

A Metrics-Based Look at Disk Images: Insights and Applications

Lena L. Voigt, Felix Freiling and Christopher Hargreaves

Digital Forensics Research Conference Europe | April 3, 2025

Motivation

A Metrics-Based Look at Disk Images

Explanation of Terms Used

Real-World vs. Scenario-Based Synthetic Disk Images

Real-world disk image

- image of a disk on which <u>regular day-to-day activities</u> were carried out by one or more users <u>without the intention of creating data</u> for digital forensic analysis or investigation.

Scenario-based synthetic disk image

- produced with the <u>intention</u> of creating data that can be utilized for digital forensic purposes
- created in accordance with <u>a scenario</u> for digital forensic investigation:
 - disks from the M-57 scenarios (Digital Corpora)
 - forensic CTF disks with a storyline

Explanation of Terms Used

Real-World vs. Scenario-Based Synthetic Disk Images

Real-world disk image

- image of a disk on which <u>regular day-to-day activities</u> were carried out by one or more users <u>without the intention of creating data</u> for digital forensic analysis or investigation.

Scenario-based synthetic disk image

- produced with the <u>intention</u> of creating data that can be utilized for digital forensic purposes
- created in accordance with <u>a scenario</u> for digital forensic investigation:
 - disks from the M-57 scenarios (Digital Corpora)
 - forensic CTF disks with a storyline

Explanation of Terms Used

Real-World vs. Scenario-Based Synthetic Disk Images

Real-world disk image

- image of a disk on which <u>regular day-to-day activities</u> were carried out by one or more users <u>without the intention of creating data</u> for digital forensic analysis or investigation.

Scenario-based synthetic disk image

- produced with the <u>intention</u> of creating data that can be utilized for digital forensic purposes
- created in accordance with <u>a scenario</u> for digital forensic investigation:
 - disks from the M-57 scenarios (Digital Corpora)
 - forensic CTF disks with a storyline

- 1. A Formal Definition of Realism of Synthetic Disk Images
- 2. Compiling Datasets of Synthetic and Real-World Disk Images
- 3. Collecting Metrics from Disk Image Datasets
- 4. Insights from a Comparison of Synthetic and Real-world Disk Images

A Formal Definition

Intuitive Definition

- A realistic synthetic disk image is *indistinguishable* from a real-world disk image.

Considerations

- What does indistinguishable mean? Aren't two disk images always distinguishable?
 - We need to compare <u>sets</u> of synthetic and real-world disk images and the <u>distribution of values</u> for different features.
- Some features of the disk image can be 'out of scope' for the analysis, e.g.:
 - Does the disk image exhibit virtualization artifacts?
 - Are there traces of an automation framework used?

A Formal Definition

Concept: Define Realism using a cryptography-inspired security game

Data Sets: R (Real-world disk images), S (Synthetic disk images)

Security Game:

Verifier tries to distinguish data from R and S; can only inspect allowed features of the data

Process:

Presentation: Verifier is presented an item (randomly of either *R* or *S*)

A Formal Definition

Concept: Define Realism using a cryptography-inspired security game

Data Sets: R (Real-world disk images), S (Synthetic disk images)

Security Game:

Verifier tries to distinguish data from R and S; can only inspect allowed features of the data

Process:

Presentation: Verifier is presented an item (randomly of either R or S)

- 1. Query: Verifier selects a feature of the item to inspect
- 2. Check: Prover verifies if this query is allowed
- 3. Response: Measurement of the feature is provided

A Formal Definition

Concept: Define Realism using a cryptography-inspired security game

Data Sets: R (Real-world disk images), S (Synthetic disk images)

Security Game:

Verifier tries to distinguish data from R and S; can only inspect allowed features of the data

Process:

Presentation: Verifier is presented an item (randomly of either *R* or *S*)

- 1. Query: Verifier selects a feature of the item to inspect
- 2. Check: Prover verifies if this query is allowed
- 3. Response: Measurement of the feature is provided

A Formal Definition

Concept: Define Realism using a cryptography-inspired security game

Data Sets: R (Real-world disk images), S (Synthetic disk images)

Security Game:

Verifier tries to distinguish data from R and S; can only inspect allowed features of the data

Process:

Presentation: Verifier is presented an item (randomly of either R or S)

