not support or are inadequate in extracting
and presenting all available information for protocols like SMB.

Although initially not developed with digital forensics in mind, a
conceptually similar approach to our SMB Command Fingerprinting
already emerged in 1992. The researchers introduced a toolkit to
approximate the activity of the file system by analyzing the network
traffic of the NFS (Network File System) (Blaze, 1992). Over the years,
various research on NFS tracing has evaluated and refined these
methods, enhancing the ability to recover file system traces from passive
monitoring of network traffic (Moore, 1995; Ellard and Seltzer, 2003).
However, this concept has not been extended to protocols like SMB, nor
has it aimed to establish a universally applicable set of rules to detect
diverse user actions across different applications, as we propose with our
SCF Ruleset.

Furthermore, the broader domain of network traffic fingerprinting
has traditionally focused on identifying specific applications rather than
user interactions (Dai et al., 2013; Taylor et al., 2016). Our research tries
to identify precise user behaviors, thus expanding the forensic capabil-
ities of network traffic analysis.

7. Conclusion and future work

In this work, we introduced a novel method for network forensics by
integrating it with traditional file system analysis. To achieve this, we
created a framework enabling analysts to mount a network capture file, Fig. 5. Example calculation of an SMB2 Create Command Fingerprint.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

8

allowing them to navigate the data and use standard file-based tools
easily. Our implementation facilitates this process by offering various
options for customizing the file system hierarchy, such as using IP ad-
dresses or ports, thereby merging network and file system forensics.

Although our framework supports multiple protocols that can be
mounted, including HTTP, FTP, and TLS, we particularly emphasized
the SMB protocol due to its common use for file sharing. We have out-
lined a methodology for extracting critical data from SMB network
traffic, which can be used to accurately reconstruct the file system of the
share. Unlike other analysis tools such as Wireshark, which only allow
for the extraction of transferred files, our approach enables the recon-
struction of the file system hierarchy and metadata by leveraging all
available information in the captured traffic. Therefore, using hollow
files that lack actual data, our method offers a more comprehensive
representation of the original file system.

As an additional method for SMB network analysis, we examined the
unique SMB sequences resulting from Windows API calls and proposed
SMB Command Fingerprinting. This method enables the identification of

Windows API call executions purely from SMB network traffic and the
accurate reconstruction of user activities. For this purpose, we created
SCF rules that allow the precise reconstruction of commands executed
through the Windows command utility. While this was merely a case
study to demonstrate the applicability of our approach, it is essential to
expand on this research in the future.

For example, it is crucial to broaden the SCF ruleset to encompass
other applications and explore the feasibility of distinguishing between
them, such as determining which application was responsible for
creating or deleting a file. In this context, it is also vital to examine
different operating systems, considering various implementations of the
SMB protocol, such as Samba on Linux. Furthermore, it is necessary to
investigate whether failed attempts, such as unsuccessful file access, can
be accurately reconstructed from SMB network traffic. To support
research in this field, both our framework for mounting network traffic
and our implementation for calculating SCFs, reconstructing file oper-
ations, and our current rule set are available in our repositories Hilgert
et al. (2024a,b).

Appendix

Table 1
Comparison of actual executed cmd.exe commands and the reconstructed commands from SMB network traffic.

cmd.exe Timestamp Command Executed Reconstructed Timestamp Reconstructed User Activity

18:00:36.27 dir 18:00:37.02 listing of directory (dir)/
18:00:47.79 mkdir Files\Other 18:00:47.93 creation of directory (mkdir): Files

18:00:47.93 creation of directory (mkdir): Files\Other
18:00:52.49 dir 18:00:52.59 listing of directory (dir)/
18:01:00.00 cd Files 18:01:00.16 changed directory (cd) to Files
18:01:04.59 dir 18:01:04.75 listing of directory (dir) Files
18:01:12.36 cd