- 1. Query: Verifier selects a feature of the item to inspect
- 2. Check: Prover verifies if this query is allowed
- 3. Response: Measurement of the feature is provided

Guess: Verifier decides "real-world" or "synthetic"

A Formal Definition

Concept: Define Realism using a cryptography-inspired security game

Data Sets: R (Real-world disk images), S (Synthetic disk images)

Security Game:

Verifier tries to distinguish data from R and S; can only inspect allowed features of the data

Process:

Presentation: Verifier is presented an item (randomly of either R or S)

- 1. Query: Verifier selects a feature of the item to inspect
- 2. Check: Prover verifies if this query is allowed
- 3. Response: Measurement of the feature is provided

Guess: Verifier decides "real-world" or "synthetic"

n Iterations (with distinct items):

If the Verifier cannot reliably distinguish synthetic and real-world data items, and we call the synthetic forensic data in set *S* realistic w.r.t. the allowed features.

A Formal Definition

Compiling Datasets of Synthetic and Real-World Disk Images

Disk Image Collection

Conducted in September 2024, only Windows systems

- **Public**¹: publ. available (Digital Corpora, CFReDS, etc.)
- Internal¹: from five different institutions
- Real-World: drives from personal computers, in use between June 2012 and September 2024

Windows Version	Public ²	Internal	Real-world
Windows 11	3	-	2
Windows 10	8	11	5
Windows 8.1	3	-	-
Windows 7	2	19	3
Windows Vista	1	1	-
Windows XP	6	5	1
Win. Server 2008	1	-	-
Win. Server 2022	1	-	-
Win. Server 2019	-	1	-
Gesamt	25	37	11

¹ scenario-based, synthetic

Collecting Metrics from Disk Image Datasets

Collecting Metrics from Disk Image Datasets

The Mass Disk Processor (MDP)

- Automating the collection of metrics from large sets of disk images and summarizing the results
- ➤ Allows for extraction of privacy-preserving high-level metrics

Impementation

- pytsk/libewf wrapper for disk image access
- plugin-based architecture
- optional preprocessing
 - File signature extraction, sha1 calculation
- optional integration of existing tools
 - pyregistry, python-evtx, Plaso

Collecting Metrics from Disk Image Datasets

The Mass Disk Processor (MDP)

Category	MDP Metric Name	Metric Description	Value ¹
	disk_size	Size of the disk (converted to GB)	40
Configuration	win_build_inferred_os, win_build	Windows Version and Build	Windows 10 (Build: 17763)
Longevity	windows_install	Windows Install Time	2019-03
Longevity	windows_last_shutdown	Windows Last Shutdown	2024-03
	win_os_lifetime	Windows OS Lifetime (in days)	1809.04
	win_total_login_count	Windows Login Count	33
Activity	no_start_menu_lnk_total	Number of Startmenue Lnk Files	49
	chrome_history_entries_total	Chrome History Entries	0
	no_non_nsrl_files	Number of non-NSRL Files	139864
Volume	audio_files	Number of Audio Files	279
volume	video_files	Number of Video Files	31
	office_files	Number of Office Files	43
Notables	no_signature_mismatches	Number of Signature Mismatches	4428
	evtx_clock_change_4616	Number of Clock Change Events	9

¹ Values for DFRWS EU 2024 – Rodeo Image (Bytebusters)

Insights from a Metrics-Based Comparison

Insights from a Metrics-Based Comparison

- Configuration:
 - > Disk size, operating system(s) installed, number of users, applications installed, default browsers
- Longevity
- Activity
- Volume

¹ source: microsoft.com/edge

² source: google.com/chrome

³ source: mozilla.org/de/firefox

Insights from a Metrics-Based Comparison

- Configuration
- Longevity:
 - > File system lifespan, Windows operating system lifetime
- Activity
- Volume

Insights from a Metrics-Based Comparison

- Configuration
- Longevity
- Activity:
 - Number of logins, number of USB drives attached, number of browser history entries, number of browser searches
- Volume

Insights from a Metrics-Based Comparison

- Configuration
- Longevity
- Activity
- Volume:
 - Number of files, number of user folder files, number of files per type:
 - Office files
 - PDF files
 - Audio files
 - Video files