18:01:17.11 dir 18:01:17.26 listing of directory (dir)/
18:01:23.28 mkdir Documents 18:01:23.51 creation of directory (mkdir): Documents
18:01:29.15 cd Documents 18:02:31.10 changed directory (cd) to Documents
18:01:36.35 echo ”abcd” > test.txt 18:01:36.51 creation of file using echo Documents\test.txt
18:01:41.49 more test.txt 18:01:41.73 view of file Documents\test.txt
18:01:53.60 mkdir Work 18:01:53.80 creation of directory (mkdir): Documents\Work
18:01:58.18 dir 18:01:58.35 listing of directory (dir) Documents
18:02:07.24 echo ”efgh” >> test.txt 18:02:07.46 appending to file using echo Documents\test.txt
18:02:13.96 cd

18:02:18.68 dir 18:02:18.83 listing of directory (dir)/
18:02:24.04 ren docs old 18:02:24.18 renamed (rename) directory docs to old
18:02:30.89 del Documents\test.txt 18:02:31.11 deletion of file (del): Documents\test.txt

Table 2
SMB Command Fingerprints for various Windows API calls.

WinAPI SCF Description

FindFirstFile e128601506b19689cfea77f8e57fa33d
e6f1d54f04f3f80e8c008be45ddb89f1

CREATE
Compound Request
QUERY DIRECTORY — QUERY DIRECTORY

GetFileAttributes 3df084742fb18607089dd93e01da07bb CREATE

SetFileAttributes ec10dfc12cab368e93459f451fd6b2dc
56100944eac20b9e9e3229bee6916e1b
5a4606aac7612839c39162746e8655a0

CREATE
QUERY INFO FileNormalizedNameInformation
SET INFO FileBasicInformation

CreateDirectory cb7e84430eef9f80aa038dfa3679fd91 CREATE

RemoveDirectory 26b162f9c78b0d1095d94d55dfb9bc69
472410aa272671f7d8a103954703cc5a

CREATE
SET INFO FileDispositionInformation

DeleteFile 17221fcc0857e79e60545bb409f37497
56100944eac20b9e9e3229bee6916e1b
472410aa272671f7d8a103954703cc5a

CREATE
QUERY INFO FileNormalizedNameInformation
SET INFO FileDispositionInformation

(continued on next page)

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

9

Table 2 (continued)

WinAPI SCF Description

CopyFile (to server) 901e16b20a7cf536d5279df8a06e2a0a
c10eadfd4fc2a82352888ea761f9ce54

35127603ad78335a7290598c9070e7f7
d4b9e47f65b6e79b010582f15785867e
5a4606aac7612839c39162746e8655a0
80c2cc1529acacebb810ec4014119967

CREATE
Compound Request
QUERY INFO — QUERY INFO
SET INFO FileEndOfFileInformation
WRITE
SET INFO FileBasicInformation
QUERY INFO

MoveFile (to server) e7449ce5b9915ecfadc3293625d087ad
c10eadfd4fc2a82352888ea761f9ce54

35127603ad78335a7290598c9070e7f7
d4b9e47f65b6e79b010582f15785867e
5a4606aac7612839c39162746e8655a0
80c2cc1529acacebb810ec4014119967

CREATE
Compound Request
QUERY INFO — QUERY INFO
SET INFO FileEndOfFileInformation
WRITE
SET INFO FileBasicInformation
QUERY INFO

References

Blaze, M., 1992. Nfs tracing by passive network monitoring. In: Proceedings of the
USENIX Winter 1992 Technical Conference, pp. 333–343.

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional.
Cermak, M., Fritzová, T., Rusňák, V., Sramkova, D., 2023. Using relational graphs for

exploratory analysis of network traffic data. Forensic Sci. Int.: Digit. Invest. 45,
301563.

Choi, Y., Lee, J.Y., Choi, S., Kim, J.H., Kim, I., 2015. Transmitted file extraction and
reconstruction from network packets. In: 2015 World Congress on Internet Security
(WorldCIS). IEEE, pp. 164–165.

Clark, D., Turnbull, B.P., 2020. Interactive 3d visualization of network traffic in time for
forensic analysis. VISIGRAPP 177–184, 3: IVAPP.

Corchado, E., Herrero, Á., 2011. Neural visualization of network traffic data for intrusion
detection. Appl. Soft Comput. 11, 2042–2056.

Corporation, M., 2024. [ms-smb2]: Server Message Block (Smb) Protocol Versions 2 and
3. https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/
5606ad47-5ee0-437a-817e-70c366052962.

Dai, S., Tongaonkar, A., Wang, X., Nucci, A., Song, D., 2013. Networkprofiler: towards
automatic fingerprinting of android apps. In: 2013 Proceedings Ieee Infocom, IEEE,
pp. 809–817.

Ellard, D., Seltzer, M., 2003. New nfs tracing tools and techniques for system analysis. In:
Proceedings of the 17th Large Installation Systems Administration Conference.
USENIX Association.

Gugelmann, D., Gasser, F., Ager, B., Lenders, V., 2015. Hviz: Http (s) traffic aggregation
and visualization for network forensics. Digit. Invest. 12, S1–S11.

Hansen, R.A., Seigfried-Spellar, K., Lee, S., Chowdhury, S., Abraham, N., Springer, J.,
Yang, B., Rogers, M., 2018. File toolkit for selective analysis & reconstruction
(filetsar) for large-scale networks. In: 2018 IEEE International Conference on Big
Data (Big Data). IEEE, pp. 3059–3065.

Hilgert, J.N., Lambertz, M., Yang, S., 2018. Forensic analysis of multiple device btrfs
configurations using the sleuth kit. Digit. Invest. 26, S21–S29.

Hilgert, J.N., Mahr, A., Lambertz, M., 2024a. pcapFS – Mounting Network Data. URL:
https://github.com/fkie-cad/pcapFS/tree/main.

Hilgert, J.N., Mahr, A., Lambertz, M., 2024b. SCF - SMB Command Fingerprinting. URL:
https://github.com/fkie-cad/SCF.

Kim, D., Park, J., Lee, K.g., Lee, S., 2012. Forensic analysis of android phone using ext4
file system journal log. In: Future Information Technology, Application, and Service:
FutureTech 2012, vol. 1. Springer, pp. 435–446.

Moore, A.W., 1995. Operating System and File System Monitoring: A Comparison of
Passive Network Monitoring with Full Kernel Instrumentation Techniques. Ph.D.
Thesis. Monash University.

Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I., 2016. Appscanner: automatic
fingerprinting of smartphone apps from encrypted network traffic. In: 2016 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, pp. 439–454.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

10

http://refhub.elsevier.com/S2666-2817(24)00131-8/sref1
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref1
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref2
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref3
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref3
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref3
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref4
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref4
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref4
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref5
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref5
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref6
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref6
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/5606ad47-5ee0-437a-817e-70c366052962
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/5606ad47-5ee0-437a-817e-70c366052962
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref8
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref8
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref8
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref9
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref9
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref9
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref10
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref10
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref11
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref11
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref11
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref11
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref12
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref12
https://github.com/fkie-cad/pcapFS/tree/main
https://github.com/fkie-cad/SCF
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref15
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref15
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref15
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref16
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref16
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref16
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref17
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref17
http://refhub.elsevier.com/S2666-2817(24)00131-8/sref17

	Mount SMB.pcap: Reconstructing file systems and file operations from network traffic
	1 Introduction
	2 Server Message Block protocol
	2.1 Create context

	3 File system reconstruction
	3.1 Metadata
	3.2 File names
	3.3 Content
	3.4 File system and application data
	3.5 Hollow files
	3.6 Version history

	4 Mounting network traffic
	4.1 Overview
	4.2 Structure
	4.3 Mounting SMB

	5 Reconstructing file operations
	5.1 Methodology
	5.2 Windows API
	5.2.1 CreateFile
	5.2.2 FindFirstFile
	5.2.3 GetFileAttributes and SetFileAttributes
	5.2.4 ReadFile
	5.2.5 WriteFile
	5.2.6 CreateDirectory and RemoveDirectory
	5.2.7 DeleteFile

	5.3 SMB Command Fingerprinting
	5.4 Case study: cmd.exe

	6 Related work
	7 Conclusion and future work
	Appendix 7 Conclusion and future work
	References