Insights from a Metrics-Based Comparison

Compiling Datasheets for Disks Images

Providing Metrics for Public Disk Images

- 1. Datasheets for individual disk images
- 2. Summary table for public disk images
 - Facilitate the selection of a public disk image that fits specific needs:
 - Long Windows Lifetime
 - Rich Firefox browser history
 - High volume of files

	Α	AE	AF	AG
1	Identifier -	win_os_life_days 🚚	windows_install -	windows_last_shut -
2	DFRWSRodeo24	1809.04	2019-03	2024-03
3	MagnetCTF19	233.48	2018-07	2019-03
4	BelkaCTF1	196.32	2020-08	2021-02
5	OpenUni22	138.08	2023-09	2024-02
6	InCTF20	131.31	2020-03	2020-07
7	CellebriteCTF21	127.83	2021-03	2021-07
8	MagnetCTF20	68.82	2020-02	2020-04
9	M57-08	68.17	2008-05	2008-07
10	MagnetCTF23	43.09	2022-11	2023-01
11	BelkaCTF5	38.75	2022-06	2022-07

Compiling Datasheets for Disks Images

Providing Metrics for Public Disk Images

- 1. Datasheets for individual disk images
- 2. Summary table for public disk images
 - Facilitate the selection of a public disk image that fits specific needs:
 - Long Windows Lifetime
 - Rich Firefox browser history
 - High volume of files

	Α	BV	BW
1	Identifier -	firefox_history_entries	firefox_google_searches -
2	M57-09Charlie	1080	40
3	M57-08	489	40
4	M57-09Jo	422	17
5	M57-09Pat	295	13
6	BelkaCTF5	240	77
7	InCTF20	85	12
8	CCIKip	82	9
9	CellebriteCTF21	50	4
10	DefenitCTF20	3	0
11	M57-09Terry	1	0

Compiling Datasheets for Disks Images

Providing Metrics for Public Disk Images

- 1. Datasheets for individual disk images
- 2. Summary table for public disk images
 - Facilitate the selection of a public disk image that fits specific needs:
 - Long Windows Lifetime
 - Rich Firefox browser history
 - High volume of user files

	Α	0	Р	Q	R
1	Identifier -	files_in_users_folder 🔍	non_nsrl_files -	office -	pdf -
2	MagnetCTF23	111193	81328	12	8
3	CellebriteCTF21	48299	145014	24	40
4	BelkaCTF5	23859	85805	16	11
5	MagnetCTF22	17596	161010	24	8
6	Bart23	13780	97824	18	3
7	BelkaCTF1	13443	86277	15	23
8	M57-09Pat	11989	20763	44	62
9	Owl19	11409	104225	27	545
10	Hadi2	11224	16499	35	18
11	MagnetCTF20	10164	76977	34	1

Discussion

Metrics do not eliminate the need for qualitative assessment:

- Complexity of evidence recovery
- Difficulty in reconstructing the scenario
- Coherence of the underlying storyline

Sole focus on metrics can undermine qualitative considerations:

- Longevity ↑: Clock manipulations
- Activity ↑: Arbitrary launching of programs
- Volume †: Depositing large numbers of random files

Discussion

Future Work – More Data, More Metrics, More Insights

1. Larger scale collection of disk metrics

> For real-world as well as synthetic disk images

2. Implementing further metrics

- Metrics for different use cases, multiple metrics for the same characteristic
- Cross-plugin metrics
- Cross-device metrics for more complex cases

3. Exploring further applications

- Metric Sharing for Non-Shareable Data
- Evaluation of Synthesis Proposals
- Lab Metrics (for cost/resource estimation or prioritization)

Conclusion

A Metrics-Based View of Disk Images

Contribution:

- Mass Disk Processor (MDP) Framework: Open-Source Framework for Retrieving Disk Metrics in Bulk
- Formal definition of *Realism* in synthetic disk images
- Comparison of scenario-based and real-world disk images
- Datasheets for public disk images

Further Application Scenarios:

- Sharing of non-shareable data,
- Lab metrics,
- Prioritization, etc.

https://github.com/lenavoigt/mass-disk-processor

MDP Code

Summary sheet of public disk images

Individual datasheets for public disk images

Plaso timelines for public disk images